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1 Introduction

We consider solutions of the two point boundary value problems

u′′(x) + λf(x, u(x)) = 0, for a < x < b, u(a) = u(b) = 0,(1.1)

depending on a parameter λ. We wish to know how many exactly solutions
does the problem (1.1) have, and how these solutions change with λ. What

is the role of the parameter λ? Of course, it could be absorbed into the
nonlinearity f . However, as is often the case, it is helpful to have something

“extra” in the statement of the problem. Consider for example the problem

u′′(x) + 4e
5u(x)

5+u(x) = 0, for 0 < x < 1, u(0) = u(1) = 0.(1.2)

Problems of this type come up in combustion theory, referred to as “per-

turbed Gelfand problem”, see e.g. J. Bebernes and D. Eberly [7]. It will
follow from a result we present below that this problem has exactly three
positive solutions. It appears next to impossible to establish this result

directly. We introduce a parameter λ, and consider

u′′(x) + λe
5u(x)

5+u(x) = 0, for 0 < x < 1, u(0) = u(1) = 0.(1.3)

We now study curves of solutions, u = u(x, λ). The advantage of this
approach is that some parts of the solution curve are easy to understand,
and it also becomes clear what are the tougher parts of the solution curve
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that we need to study - the turning points. For example, it is easy to

understand the “small” solutions of (1.3), by applying the implicit function
theorem (in Banach spaces) in the neighborhood of the trivial solution λ = 0,

u = 0. We then continue this curve of solutions for increasing λ > 0 until
a critical solution is reached, i.e. the implicit function theorem is no longer

applicable. We show that at the critical solution the Crandall-Rabinowitz
Theorem 1.2 (see below) applies. It implies that either the solution curve

continues forward in λ through the critical solution, or it just bends back
(no secondary bifurcations or other excentric behaviour is possible). We

then show that the global solution curve makes exactly two turns, and the
value of λ = 4 from (1.2) lies between the turns, thus establishing the
existence of three solutions. The bifurcation approach, just described, has

been developed in the recent years by Y. Li, T. Ouyang, J. Shi and the
present author. It applies also to the semilinear elliptic problems for balls

in Rn, however in the present paper we restrict to the ODE case (1.1).

The most detailed results are obtained when one considers positive so-
lutions of autonomous problems, i.e. when f = f(u). Since in that case

both the length and the position of the interval (a, b) are irrelevant, and
since positive solutions are symmetric with respect to the midpoint of the

interval, it is convenient to pose the problem on the interval (−1, 1), i.e. we
consider

u′′(x) + λf(u(x)) = 0, for −1 < x < 1, u(−1) = u(1) = 0.(1.4)

It turns out that convexity properties of f(u) are important for determining

the direction of the turn for solution curves. Accordingly, in the simplest
case f ′′(u) > 0 and f(u) > 0, for u > 0, we can give an exhaustive analysis

of the problem. (In case f ′′(u) < 0 and f(u) > 0, for u > 0, it is easy to
prove uniqueness of solutions.) The next case in order of complexity is when

f(u) changes concavity exactly once. The prominent case is when f(u) is
modelled on a cubic with simple roots:

u′′ +λ(u−a)(u− b)(c−u) = 0, for −1 < x < 1, u(−1) = u(1) = 0.(1.5)

We assume that 0 ≤ a < b < c, since the analysis is easier if some root(s) is

negative. We wish to describe how many exactly positive solutions does the
problem (1.5) have for various λ.

This problem was studied in a 1981 paper by J. Smoller and A. Wasser-

man [58]. They succeeded in solving the problem for a = 0, while their
proof for a > 0 case contained an error. This error was discovered by S.-H.
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Wang [60], who was able to solve the problem under some restriction on

a > 0. Both papers used the phase-plane analysis. P. Korman, Y. Li and
T. Ouyang [30] used bifurcation theory to attack the problem, but again

some restrictions were necessary (all of the above mentioned papers covered
more general f(u), behaving like cubic). Very recently, P. Korman, Y. Li

and T. Ouyang [33], building on their previous work, have given a computer
assisted proof for general cubic. It turns out that the set of all positive

solutions consists of two curves, with the lower curve monotone in λ, and
the upper curve having exactly one turn. The computations in P. Korman,

Y. Li and T. Ouyang [30] also showed that the approach in J. Smoller and
A. Wasserman [58] could not possibly cover the general cubic. (That ap-
proach required some integral to be positive, in order to derive a differential

inequality for a time map. However, that integral changes sign for some
cubics.) In the next section we state the optimal result, and describe the

approach taken in [30] and [33].

Another prominent class of problems where f(u) changes concavity ex-
actly once is

u′′ + λe
au

u+a = 0 for −1 < x < 1, u(−1) = u(1) = 0,(1.6)

from combustion theory. Here a is a second parameter. In case a = 5, we

have the problem (1.3), discussed above. If a ≤ 4, the problem is easy. In
that case the solution curve is monotone, and it continues for all λ > 0

without any turns. Following some earlier results of K.J. Brown, M.M.A.
Ibrahim and R. Shivaji [9] and others (see [61] and [29] for the earlier ref-
erences), S.-H. Wang [61] has proved existence of a constant a0, so that

for a > a0 the solution curve of (2.21) is exactly S-shaped, i.e. it starts
at λ = 0, u = 0, it makes exactly two turns, and then it continues for all

λ > 0 without any more turns. S.-H. Wang [61] gave an approximation of
the constant a0 ' 4.4967. That paper, as well as all previous ones, used a

time map approach. P. Korman and Y. Li [29] have applied the bifurcation
approach to the problem. Since bifurcation approach is more general, this

opened a way to do other problems. In fact, Y. Du and Y. Lou [14] have
used a similar approach, with several additional tricks of their own, to prove

that for a ball in two dimensions a similar result holds for sufficiently large
a.

P. Korman and Y. Li [29] had also improved the value of the constant to
a0 ' 4.35, i.e. for a > a0 the solution sets are S-shaped curves. But what

about 4 < a < a0? S.-H. Wang [61] has conjectured existence of a critical
number ā, so that for a ≤ ā the solution curve is monotone, while for a > ā
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the solution curve is exactly S-shaped (the number a0, mentioned above,

is just an upper bound for ā). Recently, P. Korman, Y. Li and T. Ouyang
[33] has given a computer assisted proof of the S.-H. Wang’s conjecture.

Numerical calculations show that ā ' 4.07.

Other topics we discuss using the bifurcation approach involve pitchfork

bifurcation and symmetry breaking, sign changing solutions, and the Neu-
mann problem. We also present a recent formula from P. Korman, Y. Li and

T. Ouyang [33], which allows one to compute all possible values of α = u(0),
at which solution of (1.4), with the maximal value equal to α, is singular.

The case when f = f(x, u) is much harder than the autonomous case.

In particular, the time map method does not apply. Bifurcation approach
works, but it becomes much more complicated. For example, solutions of

the corresponding linearized problem need not be of one sign (an implicit
example of that is provided by the Theorem 1.10 in W.-M. Ni and R.D.

Nussbaum [46]). In the papers P. Korman and T. Ouyang a class of f(x, u)
has been identified, for which the theory of positive solutions is very similar

to that for the autonomous case, see e.g. [34], [35] and [36]. Further results
in this direction have been given in P. Korman, Y. Li and T. Ouyang [30],
and P. Korman and J. Shi [40]. Namely, assume that f ∈ C2 satisfies

f(−x, u) = f(x, u) for all −1 < x < 1, and u > 0,

fx(x, u) ≤ 0 for all 0 < x < 1, and u > 0.

Under the above conditions any positive solution of (1.1) is an even function,

with u′(x) < 0 for all x ∈ (0, 1], see B. Gidas, W.-M. Ni and L. Nirenberg
[15]. We show that any solution of the corresponding linearized problem is
of one sign, and then outline a number of exact multiplicity results.

Without symmetry assumption on f(x, u) things are even more hard. In
Section 4 we present extensions of the previous results in P. Korman and T.

Ouyang [38]. The notion of Schwarzian derivative from Complex Analysis
turns out to play a role here.

The bifurcation approach is effective for other problems, in addition to
the two point problems that we discuss in the present paper. Most notably,
similar results were developed for PDE’s on a ball or annulus in Rn, see

e.g. P. Korman, Y. Li and T. Ouyang [31] or T. Ouyang and J. Shi [50]. It
was also used for systems of equations in P. Korman [22], for fourth order

equations in P. Korman [26], and for periodic problems in P. Korman and
T. Ouyang [37].
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In Section 5 we give a brief review of time map method. Let u = u(t)

be solution of the initial value problem,

u′′ + f(u) = 0, u(0) = 0, u′(0) = p.

Using ballistic analogy, we can interpret this as “shooting” from the ground

level, at an angle p > 0. Let T/2 denote the time it takes for the projectile to
reach its maximum amplitude. By symmetry of positive solutions, T = T (p)

is then the time when the projectile falls back to the ground, the time map.
The function u(t) then satisfies the two point Dirichlet problem

u′′ + f(u) = 0, for 0 < t < T , u(0) = u(T ) = 0,

which by rescaling is equivalent to (1.4). There are two completely different

formulas for the same time map T = T (p). The first one is obtained by
direct integration, see e.g. W.S. Loud [43] for an early reference, while the

second one was derived by R. Schaaf [53] through a change of variables,
which converts the problem into a harmonic oscillator. Both formulas for

the time map are nontrivial to use. The first one involves improper integrals,
while the second one is highly implicit. (“Name your poison”, so to say.)

However, both approaches are well developed by now, see the book by R.
Schaaf [53], and the papers of S.-H. Wang and his coworkers, of I. Addou,

and many other papers, including J. Cheng [10], [11], and K.J. Brown et al
[9]. We give an exposition of the second approach, and connect it to the
notion of generalized averages from P. Korman and Y. Li [28].

In the final Section 6 we discuss numerical computation of solutions of
(1.4). Again, the autonomous case is much easier. We describe two efficient

ways to compute the solutions, and explain why finite differences (or finite
elements) are not appropriate for autonomous problems.

The basic tool for continuation of solutions is the implicit function the-
orem in Banach spaces. We present it here in the formulation of M.G.

Crandall and P.H. Rabinowitz [12], see also L. Nirenberg [45].

Theorem 1.1 Let X , Λ and Z be Banach spaces, and f(x, λ) a continuous
mapping of an open set U ⊂ X × Λ → Z. Assume that f has a Frechet

derivative with respect to x, fx(x, λ) which is continuous on U . Assume
that

f(x0, λ0) = 0 for some (x0, λ0) ∈ U.

If fx(x0, λ0) is an isomorphism (i.e. 1 : 1 and onto) of X onto Z, then
there is a ball Br(λ0) = {λ : ||λ− λ0|| < r} and a unique continuous map
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x(λ) : Br(λ0) → X , such that

f(x(λ), λ)≡ 0, x(λ0) = x0.

If f is of class Cp, so is x(λ), p ≥ 1.

In the conditions of the above theorem, we refer to (x0, λ0) as a regular

solution, otherwise we call a solution singular. What happens at a singular
solution? (I.e. when fx(x0, λ0) is not an isomorphism.) In general, prac-

tically anything imaginable may happen, as one can see even for functions
of two variables. However, in a lucky case solution will continue through

a critical point, either by making a simple turn there, or maybe it even
continues forward in λ (the critical point is then like a point of inflection).

M.G. Crandall and P.H. Rabinowitz [13] have given conditions for that to
occur. The following result is one of our principal tools.

Theorem 1.2 [13] Let X and Y be Banach spaces. Let (λ, x) ∈ R × X
and let F be a continuously differentiable mapping of an open neighbor-

hood of (λ, x) into Y . Let the null-space N (Fx(λ, x)) = span x0 be one-
dimensional and codim R(Fx(λ, x)) = 1. Let Fλ(λ, x) 6∈ R(Fx(λ, x)). If Z

is a complement of span x0 in X , then the solutions of F (λ, x) = F (λ, x)
near (λ, x) form a curve (λ(s), x(s)) = (λ + τ(s), x + sx0 + z(s)), where

s→ (τ(s), z(s)) ∈ R×Z is a continuously differentiable function near s = 0
and τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0.

Except for a brief discussion on p-Laplace equations, we consider only the
classical solutions throughout this paper. We shall denote the derivatives of

u(x) by either u′(x) or ux, and mix both notations sometimes to make our
discussion more transparent.

Most of the results in the present paper are based on our joint papers
with Y. Li, T. Ouyang and J. Shi. Working with these talented colleagues

has been a wonderful experience for me, and I wish to thank them for this
opportunity. I also wish to thank Professors A. Canada, P. Drabek and A.
Fonda for inviting me to write this review paper.
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2 Bifurcation theory approach

2.1 Some general properties of solutions of autonomous prob-

lems

We will consider positive, negative and sign-changing solutions of the Dirich-

let problem (for u = u(x))

u′′ + λf(u) = 0 for −1 < x < 1, u(−1) = u(1) = 0,(2.1)

depending on a parameter λ. We assume throughout this section that f(u) ∈
C2(R̄+). We choose to consider the problem on the interval (−1, 1) for

convenience (which is related to the symmetry of solutions). By shifting
and scaling, we can replace the interval (−1, 1) by any other interval (a, b).

Lemma 2.1 Let ξ ∈ (−1, 1) be any critical point of u(x), i.e. u′(ξ) = 0.

Then u(x) is symmetric with respect to ξ.

Proof: Let v(x) ≡ u(2ξ−x). Then v(x) satisfies the same equation (2.1),

and moreover v(ξ) = u(ξ) and v′(ξ) = u′(ξ) = 0. By uniqueness of initial
value problems, u(x) ≡ v(x), and the proof follows. ♦

Lemma 2.2 Solution of (2.1) cannot have points of positive minimum, and
of negative maximum.

Proof: Let us rule out the case of positive minimums, with the other

case being similar. Assume on the contrary that there are points of positive
minimums, and let ξ be the largest such point. Since u(ξ) > 0 and u(1) = 0,
we can find a point η ∈ (ξ, 1), so that u(ξ) = u(η). Observe that u′(η) < 0.

Indeed, if we had u′(η) = 0, then by the preceding lemma, η would have to
be a point of minimum, contradicting the maximality of ξ. We know that the

energy E(x)) = 1
2u

′(x)2 +λF (u(x)) is constant, but by above, E(η)> E(ξ),
a contradiction. ♦

We now consider positive solutions of (2.1). It follows from the lemmas
above, that any positive solution is an even function, with u′(x) > 0 on

(−1, 0), and u′(x) < 0 on (0, 1). (Of course, by the classical theorem of B.
Gidas, W.-M. Ni and L. Nirenberg [15] this result holds for balls in Rn for

any n ≥ 1). Hence α ≡ u(0) is the maximal value of solution. We show next
that it is impossible for two solutions of (2.1) to share the same α.

Lemma 2.3 The value of u(0) = α uniquely identifies the solution pair

(λ, u(x)) (i.e. there is at most one λ, with at most one solution u(x), so
that u(0) = α).
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Proof: Assume on the contrary that we have two solution pairs (λ, u(x))

and (µ, v(x)), with u(0) = v(0) = α. Clearly, λ 6= µ, since otherwise we
have a contradiction with uniqueness of initial value problems. (Recall that

u′(0) = v′(0) = 0.) Then u( 1√
λ
x) and v( 1√

µx) are both solutions of the same

initial value problem

u′′ + f(u) = 0, u(0) = α, u′(0) = 0,

and hence u( 1√
λ
x) = v( 1√

µx), but that is impossible, since the first function

vanishes at x =
√
λ, while the second one at x =

√
µ. ♦

Bifurcation theory approach revolves around the study of the linearized
equation for (2.1)

w′′ + λf ′(u(x))w = 0 for −1 < x < 1, w(−1) = w(1) = 0,(2.2)

where u(x) is a solution of (2.1). If this problem has a nontrivial solution,
we call u(x) a singular solution of (2.1). We say that the solution u(x) is

non-singular, if w(x) ≡ 0 is the only solution of (2.2). The following lemma
is easy to prove in the autonomous case.

