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Abstract

Using continuation methods, we study the global solution structure of

periodic solutions for a class of periodically forced equations, generalizing

the case of relativistic pendulum. We obtain results on the existence and

multiplicity of periodic solutions. Our approach is suitable for numerical

computations, and in fact we present some numerically computed bifurca-

tion diagrams illustrating our results.
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1 Introduction

There is a considerable recent interest in periodic solutions of a class of equations
generalizing the relativistic pendulum equation

(ϕ(u′))′ + λf(u)u′ + kg(u) = h(t) = µ+ e(t),(1.1)

u(t+ T ) = u(t), u′(t+ T ) = u′(t) .

For relativistic pendulum we have ϕ(z) = z√
1−z2

, g(u) = sinu, and f(u) = 1.

More generally, the function ϕ(z) : (−a, a) → R is assumed to be increasing,

of class C1, and limz→±a ϕ(z) = ±∞. Without restricting the generality, we
shall also assume that ϕ(0) = 0. The function h(t) ∈ C(R) is assumed to be T -

periodic, f(u) ∈ C(R), the friction λ is constant. We decompose h(t) = µ+e(t),
with µ = 1

T

∫ T
0 h(t) dt, and

∫ T
0 e(t) dt = 0. P.J. Torres [15] proved existence of at
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least two T -periodic solutions, assuming that aT < 2
√

3 and |µ| < k
(

1 − aT
2
√

3

)

.

Then C. Bereanu, P. Jebelean and J. Mawhin [1] have improved these conditions
to read: aT < π

√
3, |µ| < k cos aT

2
√

3
. H. Brezis and J. Mawhin [2] have proved

existence of at least one solution, but under more general conditions. Our first
result is a more elementary proof of the above result of C. Bereanu, P. Jebelean

and J. Mawhin [1], which uses only Schauder’s fixed point theorem.

We seek to understand the shape of the global solution curve, to explain
why some restrictions on µ are necessary for the existence of solutions, and how

multiple solutions are connected. Let us decompose the solution u(t) = ξ+U(t),
with ξ = 1

T

∫ T
0 u(t) dt, and

∫ T
0 U(t) dt = 0. We study the global solution curve

for the problem (1.1), i.e., µ = µ(ξ). We give conditions under which ξ is a
global parameter, which means that for each ξ ∈ (−∞,∞) there is a unique pair

(µ, u(t)) solving (1.1). To establish that, we continue solutions of (1.1) back in
k on curves of fixed average ξ, similarly to author’s recent papers [8], [7] and

[9], and at k = 0 we have a complete description of T -periodic solutions, in
particular we have the existence and uniqueness of T periodic solutions of any

average, which implies the uniqueness of (µ, u(t)). We then study properties
of the curve µ = µ(ξ), depending on g(u). If g(u) is a periodic function, it
turns out that so is µ(ξ), with the same period. If g(u) tends to finite limits, as

u→ ±∞, then µ(ξ) tends to finite limits, as ξ → ±∞. We illustrate our results
by numerical computations, and we discuss in detail their implementation. Our

computations show that solutions of (1.1) have very small variation, i.e., they
are close to constant solutions of the algebraic equation kg(u) = µ.

2 Preliminary results

We record the following simple observation.

Lemma 2.1 Let e(t) be a given continuous function of period T . Then the
function

∫ t
0 e(s) ds is T -periodic if and only if

∫ T
0 e(s) ds = 0.

The next lemma deals with periodic solutions of “ϕ-linear” equations.

Lemma 2.2 Consider the problem

(ϕ(u′(t)))′ + λu′(t) = e(t),(2.1)

where ϕ : (−a, a) → R is an increasing homeomorphism, of class C1, with

ϕ(0) = 0, and e(t) is a given continuous function of period T , of zero average,
i.e.,

∫ T
0 e(s) ds = 0, and λ ≥ 0, a constant. Then the problem (2.1) has a family
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of T -periodic solutions of the form u = u0(t) + c, where c is any constant. This

family exhausts the set of T -periodic solutions. In particular, one can select a
unique T -periodic solution of any average.

