Generalized Pohozhaev's identity for radial solutions of p-Laplace equations

Philip Korman
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025

Abstract

We derive a generalized Pohozhaev's identity for radial solutions of p-Laplace equations, by using the approach in [5], thus extending the work of H. Brézis and L. Nirenberg [2], where this identity was implicitly used for the Laplace equation.

Key words: Generalized Pohozhaev's identity, radial solutions.
AMS subject classification: 35J25, 35J65.

1 Introduction

Any solution $u(x)$ of semilinear Dirichlet problem on a bounded smooth domain $D \subset R^{n}$

$$
\begin{equation*}
\Delta u+f(u)=0 \text { in } D, u=0 \text { on } \partial D \tag{1.1}
\end{equation*}
$$

satisfies the well-known Pohozhaev's identity

$$
\begin{equation*}
\int_{D}[2 n F(u)+(2-n) u f(u)] d x=\int_{\partial D}(x \cdot \nu)|\nabla u|^{2} d S . \tag{1.2}
\end{equation*}
$$

Here $F(u)=\int_{0}^{u} f(t) d t$, and ν is the unit normal vector on ∂D, pointing outside. A standard proof involves multiplication of the equation (1.1) by $x \cdot \nabla u$ and repeated integration by parts, see e.g., K. Schmitt [11]. In our book [5] we observed that a more straightforward derivation is to show first that $z \equiv x \cdot \nabla u$ satisfies

$$
\begin{equation*}
\Delta z+f^{\prime}(u) z=-2 f(u) \text { in } D, \quad z=0 \text { on } \partial D, \tag{1.3}
\end{equation*}
$$

and then from the equation (1.1) multiplied by z subtract the equation (1.3) multiplied by u, followed by integration over D. We used a similar approach for non-autonomous elliptic systems of Hamiltonian type in [5] and [6], including systems with power nonlinearities, obtaining an easy derivation of the critical hyperbola, see [5] for details.

For radial solutions on balls in R^{n} there is a more general Pohozhaev's identity. It was used implicitly in the classical paper of H . Brezis and L. Nirenberg [2], but it was not written down in the general form, as presented next. (As above $F(u)=\int_{0}^{u} f(t) d t$.)

Theorem 1.1 Let $u(r) \in C^{2}[0,1]$ be a solution of

$$
\begin{equation*}
u^{\prime \prime}+\frac{n-1}{r} u^{\prime}+f(u)=0, \quad 0<r<1, \quad u^{\prime}(0)=u(1)=0, \tag{1.4}
\end{equation*}
$$

and let $\psi(r) \in C^{2}[0,1]$. Then

$$
\begin{gathered}
(1.5) \int_{0}^{1}\left[2\left(\psi r^{n-1}\right)^{\prime} F(u)+\left(2 \psi^{\prime} r^{n-1}-\left(\psi r^{n-1}\right)^{\prime}\right) u f(u)-u u^{\prime} L[\psi] r^{n-3}\right] d r \\
=\psi(1) u^{\prime 2}(1)
\end{gathered}
$$

where $L[\psi]=r^{2} \psi^{\prime \prime}-(n-1) r \psi^{\prime}+(n-1) \psi$.
We shall prove a more general p-Laplace version of this result, by using the approach described above, and present an application based on [2]. Similarly to [5] and [6] it appears possible to extend these results in two directions: to allow $f(r, u)$ with r dependence, and to consider systems.

Another generalization of radial Pohozhaev's identity, also stimulated by H. Brezis and L. Nirenberg [2], was found by F. Catrina [4].

2 An application

The generalized Pohozhaev's identity (1.5) appears to be too involved to use, except in the following three cases: when $n=3$, or when $\psi(r)=r$, or in case $\psi(r)=r^{n-1}$.

In case $n=3$, assuming that $\psi(r) \in C^{3}[0,1]$ satisfies $\psi(0)=0$, we have $L[\psi]=r^{2} \psi^{\prime \prime}-2 r \psi^{\prime}+2 \psi, L[\psi](0)=0$, and then

$$
-\int_{0}^{1} u u^{\prime} L[\psi] r^{n-3} d r=\frac{1}{2} \int_{0}^{1} u^{2} \frac{d}{d r} L[\psi] d r=\frac{1}{2} \int_{0}^{1} u^{2} \psi^{\prime \prime \prime} r^{2} d r,
$$

and (1.5) simplifies to become

$$
\int_{0}^{1}\left[2\left(\psi r^{2}\right)^{\prime} F(u)+\left(2 \psi^{\prime} r^{2}-\left(\psi r^{2}\right)^{\prime}\right) u f(u)+\frac{1}{2} u^{2} \psi^{\prime \prime \prime} r^{2}\right] d r=\psi(1) u^{\prime 2}(1) .
$$