Lemma 2.4 Let u(x) be a positive solution of (2.1), with

u′(1) < 0.(2.3)

If the problem (2.2) admits a nontrivial solution, then it does not change
sign, i.e. we may assume that w(x) > 0 on (−1, 1).

Proof: The function u′(x) also satisfies the linear equation in (2.2). By
the condition (2.3), u′(x) is not a multiple of w(x). Hence its roots are

interlaced with those of w(x). If w(x) had a root ξ inside say (−1, 0), then
u′(x) would have to vanish on (−1, ξ), which is impossible by the remarks

following Lemma 2.2. ♦
The condition (2.3) will hold for any positive solution, provided that

f(0) ≥ 0,(2.4)

see e.g. p. 107 in M. Renardi and R.C. Rogers [52]. If f(0) < 0 it is possible

to have u′(1) = 0. We shall encounter such a situation later, in connection
with symmetry-breaking bifurcation. What we see here is a manifestation

of the “divide” between the problems when (2.4) holds, and the case of
f(0) < 0.
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Lemma 2.5 If the problem (2.2) admits nontrivial solutions, then the solu-

tion set is one dimensional. If moreover u(x) is a positive solution, satisfying
(2.3), then w(x) is an even function.

Proof: By uniqueness of initial value problem the value of w′(1) uniquely
determines w(x), and hence the null space is one dimensional. Turning to

the second claim, if u(x) is positive, then it is even. Hence w(−x) also
solves (2.2). Since the null space is one dimensional, w(−x) = cw(x) for

some constant c. Evaluating this relation at x = 0, we conclude that c = 1
(since w(0) > 0 by the previous lemma), which is the desired symmetry. ♦

The following lemma gives a simple condition for positive solutions of
(2.1) to be non-singular.

Lemma 2.6 Assume that either

f ′(u) >
f(u)

u
for all u > 0,

or the opposite inequality holds. Then the linearized problem (2.2) has only

the trivial solution.

Proof: If we rewrite the equation in (2.1) in the form

u′′ + λ
f(u)

u
u = 0,

and use the Sturm comparison theorem, we conclude that the positive solu-

tion u(x) oscillates faster than w(x), and hence it must vanish on (−1, 1),
which is impossible. ♦

Another very simple condition is the following.

Lemma 2.7 Assume that

f ′(u) < 0 for all u > 0.

Then the linearized problem (2.2) has only the trivial solution.

Proof: Multiplying the equation in (2.2) by w, and integrating, we

conclude that the problem (2.2) can have only the trivial solution. ♦
We shall need the following lemma, which “connects” the solutions of

(2.1) and (2.2). It will allow us to verify the crucial condition of the Crandall-
Rabinowitz Theorem 1.1 for both positive and sign changing solutions.
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Lemma 2.8 If the problem (2.2) admits a nontrivial solution, then

∫ 1

−1
f(u)w dx =

1

λ
u′(1)w′(1).(2.5)

Proof: The quantity u′′(x)w(x)− u′(x)w′(x) is a constant, and hence

u′′(x)w(x)− u′(x)w′(x) = −u′(1)w′(1).

Integrating over (−1, 1) (by parts), we conclude the lemma. ♦

Very often one is looking for positive solutions of (2.1). A possible reason
for this emphasis, is that only positive solutions have a chance to be stable,

a property significant for applications. Let us recall the notion of stability.
For any solution u(x) of (2.1) let (µ, w(x)) denote the principal eigenpair of

the corresponding linearized equation, i.e. w(x) > 0 satisfies

w′′ + λf ′(u)w + µw = 0 for −1 < x < 1, w(−1) = w(1) = 0.(2.6)

The solution u(x) of (2.1) is called unstable if µ < 0, otherwise it is stable.

(This is so called linear stability. It means, roughly, that solutions of the
corresponding heat equation, with the initial data near u(x) will tend to

u(x), as t→ ∞, see the book by D. Henry [16]).

Proposition 1 Let u(x) be a solution of (2.1) that changes sign on (−1, 1).

Then u(x) is unstable.

Proof: Let (µ, w(x)) denote the principal eigenpair of (2.6). Assume that
on the contrary µ ≥ 0. Since u(x) changes sign, we can find −1 < x1 < x2 <

1, such that u′(x1) = u′(x2) = 0 and say u′(x) < 0 on (x1, x2) (the other
case is similar). Observe that u′′(x1) < 0 and u′′(x2) > 0 (u′(x) satisfies

a linear equation, it cannot vanish together with its derivative). Denoting
p(x) = u′′(x)w(x)− u′(x)w′(x), we have

p′(x) = µu′(x)w(x) ≤ 0 for x ∈ (x1, x2).

We see that p(x) is nonincreasing on (x1, x2). But, p(x1) = u′′(x1)w(x1) < 0
and p(x2) = u′′(x2)w(x2) > 0, a contradiction. ♦

This result was also proved by R. Schaaf [53]. A similar result for balls
in Rn can be found in C.S. Lin and W.-M. Ni [42].

Lemma 2.9 Any two positive solutions of (2.1) do not intersect inside
(−1, 1) (i.e. they are strictly ordered on (−1, 1)).
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Proof: Let u(x) and v(x) be two intersecting solutions. Since both of

them are even functions, they intersect on the half-interval (0, 1) as well.
Let 0 < ξ < η < 1 be two consecutive intersection points. If v(x) > u(x)

on (ξ, η), then |u′(ξ)| > |v′(ξ)|, while |u′(η)| < |v′(η)|. The energy E(x) =
1
2u

′(x)2 + λF (u(x)) is constant for any solution u(x). But at ξ, u(x) has

higher energy than v(x), and at η the order is reversed, a contradiction. ♦

The following result from P. Korman [21] gives a detailed description of
the solution shape for large λ. (In [21] we proved this result for balls in Rn.)

If for some reason solutions cannot be of that shape, it follows that there
are no positive solutions of (2.1) for large λ. Recall that root α of f(u) is

called stable if f(α) = 0 and f ′(α) < 0.

Theorem 2.1 Let u(x, λ) be a positive solution of (2.1), that exists for all

λ > λ̄, for some λ̄ > 0. Assume that either limu→∞
f(u)

u = ∞, or there
is u0 > 0, so that f(u) ≤ 0 for u ≥ u0. Then the interval (−1, 1) can be

decomposed into a union of open intervals, whose total length = 2, so that
on each such subinterval u(x, λ) tends to a stable root of f(u), as λ→ ∞.

Example Assume that f(u) < 0 for 0 < u < ū, with some ū > 0, f(u) > 0

for u > ū, and limu→∞
f(u)

u = ∞, e.g. f(u) = up − 1, with p > 1. Then the

problem

u′′ + λ (up − 1) = 0, −1 < x < 1, u(−1) = u(1) = 0

has no positive solution for λ large enough. Indeed, since f(u) has no stable
roots, solution cannot exhibit the behaviour described in the above theorem,

and hence the solution cannot exist for all large λ.

The bifurcation approach applies also to the quasilinear problems of the
type

(

ϕ(u′)
)′

+ λf(u) = 0 for −1 < x < 1, u(−1) = u(1) = 0.(2.7)

The prominent example is that of p-Laplacian ϕ(t) = t|t|p−2, with p ≥ 2.
Motivated by this example, we assume that ϕ(t) ∈ C2(R \ {0}) satisfies

ϕ′(t) > 0, for all t 6= 0.(2.8)

We consider weak solutions of (2.7), which are of class

C[−1, 1] ∩ C1(−1, 1) ∩ C2 ((−1, 1) \ {0}). (Since the problem is degenerate
elliptic, the value of u′′(0) might be infinite.)
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Assuming the condition (2.8), we will show that the conclusions of the

Lemmas 2.1, 2.2, 2.4 and 2.5 hold verbatim for the problem (2.7). In case
ϕ(t) = t|t|p−2, the Lemmas 2.3 and 2.8 hold too. The proofs are basically

the same, but there are some difficulties due to degeneracy. For example,
in the proof of Lemma 2.1 it is not apparent that u(x) is symmetric with

respect to ξ in case ξ = 0. (If ξ 6= 0, the proof is as before.) We therefore
combine the first two lemmas to assert that the solution has the same shape

as before.

Lemma 2.10 Assuming the condition (2.8), any positive solution of (2.7)

is an even function, with u′(x) > 0 on (−1, 0), and u′(x) < 0 on (0, 1).

Proof: We need to adjust the definition of energy. Define Φ(z) =
∫ z
0 tϕ

′(t) dt. Then the energy Φ(u′(x)) + λF (u(x)) is constant (in case of
p-Laplacian, p

p−1 |u′(x)|p + λF (u(x)) = constant). Using the energy, we

conclude as before that u(x) cannot have any points of minimum inside the
interval (−1, 1). Also, since the energy is constant, it follows that

u′(−1) = −u′(1).(2.9)

To prove the symmetry, we consider v(x) ≡ u(−x). The function v(x)
satisfies the same problem (2.7). By (2.9) it has the same initial conditions

at x = 1 as u(x). Hence u(x) ≡ v(x). And finally, observe that an even
function with no interior minimums has the desired shape. ♦

It is easy to see that the Lemma 2.3 holds in case of p-Laplacian. Since we

need homogeneity for rescaling, we cannot assert it for the general problem
(2.7). Next we consider the linearized problem for (2.7)

(

ϕ′(u′)w′)′ + λf ′(u)w = 0 for −1 < x < 1, w(−1) = w(1) = 0.(2.10)

Lemma 2.11 Assume that the condition (2.3) holds. If the problem (2.10)
admits a nontrivial solution, then it does not change sign, i.e. we may

assume that w(x) > 0 on (−1, 1). Moreover, in the case of p-Laplacian, the
following generalization of the formula (2.5) holds:

∫ 1

−1
f(u)w dx =

2

pλ
ϕ′(u′(1))u′(1)w′(1).(2.11)

Proof: The proof of the first statement is exactly the same as before.
Turning to the other one, we differentiate the equation (2.10)

(

ϕ′(u′)u′x
)′

+ λf ′(u)ux = 0.(2.12)
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Combining the problems (2.10) and (2.12), we have

ϕ′(u′(x))(u′′(x)w(x)− u′(x)w′(x)) = −ϕ′(u′(1))u′(1)w′(1).(2.13)

We now integrate over (−1, 1). In the case of p-Laplacian, ϕ(t) = t|t|p−2,

ϕ′(t) = (p−1)|t|p−2, and tϕ′(t) = (p−1)ϕ(t). Hence the second term on the
left is equal to −(p−1)

∫ 1
−1 ϕ(u′(x))w′(x) dx. Integrating this term by parts,

we can combine it with the first term of the resulting equation. Finally, we
observe that ϕ′(u′(x))u′′(x) = −λf(u(x)). ♦

2.2 Convex nonlinearities

For convex nonlinearities one can give an exhaustive description of the bi-
furcation diagrams for the problem (2.1), since we are able to show that

the solution curve cannot turn more than once. Namely, we assume that
f(u) ∈ C2(R̄+) satisfies

f(0) > 0, and f(u) > 0 for u > 0,(2.14)

f ′′(u) > 0, for u > 0,(2.15)

f(u) ≥ au− b, for u > 0, and some constants a > 0 and b ≥ 0.(2.16)

Theorem 2.2 The problem (2.1), under the above conditions, has at most
two positive solutions for any λ. Moreover, all positive solutions lie on a

unique curve in the (λ, u(0)) plane. This curve begins at the point (λ =
0, u(0) = 0), and either it tends to infinity at some λ0 > 0, or else it bends
back at some λ0 > 0, and then continues without any more turns, and tends

to infinity at some λ̄, 0 ≤ λ̄ < λ0.

Proof: When λ = 0 we have a trivial solution u = 0. It follows by the
implicit function theorem that for small λ > 0 there is a continuous in λ

curve of solutions, passing through (0, 0). We claim that this solution curve
cannot be continued indefinitely for all λ > 0. Assume on the contrary
that solutions can be continued as λ → ∞. Write the problem (2.1) in the

corresponding integral form,

u(x) = λ

∫ 1

−1
G(x, ξ)f(u(ξ)) dξ,(2.17)

where G(x, ξ) is the corresponding Green’s function. It is well-known that

G(x, ξ) > 0 for all 0 < x, ξ < 1. Since by our assumptions f(u) is bounded
from below by a positive constant, it follows that u(x) will become uniformly
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large, as λ→ ∞. Let φ1(x) be the principal eigenvalue of −u′′ on the inter-

val (−1, 1) subject to zero boundary conditions, and λ1 the corresponding

principal eigenvalue (here φ1(x) = cos π
2x, and λ1 = π2

4 ). Multiplying the

equation (2.1) by φ1(x), and integrating, we have

λ1

∫ 1
−1 uφ1 dx = −

∫ 1
−1 u

′′φ1 dx = λ
∫ 1
−1 f(u)φ1 dx

≥ λa
∫ 1
−1 uφ1 dx− λb

∫ 1
−1 φ1 dx.

But this leads to a contradiction, as λ → ∞, since
∫ 1
−1 uφ1 dx → ∞. (u(x)

is a convex function, tending to infinity.)

Let λ0 denote the supremum of λ, for which the solution curve continues
to the right. It is possible that solutions become unbounded as λ→ λ0 (this

is one of the possibilities discussed in the statement of the theorem). So
assume that the solutions stay bounded, as λ → λ0. Passing to the limit

in the integral form of the equation, see (2.17), we conclude the existence
of a bounded solution u0(x), which our solution curve enters at λ = λ0.

Clearly the pair (λ0, u0(x)) is a singular solution of (2.1) (since it cannot be
continued to the right in λ). We show next that the Crandall-Rabinowitz

Theorem 1.2 applies at (λ0, u0(x)).

We begin by recasting the equation in operator form F (λ, u) = 0, where
the map F (λ, u) : C2(−1, 1) × R+ → C(−1, 1) is defined by F (λ, u) =

u′′(x)+λf(u(x)). Observe that Fu(λ, u)w is given by the left hand side of the
linearized equation (2.2). Since the point (λ0, u0) is singular, it follows that
the linearized equation (2.2) has a non-trivial solutionw(x), which is positive

by Lemma 2.4. By Lemma 2.5 it follows that the null-spaceN (Fu(λ0, u0)) =
span{w(x)} is one dimesional, and then codimR (Fu(λ0, u0)) = 1, since

Fu(λ0, u0) is a Fredholm operator of index zero. To apply the Crandall-
Rabinowitz Theorem 1.2, it remains to show that Fλ(λ0, u0) /∈ R (Fu(λ0, u0)).

Assuming the contrary would imply existence of a non-trivial v(x), a solution
of

v′′ + λ0fu(λ0, u0)v = f(λ0, u0), for x ∈ (−1, 1), v(−1) = v(1) = 0.

By the Fredholm alternative (or just multiplying this equation by w, the
equation (2.2) by v, subtracting and integrating)

∫ 1

−1
f(λ0, u0))w(x) dx= 0,

which contradicts Lemma 2.8. (Since f(0) > 0, we have u′(1) < 0, and
w′(1) < 0 by uniqueness of initial value problems. Hence by Lemma 2.8,
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the above integral is positive.) Hence the Crandall-Rabinowitz Theorem 1.2

applies at (λ0, u0(x)).

Next we compute the direction of bifurcation at the point (λ0, u0(x)).

According to the Crandall-Rabinowitz Theorem 1.2, the solution set near
the point (λ0, u0(x)) is a curve λ = λ(s), u = u(s), with λ(0) = λ0 and

u(0) = u0(x). Observe that λ′(0) = 0, and us(0) = w(x), according to the
Crandall-Rabinowitz theorem. If we can show that λ′′(0) < 0, it would follow

that the solution curve turns to the left at (λ0, u0(x)), since the function λ(s)
has a maximum at s = 0. To express λ′′(s), we differentiate the equation
(2.1) twice in s, obtaining

u′′ss + λfuuss + λfuuu
2
s + 2λ′fuus + λ′′f = 0, uss(−1) = uss(1) = 0.

Letting s = 0, we have by the above remarks

u′′ss + λ0fuuss + λ0fuuw
2 + λ′′(0)f = 0, uss(−1) = uss(1) = 0.(2.18)

Multiplying this equation by w, the equation (2.2) by uss, subtracting and
integrating

λ′′(0) = −λ0

∫ 1
−1 fuu(λ0, u0(x))w

3(x) dx
∫ 1
−1 f(λ0, u0))w(x) dx

< 0,(2.19)

with the last inequality due to convexity of f(u) and Lemma 2.8.