Proof: Case 1. λ = 0. From (2.1)

u′(t) = ϕ−1
[
∫ t

0
e(s) ds+ C

]

, C is an arbitrary constant .

Observe that u′(t) is a T -periodic function, whose values belong to the domain

of ϕ. We can choose C = C0, such that
∫ T

0
ϕ−1

[
∫ t

0
e(s) ds+ C0

]

dt = 0 .

(This integral is positive (negative) for |C| large and C positive (negative). Ex-
istence of C0 follows by continuity.) By monotonicity of ϕ−1, C0 is unique.

Then

u(t) =

∫ t

0
ϕ−1

[
∫ t

0
e(s) ds+ C0

]

dt+ c

gives us the desired T -periodic solutions.

Case 2. λ > 0. Letting u′ = z, we rewrite (2.1) as

ϕ(z)′ + λz = e(t) .(2.2)

It suffices to show that (2.2) has a T -periodic solution. Indeed, integrating (2.2),

we see that this solution satisfies
∫ T

0
z(t) dt = 0 ,

and then u(t) =
∫ t
0 z(s) ds + c gives us the desired T -periodic solutions. Let

ϕ(z(t)) = p(t), i.e., z = ϕ−1(p) ≡ ψ(p). Observe that again the values of
z = u′(t) belong to the domain of ϕ, and that ψ(p) is a bounded function, which

is positive (negative) for p positive (negative). We rewrite (2.2) as

p′ + λψ(p) = e(t) .(2.3)

Let us solve (2.3), with p(0) = p0, and call the solution p(t, p0). If p0 > 0 and

large, then p(t) > 0 for all t ∈ [0, T ]. Then, integrating (2.3),

p(T ) < p(0) = p0 .

We conclude that the Poincare map p0 → p(T, p0) takes the interval (−p0, p0)
into itself, for p0 > 0 large. Hence (2.3), and therefore (2.2), have periodic

solutions. Since ψ(p) is monotone, (2.3) has a unique T -periodic solution. ♦
The following lemma is known. We present its proof for completeness.
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Lemma 2.3 Let u(t) ∈ W 1,2(R) be a T -periodic function, with
∫ T
0 u(t) dt = 0.

Then

||u||2L∞(R) ≤
T

12

∫ T

0
u′

2
(t) dt .(2.4)

Proof: Represent u(t) by its Fourier series on (−T/2, T/2) (with a0 = 0)

u(t) = Σ∞
n=1an cos

2nπ

T
t+ bn sin

2nπ

T
t ,

and then
∫ T

0
u′

2
(t) dt =

2π2

T
Σ∞

n=1(a
2
n + b2n)n2 .(2.5)

Applying the Schwarz inequality to the scalar product of the vectors (an, bn) and
(cos 2nπ

T t, sin 2nπ
T t), we have

||u||L∞(R) ≤ Σ∞
n=1

√

a2
n + b2n = Σ∞

n=1

1

n
n
√

a2
n + b2n .

Using (2.5), we then have

||u||2L∞(R) ≤ Σ∞
n=1

1

n2
Σ∞

n=1(a
2
n + b2n)n2 =

π2

6

T

2π2

∫ T

0
u′

2
(t) dt ,

and the proof follows. ♦
Remark An even shorter proof can be given by using complex Fourier series.
Representing u(t) = Σj 6=0cje

2π
T

ijt (since c0 = 0), we have

‖u‖L∞ ≤ Σj 6=0|cj| ≤
(

Σj 6=0
1

j2

)1/2 (

Σj 6=0j
2|cj|2

)1/2
=

π√
3

√
T

2π
‖u′‖L2 .

We consider classical solutions of the problem

(ϕ(u′))′ + f(u)u′ + sinu = h(t) .(2.6)

The function ϕ : (−a, a) → R is assumed to be increasing of class C1, and
limu→±a ϕ(u) = ±∞. Without restricting the generality, we shall also assume

that ϕ(0) = 0.