Example $1 f(u)=\lambda u+u|u|^{p-1}$, with $p \geq 5$. (5 is the critical exponent $\frac{n+2}{n-2}$ for $n=3$). Then $u f(u)=\lambda u^{2}+|u|^{p+1}, F(u)=\frac{1}{2} \lambda u^{2}+\frac{1}{p+1}|u|^{p+1}$, and the last identity becomes
$\int_{0}^{1}\left[\frac{p+3}{p+1} \psi^{\prime} r^{2}-\frac{2(p-1)}{p+1} \psi r\right]|u|^{p+1} d r+\frac{1}{2} \int_{0}^{1}\left(\psi^{\prime \prime \prime}+4 \lambda \psi^{\prime}\right) u^{2} r^{2} d r=\psi(1) u^{\prime 2}(1)$.
This formula results in a contradiction (proving non-existence of solutions) provided that

$$
\begin{gather*}
\psi(0)=0, \quad \psi(1) \geq 0 \tag{2.1}\\
\psi^{\prime \prime \prime}+4 \lambda \psi^{\prime}=0 \\
2(p-1) \psi r-(p+3) \psi^{\prime} r^{2}>0 .
\end{gather*}
$$

The equation in the second line, and the boundary conditions in line one, are satisfied by $\psi(r)=\sin \sqrt{4 \lambda} r$, with $\lambda \in\left(0, \frac{\pi^{2}}{4}\right]$. The last inequality requires that

$$
\sin \sqrt{4 \lambda} r>\frac{p+3}{2(p-1)} \sqrt{4 \lambda} r \cos \sqrt{4 \lambda} r
$$

or

$$
\sin \theta-\gamma \theta \cos \theta>0
$$

if we denote $\gamma=\frac{p+3}{2(p-1)}$, and $\theta=\sqrt{4 \lambda} r$. Observe that $\gamma \in(0,1]$, provided that $p \geq 5$, and $\theta \in(0, \pi)$ for $\lambda \in\left(0, \frac{\pi^{2}}{4}\right)$. Then

$$
\sin \theta-\gamma \theta \cos \theta \geq \gamma(\sin \theta-\theta \cos \theta)>0
$$

Conclusion: for $p \geq 5$, and $\lambda \in\left(0, \frac{\pi^{2}}{4}\right]$ the problem ($n=3$)

$$
u^{\prime \prime}+\frac{2}{r} u^{\prime}+\lambda u+u|u|^{p-1}=0, \quad 0<r<1, \quad u^{\prime}(0)=u(1)=0
$$

has no non-trivial solutions.

Remarks

1. The same conclusion holds for other $f(u)$, e.g., for $f(u)=\lambda u+$ $u|u|^{p-1}+u|u|^{q-1}$, with $q>p \geq 5$.

Figure 1: Solution curve of the Brezis-Nirenberg problem (2.2)
2. In case $p>5$ non-existence of solutions for λ small was proved in the same paper of H. Brezis and L. Nirenberg [2], and in C. Budd and J. Norbury [3], see also Proposition 1.1 in [5].

In case $p=5$, this example is a part of the classical result of H . Brezis and L. Nirenberg [2], who also proved the existence of solutions for $\lambda \in\left(\frac{\lambda_{1}}{4}, \lambda_{1}\right)$ (observe that $\lambda_{1}=\pi^{2}$ for the unit ball in R^{3}). It is remarkable that their non-existence result is sharp for $p=5$. Let us recall this theorem of H . Brezis and L. Nirenberg [2] (an extension to sign-changing solutions was later given in F.V. Atkinson, H. Brezis and L.A. Peletier [1]).

Theorem 2.1 ([2]) The problem

$$
\begin{equation*}
u^{\prime \prime}+\frac{2}{r} u^{\prime}+\lambda u+u^{5}=0, \quad 0<r<1, u^{\prime}(0)=u(1)=0 \tag{2.2}
\end{equation*}
$$

has a positive solution if and only if $\lambda \in\left(\frac{\lambda_{1}}{4}, \lambda_{1}\right)$.
We used Mathematica to compute the solution curve in the $(\lambda, u(0))$ plane of the Brezis-Nirenberg problem (2.2), presented in Figure 1, with $u(0)$ giving the maximum value of solutions. (We used the scaling $u=\sqrt[4]{\lambda} z$, to convert this equation into $z^{\prime \prime}+\frac{2}{r} z^{\prime}+\lambda\left(z+z^{5}\right)=0$, to which the shoot-and-scale method, described in detail in P. Korman and D.S. Schmidt [7] applies. A program in Mathematica can be downloaded from [8].) The
picture in Figure 1 indicates that the solution is unique at each λ, and in fact the uniqueness follows from the results of M.K. Kwong and Y. Li [9].