The above analysis is valid not only at the point (λ0, u0(x)), but also at

any other critical point. Hence, locally near any critical point, the solution
set consists of a parabola-like curve, facing to the left in the (λ, u(0)) plane.

Hence, after bending back at the point (λ0, u0(x)), our solution curve con-
tinues for decreasing λ, without ever encountering critical points. (At any

critical point, we could not possibly have a parabola-like curve, described
above, since our curve has arrived from the right.) Hence, the solution curve

continues globally, without any turns, and it has to go to infinity at some
λ̄ ≥ 0. We then have one of the solution curves, described in the theorem,
and the maximum value of solutions on this curve, u(0) varies from zero to

infinity. Hence all possible maximum values are “taken”, and so by Lemma
2.3 this curve exhausts the solution set. ♦
Remarks

1. If, moreover, we have

lim
u→∞

f(u)

u
= ∞,(2.20)
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Figure 1: Three types of solution curves for convex f(u)

then the curve cannot go to infinity at a finite λ. Hence, it will bend
back at some λ0, and go to infinity at λ = 0. Indeed, since f(u) > 0,

the solutions u(x, λ) are concave in x. So that if u(x, λ) gets large near
some λ = λ1, it would have to get uniformly large on some interval, say

on (−1/2, 1/2). Writing our equation in the form u′′+λ
f(u)

u u = 0, and
using the Sturm comparison theorem, we conclude that the positive

solution u(x) has to vanish on (−1/2, 1/2), which is impossible.

2. One can show that the solutions on the lower branch are increasing in

λ, for all x ∈ (−1, 1), see P. Korman and T. Ouyang, [34], [35]. (On
the upper branch this is no longer true, but the maximal value u(0) is

increasing as we trace the branch, i.e. it is decreasing in λ.)

3. Our assumptions did not require for f(u) to be increasing.

4. All three possibilities, mentioned in the theorem, can actually occur,

see Figure 1 for the results of numerical computations. Observe that
in the second and third cases f(u) is asymptotically linear, and bifur-

cation from infinity happens.

2.3 S-shaped solution curves

We saw in the previous section that solution curves are relatively simple for
convex f(u). If f(u) changes concavity, then the solution curve may admit
more than one turn. One prominent nonlinearity, with change in concavity,

is connected to combustion theory, see the nice book of J. Bebernes and D.
Eberly [7]. Namely, we consider the problem

u′′ + λe
au

u+a = 0 for −1 < x < 1, u(−1) = u(1) = 0,(2.21)

where a is a constant (this problem is referred to as “the perturbed Gelfand

problem” in [7]). In case a ≤ 4, the problem is easy. In that case uf ′(u) −
f(u) < 0 for all u > 0, and hence all positive solutions are non-singular. This
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means that the solution curve is monotone, i.e. it continues for all λ > 0

without any turns. S.-H. Wang [60] has proved existence of a constant a0,
so that for a > a0 the solution curve of (2.21) is exactly S-shaped, i.e. it

starts at λ = 0, u = 0, it makes exactly two turns, and then it continues for
all λ > 0 without any more turns. S.-H. Wang [60] gave an approximation

of the constant a0 ' 4.4967. That paper, as well as all previous ones, used a
time map approach. P. Korman and Y. Li [28] have applied the bifurcation

approach to the problem to show the exactness of the S-shaped curves, and
they also improved the value of the constant to a0 ' 4.35, i.e. for a > a0 the

solution sets are S-shaped curves. S.-H. Wang [60] has conjectured existence
of critical number ā, so that for a ≤ ā the solution curve is monotone, while
for a > ā the solution curve is exactly S-shaped. Recently, P. Korman, Y. Li

and T. Ouyang [33] has given a computer assisted proof of the S.-H. Wang’s
conjecture. Numerical calculations show that ā ' 4.07.

We are going to discuss the S-shaped curves, mostly following P. Korman
and Y. Li [29]. However, in that paper time maps were still used at one point.

Subsequently, in P. Korman and J. Shi [40] an argument not using time maps
was given. Next we present this result, dealing with instability of solutions

(it also turned out to be of independent interest), after we recall the notion
of stability. For any solution u(x) of (2.1) let (µ, w(x)) denote the principal
eigenpair of the corresponding linearized equation, i.e. w(x) > 0 satisfies

w′′ + λf ′(u)w+ µw = 0 for −1 < x < 1, w(−1) = w(1) = 0.(2.22)

The solution u(x) of (2.1) is called unstable if µ < 0, otherwise it is stable.

Let F (u) =
∫ u
0 f(t) dt, h(u) = 2F (u)−uf(u). The instability result from

P. Korman and J. Shi [40] is

Theorem 2.3 Assume that f ∈ C1[0,∞), f(0) > 0, and for some α > β >

0 we have:

h′(u) ≥ 0 for 0 < u < β, h′(u) ≤ 0 for β < u < α,(2.23)

h(α) ≤ 0.(2.24)

Then the solution of (2.1) with u(0) = α is unstable, if it exists.

Proof: We have h(0) = 0, h′(u) = f(u) − uf ′(u), h′(0) = f(0) > 0. It

follows from our conditions that h(u) is unimodular on [0, α], and it takes
its positive maximum at u = β. Define x0 ∈ (0, 1) by u(x0) = β. We then
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conclude

f(u(x))− u(x)f ′(u(x)) ≤ 0 on (0, x0),(2.25)

f(u(x))− u(x)f ′(u(x)) ≥ 0 on (x0, 1).

We also remark that by the condition (2.24),

∫ 1

0

[

f(u)− uf ′(u)
]

u′(x) dx =

∫ 1

0

d

dx
h(u(x)) dx = −h(α) ≥ 0.(2.26)

Assume now that u(x) is stable, i.e. µ ≥ 0 in (2.22). Without loss of
generality, we assume that w > 0 in (−1, 1). By the maximum principle,

u′(1) < 0, so near x = 1 we have −u′(x) > w(x). Since −u′(0) = 0, while
w(0) > 0, the functions w(x) and −u′(x) change their order at least once

on (0, 1). We claim that the functions w(x) and −u′(x) change their order
exactly once on (0, 1). (We ignore the points where these functions merely

“touch”.) Observe that −u′(x) satisfies

(−u′)′′ + λf ′(u)(−u′) = 0 on (0, 1),(2.27)

while w(x) (and any of its positive multiples) is a supersolution of the same
equation. Let x3 ∈ (0, 1) be the largest point where w(x) and −u′(x) change

the order. Assuming the claim to be false, let x2, with 0 < x2 < x3, be the
next point where the order changes. We have w > −u′ on (x2, x3), and

the opposite inequality to the left of x2. Since w(0) > −u′(0), there is
another point x1 < x2, where the order is changed. We can now find a

constant γ > 1, and a point x0 ∈ (x1, x2) so that a γw(x), a supersolution
of (2.27), touches at x0 from above a solution −u′(x) of the same equation,

a contradiction.

Since the point of changing of order is unique, by scaling of w(x) we can
achieve

−u′(x) ≤ w(x) on (0, x0),(2.28)

−u′(x) ≥ w(x) on (x0, 1).

Using (2.25), (2.28), and also (2.26), we have

∫ 1

0

[

f(u)− uf ′(u)
]

w(x) dx <

∫ 1

0

[

f(u)− uf ′(u)
]

(−u′(x)) dx≤ 0,(2.29)
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since the integrand on the left is pointwise smaller than the one on the right.

On the other hand, multiplying the equation (2.22) by u, the equation (2.1)
by w, subtracting and integrating over (0, 1), we have

∫ 1

0

[

f(u) − uf ′(u)
]

w(x) dx =
µ

λ

∫ 1

0
uw dx ≥ 0,

which contradicts (2.29). So µ < 0. ♦

We will consider a class of nonlinearities, including f(u) = e
au

u+a , so let us

list our assumptions. We assume that f(u) ∈ C2[0, ū] for some 0 < ū ≤ ∞,
and that it satisfies

f(u) > 0 for all 0 ≤ u < ū.(2.30)

We assume f(u) to be convex-concave, i.e. there an α ∈ (0, ū), such that

f ′′(u) > 0 for u ∈ (0, α), f ′′(u) < 0 for u ∈ (α, ū).(2.31)

We define a function I(u) = f2(u) − 2F (u)f ′(u), where as before F (u) =
∫ u
0 f(t) dt. Assume there is a β > α, such that

I(β) = f2(β) − 2F (β)f ′(β) ≥ 0.(2.32)

The following lemma has originated from P. Korman, Y. Li and T. Ouyang

[30].

Lemma 2.12 Assume that f(u) satisfies the conditions (2.30), (2.31) and

(2.32). Let (λ, u) be any critical point of (2.1), such that u(0) ≥ β, and let
w(x) be the corresponding solution of the linearized problem (2.2). Then

∫ 1

0
f ′′(u(x))ux(x)w

2(x) dx > 0.(2.33)

Proof: We shall derive a convenient expression for the integral in (2.33).
Differentiate (2.2)

w′′
x + λf ′(u)wx + λf ′′(u)uxw = 0.(2.34)

Multiplying the equation (2.34) by w, the equation (2.2) by wx, integrating
and subtracting, we express

λ

∫ 1

0
f ′′(u)uxw

2 dx = w′2(1)− λw2(0)f ′(u(0)).(2.35)
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By differentiation, we verify that u′′(x)w(x)− u′(x)w′(x) is constant for all

x, and hence

u′′(x)w(x)− u′(x)w′(x) = −λw(0)f(u(0)) for all x ∈ [−1, 1].(2.36)

Evaluating this expression at x = 1, we obtain

w′(1) =
λw(0)f(u(0))

u′(1)
.(2.37)

Multiplying (2.1) by u′, and integrating over (0, 1), we have

u′
2
(1) = 2λF (u(0)).(2.38)

Using (2.38) and (2.37) in (2.35), we finally express

λ

∫ 1

0
f ′′(u)uxw

2 dx =
w2(0)

2F (ρ)
I(ρ),(2.39)

where we denote ρ = u(0). By our assumption, I(β) ≥ 0. Since

I ′(ρ) = −2F (ρ)f ′′(ρ) > 0 for ρ ≥ β,

we conclude that I(ρ) > I(β) ≥ 0, and the lemma follows. ♦
The following lemma contains the crucial trick, which has originated

from P. Korman, Y. Li and T. Ouyang [30]. It says that for convex-concave

problems only turns to the right are possible in the (λ, α) plane, once the
maximum value of the solution, u(0), has reached a certain level.

Lemma 2.13 In the conditions of the preceeding Lemma 2.12, assume again
that u(0) ≥ β, and w(x) the corresponding solution of the linearized problem
(2.2). Then

∫ 1

0
f ′′(u(x))w3(x) dx < 0.(2.40)

Proof: Let (λ, u(x)) be a critical point of (2.1). Since u(0) ≥ β > α, it
follows that the function f ′′(u(x)) changes sign exactly once on (0, 1), say
at x0. Then we have

f ′′(u(x)) < 0 for x ∈ (0, x0), f ′′(u(x)) > 0 for x ∈ (x0, 1).(2.41)

We have proved in Theorem 2.3 that the functions w(x) and −u′(x) intersect
exactly once on (0, 1). By scaling w(x) we may assume that they intersect
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at x0. (w(x) is a solution of a linear problem, and hence it is defined up to

a constant multiple.) In view of Lemma 2.12, we then have

∫ 1

0
f ′′(u(x))w3(x) dx <

∫ 1

0
f ′′(u(x))w2(−ux) dx < 0,

since by (2.41) the integrand on the right is pointwise greater than the one

the left. ♦
The same approach can be used to prove the following more general

theorem, which was implicit in P. Korman, Y. Li and T. Ouyang [30], see

also T. Ouyang and J. Shi [50].

Theorem 2.4 ([30])
(i) Assume that f(0) ≥ 0, f ′′(u) < 0 for 0 < u < u0, f

′′(u) > 0 for u > u0.

Then only turns to the left are possible on the solution curve.
(ii) Assume that f(0) ≤ 0, f ′′(u) > 0 for 0 < u < u0, f

′′(u) < 0 for u > u0.

Then only turns to the right are possible on the solution curve.

(Of course, in both cases we conclude existence of at most two positive

solutions, with the maximum values lying in the first positive hump of f(u).)

We are now ready for the main result of this section, see P. Korman and

Y. Li [29].

Theorem 2.5 Assume that f(u) satisfies the conditions (2.30) and (2.31),
and moreover,

lim
u→∞

f(u)

u
= 0.(2.42)

With h(u) ≡ 2F (u) − uf(u), assume that

h(α) < 0.(2.43)

Then the solution set of (2.1) consists of one curve, which is exactly S-
shaped, i.e. it starts at λ = 0, u = 0, it makes exactly two turns, and then

it continues for all λ <∞, without any more turns.

Proof: By the implicit function theorem there is a curve of positive
solutions of (2.1), starting at λ = 0, u = 0. As in Theorem 2.2, this

curve continues for increasing λ, until a possible singular solution (λ0, u0) is
reached, at which point the Crandall-Rabinowitz Theorem 1.2 applies. By

(2.19) it follows that only turns to the left are possible if u(0) < α, since
f(u) is convex for u ∈ (0, α). Until the first critical point (λ0, u0) is reached,
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the solutions are stable. Indeed, the solution curve starts at (λ = 0, u = 0),

which is a stable solution (the principal eigenvalue of the corresponding

linearized problem = π2

2 ), while any change of stability requires a passage

through a singular point. By the Theorem 2.3 when u(0) = α the solution
is unstable. Hence a singular solution was reached before that, and since
only turns to the left are possible when u(x) < α, it follows that exactly one

turn has occured, and at u(0) = α the solution curve travells to the left.

We now show that the solution curve keeps travelling to the left, until

u(0) increases to the level when only turns to the right are possible. For
that we take a close look at the function h(u) = 2F (u) − uf(u). Since

h′(u) = f(u)− uf ′(u), h′′(u) = −uf ′′(u),

it follows that the function h′(u) is decreasing on (0, α) and increasing on

(α,∞). We have h′(0) = f(0) > 0, and so h′(u) can have at most two roots.
We claim that it has exactly two roots, u1 and u2 with h′(u) being positive

on (0, u1) ∪ (u2,∞), and negative on (u1, u2). Indeed, existence of the first
root is clear, since h(0) = 0 and h(α) < 0. As for the second root u2, if it

did not exist, we would have

uf ′(u) > f(u) for all u > α.(2.44)

Integrating (2.44),

f(u) >
f(α)

α
u for all u > α,

contradicting the assumption (2.42). So that the function h(u) starts with
h(0) = 0, it is increasing on (0, u1), decreasing on (u1, u2), with absolute

minimum at u2, and then it increases on the interval (u2,∞). By Theorem
2.3 the solution curve keeps traveling to the left, while u(0) ∈ (α, u2).

-

6

u
u1

α

u2

h(u)

Picture 1 : The function h(u)
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Figure 2: An S-shaped solution curve

We claim that for u(0) > u2 the Lemma 2.13 applies. For that we need

to check that for β = u2 the condition (2.32) holds. Indeed, since h(u2) < 0,
we have f(u2)u2 > 2F (u2). Hence

I(u2) = f2(u2) − 2F (u2)f
′(u2) > f2(u2) − u2f(u2)f

′(u2) = 0,

and the claim follows (observe that f ′(u2) =
f(u2)

u2
> 0). By Lemma 2.13,

only turns to the right are possible when u(0) > u2.

Let us now put it all together. We have a curve of solutions, which starts

at (λ = 0, u = 0). As we travel on this curve, u(0) is always increasing. By
the time we reach u(0) = α level, the solution curve has made exactly one

turn to the left. When α < u(0) < u2 the solution curve travels to the left.
When u(0) > u2, the solution curve cannot travel to the left indefinitely,

since it is easy to see that solutions are bounded for bounded λ. Hence, the
curve must turn to the right. Since for u(0) > u2 only turns to the right are

possible, exactly one such turn occurs. It follows that the solution curve is
exactly S-shaped. ♦

In the Figure 2 we give an example of an S-shaped solution curve. Notice

that Mathematica has drawn the vertical axis around λ = 3. Also observe
that an actual S-shaped solution curve is way different from what most

people would draw by hand.