We observe the following simple lemma.

Lemma 2.4 Let u(t) be a T -periodic solution of

(ϕ(u′))′ = g(t) ,

where g(t) ∈ C(R) is a given T -periodic function of zero average. Then there is
a constant α, 0 < α < a, such that

|u′(t)| < α, for all t .
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Proof: Integrating the equation, between any critical point t0 of u(t), and

any point t, with t0, t ∈ (0, T ),

ϕ(u′(t)) =

∫ t

t0

g(t) dt ≤
∫ T

0
|g(t)| dt .

Hence u′(t) cannot get near ±a on (0, T ), and by periodicity, for all t. ♦
This lemma shows that when one continues the solutions of (2.6), u′(t) stays

away from the values where ϕ(u′) is not defined.

The following lemma is known as Wirtinger’s inequality. Its proof follows
easily by using the complex Fourier series, and the orthogonality of the functions

{eiωnt} on the interval (0, T ).

Lemma 2.5 Assume that f(t) is a continuously differentiable function of period
T , and of zero average, i.e.

∫ T
0 f(s) ds = 0. Then, denoting ω = 2π

T ,

∫ T

0
f ′

2
(t) dt ≥ ω2

∫ T

0
f2(t) dt.

We shall denote by W 1,2
T the subset of W 1,2(R), consisting of T -periodic

functions, with the norm ||u||2
W 1,2

T

=
∫ T
0 (u2 + u′2) dt.

Lemma 2.6 Let u(t) be a T -periodic solution of zero average of

(ϕ(u′))′ = g(t) ,

where g(t) ∈ C(R) is a given T -periodic function of zero average. Then there is
a constant c0 independent of g(t), so that

||u||
W 1,2

T

≤ c0 .

Proof: Since |u′(t)| < a for any solution, we have a bound on
∫ T
0 u′2 dt, and

by Wirtinger’s inequality we have a bound on
∫ T
0 u2 dt. ♦

Observe that this is better than what one has for a linear equation u′′ = g(t),
where the bound on ||u||

W 1,2

T

does depend on g(t).

3 Existence of at least two solutions

We consider classical solutions of the periodic problem

(ϕ(u′))′ + f(u)u′ + k sinu = h(t) = µ+ e(t),(3.1)

u(t+ T ) = u(t), u′(t+ T ) = u′(t) .
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The function ϕ : (−a, a) → R is assumed to be increasing of class C1, and

limu→±a ϕ(u) = ±∞. Without restricting the generality, we shall also assume
that ϕ(0) = 0. The function h(t) ∈ C(R) is assumed to be T -periodic, f(u) ∈
C(R). We decompose h(t) = µ+ e(t), with µ = 1

T

∫ T
0 h(t) dt, and

∫ T
0 e(t) dt = 0.

We present next a simple proof of the following result of C. Bereanu, P. Jebelean

and J. Mawhin [1], see also P.J. Torres [15].

Theorem 3.1 ([1]) Assume that

aT < π
√

3, |µ| < k cos
aT

2
√

3
.

Then the problem (3.1) has at least two T -periodic solutions.

Proof: Decompose u(t) = ξ+U(t), with ξ = 1
T

∫ T
0 u(t) dt, and

∫ T
0 U(t) dt = 0.

Integrating (3.1)

µ =
k

T

∫ T

0
sin (ξ + U(t)) dt .(3.2)

Using this in (3.1)

(ϕ(u′))′ + f(u)u′ = −k sin (ξ + U(t)) +
k

T

∫ T

0
sin (ξ + U(t)) dt+ e(t) .(3.3)

The system of (3.2) and (3.3) is equivalent to (3.1), in fact it gives the classical

Lyapunov-Schmidt decomposition of (3.1). Let W
1,2
T denote the subspace of

W 1,2
T , consisting of functions of zero average. To solve (3.2) and (3.3), we set up

a map (η, V ) → (ξ, U) : R×W
1,2
T → R×W

1,2
T , by solving

(ϕ(U ′))′ = −f(V )V ′ − k sin (η + V (t)) + k
T

∫ T
0 sin (η + V (t)) dt+ e(t)(3.4)

k
T

∫ T
0 sin (ξ + U(t)) dt = µ .

