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Abstract

We consider radially symmetric solutions for a class of resonant prob-
lems on a unit ball B ⊂ Rn around the origin

∆u+ λ1u+ g(u) = f(r) for x ∈ B, u = 0 on ∂B .

Here the function g(u) is periodic of mean zero, x ∈ Rn, r = |x|, λ1 is
the principal eigenvalue of ∆ on B. The problem has either infinitely
many or finitely many solutions depending on the space dimension n.
The situation turns out to be different for each of the following cases:
1 ≤ n ≤ 3, n = 4, n = 5, n = 6, and n ≥ 7.
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1 Introduction

Consider a resonant semilinear problem

∆u+ λ1u+ g(u) = µ1ϕ1(x) + e(x) for x ∈ D, u = 0 on ∂D ,(1.1)

on a bounded domainD ⊂ Rn. Here x ∈ Rn, and (λ1, ϕ1(x)) is the principal

eigenpair of the Laplacian on D, with zero boundary conditions, µ1 ∈ R,
e(x) ∈ ϕ⊥

1 , where ϕ⊥
1 denotes the orthogonal complement of ϕ1(x) in L2(D).

Solutions of (3.1) are also decomposed as u(x) = ξ1ϕ1(x) + U(x), with
U(x) ∈ ϕ⊥

1 . This problem is at resonance, which is one of the basic concepts
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of science and engineering. The study of resonance for elliptic boundary

value problem was originated in the classical papers of E.M. Landesman
and A.C. Lazer [10], and A.C. Lazer and D.E. Leach [11]. There is now a

huge literature on this topic. In this paper we use a novel approach, based
on the theory of global solution curves that are parameterized by the first

harmonic of the solution, that we developed in [7]. Another new ingredient
is the use of the stationary phase method to study oscillating integrals. Our

approach is uniquely suitable for numerical computations, that we perform
and present below. The Mathematica program was written jointly with D.S.

Schmidt, and it is presented with detailed explanations in [9].

In [7] we gave conditions (see (3.1), (3.2) below) under which the solution
set of (1.1) is exhausted by a single continuous solution curve (u(x), µ)(ξ1)

with the first harmonic of the solution, ξ1, acting as a global parameter.
Namely, for each ξ1 ∈ R there is a unique solution pair (λ1, ϕ1(x)). A

section of this curve, µ1 = µ1(ξ1), governs the multiplicity of solutions. In
particular, if µ1(ξ1) has infinitely many roots, then the problem

∆u+ λ1u + g(u) = e(x) for x ∈ D, u = 0 on ∂D(1.2)

has infinitely many solutions.

For periodic g(u) of mean zero (like g(u) = sinu) a very detailed result
was obtained in R. Schaaf and K. Schmitt [13]. They defined g1(u), g2(u), g3(u)

to be the unique periodic functions of mean zero, so that g′1(u) = g(u),
g′2(u) = g1(u), g

′
3(u) = g2(u), and showed that the multiplicity depends on

the dimension n as follows. For 1 ≤ n ≤ 3, the problem (1.2) has infinitely
many solutions. For n = 4, a condition on g2(u) was given for the existence
of infinitely many solutions, and a complementary condition was provided

under which the number of solutions is finite. For n ≥ 5 and g2(0) 6= 0, the
number of solutions of (1.2) was proved to be finite. Only the case n ≥ 5 and

g2(0) = 0 was left open. (That includes g(u) = sinu, with g2(u) = − sinu,
g2(0) = 0.)

In this paper we investigate the case g2(0) = 0 for a special class of
problems involving radial solutions on a ball around the origin D = B =

{x ∈ Rn with ||x|| < 1}. It turned out that for n = 5 and g2(0) = 0 the
number of solutions is infinite, while for n ≥ 6 and g2(0) = 0 the number
of solutions depends on g3(0). (We also rederive the results of [13] for the

radial case by a different method.) Unlike [13], we use the stationary phase
method to study oscillating integrals. The use of global solution curves

described above (rather than continuum of solutions as in [13]) allowed us
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to conclude the radial symmetry of solutions of (1.1) on B, and also that

the problem (1.1) has no solutions for |µ1| large (global solution curves also
provide a basis for numerical computations that we present). Once it is

established that solutions are radially symmetric on B, we proceed similarly
to A. Galstyan et al [4].

In the study of oscillating integrals we perform up to three integrations

by parts, depending on the dimension n, and then use the stationary phase
method. We begin with g(u) = sinu, and then generalize.

More general results, without requiring g(u) to be periodic, are obtained

in the one-dimensional case, by using geometrical arguments instead of sta-
tionary phase method.

2 Radially symmetric oscillatory integrals

We study oscillating integrals of the form

I(ξ) =

∫ 1

0
g(ξv(r))ϕ(r)rn−1 dr ,(2.1)

depending on a parameter ξ. Various choices of the functions v(r) and

ϕ(r) will be considered, beginning with v(r) = ϕ(r) = ϕ1(r), the principal
eigenfunction of the Laplacian on the unit ball B, with ϕ1 = 0 on ∂B. We

assume that g(u) is a periodic function of mean zero, which implies that g(u)
changes sign infinitely many times, and the issue is whether I(ξ) changes

sign infinitely many times, as ξ → ∞. It turns out that the answer depends
on the dimension n.