2.4 Cubic-like nonlinearities

We again consider the problem

u′′ + λf(u) = 0 x ∈ (−1, 1), u(−1) = u(1) = 0,(2.45)

where f(u) behaves like a cubic with three distinct roots, with a model

example f(u) = (u− a)(u− b)(c−u). Namely, we assume that the function
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f(u) ∈ C2(R̄+) has three non-negative roots at 0 ≤ a < b < c, and

f(u) > 0 on [0, a) ∪ (b, c), f(u) < 0 on (a, b) ∪ (c,∞),(2.46)
∫ c
a f(u) du > 0,

Moreover, we assume there is an α > 0, so that

f ′′(u) > 0 for 0 ≤ u < α, f ′′(u) < 0 for u > α.(2.47)

This problem was originally studied using time-maps, see J. Smoller and
A. Wasserman [58] and S.-H. Wang [60], [61]. In P. Korman, Y. Li and T.

Ouyang [30] the bifurcation approach was applied. The case of a = 0 turned
out to be easier for both time-maps and bifurcation approaches, while in

case a > 0 some restriction on a ( a bound from above) was necessary for
both approaches.

We shall do the case a = 0 first, after two simple lemmas. (I.e. f(u)

is modeled on f(u) = u(u − b)(c− u).) Let β ∈ (b, c) be the unique point
satisfying

f ′(β) =
f(β)

β
.(2.48)

(I.e. the point where the straight line through the origin is tangent to the

graph of y = f(u).) Clearly, β > α. The following lemma shows that no
turns of the solution curve are possible until the maximum value of the

solution reaches a certain level.

Lemma 2.14 Assume that f(u) ∈ C2 satisfies the conditions (2.46) and
(2.47). If u(x) is a critical solution of (2.45) then

u(0) > β.(2.49)

Proof: We claim that

f ′(u) >
f(u)

u
for 0 < u < β.(2.50)

Indeed, denote p(u) = uf ′(u) − f(u). Then p(0) = p(β) = 0, and p′(u) =
uf ′′(u), which implies that p(u) is increasing on (0, α) and decreasing on

(α, β). Then (2.50) follows, and hence by Lemma 2.6 the linearized equation
has only the trivial solution, in case u(0) ≤ β. ♦
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Lemma 2.15 Assume that f(u) ∈ C2 satisfies the conditions (2.46) and

(2.47), with a = 0. Assume u(x) is a critical solution of (2.45), and let
w(x) be solution of the corresponding linearized problem (2.2). Then

∫ 1

0
f ′′(u)w3 dx < 0.(2.51)

Proof: We begin by showing that
∫ 1

0
f ′′(u)u2

xw dx = 0.(2.52)

We have (using the equations (2.45) and (2.2))
(

u′′w′ − u′w′′)′ = λf ′′(u)u2
xw.

Integrating over (0, 1), and using that w′′(1) = −λf ′(u(1))w(1) = 0 and

u′′(1) = −λf(u(1)) = −λf(0) = 0, we conclude (2.52) (it is here that we
use that f(0) = 0, i.e. a = 0).

We now proceed similarly to Lemma 2.13. Similarly to that lemma, we

show that the functions w(x) and −u′(x) intersect exactly once on (0, 1).
Observe that by the Lemma 2.14, we have u(0) > β > α at any critical

solution u(x). Let ξ ∈ (0, 1) be the point where u(ξ) = α. By scaling w(x)
we may assume that w(x) and −u′(x) intersect at ξ. Then on the interval

(0, ξ), where f ′′(u(x)) is negative, we have u2
x < w2, while on the interval

(ξ, 1), where f ′′(u(x)) is positive, we have u2
x > w2. We then have, in view

of (2.52),
∫ 1

0
f ′′(u)w3 dx <

∫ 1

0
f ′′(u)u2

xw dx = 0,

since the integral on the left is pointwise smaller than the one on the right.
♦

The following theorem is from P. Korman, Y. Li and T. Ouyang [30].

Theorem 2.6 Assume that f(u) ∈ C2 satisfies the conditions (2.46) and

(2.47), with a = 0. Then there is a critical λ0 such that for λ < λ0 the
problem (2.45) has no positive solutions, it has exactly one positive solution
at λ = λ0, and exactly two positive solutions for λ > λ0. Moreover, all

solutions lie on a single solution curve, which for λ > λ0 has two branches
0 < u−(x, λ) < u+(x, λ), with u+(x, λ) strictly monotone increasing in λ,

and limλ→∞ u+(x, λ) = c. On the lower branch, u−(0, λ) is monotone de-
creasing, limλ→∞ u−(x, λ) = 0 for all x 6= 0, while u−(0, λ) > b for all

λ. We also have limλ→∞ u−(0, λ) = θ, where θ is defined by the relation
∫ θ
0 f(u) du = 0.
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Figure 3: A parabola-like solution curve, when a = 0

Proof: If λc > π2

4 , then existence of positive solutions follows by monotone

iterations. Indeed, φ = c is a supersolution of (2.45), while ψ = ε cos π
2x is

a subsolution of the same problem, if ε is chosen sufficiently small (λ = π2

4
and φ1 = cos π

2x give, of course, the principal eigenpair of the Laplacian
on (−1, 1)). We now continue the positive solution (any one) for decreasing
λ. At regular points we use the implicit function theorem for continuation,

while the singular point(s) will be discussed below. We cannot continue
this curve indefinitely for decreasing λ, since it has no place to go. Indeed,

solutions are bounded by c, and so the right hand side of the equation (2.45)
goes to zero, and hence u(x) → 0 as λ → 0. But that is impossible, since

f(u) is negative near u = 0, while at the point of maximum u′′(0) ≤ 0.
Hence at some critical λ = λ0 and u = u0 the solution curve cannot be

continued further for decreasing λ.

As before, we show that the Crandall-Rabinowitz Theorem 1.2 applies
at (λ0, u0). According to the Lemma 2.15 a turn to the right must occur at

this, and any other critical point. Hence, exactly one turn happens, and the
solution curve has exactly two branches.

The properties of the solution branches are easy to prove, see [30]. ♦
In Figure 3 we give an example for the above theorem. Notice that

Mathematica has chosen the point (6, 2) as the point where the axes intersect.

Next we turn to the case when a > 0. I.e. we assume that f(u) satisfies
the conditions (2.46) and (2.47), with the cubic f(u) = (u−a)(u− b)(c−u)
being our model example. Similarly to the above, we denote by β ∈ (b, c)
the unique point satisfying

f ′(β) =
f(β)

β − a
.(2.53)

(I.e. the point where the straight line through the point (a, 0) is tangent to

the graph of y = f(u).) Clearly, β > α. The proof of the following lemma
is similar to that of Lemma 2.14, and so we omit it (see [33]).
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Lemma 2.16 Assume that f(u) ∈ C2 satisfies the conditions (2.46) and

(2.47). If u(x) is a critical solution of (2.45) then

u(0) > β.(2.54)

We define a constant τ ∈ (b, c) by f ′(τ) = 0, i.e. τ is the second root

of f ′(u). We also recall the function I(u) = f2(u) − 2F (u)f ′(u), defined
previously.

Lemma 2.17 Assume that f(u) ∈ C2 satisfies the conditions (2.46) and

(2.47). Assume that either
∫ τ

a
f(u) du ≤ 0,(2.55)

or
I(β) ≥ 0.(2.56)

If u(x)) is a critical solution of (2.45), and w(x) is a solution of the corre-

sponding linearized problem, then
∫ 1

0
f ′′(u(x))u′(x)w2(x) dx < 0.(2.57)

Proof: For any solution of (2.45) we have
∫ u(0)
a f(u) du > 0 (just multiply

the equation by u′ and integrate between x = 0 and the point x = ξ, such

that u(ξ) = a.) So that if (2.55) holds, then u(0) > τ , i.e. f ′(u(0)) < 0.
Then (2.57) follows from the formula (2.35) for the integral (2.57). In case

the condition (2.56) holds, the proof proceeds the same way as in Lemma
2.12. ♦
Remark We can replace the condition (2.55) by requiring that u(0) > τ.

The following result was essentially proved in P. Korman, Y. Li and T.

Ouyang [33].

Theorem 2.7 Assume that f(u) ∈ C2 satisfies the conditions (2.46) and

(2.47). Assume either the condition (2.56) is satisfied, or else assume that
any solution of the problem (2.45), with u(0) ∈ (β, τ) is non-critical. Then
there exists a critical λ0, such that the problem (5.27) has exactly one positive

solution for 0 < λ < λ0, exactly two positive solutions at λ = λ0, and exactly
three positive solutions for λ0 < λ < ∞. Moreover, all solutions lie on two

smooth solution curves. One of the curves, referred to as the lower curve,
starts at (λ = 0, u = 0), it is increasing in λ, and limλ→∞ u(x, λ) = a for

x ∈ (−1, 1). The upper curve is a parabola-like curve with exactly one turn
to the right.
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Figure 4: A two-piece solution curve for a cubic, with a > 0

Proof: The properties of the lower curve are easy to prove. According to

the implicit function theorem there is a curve of positive solutions, starting
at λ = 0 and u = 0. Since f ′(u) < 0 when u < a, it follows by Lemma 2.7

that solutions are non-degenerate, and hence they can be continued for all
λ > 0. It is easy to see that the solutions on this curve are increasing in λ,

and limλ→∞ u(x, λ) = a for all x ∈ (−1, 1), see [30].

Turning to the upper curve, recall that critical solutions are possible only
if u(0) > β. If condition (2.56) holds then we have (2.57). The same way as

in Lemma 2.12 we show that at any critical point

∫ 1

0
f ′′(u(x))w3(x) dx < 0,(2.58)

which means that only turns to the right are possible on the upper curve.

Similarly to Theorem 2.6 for the a = 0 case, we show existence of solutions
on the upper curve, and that the upper curve has to turn. Hence, exactly

one turn occurs on the upper curve, and its other properties are proved
similarly to the a = 0 case. In the other case, when (2.55) holds, we know

that no critical points are possible, until u(0) > τ . But then (2.57) holds,
which implies (2.58), and we proceed the same way as in the first case. ♦

The above result shows that either one gets “lucky” at the level u(0) = β,

i.e. the condition (2.56) holds, and the above Theorem 2.7 applies, or else
the interval (β, τ) is “dangerous”, i.e. we need to rule out the possibility

of any turns when β < u(0) < τ (since we cannot tell their direction). For
that computer assisted proofs are feasible. In fact, in a recent paper P.

Korman, Y.Li and T. Ouyang [33] have given three independent computer
assisted proofs in case of a cubic. We describe their result next. Let f(u) =

(u− a)(u− b)(c− u), with 0 < a < b < c. For the problem (2.45) to have a
positive solution it is necessary that

∫ c
a f(u) du > 0, i.e.

b <
a + c

2
.(2.59)
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It was shown on [33] that under the necessary condition (2.59) the above

Theorem 2.7 applies, providing an exact multiplicity result for the general
cubic. In the next section we present a new tool, used in [33] to give one of

the computer assisted proofs.

2.5 Computing the location of bifurcation

Assume that for the problem

u′′(x) + f(u(x)) = 0, x ∈ (−1, 1), u(−1) = u(1) = 0(2.60)

bifurcation occurs at u(0) = α, i.e. the corresponding linearized problem

w′′(x) + f ′(u(x))w(x) = 0, x ∈ (−1, 1), w(−1) = w(1) = 0(2.61)

admits a non-trivial solution. The following result of P. Korman, Y. Li
and T. Ouyang [33] provides a way to determine all possible α’s at which

bifurcation may occur, i.e. the corresponding solution of (2.60) is singular.

Theorem 2.8 A positive solution of the problem (2.60) with the maximal
value α = u(0) is singular if and only if

G(α) ≡ F (α)1/2
∫ α

0

f(α) − f(τ)

[F (α) − F (τ)]3/2
dτ − 2 = 0.(2.62)

Proof: We need to show that the problem (2.61) has a non-trivial solution.

By direct verification the function w(x) = −u′(x)
∫ 1

x

1

u′2(t)
dt satisfies the

equation in (2.61). Also w(1) = 0. If we also have

w′(0) = 0,(2.63)

then since u(x) is an even function, the function w(x) is also even (by unique-
ness for initial value problems), and hence w(−1) = 0, which gives us a non-

trivial solution of (2.61). Conversely, every non-trivial solution of (2.61) is
an even function, and hence (2.63) is satisfied.

Using the equation in (2.60), we compute

w′(x) = f(u(x))

∫ 1

x

1

u′2(t)
dt+

1

u′(x)
.

Since the energy u′2

2 (x) + F (u(x)) is constant,

u′2

2
(x) + F (u(x)) = F (u(0)) = F (α).
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On the interval (0, 1) we express

u′(x) = −
√

2
√

F (α) − F (u(x)).(2.64)

We use this formula in the integral
∫ 1
x

1
u′(t)2

dt, and then we make a change

of variables t→ s, by letting s = u(t). We have

23/2
∫ 1

x

1

u′2(t)
dt = −

∫ 1

x

u′(t) dt

[F (α) − F (u(t))]3/2
= −

∫ 0

u(x)

1

[F (α) − F (s)]3/2
ds.

(2.65)

Using the formulas (2.64) and (2.65), we express

23/2w′(x) =

∫ u(x)

0

f(u(x))

[F (α) − F (τ)]3/2
dτ − 2

[F (α) − F (u(x))]1/2
.(2.66)

If we try to set here x = 0, then both terms on the right are infinite. Instead,
we observe that

− 2

[F (α) − F (u)]1/2
= − ∫ u

0
d
dτ

2

[F (α)−F (τ )]1/2 dτ − 2
F (α)1/2(2.67)

= −
∫ u
0

f(τ )

[F (α)−F (τ )]3/2 dτ − 2
F (α)1/2 .

Using (2.67) in (2.66), we obtain

23/2w′(x) =

∫ u(x)

0

f(u(x))− f(τ)

[F (α) − F (τ)]3/2
dτ − 2

F (α)1/2
.(2.68)

The integral on the right is now non-singular, as we let x→ 0. At x = 0 we

see that (2.63) is equivalent to (2.62). ♦
In case of a cubic f(u) = (u− a)(u− b)(c−u), P. Korman, Y. Li and T.

Ouyang [33] have used the formula (2.62) to give a computer assisted proof
that there are no turning points in the dangerous region, u(0) ∈ (β, τ), thus
establishing the exact multiplicity result (Theorem 2.7) from the previous

section.

2.6 Computing the direction of bifurcation

We have seen that at a critical solution u(x) of (2.60) the integral I =
∫ 1
0 f

′′(u)w3 dx governs the direction of bifurcation. Also, it is known that

in case I 6= 0 a critical solution u(x) is non-degenerate, i.e. it persists when
the equation is perturbed slightly (i.e. the turning points persist under
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perturbations), see e.g. [32]. The following result from P. Korman, Y. Li

and T. Ouyang [33] allows one to compute the integral I as a function of
α = u(0).

Theorem 2.9 At any critical solution u(x) of (2.60), with u(0) = α,

I = c

∫ α

0
f ′′(u)

(∫ α

u
f(s) ds

)

(

∫ u

0

ds

(
∫ α
s f(t) dt)3/2

)3

du,(2.69)

where c = 1
4
√

2
u′3(1)w′3(1) > 0.

This formula is rather involved, but using Mathematica it can be evalu-
ated numerically. In a future paper, with Y. Li and T. Ouyang, we use this

result to handle equations modeled on polynomials of arbitrary power.

2.7 Pitchfork bifurcation and symmetry breaking

So far for the problem

u′′ + λf(u) = 0 for −1 < x < 1, u(−1) = u(1) = 0(2.70)

we have considered the cases when f(0) ≥ 0. As we have observed earlier,

this condition implies that |ux(±1, λ)| 6= 0 for any positive solution u(x, λ).
Since we also know that ux(x, λ)< 0 for all x ∈ (0, 1), there is no way for a

positive solution to become sign-changing, as we vary λ (no interior roots, or
zero slope at the boundary are possible). The situation changes drastically

in case
f(0) < 0.(2.71)

A solution may develop a zero slope, and become sign-changing. In fact,

a pitchfork bifurcation usually happens. In addition to the sign-changing
symmetric solution, two symmetry-breaking solution emerge, see P. Korman

[20].