Since the right hand side of the first equation has average zero, this equation has
a T -periodic solution, by Lemma 2.2. We claim that one can find ξ ∈ (−π

2 ,
π
2 ),

solving the second equation in (3.4). Any solution of (3.4) satisfies |U ′(t)| < a

for all x, which implies that
(

∫ T
0 U ′(t)2 dt

)1/2
≤ a

√
T . Then by Lemma 2.3, and

our assumptions

||U ||L∞(R) ≤
√
T

2
√

3

(

∫ T

0
U ′(t)

2
dt

)1/2

≤ aT

2
√

3
<
π

2
.
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Then

sin(−π
2

+ U) < sin(−π
2

+
aT

2
√

3
) = − cos

aT

2
√

3
< 0 ,

sin(
π

2
+ U) > sin(

π

2
+

aT

2
√

3
) = cos

aT

2
√

3
> 0 .

Hence, for any µ ∈ (− cos aT
2
√

3
, cos aT

2
√

3
), we can find a ξ ∈ (−π

2 ,
π
2 ), solving

the second equation in (3.4). Using Lemma 2.6, we conclude that the map
(η, V ) → (ξ, U) is a compact map of (−π

2 ,
π
2 ) × B into itself, where B is a ball

of radius c0 in W
1,2
T (c0 as in Lemma 2.6). By Schauder’s fixed point theorem

there exists a fixed point, with ξ ∈ (−π
2 ,

π
2 ). Similarly, (π

2 ,
3π
2 )×B is compactly

mapped into itself, giving us a second fixed point, with ξ ∈ (π
2 ,

3π
2 ). ♦

4 Continuation of solutions

We consider the following linear periodic problem in the class of functions of

zero average: find a constant µ, and w(t) ∈ C2(R) solving

(a(t)w′(t))′ +λw′(t)+kh(t)w(t) = µ, w(t+T ) = w(t),

∫ T

0
w(s) ds = 0,(4.5)

where a(t) ∈ C1(R) and h(t) ∈ C(R) are given functions of period T , while

k and λ are parameters. We denote by C2
T the subset of C2(R), consisting of

T -periodic functions, and by C̄2
T the subset of C2

T , consisting of functions of zero

average. Recall that ω = 2π
T .

Lemma 4.1 Assume that the T -periodic functions a(t) and h(t) satisfy |h(t)| ≤
1, a(t) > a0 for all t, and that

k < a0ω .(4.6)

Then the only solution of (4.5) is µ = 0 and w(t) ≡ 0.

Proof: Multiplying the equation in (4.5) by w(t) and integrating, we have

a0

∫ T
0 w′2 dt ≤

∫ T
0 a(t)w′2 dt = k

∫ T
0 h(t)ww′ dt

≤ k
(

∫ T
0 w2 dt

)1/2 (∫ T
0 w′2 dt

)1/2
≤ k

ω

∫ T
0 w′2 dt ,

which contradicts (4.6), unless w(t) ≡ 0, and then µ = 0. ♦

We consider the periodic problem

(ϕ(u′))′ + λu′ + kg(u) = h(t) = µ+ e(t),(4.7)

u(t+ T ) = u(t), u′(t+ T ) = u′(t) ,
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which includes the case of relativistic pendulum with friction. The function

ϕ : (−a, a) → R is assumed to be increasing, of class C2, limu→±a ϕ(u) =
±∞, and ϕ(0) = 0. The function h(t) ∈ C(R) is assumed to be T -periodic,

g(u) ∈ C1(R). We decompose h(t) = µ + e(t), with µ = 1
T

∫ T
0 h(t) dt, and

∫ T
0 e(t) dt = 0. Decompose the solution u(t) = ξ + U(t), with ξ = 1

T

∫ T
0 u(t) dt,

and
∫ T
0 U(t) dt = 0. Integrating (4.7),

µ =
k

T

∫ T

0
g (ξ + U(t)) dt .(4.8)

Using this formula in (4.7), we see that U satisfies

F (U) ≡ (ϕ(U ′))′ + λU ′ + kg (ξ + U(t))− k

T

∫ T

0
g (ξ + U(t)) dt = e(t) .(4.9)

Observe that F : C̄2
T → C̄T .