Depending on the dimension n, we shall need to perform up to three

integrations by parts for I(ξ). Following [13], define g1(u), g2(u), g3(u) to
be the unique periodic functions of mean zero, such that g′1(u) = g(u),

g′2(u) = g1(u), g
′
3(u) = g2(u). (In case g(u) = sinu, g1(u) = − cosu,

g2(u) = − sinu, g3(u) = cosu.) Denoting f1(r) = ϕ(r)rn−1

v′(r) , obtain

I(ξ) = 1
ξ

∫ 1
0

ϕ(r)rn−1

v′(r) d (g1(ξv(r))) = 1
ξ

∫ 1
0 f1(r)d (g1(ξv(r)))(2.2)

= 1
ξ f1(r)g1(ξv(r))|

1

0
− 1

ξ

∫ 1
0 f

′
1(r)g1(ξv(r)) dr .

Writing g1(ξv) = 1
ξv′

d
dr

(g2(ξv(r))), and denoting f2(r) =
f ′

1
(r)

v′(r) , integrate by
parts again to get

I(ξ) = 1
ξ
f1(r)g1(ξv(r))|

1

0
− 1

ξ2 f2(r)g2(ξv(r))|
1

0
(2.3)
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+ 1
ξ2

∫ 1
0 f

′
2(r)g2(ξv(r)) dr .

Denoting f3(r) =
f ′

2
(r)

v′(r) , and writing g2(ξv) = 1
ξv′

d
dr (g3(ξv(r))), integrate by

parts once more to get

I(ξ) = 1
ξ
f1(r)g1(ξv(r))|

1

0
− 1

ξ2 f2(r)g2(ξv(r))|
1

0
(2.4)

+ 1
ξ3 f3(r)g3(ξv(r))|

1

0
− 1

ξ3

∫ 1
0 f

′
3(r)g3(ξv(r)) dr .

We shall use the following lemma, based on the stationary phase method,

see e.g., A. Galstian et al [4] or P. Korman [6].

Lemma 2.1 Assume that the functions f(x) and ϕ(x) > 0 are of class
C2[0, 1], and satisfy

ϕ′(x) < 0 for all x ∈ (0, 1], and ϕ′(0) = 0, ϕ′′(0) < 0 .

Then, as ξ → ∞,

∫ 1

0
f(x)eiξϕ(x)dx = ei(ξϕ(0)−π

4
)

√

π

2ξ|ϕ′′(0)|f(0) +O

(

1

ξ

)

.

The proof of this lemma can be found in e.g., [4], however the proof is

sketched next, since a similar idea is used later on to prove a more general
result. The term eiξϕ(x) involves fast oscillations about zero, which are
mutually cancelling, except near x = 0, where ϕ(x) ≈ ϕ(0)+ 1

2ϕ
′′(0)x2, and

the oscillations are slow. Then

∫ 1

0
f(x)eiξϕ(x)dx ≈ eiξϕ(0)

∫ 1

0
f(x)eiξ

1

2
ϕ′′(0)x2

dx .

The evaluation of the resulting Frenet-type integral is contained in the fol-
lowing lemma, see e.g., A. Galstian et al [4] or P. Korman [6].

Lemma 2.2 Assume that f(x) ∈ C2[0, a] for some number a > 0. Then as
ξ → ∞

∫ a

0
f(x)e

1

2
iαξx2

dx = ei
π

4
δ(α)

√

π

2|α|ξf(0) + O

(

1

ξ

)

,

where δ(α) = signα.

Recently the Lemma 2.1 was used to study oscillatory bifurcation curves
by T. Shibata [14] and K. Kato and T. Shibata [5].
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We start by considering a model case

J(ξ) =

∫ 1

0
sin (ξϕ1(r))ϕ1(r)r

n−1 dr ,(2.5)

where ϕ1(r) is the principal eigenfunction of the Laplacian on the unit ball

B ⊂ Rn, ϕ1(r) = c0r
−n−2

2 Jn−2

2

(ν1r), ϕ1(1) = 0. Here ν1 > 0 denotes the

first root of the Bessel function Jn−2

2

(r), and c0 is chosen so that ϕ1(0) = 1.

The corresponding principal eigenvalue is λ1 = ν2
1 . From the equation

ϕ′′
1 +

n− 1

r
ϕ′

1 + λ1ϕ1 = 0(2.6)

it follows that

ϕ′′
1(0) = −ν

2
1

n
= −λ1

n
.(2.7)

The following result is similar to that in A. Galstian et al [4]. The case

1 ≤ n ≤ 4 was covered previously in R. Schaaf and K. Schmitt [13] by a
different method. Our approach provides accurate asymptotic formulas, in
addition to the oscillation properties.

Theorem 2.1 For 1 ≤ n ≤ 5, J(ξ) changes sign infinitely many times on
(0,∞), while for n ≥ 6 the number of sign changes is at most finite.

Proof: We shall use the integration by parts formulas (2.2), (2.3), (2.4)

with v(r) = ϕ(r) = ϕ1(r). Here g(u) = sinu, g1(u) = − cosu, g2(u) =
− sinu, g3(u) = cosu, and also

f1(r) =
rn−1ϕ1(r)

ϕ′
1(r)

,(2.8)

f2(r) =
f ′1(r)

ϕ′
1(r)

=
rn−2

[

(n− 1)ϕ1ϕ
′
1 − rϕ1ϕ

′′
1 + rϕ′

1
2
]

ϕ′
1
3 .(2.9)

Expressing the second and the third derivatives of ϕ1(r) from (2.6), obtain

f3(r) =
f ′

2
(r)

ϕ′

1
(r)

= rn−3

ϕ′

1

5(r)
[3λ2

1r
2ϕ3

1 + 8(n− 1)λ1rϕ
2
1ϕ

′
1(2.10)

+
(

8 − 14n+ 6n2 + 3λ1r
2
)

ϕ1ϕ
′
1
2 + 4(n− 1)rϕ′

1
3] .

