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1. INTRODUCTION 

WE STUDY existence of periodic solutions for a nonlinear noncoercive boundary value problem 

uy - u1.X = g(x, 2, u) Y = 1, 

Au =f(x, y, z, u, Du) O<yCl, (I) 

u=o y = 0. 

Here the functions f and g are assumed to be 2x periodic in x and z, and we are looking for 
2~ periodic in x, z solution u(x, y, z). 

This problem arises in three-dimensional water wave theory under the assumption that the 
gravity is pointing up, see [7]. We are interested in the problem primarily since it represents 
one of the simplest possible noncoercive elliptic problems (i.e. the Lopatinski-Shapiro con- 
dition fails, see [3]). We see that this model has basically the same properties as coercive 
elliptic problems with respect to maximum principle, nonlinear existence results and the 
properties of eigenvalues and eigenfunctions. 

From the results of [4] we can conclude existence of solutions for (l), providedf and g are 
sufficiently small (and smooth). In this paper we remove the smallness condition. (The growth 
off in Du then has to be restricted by a condition of Nagumo type.) 

To prove existence we follow the technique learned from Tsai [9], and which involves a 
combination of degree theory and the method of super- and subsolutions (a similar approach 
was used by Serrin in [S]). In his paper, making use of the well-known global gradient bounds 
for the quasilinear second order elliptic problems, Tsai shows that solution cannot escape 
from the set A = {u E C’la < u < p, lVu[ CM + l}, where the constants (Y, p are sub- and 
supersolutions respectively, and M is the bound for [Vu!, provided CY < u < p. Then using 
degree theory, the solution operator is deformed to the identity operator, proving existence. 

For our problem we cannot quote any global estimates for lVu[ (and also no compactness 
results in Ck spaces). This leads us to derive a priori estimates in Sobolev norms for the 
nonlinear problem (1). After that we use degree theory in a way similar to Tsai’s. 

In the last section we study the eigenvalues and eigenfunctions of the linear problem. 

2. NOTATION AND PRELIMINARY RESULTS 

By V we shall denote the domain 0 =G X, z 6 2x, 0 G y G 1; the upper part of its boundary 
(y = 1) we denote by V,. We consider a subspace of Wm+‘, consisting of functions 2rc periodic 
in x and z; when writing Wm*P(V), Wm.P(VJ, H”(V), Hm(V,), we shall always refer to that 
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subspace. BY Il. llm.p we denote the norm in WmJ’( V), by Il.llrn the one in Wm.‘(V) = H’“(V), 
and by n,,, the norm in H”(V,), see [l] for definitions. Also \u/~= = e;s sup/u]. We denote by 

c all positive constants independent of the unknown function u; by E all irrelevant positive 
constants depending continuously on IuI Lp, but not on the derivatives of u; Du = Cu, jVu( = 
d/u: + u: + ul. We shall write Jh = $Jfh dx dy dz, rrh = {!h dx dz. Sometimes we write 

xl, x2, x3 for x9 y, z; 
V 

We need the following lemmas, see [3,4] for proofs or references. 

LEMMA 1. For any E > 0 and integer n > 0 one has 

(i) Ii& s l141n+~ 

69 IblL ii% 6 414n+1 + +>ll40. 

LEMMA2. SUppOSe WI,. . . , w, E C’(V) (or C’(V,)). Suppose that + = +(wt , . . . , w,) possesses 
continuous derivatives up to order r 3 1 on IWil 5 co, i = 1,. . . , s. Then 

IId+% * * * f WJlr s C i=l (C llWill, + 1) for JW~IL= G CO, i = 1,. . . ,S, 

and the same is true for fl,,, norm. 

LEMMA 3. We have the following relations between our norms and spaces. 

(i) II”llj+p s CIIUII~,rlIUllb~q(l 9 

for any integers 0 <j < m, provided that j/m d a d 1, 1~ q, r c 30, l/p = j/3 + a(l/r - m/3) 
+ (1 - a)(l/q), and m - j - n/r is not a nonnegative integer 

(ii) HS(V) is compactly imbedded in H”-E(V) for any real s > 0 and E > 0. 
(iii) For any integer m 2 0 

ii&l 6 44m+1/2 * 

Proof. The property (i) can be found in [2, p. 271, where it is stated for the domains with C”’ 
boundary. Let V, be any C” domain in the strip 0 G y d 1, such that V C VI. Then (i) is true for 
V,. Since our functions are periodic, it is easy to see that it is also true for V. 

The property (ii) can be found in [6, pp. 99-1011. The statement (iii) is standard for C’ domains, 
see [6, p. 411. We adapt it to V in the same way as (i). 

The following lemma was proved in [5]. 

LEMMA 4. Consider the linear problem 

uy - UXX + EU = g(x, z) y=l,&>o, 

Au =f(x,y,z) OCy<l, 

u=o y = 0. 

(2) 



Existence of solutions for a class of semilinear noncoercive problems 1373 

Let fE Hm, g E EFi (m 3 2), be 2n periodic in x, z. Then the problem (2) has unique 2~ 
periodic in x, z classical solution u(x, y, z), and independent of E 2 0 the following estimate 
holds (with m L 0) 

l/U11 mc2 s C(~~~l~~ + iigilmii). (3) 

3. THE A PRIORI ESTIiMATE 

THEOREM 1. Let u be 2n periodic in X, I solution of 

@y - UZX + EU = dg(x, 2, u) y= 1, 
Au = kf(x, y, z, u, Du) O<y<l, (4) 

u=o y = 0. 