Theorem 4.1 Assume that there is a constant a0 such that

ϕ′(t) ≥ a0 for t ∈ (−a, a) ,(4.10)

and that

|g′(u)| ≤ 1 for all u ∈ R .(4.11)

Assume finally that
k < a0ω .(4.12)

Then all solutions of (4.7) lie on a unique continuous solution curve (u, µ)(ξ),
with ξ ∈ (−∞,∞). Moreover, for any ξ ∈ (−∞,∞) there exists a unique

solution pair (u(t), µ) of (4.7), with the average of u(t) equal to ξ. I.e., ξ is a
global parameter on this solution curve.

Proof: For each fixed ξ, finding the pair (u, µ) solving (4.7) breaks down
to first solving (4.9) for U , and then finding µ from (4.8). We show that the
Implicit Function Theorem applies to (4.9). The linearized operator is

F ′(U)V ≡ (ϕ′(U ′)V ′)′ + λV ′ + kg′ (ξ + U(t))V − µ∗ ,

where the constant µ∗ stands for k
T

∫ T
0 g′ (ξ + U(t))V (t) dt. The operator F ′(U)V :

C̄2
T → C̄T is injective because the only solution of

F ′(U)V = 0
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is V = 0 and µ∗ = 0, in view of the Lemma 4.1 and our conditions. By the Fred-

holm alternative this operator is also surjective, and hence the Implicit Function
Theorem applies. This will allow us to continue solutions in the parameters k

and ξ.

Turning to the existence and uniqueness of solutions, we embed our problem

into a family of problems

(ϕ(u′))′ + λu′ + κg(u) = h(t) = µ+ e(t)(4.13)

u(t+ T ) = u(t), u′(t+ T ) = u′(t)
1
T

∫ T
0 u(t) dt = ξ ,

with 0 ≤ κ ≤ k. When κ = 0 and µ = 0, the problem has a unique T -periodic

solution of average ξ, by Lemma 2.2. We now continue this solution in κ, i.e., we
solve (4.13) for (u, µ) as a function of κ (keeping ξ fixed). Again, we decompose
the solution u(t) = ξ + U(t), with ξ = 1

T

∫ T
0 u(t) dt, and

∫ T
0 U(t) dt = 0, and the

Lyapunov-Schmidt decomposition (4.8) and (4.9) becomes

µ =
κ

T

∫ T

0
g (ξ + U(t)) dt ,(4.14)

F (U, κ) ≡ (ϕ(U ′))′ + λU ′ + κg (ξ + U(t))− κ

T

∫ T

0
g (ξ + U(t)) dt = e(t) .(4.15)

The Implicit Function Theorem allows us to continue the solutions locally in κ
(first solving (4.15) for U , and then finding µ from (4.14)). Since by Lemmas 2.6

and 2.4, solutions stay bounded, we can do the continuation for all 0 ≤ κ ≤ k,
obtaining the solution curve (u, µ)(κ) of (4.7), with the average of u equal to

ξ, and at κ = k, we have the desired solution. If we had another solution of
average ξ, we would continue it for decreasing κ, obtaining a second solution of
average ξ at κ = 0, in contradiction to Lemma 2.2.

