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Abstract

We derive a generalized Pohozhaev’s identity for radial solutions
of p-Laplace equations, by using the approach in [5], thus extending
the work of H. Brézis and L. Nirenberg [2], where this identity was
implicitly used for the Laplace equation.
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1 Introduction

Any solution u(z) of semilinear Dirichlet problem on a bounded smooth
domain D C R"

(1.1) Au+ f(u)=0 in D, u=0 on dD

satisfies the well-known Pohozhaev’s identity
(1.2) / 2nF () + (2 — n)uf(u)] de — / (- )|Vul2ds.
D oD

Here F(u) = [;' f(t)dt, and v is the unit normal vector on 9D, pointing
outside. A standard proof involves multiplication of the equation (1.1) by
x - Vu and repeated integration by parts, see e.g., K. Schmitt [11]. In our
book [5] we observed that a more straightforward derivation is to show first
that z = x - Vu satisfies

(1.3) Az + f'(u)z = —2f(u) in D, 2=0 on 0D,



and then from the equation (1.1) multiplied by z subtract the equation
(1.3) multiplied by wu, followed by integration over D. We used a similar
approach for non-autonomous elliptic systems of Hamiltonian type in [5] and
[6], including systems with power nonlinearities, obtaining an easy derivation
of the critical hyperbola, see [5] for details.

For radial solutions on balls in R™ there is a more general Pohozhaev’s
identity. It was used implicitly in the classical paper of H. Brezis and L.

Nirenberg [2], but it was not written down in the general form, as presented
next. (As above F(u) = [’ f(t)dt.)

Theorem 1.1 Let u(r) € C?[0,1] be a solution of
w, o n—1, /
(1.4) w+——u + f(u)=0, 0<r<1, v(0)=u(l)=0,

and let ¥(r) € C?[0,1]. Then
(1.5) /0 1 2001 Fu) + (207" = (") uf (u) — wd Ll dr

= ()’ (1),
where L[] = r2" — (n — 1)r' + (n — 1),

We shall prove a more general p-Laplace version of this result, by us-
ing the approach described above, and present an application based on [2].
Similarly to [5] and [6] it appears possible to extend these results in two
directions: to allow f(r,u) with r dependence, and to consider systems.

Another generalization of radial Pohozhaev’s identity, also stimulated by
H. Brezis and L. Nirenberg [2], was found by F. Catrina [4].

2 An application

The generalized Pohozhaev’s identity (1.5) appears to be too involved to
use, except in the following three cases: when n = 3, or when 9 (r) = r, or
in case (r) = r" L.

In case n = 3, assuming that v (r) € C2[0, 1] satisfies 1/(0) = 0, we have
L[] = r2¢" — 2ryp’ + 21, L[4](0) = 0, and then

—/1 wd L[] dr = l/1 uziLW] dr = l/1 u?""r? dr
0 2 Jo dr 2 Jo ’



and (1.5) simplifies to become
! 2y/ 1,.2 2\/ Lo ma 2
/0 [2(¢r ) F(u) + (2¢ e — (Yr?) )uf(u) + U P'r ] dr = (1)u"(1).

Example 1 f(u) = Au + u|u[P~!, with p > 5. (5 is the critical exponent
242 for n = 3). Then uf(u) = Au? + |uP™, F(u) = 1 u?® + ﬁ|u|p+1, and
the last identity becomes

! p+3 ;9 2(]9—1) 1 1t " N, 2.2 _ 2

This formula results in a contradiction (proving non-existence of solutions)
provided that

(2.1) 5(0) =0, B(1) >0
¢/// +4A¢/ — 0
2(p — 1)pr — (p+3)y'r? > 0.

The equation in the second line, and the bourzldary conditions in line one, are
satisfied by v (r) = sinv4Ar, with A € (0, %]. The last inequality requires

that
sin V4\r > 2? i 31) VAAr cos V4T,
p fe—

or
sinf —yf0cosf > 0,

if we denote v = 2{%_31), and § = v/4\r. Observe that v € (0, 1], provided

that p > 5, and 6 € (0, 7) for A € (0, %) Then
sinf — vfcosh >~y (sinf — Hcosh) > 0.

Conclusion: for p > 5, and A € (0, %] the problem (n = 3)
" 2 / -1 /
u 4+ —u + A utuluf =0, 0<r<1, v(0)=u(l)=0
T

has no non-trivial solutions.

Remarks

1. The same conclusion holds for other f(u), e.g., for f(u) = Au +
ululP~ + ulu|?7t, with ¢ > p > 5.
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Figure 1: Solution curve of the Brezis-Nirenberg problem (2.2)

2. In case p > 5 non-existence of solutions for A small was proved in the
same paper of H. Brezis and L. Nirenberg [2], and in C. Budd and J.
Norbury [3], see also Proposition 1.1 in [5].