We consider the following cases depending on the dimension n.
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i. n = 2 (the case n = 1 is similar). Here f1(r) = rϕ1(r)
ϕ′

1
(r) , f1(1) = 0,

f1(0) = ϕ1(0)
ϕ′′

1
(0) = − 2

ν2

1

. It is straightforward to verify that f1(r) ∈ C∞[0, 1)

for n ≥ 2, see [4]. By (2.2) and Lemma 2.1

J(ξ) = −1
ξ
f1(r) cos (ξϕ1(r)) |

1

0
+ 1

ξ

∫ 1
0 f

′
1(r) cos (ξϕ1(r)) dr

= − 2
ν2

1
ξ
cos ξ +O

(

1

ξ
3

2

)

,

so that J(ξ) changes sign infinitely many times, as ξ → ∞.

ii. n = 3. Now f1(r) = r2ϕ1(r)
ϕ′

1
(r)

, f1(0) = f1(1) = 0, while by (2.9) f ′1(0) =

ϕ1(0)
ϕ′′

1
(0)

6= 0. Then using (2.2) and Lemma 2.1 again

J(ξ) = 1
ξ

∫ 1
0 f

′
1(r) cos (ξϕ1(r)) dr = 1

ξ
Re

∫ 1
0 f

′
1(r)e

iξϕ1(r) dr(2.11)

=
f ′

1
(0)

ξ
3

2

√

π
2|ϕ′′

1
(0)| cos

(

ξ − π
4

)

+O
(

1
ξ2

)

,

so that J(ξ) changes sign infinitely many times.

iii. n = 4. It is straightforward to verify that f2(r) ∈ C∞[0, 1) for n ≥ 4,

see [4]. Here f1(r) =
r3ϕ1(r)
ϕ′

1
(r) . Again we have f1(0) = f1(1) = 0, while now

f ′1(0) = 0, so that the principal term in (2.11) is zero. One needs to integrate

by parts again, i.e. to use (2.3):

J(ξ) =
1

ξ2
f2(r) sin (ξϕ1(r)) |

1

0
− 1

ξ2

∫ 1

0
f ′2(r) sin (ξϕ1(r)) dr .

The first term is equal to − 1
ξ2 f2(0) sinξ, with f2(0) = 2

ϕ′′

1
(0)2

6= 0 by (2.9),

while the integral term is O

(

1

ξ
5

2

)

by Lemma 2.1, so that J(ξ) changes sign

infinitely many times.

iv. n = 5. Now f1(r) = r4ϕ1(r)
ϕ′

1
(r)

, f1(0) = f1(1) = 0, and f2(0) = 0, while

f ′2(0) 6= 0 by (2.10) and (2.7) . By (2.3) and Lemma 2.1

J(ξ) = − 1
ξ2

∫ 1
0 f

′
2(r) sin (ξϕ1(r)) dr = − 1

ξ2 Im
∫ 1
0 f

′
2(r)e

iξϕ1(r) dr

= −f ′

2
(0)

ξ
5

2

√

π
2|ϕ′′

1
(0)|

sin
(

ξ − π
4

)

+ O
(

1
ξ3

)

,

so that J(ξ) changes sign infinitely many times.
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v. n = 6. Now f1(r) = r5ϕ1(r)
ϕ′

1
(r) , f1(0) = f1(1) = f2(0) = 0, and also

f ′2(0) = 0. We need to integrate by parts one more time, i.e., to use (2.4). It

is straightforward to verify that f3(r) ∈ C∞[0, 1) for n ≥ 6, see [4]. Obtain

J(ξ) = 1
ξ3 f3(r) cos (ξϕ1(r)) |

1

0
− 1

ξ3

∫ 1
0 f

′
3(r) cos (ξϕ1(r)) dr(2.12)

= 1
ξ3 f3(1)− 1

ξ3 f3(0) cos ξ − 1
ξ3

∫ 1
0 f

′
3(r) cos (ξϕ1(r)) dr .

The integral term is O

(

1

ξ
7

2

)

by Lemma 2.1. Whether J(ξ) changes sign

finitely or infinitely many times will depend on the relative sizes of |f3(1)|
and |f3(0)|. Using Mathematica, one calculates f3(1) ≈ 71.44 and f3(0) ≈
−0.09. It follows that the term 1

ξ3 f3(1) is dominant in J(ξ) for large ξ,

implying that J(ξ) changes sign at most finitely many times.

vi. n ≥ 7. Now f3(0) = 0, f3(1) = 4(n−1)

ϕ′

1

2(1)
6= 0, and by the formula (2.12),

J(ξ) ∼ 1
ξ3 f3(1) for large ξ, and hence J(ξ) changes sign at most finitely

many times. ♦
We turn to the oscillation of more general integrals

K(ξ) =

∫ 1

0
g (ξϕ1(r))ϕ1(r)r

n−1 dr ,(2.13)

with periodic g(u) of mean zero. It turns out that for n ≥ 4, the number
of oscillations will depend on g(u), particularly on whether g2(0) is zero or
not. (The case g2(0) 6= 0 for n = 4 was already considered in [13]).) We

shall need the following generalization of Lemma 2.1.