Once we have a solution of (4.7) at some ξ, we continue it in ξ, for all
−∞ < ξ <∞, by using the Implicit Function Theorem, as above. ♦

This theorem implies that the curve µ = µ(ξ) gives a faithful description

of the existence and multiplicity of T -periodic solutions for the problem (4.7).
Properties of this curve can be described in more detail under further assump-

tions on g(u). We begin with a result of Landesman-Lazer type.

Theorem 4.2 Assume that the conditions of the Theorem 4.1 hold, and in ad-
dition, the function g(u) has finite limits at ±∞, and

g(−∞) < g(u) < g(∞) for all u ∈ R .
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Figure 1: An example for Theorem 4.2

Then the problem (4.7) has a T -periodic solution if and only if

kg(−∞) < µ < kg(∞) .

Proof: Necessity follows immediately from (4.8). For sufficiency we also refer
to (4.8), and observe that we have a uniform bound on U(t), when we do the

continuation in ξ. Hence µ → kg(±∞), as ξ → ±∞, and by continuity of µ(ξ),
the problem (4.7) is solvable for all µ’s lying between these limits. ♦
Example We have solved the problem (4.7) with p(t) = t√

1−t2
, g(t) = arctan t,

e(t) = 0.3 sin 2π
T t, T = 0.3, k = 0.25, λ = 0. The curve µ = µ(ξ) is given in

Figure 1. We see that µ(ξ) → ±π
8 , as ξ → ±∞. The picture also suggests the

uniqueness of solutions.

A simple variation is provided by the following result, whose proof is similar.

Theorem 4.3 Assume that the conditions of the Theorem 4.1 hold, and in ad-
dition,

ug(u) > 0 for |u| large, and lim
u→±∞

g(u) = 0 .

Then there are constants µ− < 0 < µ+ so that the problem (4.7) has at least two
T -periodic solution for µ ∈ (µ−, µ+) \ 0, it has at least one T -periodic solution
for µ = µ−, µ = 0 and µ = µ+, and no T -periodic solutions for µ lying outside

of (µ−, µ+).
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Figure 2: An example for Theorem 4.3

Example We have solved the problem (4.7) with p(t) = t√
1−t2

, g(t) = 3t
1+t2 ,

e(t) = 0.45 sin 2π
T t, T = 0.2, k = 0.1, λ = 0.05. The curve µ = µ(ξ) is given in

Figure 2. Here µ− ≈ −0.15, and µ+ ≈ 0.15.

Theorem 4.4 Assume that the conditions of the Theorem 4.1 hold, and in ad-
dition, the function g(u) is periodic, of period p. Then the function µ = µ(ξ) is
periodic, of period p.

Proof: The equation (4.9) at ξ+p is identical to the same equation at ξ, and
hence U(t) is the same. Then from (4.8), µ(ξ + p) = µ(ξ). ♦
Example (Relativistic pendulum) We have solved the problem (4.7) with p(t) =

t√
1−t2

, g(t) = sin t, e(t) = 0.15 cos 2π
T t, T = 1, k = 0.1, λ = 0.1. The curve

µ = µ(ξ) is given in Figure 3. The function µ = µ(ξ) has period 2π.

Each point in Figure 3 represents a solution of the problem (4.7), with period
1. For example, when ξ = 5, we had calculated µ ≈ −0.09637, and the actual
1-periodic solution u(t) is given in Figure 4. We see very small variation of

the solution u(t) around its average value ξ = 5. The variation is around 0.004,
compared with the variation of 0.15 for the forcing term. We saw small variations

for all values of the parameters, for all problems that we tried.
We also have the following result of D.G. de Figueiredo and W.-M. Ni’s [5]

type, which does not restrict the behavior of g(u) at infinity.
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Figure 3: An example for Theorem 4.4
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Figure 4: A 1-periodic solution of the problem (4.7)
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Theorem 4.5 Assume that the conditions of the Theorem 4.1 hold, and in ad-

dition, the function g(u) satisfies

ug(u) > 0 for all u ∈ R .

Then for µ = 0, the problem (4.7) has a solution.