Our numerical computations indicate that the non-existence result on $\left(0, \frac{\pi^{2}}{4}\right)$ in Example 1 is not sharp for $p>5$, with solution curves tending to infinity at λ larger than $\frac{\pi^{2}}{4}$. In Figure 2 we present the solution curve of

$$
\begin{equation*}
u^{\prime \prime}+\frac{2}{r} u^{\prime}+\lambda u+u^{6}=0, \quad 0<r<1, \quad u^{\prime}(0)=u(1)=0 . \tag{2.3}
\end{equation*}
$$

The solution curve has a completely different shape (see [3] for the asymptotic behavior of this curve), and the smallest value of λ occurs at the first turning point, $\lambda \approx 5.91>\frac{\pi^{2}}{4}$.

The identity (1.5) also simplifies in case

$$
\begin{equation*}
L[\psi]=r^{2} \psi^{\prime \prime}-(n-1) r \psi^{\prime}+(n-1) \psi=0 . \tag{2.4}
\end{equation*}
$$

For $n \geq 3$, one solution of this Euler's equation is $\psi=r$, for which (1.5) is the classical Pohozhaev's identity:

$$
\int_{0}^{1}[2 n F(u)+(2-n) u f(u)] r^{n-1} d r=u^{\prime 2}(1) .
$$

The other solution of (2.4) is $\psi=r^{n-1}$, giving

$$
(4 n-4) \int_{0}^{1} F(u(r)) r^{2 n-3} d r=u^{\prime 2}(1) .
$$

This identity was used by L.A. Peletier and J. Serrin [10].
In case $n=2$, the solutions of (2.4) are $\psi=r$ and $\psi=r \ln r$, leading to similar identities.

3 The p-Laplace case

We present the proof of generalized Pohozhaev's identity next.
Theorem 3.1 Let $u(r) \in C^{2}[0,1]$ be a solution of

$$
\begin{equation*}
\varphi\left(u^{\prime}(r)\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}(r)\right)+f(u)=0 \quad 0<r<1, \quad u^{\prime}(0)=u(1)=0 \tag{3.1}
\end{equation*}
$$

with $\varphi(t)=t|t|^{p-2}, p>1$, and let $\psi(r) \in C^{2}[0,1]$. Then

$$
\begin{equation*}
\int_{0}^{1}\left[(p F(u)-u f(u))\left(\psi r^{n-1}\right)^{\prime}+p \psi^{\prime} u f(u) r^{n-1}-\varphi\left(u^{\prime}\right) u L[\psi] r^{n-3}\right] d r \tag{3.2}
\end{equation*}
$$

Figure 2: Solution curve of the supercritical problem (2.3)

$$
=(p-1) \varphi\left(u^{\prime}(1)\right) \psi(1) u^{\prime}(1),
$$

where $L[\psi]=(p-1) r^{2} \psi^{\prime \prime}-(n-1) r \psi^{\prime}+(n-1) \psi$.
Proof: Observe that the function $\varphi(t)$ satisfies

$$
\begin{equation*}
t \varphi^{\prime}(t)=(p-1) \varphi(t) . \tag{3.3}
\end{equation*}
$$

We claim that the function $v(r)=\psi(r) u^{\prime}(r)$ satisfies

$$
\begin{equation*}
\left(\varphi^{\prime}\left(u^{\prime}\right) v^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi^{\prime}\left(u^{\prime}\right) v^{\prime}+f^{\prime}(u) v=-p \psi^{\prime} f(u)+\frac{\varphi\left(u^{\prime}\right) L[\psi]}{r^{2}} . \tag{3.4}
\end{equation*}
$$

Indeed, using (3.3) and expressing $\varphi\left(u^{\prime}\right)^{\prime}$ from the equation (3.1)

$$
\begin{aligned}
\varphi^{\prime}\left(u^{\prime}\right) v^{\prime} & =\psi^{\prime} \varphi^{\prime} u^{\prime}+\psi \varphi^{\prime}\left(u^{\prime}\right) u^{\prime \prime}=(p-1) \psi^{\prime} \varphi\left(u^{\prime}\right)+\psi \varphi\left(u^{\prime}\right)^{\prime} \\
& =(p-1) \psi^{\prime} \varphi\left(u^{\prime}\right)-\frac{n-1}{r} \psi \varphi\left(u^{\prime}\right)-\psi f(u) .
\end{aligned}
$$