Let us consider the problem

u′′(x) + u2k(x) − λ = 0, for −1 < x < 1, u(−1) = u(1) = 0,(2.72)

which we will relate to the problems of type (2.70) shortly. Here k ≥ 1 is an

integer. For k = 1 this problem was exhaustively analyzed in J.C. Scovel’s
Ph.D. thesis [55], and in H. P. McKean and J.C. Scovel [44]. They used

explicit integration via elliptic functions, which means that their method
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does not work for k > 1. It turned out that the solution set of (2.72) for

k = 1 consists of infinitely many identically looking curves. Each curve is a
parabola like curve, with pitchfork bifurcation on one of the branches. (I.e.

there is exactly one turn, and exactly one point of pitchfork bifurcation on
each curve, see Picture 2.) V. Anuradha and R. Shivaji [6] have studied a

related problem. Using the quadrature technique, they showed existence of
infinitely many points of bifurcation. In [20] P. Korman had used bifurcation

theory to approach the problem (2.72), and in particular the case of f(u) =
u2k, with k > 1. We were able to generalize some, but not all, of the results

of H. P. McKean and J.C. Scovel [44].

It is well known that at λ = 0 there exists a unique positive solution of

(2.72). This solution is known to be non-degenerate, so that we can continue
it for small λ > 0. Setting u(x) = µv(x), with µ determined by the relation

µ2k = λ, we convert the problem (2.72) into (a particular case of the problem
(2.70))

v′′(x) + λ(v2k(x)− 1) = 0, for −1 < x < 1, v(−1) = v(1) = 0,(2.73)

where λ is a new parameter (equal to µ2k−1). With the parameter now in

front of the nonlinearity, the Lemma 2.8 applies, and hence we can always
continue both positive and sign-changing solutions of (2.73) (and also of

(2.72). Observe that the curve of positive solutions does not turn for λ > 0
(for g(v) ≡ v2k − 1, we have vg′(v) > g(v) for all v > 0). By Theorem

2.1 this curve of positive solutions cannot be continued for all λ > 0 (the
function g(v) = v2k − 1 has no “stable” roots, i.e. roots where derivative

is negative). By the Sturm’s comparison theorem, it is easy to see that
positive solutions cannot become unbounded at a finite λ. Hence, solutions
on this curve must eventually stop being positive, and the only way this can

happen is that u′(±1) = 0 at some λ0 (in view of the symmetry of positive
solutions).

We now outline the pitchfork bifurcation analysis for the general problem

(2.70), and more details can be found in P. Korman [20]. So suppose the
problem (2.70) has a curve of positive solutions u(x, λ), so that for λ < λ0

we have ux(1, λ) < 0, while at λ = λ0 we have ux(1, λ0) = 0. The function
ux(x, λ0) is then the solution of the corresponding linearized problem (u0 =

u(x, λ0))

w′′ + λ0f
′(u0)w = 0 for −1 < x < 1, w(−1) = w(1) = 0.(2.74)

The null-space of the linearized problem is one-dimensional (by Lemma 2.5),
and it is spanned by the odd function ux(x, λ0). If we now restrict to the
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space of even functions, the null-space will be empty, and hence by the

implicit function theorem the solution curve u(x, λ) continues for λ > λ0, as
sign-changing symmetric (even) solutions. We can compute the tangential

direction for this curve at λ = λ0:

uλ(x, λ0) = xux(x, λ0).(2.75)

Indeed, the function uλ(x, λ0) − xux(x, λ0) is an even function, solving the
linearized problem (2.74). Hence it must be zero, justifying (2.75). If we

let v = u − u(x, λ), where u(x, λ) is the curve of sign-changing symmetric
solutions, then for λ > λ0 we have a trivial solution v = 0. We showed in [20]

that the conditions of the Crandall-Rabinowitz theorem on bifurcation from
the trivial solutions are satisfied at λ = λ0, giving rise to a parabola-like

curve of symmetry breaking solutions, see also M. Ramaswamy [51]. Their
tangential direction is given by ux(x, λ0).

One of the reasons we were not able to fully recover the beautiful results

of McKean and Scovel [44], is that we could not tell the direction of the
pitchfork bifurcation: which way the symmetry breaking solutions bifurcate,

toward λ > λ0 or λ < λ0? Recently X. Hou, P. Korman and Y. Li [17] has
given a computer assisted way (again computer assisted!) to settle this

question. Here is their result.

Theorem 2.10 Consider the problem (2.72), with 1 ≤ k ≤ 720. Let λ0 be
the point of pitchfork bifurcation. (The value of λ0 was explicitly computed

in [17].) Then there is a negative λ̄ = λ̄(k) < 0, so that the problem (2.72)
has exactly two positive solutions for λ̄ < λ < 0, it has exactly one positive
and one negative solution on (0, λ0). Moreover, there is a λ1(k) > λ0, so

that the problem (2.72) has four solutions on (λ0, λ1), one negative (and
symmetric), one sign-changing and symmetric (with u(0) > 0), and two

asymmetric solutions.

In Picture 2 we present a picture of pitchfork bifurcation from [17] (pro-
duced by X. Hou). We draw u′(−1) as a function of λ. In that figure solid

lines denote positive and negative solutions, the dashed line denotes sign-
changing symmetric solutions, and the doted lines stand for the symmetry

breaking solutions.

2.8 Sign-changing solutions

We consider sign-changing solutions of the two point problem

u′′ + f(u) = 0 for x ∈ (0, 1), u(0) = u(1) = 0.(2.76)
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Picture 2 : Pitchfork bifurcation

Notice that we pose the problem over the interval (0, 1), since sign-changing

solutions need not be symmetric. Also we do not have λ in front of f(u) (one
can think that λ is observed into f(u)). Corresponding linearized problem

is
w′′ + f ′(u)w = 0 for x ∈ (0, 1), w(0) = w(1) = 0.(2.77)

The following result is from P. Korman and T. Ouyang [39].

Theorem 2.11 Let f ∈ C2(R), and assume that either one of the following
two inequalities holds

f(u)

u
− f ′(u) > 0 (< 0) for almost every u ∈ R.(2.78)

Then any solution of the problem (2.76), satisfying u′(0) 6= 0, is non-singular
(i.e. (2.77) admits only the trivial solution).

Proof: Assume on the contrary that the problem (2.77) admits a non-

trivial solution w(x).
Step 1. We show that the number of roots of u and w inside (0, 1) differs

by one. Assume for definiteness that f ′(u) > f(u)
u for almost every u ∈ R.

If we regard (2.76) as a linear equation u′′ +
f(u)

u u = 0, then by the Sturm
comparison theorem the function w(x) has a root between any two roots of

u(x). Since both functions vanish at the endpoints, x = 0 and x = 1, it
follows that w has one more interior root than u.

Step 2. We will show that u and w have the same number of interior roots.
This will result in a contradiction, proving the theorem. We denote by nu the

number of interior roots of u, and use the same notation for other functions.
The functions w and u′ satisfy the same linear equation, and hence their

roots are interlaced. Since w vanishes at the endpoints and u′ does not, it
follows that nu′ = nw + 1. Since nu′ = nu + 1, it follows that nu = nw. ♦
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Corresponding to the solution u(x) of (2.76) we may consider an eigen-

value problem

ϕ′′ + f ′(u)ϕ+ µϕ = 0 for x ∈ (0, 1), ϕ(0) = ϕ(1) = 0.(2.79)

The eigenvalues of (2.79) form a sequence µ1 < µ2 < . . . < µn < . . ., tending
to infinity. The number of negative eigenvalues is called the Morse index of

u(x). The following theorem is from P. Korman and T. Ouyang [39].

Theorem 2.12 Let u(x) any solution of the problem (2.76), with k interior
roots and satisfying u′(0) 6= 0. Then the Morse index of u(x) is either k or

k + 1. Moreover, the Morse index equals k if the first inequality in (2.78)
holds, and it equals k + 1 if the second inequality in (2.78) holds.

Similar results for balls in Rn have been given in J. Shi and J. Wang

[57].

2.9 The Neumann problem

Consider the Neumann problem

u′′ + λf(u) = 0 for 0 < x < 1, u′(0) = u′(1) = 0.(2.80)

We are interested in the solution branches bifurcating off constant solutions.
By translation we may assume the constant solution to be zero, i.e. we

assume that
f(0) = 0,(2.81)

and that f(u) ∈ C2(a−, a+) for some −∞ ≤ a− < 0 < a+ ≤ ∞. We assume
that

uf(u) > 0 on (a−, a+).(2.82)

We consider solutions of (2.80) such that u(x) ∈ (a−, a+). It suffices to
consider only the increasing solutions of (2.80), i.e. u′(x) > 0 on (0, 1),

since other solutions can be produced from them by reflection, pasting and
scaling. Clearly we have u(0) < 0 < u(1), since x = 0 and x = 1 are points

of minimum and maximum respectively.

The corresponding linearized problem is

w′′ + λf ′(u)w = 0 for 0 < x < 1, w′(0) = w′(1) = 0.(2.83)

If this problem has only the trivial solution, then the solution branches
bifurcating from zero do not turn. A simple condition for this to happen
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goes back to Z. Opial [47], see also R. Schaaf [53]. Namely, we assume that

either one of the following two inequalities holds

f(u)

u
− f ′(u) > 0 (< 0) for every u ∈ (a−, a+) \ {0}.(2.84)

It is an elementary exercise to show that (2.84) will follow if either one of

the following two inequalities holds

uf ′′(u) > 0 (< 0) for every u ∈ (a−, a+) \ {0}.(2.85)

The following result is of course known, see [47] and [53], although previ-
ously it was stated in different terms (involving monotonicity of time maps),

and proved by different methods.

Theorem 2.13 Assume that the conditions (2.81), (2.82) and (2.84) (or
(2.85)) hold, and u(x) ∈ (a−, a+) for all x ∈ (0, 1). Then the linearized

problem (2.83) admits only the trivial solution.

Proof: Assume on the contrary that w(x) is a non-trivial solution of

(2.83). Observe that u′(x) satisfies the same equation (2.83), u′(x) > 0 for
x ∈ (0, 1) and u′(0) = u′(1) = 0. It follows by the Sturm comparison theorem

that w(x) has exactly one root on (0, 1); we call it η, i.e. w(η) = 0. We may
assume (by scaling) that w(0) < 0 and w(1) > 0, and hence w′(η) > 0. Let
ξ denote the unique root of the increasing solution u(x), i.e. u(ξ) = 0 and

u′(ξ) > 0. Writing the equation (2.80) in the form u′′ + λ f(u)
u u = 0, and

combining it with (2.83), we have

(

u′w − uw′)′ + λ

[

f(u)

u
− f ′(u)

]

uw = 0.(2.86)

We now consider two cases.

Case 1. ξ ≤ η. Assume that the first inequality holds in (2.84), i.e. the
quantity in the square bracket in (2.86) is positive. We integrate (2.86) over

the interval (η, 1), where both u(x) and w(x) are positive

u(η)w′(η) + λ

∫ 1

η

[

f(u)

u
− f ′(u)

]

uw dx = 0.

We have a contradiction, since both terms on the left are positive.

If the second inequality holds in (2.84), i.e. the quantity in the square
bracket in (2.86) is negative, we integrate (2.86) over the interval (0, ξ),

where both u(x) and w(x) are negative

u(ξ)w′(ξ) + λ

∫ ξ

0

[

f(u)

u
− f ′(u)

]

uw dx = 0.
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Again, we have a contradiction, since both terms on the left are negative.

Case 2. ξ ≥ η. If the first inequality holds in (2.84), we integrate over
(0, η), where both u(x) and w(x) are negative

−u(η)w′(η) + λ

∫ η

0

[

f(u)

u
− f ′(u)

]

uw dx = 0.

Both terms on the left are positive, a contradiction. If the second inequality

holds in (2.84), we integrate over (ξ, 1), where both u(x) and w(x) are
positive

−u′(ξ)w(ξ) + λ

∫ 1

ξ

[

f(u)

u
− f ′(u)

]

uw dx = 0.

Both terms on the left are negative, again we have a contradiction. ♦
Beyond this simple theorem, we know of only two results on the Neumann

problem. The first one is due to R. Schaaf [53]. It dealt with monotonicity
of time maps, here we rephrase it in terms of non-degeneracy of solutions.

Theorem 2.14 ([53]) Assume that the function f(u) is either an A − B
or C function on the interval (a−, a+). Then the linearized problem (2.83)

admits only the trivial solution.

The other one is from P. Korman [23].

Theorem 2.15 Assume that f(u) satisfies f ′(u) > 0 and f ′′′(u) < 0 on the

interval (0, a+), and f ′′(u) > 0 on (a−, a+). Then the linearized problem
(2.83) admits only the trivial solution.

The last result is not very satisfactory. Its only advantage is that no third

order assumptions on f(u) are made on (a−, 0), while on (0, a+) such func-
tions are of class A−B. R. Schaaf’s result is better.

According to the condition (2.85), we can handle the cases when f(u)

changes concavity at its root u = 0. But what if it keeps the same concavity?
We wish to pose the following problem.

Problem Assume that f(0) = 0, and

f ′′(u) > 0 for u ∈ (a−, a+).

Is it true that any increasing solution of the Neumann problem (2.80), with
values in (a−, a+), is non-degenerate (i.e. (2.83) has only the trivial solu-

tion)?
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Using bifurcation approach, we can also treat some non-autonomous

problems. For example,

u′′ + λb(x)f(u) = 0 for 0 < x < 1, u′(0) = u′(1) = 0,(2.87)

with the given function b(x) being positive and continuous. The correspond-
ing linearized problem is now

w′′ + λb(x)f ′(u)w = 0 for 0 < x < 1, w′(0) = w′(1) = 0.(2.88)

The formula (2.86) still holds here (with an extra factor of b(x) in front of the

square bracket), and hence the arguments of the above theorem can be used
unchanged. In particular, we conclude as above that any non-trivial solution

of (2.88) cannot vanish exactly once. Unlike the autonomous problem, we
cannot yet conclude that w(x) is zero, since we cannot automatically exclude

the possibilities that w(x) has no roots, or at least two roots. We need to
introduce another condition:

f ′(u) ≥ 0 for every u ∈ (a−, a+).(2.89)

Theorem 2.16 Assume that b(x) is positive and continuous on [0, 1], and

f(u) ∈ C1[a−, a+] satisfies the conditions (2.81), (2.82), (2.89), and the
first inequality holds in (2.84). Let u(x) be an increasing solution of the

Neumann problem (2.80), satisfying u(x) ∈ (a−, a+) for all x ∈ (0, 1). Then
the linearized problem (2.88) admits only the trivial solution.

Proof: As we mentioned above, the arguments used in proof of Theorem

2.13 apply here as well. In case the first inequality holds in (2.84), we have
proved in Theorem 2.13 that w(x) cannot vanish on either side of ξ, the root

of u(x). Hence w(x) keeps the same sign over (0, 1). But then integrating
the linearized equation (2.88),

∫ 1

0
b(x)f ′(u)w dx = 0,

which is a contradiction, since the integrand is of one sign. ♦
As an example, the function f(u) = u−u3 satisfies the conditions of this

theorem on the interval (− 1√
3
, 1√

3
).

2.10 Similarity of the solution branches

We saw in the previous two sections that under the same condition (2.84)
we could prove non-degeneracy for both sign-changing solutions, and for
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the Neumann problem. It turns out that a curve of solutions with an odd

number of sign changes is always similar to curves of solutions of Neumann
problems. (I.e. both curves have the same number of critical points, with

the same direction of turns.) Let us fix the notation, before we state the
result. We consider the problem

u′′ + λf(u) = 0, on (0, 1),(2.90)

subject to either Dirichlet

u(0) = u(1) = 0,(2.91)

or Neumann
u′(0) = u′(1) = 0(2.92)

boundary conditions. We shall consider the solutions as the positive pa-
rameter λ varies, and refer to the solution curves as either Dirichlet or

Neumann branches, depending on the boundary conditions used. Recall
that by Lemma 2.1 any solution of the equation (2.90) is symmetric with
respect to any of its critical points. This implies, in particular, that either

minimum or maximum occurs at any critical point. It follows that any so-
lution of Neumann problem is determined by its values on any subinterval

I ⊂ (0, 1), whose end-points are two consecutive critical points of u(x). We
can then obtain the solution on the entire interval (0, 1) through reflections

and translations. We refer to I , and any other interval uniquely determining
the solution through reflections and translations, as a determining interval.