Lemma 2.3 Assume that f(x), ϕ(x) ∈ C2[0, 1], h(u) ∈ C1(R), and x = 0
is the unique critical point of ϕ(x) on [0, 1), with ϕ′(x) < 0 on (0, 1), and

ϕ′(0) = 0, ϕ′′(0) < 0. Assume also that |h′ (ξϕ(0)) | > 0. Then, as ξ → ∞,

∫ 1

0
f(x)eih(ξϕ(x)) dx = ei[h(ξϕ(0))−δ π

4
]
√

π

2ξ|h′ (ξϕ(0))ϕ′′(0)|f(0)+O

(

1

ξ

)

,

(2.14)

where δ = sign (h′ (ξϕ(0))).

Proof: Let p(x) = h (ξϕ(x)). Calculate p(0) = h(ξϕ(0)), p′(x) =
ξh′(ξϕ(x))ϕ′(x), so that p′(0) = 0, since ϕ′(0) = 0. Then p′′(0) = ξh′(ξϕ(0))ϕ′′(0),
using again that ϕ′(0) = 0. As above, we approximate p(x) ≈ p(0) +
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1
2p

′′(0)x2 = p(0) + 1
2ξh

′(ξϕ(0))ϕ′′(0)x2, for small x. Then the integral in

(2.14) is approximated by

∫ 1

0
f(x)ei[h(ξϕ(0))+ 1

2
ξh′(ξϕ(0))ϕ′′(0)x2] dx .

Application of the Lemma 2.2 gives the asymptotic formula above. As in

[4], the derivation above is justified by a change of variables x→ t, given by
ϕ(x)− ϕ(0) = −t2, transforming ϕ(x) to its quadratic part. ♦

Taking the imaginary part of (2.14), gives

∫ 1
0 f(x) sinh (ξϕ(x)) dx =

√

π
2ξ|h′(ξϕ(0))ϕ′′(0)|f(0) sin

(

h(ξϕ(0))− δ π
4

)

(2.15)

+O
(

1
ξ

)

, with δ = sign (h′ (ξϕ(0))) .

We shall use this formula to study oscillations of the integral K(ξ) in
(2.13), by writing h(u) = sin−1 g(u). For periodic g(u) there are infinitely
many points where h′ (ξϕ(0)) = 0, near which the asymptotic formula (2.15)

is not accurate. However, we shall argue that the formula (2.15) is accurate
on infinitely many intervals where K(ξ) takes both negative and positive

values, implying that K(ξ) changes sign infinitely many times.

Example For g(u) = sin3 u, h(u) = sin−1 (g(u)), and ϕ(x) = 1 − 1
2x

2 we
used Mathematica to calculate both the integral in (2.15) (solid line), and

its asymptotic approximation in (2.15) (dashed line), plotted in Figure 1.
Figure 1 shows that the asymptotic formula is accurate on sufficiently many

intervals to conclude that the integral changes sign infinitely many times.

We shall use the following generalization of the Riemann-Lebesgue lemma,
which is included in Theorem 3 of O. Costin et al [2].

Lemma 2.4 Let g(u) ∈ C(0,∞) be a periodic function of mean zero, and
f(x) ∈ L1(0, 1). Then

∫ 1

0
g(ξx)f(x) dx→ 0 as ξ → ∞ .

In the following theorem we shall apply the asymptotic formula (2.15) to
periodic functions h(u) of the form h(u) = sin−1 g(u) with various periodic
g(u). The formula (2.15) does not apply at the infinitely many roots of

h′(ξϕ(0)). We shall argue that such points are rare, and the formula (2.15)
does apply at infinitely many points ξ, at which sin (h(ξϕ(0))) takes both

positive and negative values.
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Figure 1: The integral in (2.15), and its asymptotic approximation

Theorem 2.2 Let g(u) ∈ C1(0,∞) be a periodic function of mean zero.

(i) For 1 ≤ n ≤ 3 the integral K(ξ) (given by (2.13)) changes sign infinitely
many times on (0,∞).

(ii) In case n = 4, K(ξ) changes sign infinitely many times, provided that

the same is true for the function − 1
ϕ′

1
(1)g2(0) + 2

ϕ′′

1

2(0)
g2 (ξ) (which includes

the case g2(0) = 0), and there are only finitely many sign changes otherwise.

(iii) For n = 5, in case g2(0) 6= 0 there are only finitely many sign changes
of K(ξ), and if g2(0) = 0, K(ξ) changes sign infinitely many times.

(iv) For n = 6, in case g2(0) 6= 0 there are only finitely many sign changes
of K(ξ), and if g2(0) = 0, K(ξ) changes sign infinitely many times, provided

that the same is true for the function f3(1)g3(0)−f3(0)g3 (ξ) (which includes
the case g3(0) = 0), and there are only finitely many sign changes otherwise.

(v) For n ≥ 7, assume that g2(0) = 0, but g3(0) 6= 0. Then the number of

sign changes of K(ξ) is at most finite.

Proof: The proof is similar to that of Theorem 2.1. The functions

f1(r), f2(r), f3(r) are the same, as given in (2.8),(2.9),(2.10). The breakdown
into cases is similar.

i. n = 2 (the case n = 1 is similar). As in Theorem 2.1, f1(r) = rϕ1(r)
ϕ′

1
(r)

,

f1(1) = 0, f1(0) = ϕ1(0)
ϕ′′

1
(0)

= − 2
ν2

1

, and f1(r) ∈ C∞[0, 1) for n ≥ 2. By (2.2)
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and Lemma 2.4

K(ξ) = 1
ξf1(r)g1 (ξϕ1(r)) |

1

0
− 1

ξ

∫ 1
0 f

′
1(r)g1 (ξϕ1(r)) dr

= 2
ν2

1
ξ
g1 (ξ) + o

(

1
ξ

)

,

so that K(ξ) changes sign infinitely many times.

ii. n = 3. As in Theorem 2.1, f1(r) = r2ϕ1(r)
ϕ′

1
(r)

, f1(0) = f1(1) = 0, while

f ′1(0) = ϕ1(0)
ϕ′′

1
(0) < 0. By (2.2)

K(ξ) = −1

ξ

∫ 1

0
f ′1(r)g1 (ξϕ1(r)) dr .