In case p = 5, this example is a part of the classical result of H. Brezis and
L. Nirenberg [2], who also proved the existence of solutions for A € (3¢, )
(observe that A\; = 72 for the unit ball in R3). It is remarkable that their
non-existence result is sharp for p = 5. Let us recall this theorem of H.
Brezis and L. Nirenberg [2] (an extension to sign-changing solutions was
later given in F.V. Atkinson, H. Brezis and L.A. Peletier [1]).

Theorem 2.1 (/2]) The problem
" 2 / 5 _ / — —
(2.2) W+ —u+du+u =0, 0<r<l, «0)=u(l)=0
r
has a positive solution if and only if \ € (%, A1).

We used Mathematica to compute the solution curve in the (A, u(0))
plane of the Brezis-Nirenberg problem (2.2), presented in Figure 1, with u(0)
giving the maximum value of solutions. (We used the scaling u = v/ z, to
convert this equation into z” + %z’ + A (24 2%) = 0, to which the shoot-
and-scale method, described in detail in P. Korman and D.S. Schmidt [7]
applies. A program in Mathematica can be downloaded from [8].) The



picture in Figure 1 indicates that the solution is unique at each A, and in
fact the uniqueness follows from the results of M.K. Kwong and Y. Li [9].

Our numerical computations indicate that the non-existence result on
2 . .
(0, %) in Example 1 is not sharp for p > 5, with solution curves tending to

infinity at A\ larger than ”742. In Figure 2 we present the solution curve of
" 2 / 6 /
(2.3) v —u+Iu+u =0, 0<r<l1, v(0)=u(l)=0.
r

The solution curve has a completely different shape (see [3] for the asymp-
totic behavior of this curve), and the smallest value of X occurs at the first
turning point, A ~ 5.91 > 721—2.

The identity (1.5) also simplifies in case
(2.4) L[y = 20" — (n— 1)ri’ + (n— 1) = 0.

For n > 3, one solution of this Euler’s equation is ¢ = r, for which (1.5) is
the classical Pohozhaev’s identity:

/1 [2nF(u) 4 (2 — n)uf(u)] " Ldr = (1) .
0
The other solution of (2.4) is ¢ = "1, giving
1
(4n — 4) / Flu(r)r2™ 3 dr = o'*(1).
0

This identity was used by L.A. Peletier and J. Serrin [10].

In case n = 2, the solutions of (2.4) are ¢ = r and ¢ = rInr, leading to
similar identities.

3 The p-Laplace case

We present the proof of generalized Pohozhaev’s identity next.

Theorem 3.1 Let u(r) € C?[0, 1] be a solution of

n—1

(3.1) ¢ (u'(r) + ——¢ (W(r)) + f(u) =0 0 <r <1, v'(0)=u(l)=0,
with o(t) = t|t|P=2, p > 1, and let y(r) € C?[0,1]. Then
3.2) [ [0F) = uf) e + pufuf e = oLl dr

5
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Figure 2: Solution curve of the supercritical problem (2.3)

= (p— D/ (1) (1)u'(1),
where L[] = (p — 1)r%)” — (n — )ryp’ + (n — 1)3p.

Proof: Observe that the function ¢(t) satisfies
(3.3) t'(t) = (p— 1)e(t).
We claim that the function v(r) = ¢ (r)u/(r) satisfies

n (u)L[Y] ‘

(3.4) (W) + R W + (o = v f () + 2

Indeed, using (3.3) and expressing ¢(u’)’ from the equation (3.1)

¢/ (W) = Pl + (W) = (p = D' (u) + e (u)
= (p— D'p(u) — "Foou) = f(u).

Then

(' (uW)') = (p— D)) + (p — DY'p(u') + 25 p(u) — 2=yl o(u)
—2=Lopp(u) — ' f(u) — f'(u)v.




Also, using (3.3) again,

nTl(p/( ) I n;l(pl(u/) (¢/u/ + ¢u//)
= =D yo ) + B ()

It follows that
(¢ (u)0') + B! (o' + f' (u)v
(p— D"+ (p— D' (o) + 22 (u) ) + Z5tepp — 21yl
= —pY'f(u) + ¢ [(p — )" = 2Ly 4 B5ly]

which implies (3.4).

Multiplying the equation (3.1) by (p —1)v, and subtracting the equation
(3.4) multiplied by u gives, in view of (3.3),

(3.5) [t ((p — Do (' )v — ug’ (u')o )] +7“" fol(p—1)f(u) — uf'(u)]
= pr* " 'uf (u) — " Pup(u) LY.

The second term on the left is equal to

pF(u) —uf @) vr"™ = [(pF(u) — uf () ") ~(pF () = uf(w) (")

Using this identity in (3.5), and integrating over (0,1), we conclude the
proof. %
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