The interval I , joining two consecutive critical points of u(x), is also a deter-
mining interval for the Dirichlet problem. Another determining interval for

Dirichlet problem is (ξ, η), where 0 ≤ ξ < θ < η ≤ 1 are three consecutive
roots of u(x). This interval contains both positive and negative humps (and
all positive (negative) humps are translations of one another).

As we vary λ the number of roots on Dirichlet branches, as well as the
number of monotonicity changes on Neumann branches, remain constant.

Indeed, by Lemma 2.2 solutions of (2.90) cannot have points of positive
maximum and negative minimum, and there is no other mechanism by which

extra roots (or monotonicity changes) may be created.

The natural way to distinguish the Dirichlet branches is by the number
of interior roots, and the Neumann branches can be identified by the number

of changes of monotonicity (both properties remain constant on the solution
curves). Any solution of the Dirichlet problem with at least one interior
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root contains a solution of the Neumann problem on a subinterval of (0, 1).

Indeed, just consider the solution between two consecutive critical points. In
order for solutions of the Neumann problem to contain in turn a solution of

the Dirichlet problem, we need to impose some conditions on f(u). Namely,
we assume that

f(0) = 0,(2.93)

and there exist two constants −∞ ≤ m < 0 < M ≤ ∞ so that

(f1) f(u) > 0 for u ∈ (0,M),
(f2) f(u) < 0 for u ∈ (m, 0).

Lemma 2.18 Under the conditions (2.93), (f1) and (f2) any solution of the

Neumann problem for (2.90), satisfying

m < u(x) <M for all x(2.94)

has a root between any two critical points.

Proof: Follows immediately, by multiplying the equation (2.90) by u′,

and integrating between any two consecutive critical points. ♦
Definition. We call two solution branches of (2.90) to be similar if for
any solution on the either branch there is a determining interval so that by

stretching of x, or by reflection x → 2a − x, for some a ∈ (0, 1), we obtain
a solution from the other branch on a (different) determining interval.

Clearly, if solution branches are similar then the corresponding solution
curves in (λ, u) ”plane” have the same shape.

The following result was proved in this form by P. Korman [24], although
it can also be found in R. Schaaf [51].

Theorem 2.17 All Neumann branches of (2.90) are similar, and if f(u)

satisfies the conditions (2.93), (f1) and (f2), while all solutions satisfy (2.94),
then the Neumann branches are similar to the Dirichlet ones with an odd

number of interior roots (and these Dirichlet branches are also all similar).

Proof: We begin with Neumann branches. If a Neumann solution changes

monotonicity twice, then its increasing part is a reflection of its decreasing
part with respect to x = 1

2 . If a Neumann solution changes monotonicity n
times, then all critical points occur at i/n, i = 1, . . . , n−1, and the graphs of

solution on all intervals where it is increasing (decreasing) are translations
of one another. Since an interval connecting any two critical points is a
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determining interval, the equivalence of the Neumann branches follows (via

rescaling). ♦
If a Dirichlet solution has 2k−1 interior roots, it has k identical positive

humps and k identical negative humps. Assume for definiteness that solution
starts with a negative hump, followed by a positive one, and so on. If ξ is

the first point of (negative) minimum of u(x), then the first interior root
occurs at 2ξ. If 2ξ + η is the point of the first (positive) maximum, then

the second interior root occurs at 2ξ+ 2η. The last critical point, a positive
maximum, occurs at 1− η. Observe that k(2ξ+ 2η) = 1, i.e. ξ+ η = 1

2k . So
while both ξ and η vary with λ, u(x) solves the Neumann problem on the

interval (ξ, 1− η), and this interval has a fixed length of

1 − η − ξ =
2k − 1

2k
.

So that any Dirichlet solution curve ”carries” inside it a solution of a Neu-
mann problem on a fixed interval (which can be made to be (0, 1) by rescal-

ing), and hence the Dirichlet branch cannot have any more complexity (like
extra turns) than any Neumann branch.

Conversely, consider the Neumann problem with 2k+1 changes of mono-
tonicity. Assume for definiteness that u(0) < 0. Then u(1) > 0. As-

sume that ξ = ξ(λ) is the smallest interior root, and 1 − η is the largest
one, η = η(λ). On the interval (0, 1) we then have 2k + 1 negative half-
humps, each of width ξ, and 2k + 1 positive ones, each of width η. So that

ξ + η = 1
2k+1 . On the interval (ξ, 1− η) we have a solution of the Dirichlet

problem with 2k − 1 interior roots, and the length of this interval is

1 − η − ξ =
2k

2k + 1
,

which does not vary with λ. So that any Neumann branch ”carries” inside it
a solution of a Dirichlet problem on a fixed interval, and hence the Neumann

branch cannot have any more complexity than the corresponding Dirichlet
branch with an odd number of interior zeroes.

Finally, the Dirichlet branches with odd number of interior zeroes are

all similar, since any two such branches are similar to a pair of Neumann
branches, but Neumann branches are all similar. ♦

The Dirichlet branches with even number of interior zeroes may behave
differently, as the following example due to R. Schaaf [53] shows.
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Example ([53]) For the problem

u′′ + λ(eu − 1) = 0 on (0, 1), u(0) = u(1) = 0

the branch bifurcating from the principal eigenvalue does not turn, while all
other branches have exactly one turn.

3 A class of symmetric nonlinearities

For the autonomous equation (2.1) both phase-plane analysis and bifurcation
theory apply. If we allow explicit dependence of the nonlinearity on x, i.e.

consider

u′′ + λf(x, u) = 0 for −1 < x < 1, u(−1) = u(1) = 0,(3.1)

then the problem becomes much more complicated. For example, solutions
of the corresponding linearized problem need not be of one sign. In the

papers P. Korman and T. Ouyang a class of f(x, u) has been identified,
for which the theory of positive solutions is very similar to that for the

autonomous case, see e.g. [34], [35] and [36]. Further results in this direction
have been given in P. Korman, Y. Li and T. Ouyang [30], and P. Korman

and J. Shi [40]. Namely, we assume that f ∈ C2 satisfies

f(−x, u) = f(x, u) for all −1 < x < 1, and u > 0,(3.2)

fx(x, u) ≤ 0 for all 0 < x < 1, and u > 0.(3.3)

Under the above conditions any positive solution of (3.1) is an even function,

with u′(x) < 0 for all x ∈ (0, 1], see B. Gidas, W.-M. Ni and L. Nirenberg
[15]. (For the one-dimensional problem (3.1) a different proof of the sym-

metry of solutions is given in P. Korman [18]. It is a little simpler than the
moving plane method of [15], and it allows to relax somewhat the condition

(3.3).) As before the linearized problem

w′′ + λfu(x, u)w = 0 for −1 < x < 1, w(−1) = w(1) = 0(3.4)

will be important for the multiplicity results.

Lemma 3.1 ([34]) Under the conditions (3.2), and (3.3) any non-trivial
solution of (3.4) is of one sign. Moreover, w(x) is an even function, and it

spans the null set of (3.4).
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Proof: Assume that w(x) has a root on [0, 1) (the case when w(x) vanishes

on (−1, 0] is similar). We may assume (taking −w if necessary) that there
is a subinterval (x1, x2), 0 ≤ x1 < x2 ≤ 1, so that w(x) > 0 on (x1, x2),

and w(x1) = w(x2) = 0. Integrating the relation [u′w′ − u′′w]′ = λfxw over
(x1, x2),

u′(x2)w
′(x2) − u′(x1)w

′(x1) = λ

∫ x2

x1

fxw dx.

We have a contradiction, since the quantity on the left is positive, while the

one on the right is non-positive.

The null set of (3.4) is one dimensional, since it can be parameterized

by w′(1). To prove that w(x) is even, observe that w(−x) is also a solution
of (3.1), and hence w(−x) = cw(x) for some constant c (since the null set of

(3.4) is one dimensional). Evaluating this at x = 0, we conclude that c = 1
(since w(0) > 0), and the claim follows. ♦

The next lemma shows that the Crandall-Rabinowitz Theorem 1.2 ap-
plies at any critical solution.

Lemma 3.2 Under the conditions (3.2), and (3.3) let u(x) be a critical so-
lution of (3.1), and w(x) a solution of the corresponding linearized problem.

Then we have
∫ 1

0
f(x, u)wdx >

1

2λ
u′(1)w′(1) > 0.(3.5)

Proof: By the preceeding lemma we may assume that w(x) > 0. We
then have

(

u′′w − u′w′)′ = −λfxw > 0 for x > 0.

So that the function u′′w − u′w′ is increasing on (0, 1), and then

u′′w − u′w′ < −u′(1)w′(1) for x > 0.

Integrating this over (0, 1), and expressing u′′ from the equation (3.1), we

conclude (3.5). ♦
The following result from P. Korman and J. Shi [40] is an extension of

Lemma 2.3. Unlike the autonomous case, several conditions are now needed.

Theorem 3.1 (See [40]) In addition to (3.3) and (3.4) assume that

f(x, u) > 0 for all −1 < x < 1, and u > 0.(3.6)

Then the set of positive solutions of (3.1) can be parameterized by their
maximum values u(0). (I.e. u(0) uniquely determines the pair (λ, u(x)).)
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Proof: Assume on the contrary v(x) is another solution of (3.1), corre-

sponding to some parameter µ ≥ λ, but u(0) = v(0). The case of µ = λ is
not possible in view of uniqueness of initial value problems, so assume that

µ > λ. Then v(x) is a supersolution of (3.1), i.e.

v′′ + λf(x, v) < 0 for −1 < x < 1, v(−1) = v(1) = 0.(3.7)

Since v′′(0) < u′′(0), it follows that v(x) < u(x) for x > 0 small. Let
0 < ξ ≤ 1 be the first point where the graphs of u(x) and v(x) intersect

(i.e. v(x) < u(x) on (0, ξ)). We now multiply the equation (3.1) by u′,
and integrate over (0, ξ). Denoting by x2(u) the inverse function of u(x) on

(0, ξ), we have
1

2
u′

2
(ξ) +

∫ u(ξ)

u(0)
f(x2(u), u) du= 0.(3.8)

Similarly denoting by x1(u) the inverse function of v(x) on (0, ξ), we have
from (3.7)

1

2
v′

2
(ξ) +

∫ u(ξ)

u(0)
f(x1(u), u) du > 0.(3.9)

Subtracting (3.9) from (3.8), noticing that x2(u) > x1(u) for all u ∈ (u(ξ), u(0)),
and using the condition (3.3), we have

1

2

[

u′
2
(ξ)− v′

2
(ξ)
]

+

∫ u(0)

u(ξ)
[f(x1(u), u)− f(x2(u), u)] du < 0.(3.10)

Since both terms on the left are positive, we obtain a contradiction. ♦
Next we consider positive solutions of the boundary value problem

u′′ + λb(x)f(u) = 0 for −1 < x < 1, u(−1) = u(1) = 0.(3.11)

We assume that b(x) ∈ C1[−1, 1] satisfies b(x) > 0 for x ∈ [−1, 1], and
b(x) = b(−x), b′(x) < 0 for x ∈ (0, 1). We also assume that f(u) > 0, so that
this problem belongs to the class discussed above. For any solutions u(x)

let (µ, w(x)) denote the principal eigenpair of the corresponding linearized
equation, i.e. we assume that w(x) > 0 satisfies

w′′ + λb(x)f ′(u)w+ µw = 0 for −1 < x < 1,(3.12)

w(−1) = w(1) = 0.

The following theorem is taken from P. Korman and J. Shi [40].
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Theorem 3.2 Assume f ∈ C2[0,∞), f(u) > 0, f ′(u) > 0 and f ′′(u) > 0

for all u > 0, and for some α > 0 the condition (2.43) is satisfied. Then the
solution of (3.11) with u(0) = α is unstable if it exists.

Proof: In the proof of Theorem 2.3, (2.25) and (2.26) are still true.

Assume now that u(x) is stable, i.e. µ ≥ 0 in (3.12). Then w(x) is a positive
solution of the problem

w′′ + g(x, w) = 0 for −1 < x < 1, w(−1) = w(1) = 0,(3.13)

with g(x, w) = λb(x)f ′(u(x))w+ µw. Since g(x, w) is even in x, and

gx = λb′(x)f ′(u)w + λb(x)f ′′(u)u′w < 0 on (0, 1),

the theorem of B. Gidas, W.-M. Ni and L. Nirenberg [15] applies to (3.13).
It follows that w(x) is an even function with w′(x) < 0 on (0, 1). Recall
that w(x) is determined up to a constant multiple. Since w(x) is decreasing,

while −u′(x) is increasing on (0, 1), by scaling w(x) we can achieve (2.28).
Using (2.25), (2.28), and also (2.26), we have (2.29).

Since b(x) > 0, b′(x) < 0 in (0, 1) using (2.25) and (2.29), we have

∫ 1
0 b(x) [f(u)− uf ′(u)]w(x) dx(3.14)

=
∫ x0
0 b(x) [f(u) − uf ′(u)]w(x) dx

+
∫ 1
x0
b(x) [f(u)− uf ′(u)]w(x) dx

<
∫ x0
0 b(x0) [f(u) − uf ′(u)]w(x) dx

+
∫ 1
x0
b(x0) [f(u)− uf ′(u)]w(x) dx

= b(x0)
∫ 1
0 [f(u)− uf ′(u)]w(x) dx ≤ 0.

On the other hand, multiplying the equation (3.12) by u, the equation (3.1)
by w, subtracting and integrating over (0, 1), we have

∫ 1

0
b(x)

[

f(u) − uf ′(u)
]

w(x) dx =
µ

λ

∫ 1

0
uw dx ≥ 0.(3.15)

We reach a contradiction by combining (3.14) and (3.15). ♦

As an application we have the following exact multiplicity result from P.
Korman and J. Shi [40]. It extends the corresponding result in [34] by not

restricting the behavior of f(u) at infinity. The Theorem 3.1 above allows
us to conclude the uniqueness of the solution curve.
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Theorem 3.3 We assume that b(x) ∈ C1[−1, 1] satisfies b(x) > 0 for x ∈
[−1, 1], and b(x) = b(−x), b′(x) < 0 for x ∈ (0, 1). Assume f ∈ C2[0,∞),
f(u) > 0, f ′(u) > 0 and f ′′(u) > 0 for all u > 0, while h(α) ≤ 0 for some

α > 0. Then there exist two constants 0 ≤ λ̄ < λ0, so that the problem
(3.11) has no solution for λ > λ0, exactly two solutions for λ̄ < λ < λ0,

and in case λ̄ > 0 it has exactly one solution for 0 < λ < λ̄. Moreover, all
solutions lie on a unique smooth solution curve. If we moreover assume that

limu→∞
f(u)

u = ∞, then λ̄ = 0.

Example. The theorem 3.3 applies (with λ̄ = 0) to an example from
combustion theory

u′′ + λb(x)eu = 0 for −1 < x < 1, u(−1) = u(1) = 0,

where b(x) satisfies the above conditions.

P. Korman and T. Ouyang [34] have considered a class of indefinite

problems

u′′(x) + λu(x) + h(x)up(x) = 0, −1 < x < 1, u(−1) = u(1) = 0.(3.16)

Here p > 1, and λ a real parameter. The given function h(x) is assumed to
be even, and it is allowed to change sign on (−1, 1). By using bifurcation

analysis, as above, as well as earlier work of T. Ouyang [48], [49], it was
possible to give an exhaustive description of the set of positive solutions of

(3.16).