DenotingG1 = max(−∞,∞) |g1(u)|, write this integral asG1

∫ 1
0 f

′
1(r) sinh (ξϕ1(r)) dr,

with h(u) = sin−1
(

g1(u)
G1

)

and use (2.15) to express

K(ξ)
G1

= 1
ξ

√

π
2ξ|h′(ξ)ϕ′′

1
(0)|f

′
1(0) sin

(

h(ξ) − δ π
4

)

(2.16)

+O
(

1
ξ2

)

,

with δ = sign (h′(ξ)) = sign (g′1(ξ)). We now show that sin
(

h(ξ) − δ π
4

)

changes sign infinitely many times. The function
g1(ξ)
G1

is periodic in ξ,
changing sign infinitely many times. Let ξ0 be a point where g1(ξ0) = 0,
and g1(ξ) changes sign from negative to positive across ξ0. To the right of

ξ0 we can find a point ξ1 where g′1(ξ1) > 0, so that δ = 1 in (2.16), and
h(ξ1) is small. By (2.16), K(ξ1) > 0 (if necessary, adding to ξ1 a multiple

of the period of g1(u) to make the first term in (2.16) dominant). By the
periodicity of h(ξ) we have a sequence {ξn} → ∞ such that K(ξn) < 0.

Similarly, there is a sequence {ηn} → ∞ such that K(ηn) > 0. Hence, K(ξ)
changes sign infinitely many times.

iii. n = 4. Here f1(r) = r3ϕ1(r)
ϕ′

1
(r)

, f2(r) =
f ′

1
(r)

ϕ′

1
(r)

=
r2ϕ′

1
(r)(rϕ′

1
(r)+3ϕ1(r))−r3ϕ1(r)ϕ

′′

1
(r)

ϕ′3

1
(r)

.

Again we have f1(0) = f1(1) = 0, while now f ′1(0) = 0, so that the principal

term in (2.15) is zero. As in Theorem 2.1, f2(r) ∈ C∞[0, 1) for n ≥ 4. One
needs to integrate by parts again, i.e., to use (2.3):

K(ξ) = − 1
ξ2 f2(1)g2(0) + 1

ξ2 f2(0)g2 (ξ)(2.17)

+ 1
ξ2

∫ 1
0 f

′
2(r)g2 (ξϕ1(r)) dr .
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The integral term is o
(

1
ξ2

)

by Lemma 2.4. Indeed,

∫ 1

0
f ′2(r)g2 (ξϕ1(r)) dr =

∫ 1

0
g2 (ξx) f ′2

(

ϕ−1
1 (x)

)

ψ(x) dx ,

with ψ(x) ≡ d
dxϕ

−1
1 (x) ∈ L1(0, 1). Hence, K(ξ) changes sign infinitely

many times, provided that the same is true for the function − 1
ξ2 f2(1)g2(0)+

1
ξ2 f2(0)g2 (ξ) = − 1

ξ2

1
ϕ′

1
(1)g2(0)+ 1

ξ2

2
ϕ′′

1

2(0)
g2 (ξ) (which includes the case g2(0) =

0), and there are only finitely many sign changes otherwise.

iv. n = 5. Here f1(r) =
r4ϕ1(r)
ϕ′

1
(r) , f2(r) =

r3ϕ′

1
(r)(rϕ′

1
(r)+4ϕ1(r))−r4ϕ1(r)ϕ′′

1
(r)

ϕ′3

1
(r)

.

In addition to f1(0) = f1(1) = 0, we now have f2(0) = 0. Also f ′2(0) =
3λ2

1

25ϕ′′
1
4(0)

6= 0, as follows by expressing f ′2 from (2.10). The formula (2.17)

becomes

K(ξ) = − 1

ξ2
f2(1)g2(0) +

1

ξ2

∫ 1

0
f ′2(r)g2 (ξϕ1(r)) dr .

The integral term is o
(

1
ξ2

)

by Lemma 2.4. In case g2(0) 6= 0 there are only

finitely many sign changes for K(ξ). Observe that the same is true for all

n ≥ 5. In case g2(0) = 0, K(ξ) changes sign infinitely many times, using the
argument similar to the case n = 3.

v. n = 6. We assume that g2(0) = 0, since in case g2(0) 6= 0 there are only

finitely many sign changes for K(ξ), as we just saw. Now f1(r) = r5ϕ1(r)
ϕ′

1
(r)

,

f2(r) =
r3ϕ′

1
(r)(rϕ′

1
(r)+4ϕ1(r))−r4ϕ1(r)ϕ′′

1
(r)

ϕ′3

1
(r)

. Calculate f1(0) = f1(1) = f2(0) =

0. Also, f ′2(0) = 0. We need to integrate by parts one more time, i.e., to use
(2.4). It is straightforward to verify that f3(r) ∈ C∞[0, 1) for n ≥ 6. Obtain

K(ξ) = 1
ξ3 f3(r)g3 (ξϕ1(r)) |

1

0
− 1

ξ3

∫ 1
0 f

′
3(r)g3 (ξϕ1(r)) dr(2.18)

= 1
ξ3 f3(1)g3(0)− 1

ξ3 f3(0)g3 (ξ) − 1
ξ3

∫ 1
0 f

′
3(r)g3 (ξϕ1(r)) dr .