Proof: Proceeding as above, we have µ(ξ) > 0 (< 0), when |ξ| is large and ξ
is positive (negative). By continuity, µ(ξ0) = 0 at some ξ0. ♦

5 Numerical computation of solutions

To find solutions of the periodic problem (4.7), we used continuation in ξ, the

average value of solution, and the Lyapunov-Schmidt decomposition (4.8) and
(4.9), as described in the preceding section. We began by implementing the
numerical solution of the following periodic problem: given T -periodic functions

a(t), b(t) and f(t), and a constant λ, find the T -periodic solution of

L[y] ≡ (

a(t)y′(t)
)′

+λy′+b(t)y = f(t), y(t) = y(t+T ), y′(t) = y′(t+T ) .(5.1)

That turned out to be surprisingly simple, giving the capabilities of the Mathe-
matica software. The general solution of (5.1) is of course

y(t) = Y (t) + c1y1(t) + c2y2(t) ,

where Y (t) is a particular solution, and y1, y2 are two solutions of the corre-

sponding homogeneous equation. To find Y (t), we used the NDSolve command
to solve (5.1) with y(0) = 0, y′(0) = 1. Mathematica not only solves differential

equations numerically, but it returns the solution as an interpolated function of
t, practically indistinguishable from an explicitly defined function. We calcu-

lated y1 and y2 by solving the corresponding homogeneous equation with the
initial conditions y1(0) = 0, y′1(0) = 1 and y2(0) = 1, y′2(0) = 0. We then select

c1 and c2, so that
y(0) = y(T ), y′(0) = y′(T ) ,

which is just a linear 2 × 2 system. This gives us the T -periodic solution of
(5.1), or L−1[f(t)], where L[y] denotes the left hand side of (5.1), subject to the

periodic boundary conditions.

Then we have implemented the “linear solver”, i.e., the numerical solution

of the following problem: given T -periodic functions a(t), b(t) and f(t), and a
constant λ, find the constant µ∗, so that the problem

(

a(t)y′(t)
)′

+ λy′ + b(t)y = µ∗ + f(t),

∫ T

0
y(t) dt = 0
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has a T -periodic solution of zero average, and compute that solution y(t). The

solution is
y(t) = L−1[f(t)] + µL−1[1] ,

with the constant µ chosen so that
∫ T
0 y(t) dt = 0.

Turning to the problem (4.7), we begin with an initial ξ0, and using a step

size ∆ξ, we compute solutions of average ξi = ξ0 + i∆ξ, i = 1, 2, · · · , nsteps,
in the form u = ξi + U , where U is the solution of (4.9) at ξ = ξi. Once U is
computed, we use (4.8) to compute µ = µi. Finally, we plot the points (ξi, µi)

to obtain the solution curve.

To solve for U(t), we apply Newton’s method. If the iterate Un(t) is already

computed, to solve for Un+1(t) we linearize the equation (4.9) at Un(t), i.e., we
apply the linear solver to find the T -periodic solution of

(

a(t)U ′
n+1(t)

)′
+ λU ′

n+1 + b(t)Un+1 = µ∗ + f(t),

∫ T

0
Un+1(t) dt = 0 ,

with a(t) = ϕ′(U ′
n), b(t) = kg′(ξi + Un), and f(t) = d

dt (ϕ′(U ′
n)U ′

n − ϕ(U ′
n)) +

kg′(ξi + Un)Un − kg(ξi + Un) + e(t). The constant µ∗ stands for

µ∗ =
k

T

∫ T

0

[

g (ξ + Un(t)) + g′ (ξ + Un(t)) (Un+1(t) − Un(t))
]

dt .

We found that two iterations of Newton’s method, coupled with a relatively small

∆ξ (e.g., ∆ξ = 0.1), were sufficient for accurate computation of the solution
curves.

We have verified our numerical results by an independent calculation. Once
a periodic solution is computed at some µ, we took it’s u(0) and u′(0), and

computed numerically the solution with this initial data (using the NDSolve
command). We had a complete agreement for all µ, and all equations that we
tried.
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