We denote by φ1 = cos π
2x, the principal eigenfunction of −u′′ on (−1, 1),

corresponding to the principal eigenvalue λ1 = π2

4 . We assume that h(x) ∈
C1(−1, 1)∩C0[−1, 1] is an even function, and moreover

h(0) > 0, and h′(x) < 0 for x ∈ (0, 1),(3.17)

∫ 1

−1
h(x)φp+1

1 (x) dx < 0.(3.18)

(Notice that the last assumption implies that h(x) changes sign.)

Theorem 3.4 ([34]) Assume that the conditions (3.17) and (3.18) hold for

the problem (3.16). Then there is a critical λ0, λ0 > λ1, so that for −∞ <
λ ≤ λ1 the problem (3.16) has exactly one positive solution, it has exactly

two positive solutions for λ1 < λ < λ0, exactly one at λ = λ0, and no
positive solutions for λ > λ0. Moreover, all positive solutions lie on a unique
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continuous in λ curve, which bifurcates from zero at λ = λ1 (to the right),

it continues without any turns to λ = λ0, at which it turns to the left, and
then continues without any more turns for all −∞ < λ ≤ λ0. We also have

maxx u(x) → ∞ as λ→ −∞.

As far as we know, this is still the only known exact multiplicity result

for indefinite problems.

Let us mention next the cubic problems

u′′+λ(u−a(x))(u−b(x))(c(x)−u) = 0 for −1 < x < 1, u(−1) = u(1) = 0,
(3.19)

with given even functions 0 ≤ a(x) ≤ b(x) ≤ c(x). As we discussed above,
for constant a, b and c, the exact multiplicity question has been settled only

recently by P. Korman, Y. Li and T. Ouyang [33], via a computer assisted
proof. One can expect that under some conditions the same global picture

holds for variable coefficients. This was established for several special cases.
P. Korman, Y. Li and T. Ouyang [30] have given an exact multiplicity result

in case a = b = 0. P. Korman and T. Ouyang [36] had done the same in case
a = 0, and P. Korman and T. Ouyang [38] had given an exact multiplicity

result in case when a > 0 is a constant.

Next we indicate an extension. Consider a problem with a variable
diffusion coefficient

(

a(x)u ′)′ + λf(u) = 0 for −1 < x < 1, u(−1) = u(1) = 0.(3.20)

We assume that a given function a(x) ∈ C1[−1, 1] is even, and it satisfies

a(x) > 0 and xa′(x) ≤ 0, for x ∈ [−1, 1].(3.21)

We perform a change of variables x→ s, given by

s =

∫ x

0

d t

a(t)
.

If we denote by s0 =

∫ 1

0

d t

a(t)
, then this transformation gives a one-to-one

map of the interval (−1, 1) onto (−s0, s0). Moreover, s > 0 (< 0) iff x > 0
(< 0). The problem (3.20) transform into

uss + λa(x(s))f(u) = 0 for −s0 < x < s0, u(−s0) = u(s0) = 0.(3.22)
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Observe that the function s = s(x) is odd, and hence its inverse x = x(s) is

also odd, and then a(x(s)) is even. In view of (3.21)

d

ds
a(x(s)) = a′(x(s))a(x(s)) ≤ 0 (≥ 0) if s > 0 (< 0).

If we now assume that f(u) > 0 for u > 0, then the problem (3.22) satis-

fies the conditions (3.2) and (3.3). Hence, we can translate our results, in
particular the Theorem 3.3, to the problem (3.20).

4 General nonlinearities

Without the symmetry assumptions on f(x, u) the problem is much harder.

We restrict to a subclass of such problems, i.e. we now consider positive
solutions of the boundary value problem

u′′ + λα(x)f(u) = 0 for a < x < b, u(a) = u(b) = 0,(4.1)

on an arbitrary interval (a, b). We assume that f(u) and α(x) are positive

functions of class C2, i.e.

f(u) > 0 for u > 0, α(x) > 0 for x ∈ [a, b].(4.2)

As before, it will be crucial for bifurcation analysis to prove positivity for
the corresponding linearized problem

w′′ + λα(x)f ′(u)w = 0 for a < x < b, w(a) = w(b) = 0.(4.3)

The following result was proved in P. Korman and T. Ouyang [38], although
our exposition here is a little different.

Lemma 4.1 In addition to the conditions (4.2), assume that

3

2

α′2

α
− α′′ < 0 for all x ∈ (a, b).(4.4)

If the linearized problem (4.3) admits a non-trivial solution, then we may

assume that w(x) > 0 on (a, b).

Proof: Let z(x) = g(x)u′(x), with g(x) to be chosen shortly. Then z(x)

satisfies the equation

z′′ + λα(x)f ′(u)z = g′′(x)u′(x)− λ
(

2g′(x)α(x) + α′(x)g(x)
)

f.
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We now chose g(x) = α(x)−1/2. Then 2g′(x)α(x) + α′(x)g(x) = 0, while

g′′(x) < 0 for a < x < b,(4.5)

in view of the condition (4.4).

Notice that any positive solution of (4.1) is a concave function, and hence
it has only one critical point, the point of global maximum. Let x0 be the

point of maximum of u(x). We have

z′′ + λα(x)f ′(u)z = g′′(x)u′(x),(4.6)

with the right hand side negative on (a, x0) and positive on (x0, b). This will

make it impossible for w(x) to vanish inside (a, b). Indeed, if we assume that
w(x) vanishes on say (x0, b), we could find two consecutive roots of w(x),

x0 ≤ x1 < x2 ≤ b so that w(x1) = w(x2) = 0, while w(x) > 0 on (x1, x2).
We now multiply the equation (4.6) by w(x), the equation (4.3) by z(x),
subtract and integrate over (x1, x2), obtaining

−g(x2)u
′(x2)w

′(x2) + g(x1)u
′(x1)w

′(x1) =

∫ x2

x1

g′′(x)u′(x)w(x) dx.

We have a contradiction, since the quantity on the left is negative, and the

integral on the right is positive. ♦
Remarks

1. Recall the Schwarzian derivative from Complex Analysis and Dynam-
ical Systems

(Sf)(x) =
f ′′′(x)

f ′(x)
− 3

2

(

f ′′(x)

f ′(x)

)2

.

If one denotes A(x) =
∫

α(x) dx, then our condition (4.4) says that

the Schwarzian derivative of A(x) is positive.

2. Semilinear equations on an annulus in Rn, n > 2, can be reduced by a

standard change of variables to the problem (4.1), with α(x) = x−2k

and k = 1 + 1
n−2 , see e.g. [19]. One sees that our condition (4.4) just

misses this kind of functions. In [19] positivity of w(x) was proved
under an extra assumption that the annulus is “thin”.

We shall present a new result on positivity of w(x), after we prove a

simple lemma.

49



Lemma 4.2 Assuming the conditions (4.2), let x0 be the unique point of

maximum of the positive solution of (4.1). Assume that

α′(x) < 0 on (x0, b).(4.7)

If the corresponding linearized problem (4.3) admits a non-trivial solution
w(x), then this solution cannot vanish inside (x0, b).

Proof: Assuming the contrary, let γ be the largest root of w(x) on

(x0, b), and assume that w(x) > 0 on (γ, b). (The number of roots of w(x)
inside (a, b) is at most finite, as follows by the Sturm’s comparison theorem,
since both functions f ′(u(x)) and α(x) are bounded on [a, b], and λ is fixed.

Hence, there is a largest root γ.) Differentiate the equation (4.1)

u′′x + λα(x)f ′(u)uu + λα′(x)f(u) = 0.(4.8)

Multiplying the equation (4.8) by w(x), the equation (4.3) by u′(x), sub-
tracting and integrating, we have

−u′(b)w′(b) + u′(γ)w′(γ) + λ

∫ b

γ
α′(x)f(u(x))w(x) dx= 0.

This results in a contradiction, since all terms on the left are negative. ♦
Remark If α′(x) > 0 on (a, x0), then a similar proof shows that w(x) cannot

vanish inside (a, x0).

Lemma 4.3 Assume the conditions (4.2) hold, and in addition assume that

α′(x) < 0 on (a, b),(4.9)

and
2α(x) + xα′(x) > 0 on (a, b).(4.10)

If the linearized problem (4.3) admits a non-trivial solution, then we may

assume that w(x) > 0 on (a, b).

Proof: Let x0 be the unique point of maximum of the solution u(x).
By the previous Lemma 4.2 it follows that w(x) cannot vanish on (x0, b).

Assuming that w(x) vanishes on (a, x0], let γ ∈ (a, x0] be the first root
of w(x), and we may assume that w(x) > 0 on (a, γ). We consider the

function ζ(x) = x [u′(x)w′(x) + λα(x)f(u(x))w(x)]− u′(x)w(x), introduced
by M. Tang [59]. One computes

ζ ′(x) = λ
[

2α(x) + xα′(x)
]

f(u)w.(4.11)

50



Integrating over (a, γ),

γu′(γ)w′(γ)− au′(a)w′(a) = λ

∫ γ

a

[

2α(x) + xα′(x)
]

f(u)wdx.

We have a contradiction, since the quantity on the left is negative, while the
integral on the right is positive. ♦
Remark Our condition (4.10) again just misses the case of an annulus.

Positivity of w(x) can be used to prove uniqueness and exact multiplicity
results. For example, we can prove the following theorem.

Theorem 4.1 For the problem (4.1) assume that the conditions (4.2) hold,

and that either the condition (4.4) holds, or the conditions (4.9) and (4.10)

hold. In addition assume that f ′′(u) > 0 for all u > 0, and limu→∞
f(u)

u =

∞. Then there is a critical λ0 > 0, so that the problem (4.1) has exactly two
positive solutions for 0 < λ < λ0, exactly one positive solution at λ = λ0,

and no positive solutions for λ > λ0. Moreover, all solutions lie on a unique
smooth solution curve, which starts at (λ = 0, u = 0), bends back at λ = λ0,

and tends to infinity as λ→ 0.

Proof: The proof is similar to that of the Theorem 2.2, except for proving
the uniqueness of the solution curve (since the maximum value of the solu-

tion no longer identifies that solution). However, if another solution curve
existed, one of its ends would have to go through the point (λ = 0, u = 0),
contradicting the uniqueness of solutions near regular points, which follows

by the implicit function theorem. (Since w > 0 at the turning point, one of
the branches is increasing in λ, i.e. it is decreasing for decreasing λ. By the

arguments of [34], or [35], the monotonicity is preserved along the branch,
and hence this branch must go into the origin, as λ→ 0.) ♦
Example The theorem applies to the problem

u′′ + λα(x)eu = 0, a < x < b, u(a) = u(b) = 0,

if α(x) > 0 satisfies either the condition (4.4), or the conditions (4.9) and

(4.10).

5 Time Maps

5.1 There are several different formulas for the time map

Let u = u(t) be solution of the initial value problem,

u′′ + f(u) = 0, u(0) = 0, u′(0) = p.
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Using ballistic analogy, we can interpret this as “shooting” from the ground

level, at an angle p > 0. Let T/2 denote the time it takes for the projectile
to reach its maximum amplitude α, α = α(p). By symmetry of positive

solutions, T = T (p) is then the time when the projectile falls back to the
ground, the time map. Since the energy is constant (as before, F (u) =
∫ u
0 f(t) dt)

1

2

(

d u

d t

)2

+ F (u(t)) = F (α) =
1

2
p2.

Solving this for d t
d u , and integrating

T/2 =
1√
2

∫ α

0

du
√

F (α) − F (u)
,(5.1)

which lets us compute T = T (α) (or T = T (p), since α = α(p)). This
formula has been used extensively for a long time, see e.g. W.S. Loud [43],

T. Laetsch [41], K.J. Brown et al [9], J. Smoller and A. Wasserman [58],
S.-H. Wang [60], [61], I. Addou [1], [2], I. Addou and S.-H. Wang [3], S.-H.

Wang and T.S. Yeh [64], and J. Cheng [10], [11]. It is not easy to use this
formula. The integral is improper at u = α, so that one needs a regularizing

substitution before differentiating in α. One regularizing substitution is
u = α sin θ, which gives

T/2 =
α√
2

∫ π/2

0

cos θ dθ
√

F (α) − F (α sin θ)
.(5.2)

The integrand is now bounded. The formula (5.2) can be used for numerical
computations, as well as for proving theorems. For more information we

refer the reader to the above mentioned papers, particularly to the recent
papers of S.-H. Wang and his coworkers.

5.2 Time map formula through global linearization

We are interested in positive solutions of the two point problem for u = u(t)

u′′ + f(u) = 0, 0 < t < T, u(0) = u(T ) = 0.(5.3)

We do not consider the end point T to be fixed, but rather depending on

p = u′(0) (or on the maximum value of the solution α, α = u(T/2)). To
obtain the formula for T = T (p), we begin by transforming (5.3) into the

system form

u′ = y(5.4)

y′ = −f(u),
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together with the initial conditions

u(0) = 0, y(0) = p.(5.5)

Let F (u) =
∫ u
0 f(t) dt. In the linear case when f(u) = u, we have F (u) =

1
2u

2. We now define the function g(x), for x ≥ 0, by

F (g(x)) =
1

2
x2.(5.6)

In other words, g(x) = F−1( 1
2x

2), and the inverse function F−1 is defined,
provided we assume throughout this section that f(u) ∈ C2 (0, a) ∩ C[0, a]

for some 0 < a ≤ ∞, and

f(u) > 0 for u ∈ (0, a).(5.7)

We assume also that

either f(0) > 0, or f(0) = 0 and f ′(0) > 0.(5.8)

Differentiate (5.6)

f(g(x))g′(x) = x.(5.9)

In (5.4) we let u = g(x), then multiply the second equation by g′(x), and

use (5.9)

g′(x)x′ = y(5.10)

g′(x)y′ = −f(g(x))g′(x) = −x.

We now change the independent variable in (5.10), t→ θ, by solving

d t

d θ
= g′(x(t)), t(0) = 0.(5.11)

Then the system (5.4) is linearized, and the problem (5.4), (5.5) transforms

into

d x
d θ = y(5.12)

d y
d θ = −x

x(0) = 0, y(0) = p.

Solution of (5.12) is
x = p sin θ, y = p cos θ.
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Using this in (5.11) and integrating, we have the formula for the time map

T =

∫ π

0
g′(p sinθ) dθ.(5.13)

This formula was derived by R. Schaaf [53], and was used by her to obtain
a number of uniqueness and multiplicity results.

Separating variables in (5.11) and integrating

∫ T

0

f(g(x(t)))

x(t)
dt = π,(5.14)

where we have used (5.9) to express g′. From the definition of g(x) we have

x =
√

2F (g(x)) =
√

2F (u),

and hence we can rewrite (5.14) as

∫ T

0

f(u(t))
√

F (u(t))
dt =

√
2π.(5.15)

This formula was derived in a different way by P. Korman and Y. Li [28],

where the quantity on the left was referred to as “generalized average” of
the solution of (5.3). The reason why this term was chosen is that in case
f(u) = u3, this formula gives the average value of the solution:

∫ T
0 u(t) dt =

π√
2
.

Remarks

1. We needed the positivity of f(u) so that the inverse function F−1 is

defined, however there is no need to distinguish between f(0) = 0 and
f(0) > 0 cases for both formulas (5.13) and (5.15). In case f(0) > 0

the integral in (5.15) (and in (5.14)) is improper at both end points,
however since u′(0) 6= 0 and u′(T ) 6= 0, the integral converges. (For
small t, u(t) ∼ u′(0)t, F (u(t)) ∼ f(0)u(t) ∼ f(0)u′(0)t.)

2. Similarly, in the derivation of the time map formula (5.13), we run

into an improper integral in case f(0) > 0. Indeed, when solving for
θ = θ(t) in (5.11), we have θ =

∫ t
0

d s
g′(x(s)) , which is an improper integral

at s = 0. However, as we have just seen, it is a convergent integral.
Hence the time map formula in (5.13) is valid in both cases f(0) = 0,

and f(0) > 0.

54



3. Let us collect the properties of the function g(x). We have g(0) = 0,

g′(x) =

√
2F (g(x))

f(g(x)) > 0 for x > 0. We also have g′(0) = 0 in case

f(0) > 0, and, by L’Hopital’s rule as was observed in R. Schaaf [53],
g′(0) = 1√

f ′(0)
in case f(0) = 0. Observe that g′(0) is defined, thanks

to the condition (5.8).