As in Theorem 2.1, f3(1) ≈ 71.44 and f3(0) ≈ −0.09. The integral term is

o
(

1
ξ3

)

by Lemma 2.4. K(ξ) changes sign infinitely many times, provided

that the same is true for the function f3(1)g3(0)−f3(0)g3 (ξ) (which includes
the case g3(0) = 0), and there are only finitely many sign changes otherwise.

vi. n ≥ 7. Now f3(0) = 0, f3(1) 6= 0, and by the formula (2.18), K(ξ)
changes sign at most finitely many times. ♦
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Remark What if n ≥ 7, but g2(0) = g3(0) = 0? It appears that infinitely

many oscillations are still possible for such special functions g(u), but one
would need more than three integrations by parts for a proof.

3 Oscillations of the solution curve

We now consider the following Dirichlet problem on a unit ball B ⊂ Rn

around the origin

∆u+ λ1u + g(u) = f(r) = µ1ϕ1(r) + e(r) for x ∈ B, u = 0 on ∂B .(3.1)

Here x ∈ Rn, r = |x| and (λ1, ϕ1(r)) is the principal eigenpair of the Lapla-
cian on B, with zero boundary conditions, µ1 ∈ R, e(r) ∈ ϕ⊥

1 in L2(B),

and e(r) ∈ Cα(B), for some α ∈ (0, 1). Solutions of (3.1) are decomposed
as u(r) = ξ1ϕ1(r) + U(r), with U(r) ∈ ϕ⊥

1 in L2(B). The following result

describes all solutions of (3.1).

Theorem 3.1 Assume that g(u) ∈ C2(R), and

g′(u) < λ2 − λ1, for all u ∈ R ,(3.2)

|g(u)|< γ|u|+ c, with 0 < γ < λ2 − λ1, c ≥ 0, and u ∈ R .(3.3)

Then the solution set of (3.1) consists of a single continuous curve (u(r), µ1)(ξ1)

parameterized by ξ1 ∈ R. If, in addition, lim|u|→∞
g(uz)

u = 0 uniformly in

z ∈ R, then u(x)
ξ1

→ ϕ1(r) in C2+α(B) as ξ1 → ±∞. Moreover, all solutions

of (3.1) are radially symmetric, u = u(r) with r = |x|, so that they satisfy

u′′(r) + n−1
r
u′(r) + λ1u+ g(u) = µ1ϕ1(r) + e(r) , for 0 < r < 1(3.4)

u′(0) = u(1) = 0 ,

Except for the symmetry assertion this result was proved in [7], where
more general domains and non-radial e = e(x) were considered. Here radial

symmetry follows from the uniqueness of the solution curve. Indeed, if a non-
symmetric solution existed, any of its rotations would produce a different

solution of (3.1) with the same first harmonic ξ1, hence lying on a different
solution curve, but there is only one solution curve.

We now discuss oscillations of the curve of radial solutions.

12



Theorem 3.2 In addition to the conditions of the Theorem 3.1, assume

that g(u) is a periodic function of mean zero. Then µ1(ξ1) → 0 as |ξ1| →
±∞. The oscillation properties of the solution curve µ1(ξ1) of (3.1) depend

on the dimension n as follows.

(i) For 1 ≤ n ≤ 3, µ1(ξ1) changes sign infinitely many times on (0,∞).

(ii) In case n = 4, µ1(ξ1) changes sign infinitely many times, provided that
the same is true for the function − 1

ϕ′

1
(1)g2(0) + 2

ϕ′′

1

2(0)
g2 (ξ) which includes

the case g2(0) = 0), and there are only finitely many sign changes otherwise.

(iii) For n = 5, in case g2(0) 6= 0 there are only finitely many sign changes

of µ1(ξ1), and if g2(0) = 0, µ1(ξ1) changes sign infinitely many times.

((iv) For n = 6, in case g2(0) 6= 0 there are only finitely many sign changes

of µ1(ξ), and if g2(0) = 0, µ1(ξ) changes sign infinitely many times, provided
that the same is true for the function f3(1)g3(0)−f3(0)g3 (ξ) (which includes

the case g3(0) = 0), and there are only finitely many sign changes otherwise.

(v) For n ≥ 7, assume that g2(0) = 0, but g3(0) 6= 0. Then the number of

sign changes of µ1(ξ) is at most finite.

Proof: We begin by sketching the proof. Since solutions of (3.1) are

radially symmetric, and v(r) =
u(r)
ξ1

→ ϕ1(r) in C2+α(B), it follows that u(r)
is unimodular for large ξ1, with a global maximum at r = 0. It also follows
that derivatives of v(r), up to the order four, tend to the corresponding

derivatives of ϕ1(r) as ξ1 → ∞ (expressing the derivatives of order greater
than two from the equation for v(r)). Then proceed as in the Theorem 2.2.

Let η = u(0), the maximum value of u(r) for large ξ1, and set u(r) =

ηv(r), so that v(0) = 1, η
ξ1

→ 1 and v(r) = ϕ1(r) + o(1) as ξ1 → ∞. From
(3.1) obtain

v′′+
n− 1

r
v′+λ1v+

1

η
g(ηv) =

µ1

η
ϕ1 +

1

η
e for x ∈ B, u = 0 on ∂B .(3.5)

We now study the oscillations of µ1 = µ1(ξ1) as ξ1 → ±∞. Multiplying the

PDE version of the equation (3.5) by ϕ1(r) and integrating over the ball B
gives

µ1(η) =

∫ 1
0 g(ηv(r))ϕ1(r)r

n−1 dr
∫ 1
0 ϕ

2
1(r)r

n−1 dr
.(3.6)
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The number of oscillations of the integral
∫ 1
0 g(ηv(r))ϕ1(r)r

n−1 dr will

depend on the dimension n. We proceed as in the Theorem 2.2, using up to
three integrations by parts (the formulas (2.2), (2.3) and (2.4)), depending

on the dimension n. Here f1(r) = rn−1ϕ1(r)
v′(r) , f2(r) =

f ′

1
(r)

v′(r) and f3(r) =
f ′

2
(r)

v′(r) .