Then

$$
\begin{gathered}
\left(\varphi^{\prime}\left(u^{\prime}\right) v^{\prime}\right)^{\prime}=(p-1) \psi^{\prime \prime} \varphi\left(u^{\prime}\right)+(p-1) \psi^{\prime} \phi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r^{2}} \psi \varphi\left(u^{\prime}\right)-\frac{n-1}{r} \psi^{\prime} \varphi\left(u^{\prime}\right) \\
-\frac{n-1}{r} \psi \varphi\left(u^{\prime}\right)^{\prime}-\psi^{\prime} f(u)-f^{\prime}(u) v .
\end{gathered}
$$

Also, using (3.3) again,

$$
\begin{aligned}
& \frac{n-1}{r} \varphi^{\prime}\left(u^{\prime}\right) v^{\prime}=\frac{n-1}{r} \varphi^{\prime}\left(u^{\prime}\right)\left(\psi^{\prime} u^{\prime}+\psi u^{\prime \prime}\right) \\
& \quad=\frac{(n-1)(p-1)}{r} \psi^{\prime} \varphi\left(u^{\prime}\right)+\frac{n-1}{r} \psi \varphi\left(u^{\prime}\right)^{\prime} .
\end{aligned}
$$

It follows that

$$
\begin{gathered}
\left(\varphi^{\prime}\left(u^{\prime}\right) v^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi^{\prime}\left(u^{\prime}\right) v^{\prime}+f^{\prime}(u) v \\
=(p-1) \psi^{\prime \prime} \varphi+(p-1) \psi^{\prime}\left(\varphi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}\right)\right)+\frac{n-1}{r^{2}} \psi \varphi-\frac{n-1}{r} \psi^{\prime} \varphi \\
=-p \psi^{\prime} f(u)+\varphi\left[(p-1) \psi^{\prime \prime}-\frac{n-1}{r} \psi^{\prime}+\frac{n-1}{r^{2}} \psi\right],
\end{gathered}
$$

which implies (3.4).
Multiplying the equation (3.1) by $(p-1) v$, and subtracting the equation (3.4) multiplied by u gives, in view of (3.3),

$$
\begin{gather*}
{\left[r^{n-1}\left((p-1) \varphi\left(u^{\prime}\right) v-u \varphi^{\prime}\left(u^{\prime}\right) v^{\prime}\right)\right]^{\prime}+r^{n-1} v\left[(p-1) f(u)-u f^{\prime}(u)\right]} \tag{3.5}\\
=p r^{n-1} \psi^{\prime} u f(u)-r^{n-3} u \varphi\left(u^{\prime}\right) L[\psi] .
\end{gather*}
$$

The second term on the left is equal to

$$
[p F(u)-u f(u)]^{\prime} \psi r^{n-1}=\left[(p F(u)-u f(u)) \psi r^{n-1}\right]^{\prime}-(p F(u)-u f(u))\left(\psi r^{n-1}\right)^{\prime} .
$$

Using this identity in (3.5), and integrating over $(0,1)$, we conclude the proof.
Acknowledgment It is a pleasure to thank Florin Catrina for a number of useful discussions.

References

[1] F.V. Atkinson, H. Brezis and L.A. Peletier, Nodal solutions of elliptic equations with critical Sobolev exponents, J. Differential Equations 85, no. 1, 151-170 (1990).
[2] H. Brézis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents, Comm. Pure Appl. Math. 36, no. 4, 437-477 (1983).
[3] C. Budd and J. Norbury, Semilinear elliptic equations and supercritical growth, J. Differential Equations 68, no. 2, 169-197 (1987).
[4] F. Catrina, A refinement of the radial Pohozaev identity, Math. Bohem. 135, no. 2, 143-150 (2010).
[5] P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific, Hackensack, NJ (2012).
[6] P. Korman, Non-existence of solutions for non-autonomous elliptic systems of Hamiltonian type, Comm. Appl. Nonlinear Anal. 21, no. 3, 13-20 (2014).
[7] P. Korman and D.S. Schmidt, Continuation of global solution curves using global parameters, Preprint, arXiv:2001.00616.
[8] P. Korman and D.S. Schmidt, Solving partial differential equations on balls in R^{n}, Mathematica Notebook Archive, Wolfram, https://notebookarchive.org/2021-08-cgkai6z (2021).
[9] M.K. Kwong and Y. Li, Uniqueness of radial solutions of semilinear elliptic equations, Trans. Amer. Math. Soc. 333, no. 1, 339-363 (1992).
[10] L.A. Peletier and J. Serrin, Uniqueness of nonnegative solutions of semilinear equations in R^{n}, J. Differential Equations 61, no. 3, 380-397 (1986).
[11] K. Schmitt, Positive solutions of semilinear elliptic boundary value problems. Topological methods in differential equations and inclusions (Montreal, PQ, 1994), 447-500, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 472, Kluwer Acad. Publ., Dordrecht, (1995).