It is sometimes more convenient to express T = T (α), where α is the
maximum value of the solution, α = u(T/2). Since the energy 1

2u
′2(x) +

F (u(x)) is constant, it follows that p =
√

2F (α), and hence

T/2 =

∫ π

π/2
g′(p sin θ) dθ =

∫ π/2

0
g′
(

√

2F (α) cos θ

)

dθ.(5.16)

T/2 is, of course, the time it takes the solution to travel from its maximum

to zero.

Example Consider the problem (u = u(x))

u′′ + λeu = 0, x ∈ (0, 1), u(0) = u(1) = 0.(5.17)

By a change of independent variable we convert it to

u′′ + eu = 0, x ∈ (0, 1), u(0) = u(T ) = 0,(5.18)

where T =
√
λ. Here f(u) = eu, F (u) = eu − 1, and g(x) = ln

(

1
2x

2 + 1
)

.

The integral in (5.16) is then relatively simple, and in fact Mathematica
gives

√
λ/2 =

√

2

eα
ArcTanh[

√

eα − 1

eα
].(5.19)

Plotting this formula (with λ along the horizontal axis and α along the ver-
tical one), we obtain the same bifurcation diagram as obtained by standard

integration. Computation this way is considerably faster than by integra-
tion, and we also observe that here f(0) > 0. The formula (5.19) can also

be obtained by explicit integration of the problem (5.17).

We can proceed similarly for the general case

u′′ + λf(u) = 0, x ∈ (0, 1), u(0) = u(1) = 0.(5.20)

We do not have a simple formula for g(x) anymore, however from (5.16) (see

also (5.9)) we obtain (as before, T =
√
λ)

√
λ/2 =

∫ π/2

0

√

2F (α) cos θ

f (F−1 (F (α) cos2 θ))
dθ.(5.21)
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This formula will provide probably one of the most efficient ways to compute

the bifurcation diagrams, once the evaluation of the inverse function F−1 is
numerically implemented.

Assume now there is an a > 0, so that f(a) = 0, and f(u) > 0 for u > a,
while no assumptions on the sign of f(u) are made when u ∈ (0, a). If we

denote by T1/2 the time it takes the solution to travel from its maximum to
u(x) = a, then

T1/2 =

∫ π/2

θ0

g′(
√

2F (α) cos θ) dθ, where θ0 = sin−1

√

F (a)
F (α) .(5.22)

The following theorem we proved in [27].

Theorem 5.1 Assume that for some 0 < a < b ≤ ∞ we have

f(u) > 0, for a < u < b,(5.23)

f ′(u)

∫ u

a
f(t) dt− 1

2
f2(u) > 0, for a < u < b.(5.24)

(Observe that we implicitly assume that f(a) = 0.) Then the problem

u′′ + f(u) = 0, x ∈ (0, 1), u(0) = u(1) = 0

has at most one positive solution, with a < α = u(1/2) < b.

What is remarkable here is than no assumptions whatsoever are made
on f(u) when u ∈ (0, a). We used generalized averages to prove this result,

but it should be possible to obtain it from the formula (5.22) too. In fact,
there is a similar result in R. Schaaf’s book [53] (a little less general than the

above theorem). Observe that (5.24) will follow if f(a) = 0 and f ′′(u) > 0
for a < u < b. A more general result for p-Laplacian case has been given
recently by J. Cheng [10].

We now show how the time map formula gives rise to uniqueness and

multiplicity results for the Dirichlet problem. Compute

d T

d p
=

∫ π

0
g′′(p sin θ) sin θ dθ,(5.25)

where g′′(x) is computed from (5.9) (written in the form g′(x) =

√
2F (u)

f(u) ,

u = g(x))

g′′(x) =
f2 − 2Ff ′

f3
(u), with u = g(x).(5.26)
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If the time map T (p) is monotone, then clearly the positive solution of the

Dirichlet problem (5.3) for any fixed T is unique. Hence, we have uniqueness
of solutions if either

I(u) ≡ f ′(u)F (u)− 1

2
f2(u) > 0 for almost all u > 0,(5.27)

or the opposite inequality holds. This condition was derived by R. Schaaf
[53], and it also follows from the generalized averages in [28].

We observe next that this condition does not add anything to the stan-
dard uniqueness condition

uf ′(u)− f(u) does not change sign for u > 0.(5.28)

I.e. (5.28) holds whenever (5.27) does, and so the condition (5.28) is both

simpler and more general.

Indeed, we begin by observing

d2

du2

(

√

F (u)

)

=
I(u)

2F 3/2(u)
≡ J(u),

where J(u) has the same sign as I(u). Integrating between some a > 0 and

u > 0,
d

du
(
√

F (u)) =

∫ u

a
J(ξ) dξ + c > 0,(5.29)

where c = f(a)

2
√

F (a)
> 0. Integrating (5.29),

√

F (u) = cu+ c1 +

∫ u

a
(u− ξ)J(ξ) dξ,(5.30)

where c1 = − ∫ a
0 ξJ(ξ) dξ. From (5.30) we find F (u), and then f(u) and

f ′(u) by differentiation. We then have

uf ′(u)− f(u) = 2
√

F (u)J(u)u+ 2

∫ u

0
ξJ(ξ) dξ

(∫ u

a
J(ξ) dξ + c

)

.

In view of (5.29), the quantity in the bracket is positive, and it follows that

if J(u) is positive (negative), so is uf ′(u) − f(u).

We now consider the problem

u′′ + λf(u) = 0, x ∈ (0, 1), u(0) = u(1) = 0,(5.31)
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depending on a positive parameter λ. As before, we can convert it to the

problem (5.3), with T =
√
λ. If we can show that T ′′(p) > 0 (or T ′′(p) < 0)

for all p > 0 it will follow that for any λ there is at most two p’s with

T (p) =
√
λ, i.e. at most two solutions of (5.31). Since

T ′′(p) =

∫ π

0
g′′′(p sin θ) sin2 θ dθ,

it suffices to show that the function g′′′(u) keeps the same sign. By the
formula (1-1-15) in R. Schaaf [53]

g′′′(u) = −g′(x)3f ′(u)
(

f2(u) − 2F (u)f ′(u)
)

+ 2F (u)f(u)f ′′(u)

f4(u)
, with u = g(x),

which led her to the following condition: if

3f ′(u)
(

f2(u) − 2F (u)f ′(u)
)

+ 2F (u)f(u)f ′′(u) > 0(5.32)

(or < 0 ), for all u > 0

then the problem (5.31) has at most two positive solutions. Since the condi-

tion (5.32) is not easy to verify, R. Schaaf [53] went on to develop her A−B
and C conditions, which are sufficient for (5.32) to hold.

Condition (5.32) says that g′(u) is either convex or concave. Working
with the generalized averages, P. Korman and Y. Li [28] have shown that

the same result is true if 1
g′(u) is convex (also in the case 1

g′(u) concave, but

this possibility is included in the case when g′(u) is concave). This led them

to the following condition: if

1

2
f ′′(u)F 2(u) +

3

8
f3(u) − 3

4
f(u)f ′(u)F (u) > 0, for all u > 0(5.33)

then the problem (5.31) has at most two positive solutions. Observe that

this condition is different from (5.32). Conditions (5.32) and (5.33) work
in both cases f(0) = 0 and f(0) > 0. Also, computer algebra can help in
verifying these conditions.

Example The function f(u) = 2 + e−u sinu satisfies (5.33). This function

changes concavity infinitely many times. A straightforward computation,
using Mathematica, shows that for this function the left hand side of (5.33)

is positive, tending to 10.125 as u → ∞. Hence, the problem (5.31) with
this f(u) has at most two positive solutions for any λ > 0.

Remarks
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1. The time map formula can be also developed for the p-Laplacian case.

Actually, even more general case is developed in Section 2.5 of R.
Schaaf’s book [53].

2. Finally, we mention why we constantly stress that all results about the

time map hold in both cases f(0) = 0 and f(0) > 0. The important
book by R. Schaaf [53] treats the f(0) = 0 case in Chapter 1, while the

case f(0) > 0 (and also the case f(0) < 0) is postponed to Chapter 3.
Some readers might form an incorrect impression that the book covers
only the f(0) = 0 case (as in the MathSciences Review of that book).

5.3 Variational formula for the time map

In addition to the two formulas for the time map, discussed above, a curious
variational formula has been discovered by R. Benguria and M.C. Depassier,

see [8], which has also references to their earlier papers. If u(t) is a solution
of

u′′ + λf(u) = 0, 0 < t < 1, u(0) = α, u′(0) = u(1) = 0,(5.34)

it is shown by R. Benguria and M.C. Depassier that

λ = max
g∈D

1

2

(

∫ α
0 g′(y)1/3 dy

)3

∫ α
0 f(y)g(y) dy

,

where D = {g|g ∈ C1(0, α), g′ > 0, g(0) = 0}. By rescaling, this formula
is of course equivalent to a time map formula. It was used in [8] to obtain

lower and upper bounds for time maps.

5.4 A non-local problem

Using the generalized inverses, we now give a complete description of the

solution set of a non-local problem. We begin with a simple observation. It
is well known that for any L > 0 the problem (here u = u(x))

u′′ + u3 = 0, 0 < x < L, u(0) = u(L) = 0

has a unique positive solution, and a unique negative solution. If we now

take a positive solution on the interval (0, L/k), followed by the negative
solution on (L/k, 2L/k), and so on, then we obtain a solution with k − 1

sign changes, for any positive integer k.
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We now consider a non-local problem, where instead of a second bound-

ary condition we prescribe the average value of the solution on some fixed
interval (0, L)

u′′ + u3 = 0, 0 < x < L,(5.35)

u(0) = 0,
∫ L
0 u(s) ds = α,

where α is a prescribed constant. We are interested in both positive, nega-
tive and sign-changing solutions, i.e. we shall talk of solutions with k sign

changes, where k ≥ 0. Without loss of generality we may assume α ≥ 0
(otherwise, consider v = −u). If α = 0, it is clear that there exists exactly
two solution of (5.35) with k sign changes, for any odd k ≥ 1. Indeed, a

solution of the equation in (5.35) with u(0) = u(L) = 0 having an odd num-
ber of roots inside (0, L), and its negative, provide the desired solutions of

(5.35). So that we may assume α > 0.

Theorem 5.2 ([27]) For any 0 < α < π√
2

there exists exactly one solution

of (5.35) with k sign changes, for any k ≥ 0. For α = π√
2

there exists exactly

one solution with k sign changes, for any even k ≥ 0, and no solutions if k

is odd. For any α > π√
2

the problem (5.35) has no solutions.

Proof: The problem “scales right”. Setting x = bt, and u = 1
b v, we see

that v = v(t) satisfies

v′′ + v3 = 0, 0 < t < L
b ,(5.36)

v(0) = 0,
∫

L
b

0 v(s) ds = α.

Comparing with (5.35), we see that only the length of the interval has
changed. Hence we have a one-to-one map between the solution sets on

any two intervals. So consider a solution U(x) of the equation u′′ + u3 = 0,
with u(0) = 0, which has k sign changes, whose roots are x = 1, 2, . . ., and
such that U(x) > 0 on (0, 1), U(x) < 0 on (1, 2), and so on. According to

the formula (5.15), the integral of U(x) over any of its positive humps is
equal to π√

2
, while the integral of U(x) over any of its negative humps is

− π√
2
. Imagine cutting this solution with a sliding vertical line x = ξ. By

continuity, for any α ∈ (0, π√
2
] we can find a unique ξ ∈ (0, 1] so that U(x) is

positive solution of (5.35) on the interval (0, ξ). We then map this solution
to the original interval (0, L) by the above transformation. Similarly, for
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any α ∈ (0, π√
2
) we can find a unique ξ ∈ (1, 2) so that we have a solution

of (5.35) on the interval (0, ξ), with exactly one sign change. We then map

U(x) to the original interval, as before. Similarly we construct solutions
with arbitrarily many sign changes.

By (5.15), no solution is possible in case α > π√
2
. ♦

6 Numerical Computation of Solutions

Good analytical understanding of a problem goes hand in hand with efficient

numerical calculation of its solution. We know that for positive solutions the
maximum value u(0) = α uniquely determines the solution pair (λ, u(x)) of

the problem

u′′ + λf(u) = 0 for −1 < x < 1, u(−1) = u(1) = 0,(6.1)

see Lemma 2.3 above. We also know that the parameter λ in (6.1) can be
“scaled out”, i.e. v(x) ≡ u( 1√

λ
x) solves the equation v′′ + f(v) = 0, while

v(0) = u(0) = α, and v′(0) = u′(0) = 0. The root of v(x) is r =
√
λ. We

therefore solve the initial value problem

v′′ + f(v) = 0, v(0) = α, v′(0) = 0,(6.2)

and find its first positive root r. Then λ = r2 by the above remarks. This

way for each α we can find the corresponding λ. After we choose sufficiently
many αn and compute the corresponding λn, we can plot the pairs (λn, αn),

obtaining a bifurcation diagram in (λ, α) plane. We stress that the resulting
two-dimensional bifurcation curve gives a faithful representation of the so-

lution set of (6.1), since the value u(0) = α uniquely determines the solution
pair (λ, u(x)). The program for solving (6.1) is essentially one short loop,

involving the NDSolve command in Mathematica. It can be found at the
author’s web-page: http://math.uc.edu/∼kormanp/.

An equally good way to do numerical computations is by direct integra-

tion. For the problem (6.2) we have r = T/2, where as before r is the first
positive root, and T is the time map. I.e. λ = T 2/4. Using the formula

(5.2) for the time map, we have

λ =
1

2
α2





∫ π/2

0

cos θ
√

∫ α
α sin θ f(u) du

dθ





2

.(6.3)
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The Mathematica program based on (6.3) is so short and simple, that we
include its listing here. It solves the problem (6.1) for f(u) = e5u/(5+u),

and produces an S-shaped bifurcation curve, in agreement with our results.
(Our program is solving the Dirichlet problem on the interval (0, 1), rather

than (−1, 1), which accounts for the extra factor of 4.)

We see absolutely no need to ever use finite differences (or finite elements)
for the problem (6.1). If we divide the interval (0, 1) into n pieces, with step
h = 1/n and subdivision points xi = ih, and denote by ui the numerical

approximation of u(xi), the finite difference approximation of (6.1) is

ui+1 − 2ui + ui−1

h2
+ λf(ui) = 0, 1 ≤ i ≤ n− 1, u0 = un = 0.(6.4)

This is a system of nonlinear algebraic equations, more complicated in ev-

ery way than the original problem (6.1). In particular, this system often has
more solutions than the corresponding differential equation (6.1). The exis-

tence of the extra solutions (not corresponding to the solutions of (6.1)) has
been recognized for a while, and a term spurious solutions has been used.

For example in case f(u) = eu the solution curve of (6.1) has exactly one
turn (as we proved before), while the solution curve of (6.4) has three turns,

see P. Korman [25]. Increasing the number of subdivision points n does not
remove the two spurious turns, it just moves them closer to λ = 0. Actually
the spurious turns are avoided in the opposite direction, when n ≤ 6. We

found this hard to prove, even when n = 2. When studying the problem
(6.4), we can no longer rely on the familiar tools from differential equations.

Even in the case f(u) = uk the analysis of the problem (6.4) is very involved,
see E. L. Allgower [4].

For the general problem (1.1) (with f = f(x, u)) we suggest using the

predictor-corrector method. If solution u(x, λ) is known, one approximates

u(x, λ+ ∆λ) ' u(x, λ) + uλ(x, λ)∆λ,(6.5)

and then a very accurate approximation of u(x, λ + ∆λ) can be usually
obtained in around 4 steps of Newton’s iteration, with the initial guess
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given by (6.5). This way we can continue the solution in λ. To find uλ(x, λ)

one solves a linear problem

u′′λ + λf ′(u)uλ + f(u) = 0 for −1 < x < 1, uλ(−1) = uλ(1) = 0.(6.6)

To solve (6.6) one uses finite differences. (There are no spurious solutions

for linear problems!) The resulting tri-diagonal system is easily solved by
Gaussian elimination.
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