In the Theorem 2.2 we had instead: g1(r) = rn−1ϕ1(r)
ϕ′

1
(r)

, g2(r) =
g′
1
(r)

ϕ′

1
(r)

and

g3(r) =
g′
2
(r)

ϕ′

1
(r)

(we changed the notation of these functions to avoid confusion

between the old and the new fi(r)). As in [4] we show that for n ≥ 2 the

function f1(r) is of class C∞, f2(r) ∈ C∞ for n ≥ 4 , and f3(r) ∈ C∞ for
n ≥ 6. Indeed, the proof in [4] was using only that v(r) → ϕ1(r) as η → ∞,

which is true here too.

Denote F (v(r), r) = µ1

η
ϕ1(r)+

1
η
e(r)− 1

η
g(ηv(r)). As η → ∞, F (v(r), r) →

0, and then v(r) → ϕ1(r) in C2+α(B), as was pointed out previously. Ex-

pressing higher derivatives of v(r) from (3.5), we see that the third and
the fourth derivatives of v(r) at r = 0 and at r = 1 tend to the corre-
sponding values of ϕ1(r). It follows that at r = 0 and r = 1 the func-

tions f1(r), f2(r), f3(r) tend to the corresponding values of g1(r), g2(r), g3(r).
Then all of the conclusions are the same as in the Theorem 2.2. ♦
Remark We now elaborate on the last step of the proof above. For the
pivotal case n = 5 we show directly that g′2(0) tends to a non-zero quantity

as η → ∞, so that the argument proceeds as in Theorem 2.2. Write (3.5) as

v′′(r) +
n − 1

r
v′(r) + f(r, v(r)) = 0 ,(3.7)

where f(r, v(r)) = λ1v(r) + 1
η
g(ηv(r))− µ1

η
ϕ1(r) − 1

η
e(r). Expressing v′′(r)

from (3.7), calculate

f2(r) =
rn−1f(r, v(r))ϕ1(r) + 2(n− 1)rn−2ϕ1(r)v

′(r) + rn−1ϕ′
1(r)v

′(r)

v′3(r)
,

f ′2(r) =
3rn−1f2(r, v(r))ϕ1(r) + 8(n− 1)rn−2f(r, v(r))ϕ1(r)v

′(r) + 3rn−1fϕ′
1v

′

v′4(r)

+
rn−3

(

8 − 14n+ 6n2 − r2λ1
)

ϕ1v
′ + rn−1ϕ1(r)

d
dr
f + 4(n− 1)rn−2ϕ′

1(r)v
′(r)

v′3(r)
.

Then for n = 5

f ′2(0) =
1

v′′4(0)

[

3f2(0, 1) + 32f(0, 1)v′′(0) + αv′′
2
(0)

]

,
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where α = 6n2 −14n+8 |
n=5

= 88. In case n = 5, v′′(0) = −1
5f(0, 1), giving

f ′2(0) =
75

f2(0, 1)
,

and f(0, 1) = λ1 + 1
ηg(η)−

µ1

η − 1
ηe(0) → λ1 as η → ∞. One can proceed

similarly for other dimensions n.

4 A more general result in one dimension

We begin with a more general result for the oscillating integral

I(ξ) =

∫ π

0
g(ξ sinx) sinx dx ,(4.1)

where g(u) is not assumed to be periodic.

Theorem 4.1 Assume that g(u) ∈ C(R) has finitely many roots on any
bounded interval, and it changes sign at each root. DefineH(u) =

∫ u
0 g(t)t dt.

Assume that there exist two sequences {ξn} → ∞ and {ηn} → ∞ such that
H(ξn) > 0 and H(ηn) < 0. Then I(ξ) changes sign infinitely many times as
ξ → ∞.

Proof: Clearly, g(u) has infinitely many roots. In case g(0) = 0, let

u1 ≥ 0 be the supremum of β’s so that g(u) ≡ 0 on [0, β), and in case
g(0) 6= 0, set u1 = 0. Clearly, there exists u2 > u1 so that g(u) is either

positive or negative on (u1, u2). Without loss of generality we can make the
following three assumptions.

(a) g(u) is negative on (u1, u2). Otherwise consider −I(ξ) involving −g(u).

(b) g(ξn) ≥ 0, and if g(ξn) = 0 then g(ξ) is positive to the left of ξn.

Otherwise let ξ̄n be the largest root of g(u) to the left of ξn. Then H(ξ̄n) >
H(ξn) > 0. Replace ξn by ξ̄n.

(c) g(ηn) ≤ 0, and if g(ηn) = 0, then g(ξ) is negative to the left of ξn. The
justification is similar to that of part (b).

Setting y = sinx on the intervals (0, π
2 ) and (π

2 , π), express

I(ξ) = 2

∫ 1

0
g(ξy)y

1
√

1 − y2
dy .(4.2)
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We claim that I(ξn) > 0. Observe first that

∫ 1

0
g(ξny)y dy =

1

ξ2n
H(ξn) > 0 .

The graph of the function g(ξny)y on (0, 1) consists of pairs of humps. Each
pair consists of a negative hump followed by positive hump. The function

1√
1−y2

> 1 is increasing, and so it favors the positive humps. It follows that

I(ξn) > 2

∫ 1

0
g(ξny)y dy > 0 .

We claim that I(ηn) < 0. Again, we begin by observing that

∫ 1

0
g(ηny)y dy =

1

η2
n

H(ηn) < 0 .

The graph of the function g(ηny)y begins with a negative hump, and then

it has pairs of positive humps followed by negative humps. The function
1√

1−y2
> 1 is increasing, and so it favors the negative humps in each pair,

while over the first negative hump the function 1√
1−y2

> 1 makes the integral

smaller. It follows that

I(ηn) < 2

∫ 1

0
g(ηny)y dy < 0 ,

completing the proof. ♦
We now consider the problem (3.1) in one dimension, which is convenient

to consider on the interval (0, π)

u′′ + u+ g(u) = µ1 sinx+ e(x) , for x ∈ (0, π), u(0) = u(π) = 0 .(4.3)

The problem is at resonance. Here λ1 = 1, ϕ1(x) = sinx, λ2 = 4. We
assume that the function e(x) ∈ Cα, α > 0, is even with respect to π

2 and

satisfying
∫ π
0 e(x) sinx dx = 0. As above, decompose u(x) = ξ1 sinx+U(x),

with
∫ π
0 U(x) sinx dx = 0.

Applied to (4.3) the Theorem 3.1 implies the following result.

Theorem 4.2 Assume that g(u) ∈ C2(R) satisfies the conditions (3.2) and

(3.3), with λ1 = 1 and λ2 = 4, and also that lim|u|→∞
g(uz)

u = 0 uniformly in
z ∈ R. Then the solution set of (4.3) consists of a single continuous curve

(u(x), µ1)(ξ1) parameterized by ξ1 ∈ R. Moreover, all solutions of (4.3) are

even functions with respect to π
2 , and u(x)

ξ1
→ sinx in C2(0, π) as ξ1 → ±∞.
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The solution curve of (4.3) performs infinitely many oscillations around

the origin under the following conditions.

Theorem 4.3 Assume that g(u) ∈ C(R) has finitely many roots on any
bounded interval, and it changes sign at each root. DenotingH(u) =

∫ u
0 g(t)t dt,

assume in addition to the conditions of the Theorem 4.2 that there exist two

sequences {ξn} → ∞ and {ηn} → ∞ such that H(ξn) > ε and H(ηn) < −ε,
for some ε > 0. Then the function µ1 = µ1(ξ1) changes sign infinitely many

times, as ξ1 → ∞. In particular, at µ1 = 0, the problem (4.3) has infinitely
many solutions.

Proof: In view of the Theorem 4.2 only the last statement needs to
be proved. Since u(x)

ξ1
→ sinx in C2(0, π) as ξ1 → ±∞, and u(x) is even

with respect to π
2 , it follows that u(x) is unimodular with a point of global

maximum at π
2 , for large ξ1. Let η denote the maximum value of u(x), and

set u(x) = ηv(x) in (4.3) to obtain

v′′ + v +
1

η
g(ηv) =

µ1

η
sinx+

1

η
e(x) , x ∈ (0, π), v(0) = v(π) = 0 .(4.4)

Clearly v(π
2 ) = 1, η

ξ1
→ 1 and v(x) = sinx+o(1), as ξ1 → ∞. Multiplication

of (4.4) by sinx and integration over (0, π) gives

µ1
π
2 =

∫ π
0 g(ηv(x)) sinx dx = 2 (1 + o(1))

∫

π

2

0 g(ηv(x))v(x) dx

= 2 (1 + o(1))
∫ 1
0 g(ηy)y

dx
dy
dy ,

setting y = v(x). The function dx
dy

tends to a positive increasing function

that is greater than 1 for y ∈ (0, 1) (namely, to 1√
1−y2

). As in the Theorem

4.1, µ1 changes sign infinitely many times as η → ∞. ♦

Example 1 We computed the solution curve µ1 = µ1(ξ1), ξ1 > 0, for the

following example, with the linear part at resonance,

u′′+u+
sinu√
u + 4

= µ1 sinx+sin 3x , for x ∈ (0, π), u(0) = u(π) = 0 .(4.5)

(Recall that the full solution curve of (4.5) has the form (u(x), µ1) (ξ1), where
u(x) = ξ1ϕ1(x) + U(x).) Here λ1 = 1, ϕ1(x) = sinx. It is easy to check

that the Theorem 4.3 applies, so that there are infinitely many solutions at
µ1 = 0. The oscillating solution curve µ1 = µ1(ξ1) is presented in Figure

2, see [9] for the listing of the Mathematica program used, together with
detailed explanations.
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Figure 2: The solution curve µ1 = µ1(ξ1) of the problem (4.5), oscillating

around the ξ1-axis.

Example 2 Theorem 4.3 does not apply to the problem

u′′+u+
sinu√
u4 + 4

= µ1 sinx+sin 3x , for x ∈ (0, π), u(0) = u(π) = 0 .(4.6)

(Here the integral
∫ ∞
0 g(t)t dt converges.) Our calculations, presented in

Figure 3, suggest that when ξ1 > 0 there are no solutions for µ1 = 0, while
there are arbitrary many solutions for µ1 > 0 sufficiently small. So that if

g(u) in (4.3) tends to zero sufficiently fast as u → ∞, the solution curve
may tend to zero without oscillating around the origin.
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