Here f E C3( 5’) and g E C”( VJ are 2~ periodic in x, r; E 
that S = F(/u[~=)) 

3 0,O G A G 1. We assume that (recall 

(i) if/ d F(l f jV~j*-~), 0 < 6 G 2, 

(ii) If,,l, IfJ c Yl + IVY?) 
(iii) /fMi[ G ?(l f iVu(), 

i = 1,2,3, 
i l 1,2,3. 

Then ~~uII~,~ G M, M = M(]u]~-), independent of E 3 0 and 0 G il 6 1. 

Proof. Using lemmas 1,2, and 4, we estimate: 

lMl2 6 dial1 + Ilflld 6 f(l + ml, + (Sf2>“2) 

6 q(l + EJIUI12 + c(q~~t& + (Jpuy26)q. 

In the case 1 9 6 < 2 thiseasily implies the inequalities (6) below. So let 0 < 6 < 1. Then choosing 
E small enough we get (since /j~f/~ d E) 

lMl2 s f(1 + lbm”-26). (5) 

By lemma 3 we estimate ((4 - 2S)/S > 1) 

lbll1.4-26 s ~ll~lll’2ll~Ilb!~4-?a),s si cll w. 
Combining this with (5), we obtain 

ll~ll2 s F(1 + llulI:-6’2L 

which implies (using lemma 3 for the second inequality) 

lMl2 s c, ll~lI1,4 s f. 

Next, by lemmas 1,4 and the chain rule we estimate 

lIdI 9 ai2 + llfk Y 7 z* u, Wll1) 

(6) 

(7) 
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Using (6). it is easy to see that jjfjlo. /ft-,iio c F. Next. using (ii), (6) and lemma 3. we estimate 

llfiC41~~ c lIfullL44 L , G C(l + j ,~+ll,,,., 

S F(l + iill\li.,) c Z(l + (lL1(\: “llK/1:$) s C(l + liLdl[:‘“). 

Similarly, by (iii) 

llfu,~~nlll~ c l~fu,llL+,,&~ s W + I141.JM~.~ 
S CiLU\j2,4 S Z(lL411:~6j(11(\~Q S CJ/L111: ‘. 

Using these estimates in (7). and choosing Esufficiently small. we get 

11111/j 6 q1 + ~~14~~~ 6), 

which implies 

II~~ll3 6 E, (S) 

and by Sobolev’s imbedding theorem IIOL~I)L= G C. The last estimate is crucial, since now vve 
can use lemma 2 to estimate higher derivatives: 

II4 s da3 + IlfCLY7 2, u7 Du)ll2) 
c C(Ei’L1jll + c(F)Jlullo + c + Clllll/;). 

which implies as before IIL~(\, s C. Similarly I\L& c C. Since /I& G ll~~llj G c = &I. the proof is 
complete. 

Remark. It is easy to see that one can allow 6 = 0, provided the constant C in (i) is sufficiently 
small. 

THEOREM 2. Letfandg in the problem (1) satisfy the conditions of theorem 1. Assume moreover 
that there exist constants CY < 0 < /3 such that 

g(x, z, o) 2 O.f(X. .“, ,‘. cr. 0) < 0: g(,r, Z. /3) G O,f(s. )‘, z. B, 0) > 0. (9) 

Then the problem (1) has a C’ solution, 2x periodic in x, z, such that N < u(x, I’, z) < p. 

Proof. Let A = {u E H9 ‘, N < 11 < p, I&;2 =C A4 + l}, with M determined as in theorem 1 
from r~ and fi (i.e. for any solution of (1) satisfying cr 6 11 G 0, we have ~~L~/~~;~ s M). Notice that 
A is a bounded open set in H 9,2 containing zero (recall, both ti 2 and A consist of 2;r periodic in 
X. z functions). Define the map T: II - u by solving 

u, - u,X, i EV = g(.u, z. u) L’=l 

ilr; = f(x, y, z. 11, DLL) O<y<l. (10) 

L! = 0 y = 0. 

Since (by lemmas 3. -t) j;~jll~ s ~(llfj’~ f ligllJ s c(1 + //r& ?). the map T is compact from A to 
H’ ‘. 
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Define the map H(u, A) = ~1 --ATu. II E A, 0 s A 6 1. We wish to show that 

deg(f - AT, A, 0) = deg(l, A. 0) = 0. (11) 

For this we proceed to show that H(u, A) # 0 for u E aA and 0 G L c 1. Indeed H(u, 0) i 0 for 
u E aA, since 0 f$ aA. If H(u, 1) = 0 for some u E aA, then LL is a (desired) fixed point. 

Next we show that H(u, A) # 0 for 0 < L < 1 and u E aA. Assume not, i.e. H(rT. i) = 0 for 
someLiEaA,O<~<l.Then 

EL - E., + ai = Ig(x, z, U) y= 1, 

Ari = xf(x, y, P, U, DC) O<y<l, 

ri = 0 y = 0. 

By theorem 1, (IL& < M < kt + 1. Hence at some point P,, = (x0, y,, zO) E v vve must have 
$x0, y,, zo) = /3 (or r?(Po) = CY, which is eliminated in the same way). Consider two cases. 

(i) PO E V. Since PO is a point of maximum, VU(Po) = 0, AU(P,J G 0. But then by choice 

ofP 

0 1 AE(P,,) = xf(f,,, U(P,), VU(P,>) = if(f(x,,,y,, 20, P, 0) > 0, 

a contradiction. 

(ii) PO E a V. If PO lies on the side part of the boundary (0 < y < 1) argue as in (1). 
Assume (x0, yo, zo) is at the bottom part of dV, i.e. y. = 0. Then 0 = lT(.uo. 0. zo> = B. a 

contradiction. 
If PO is on V,(y = l), then since it is a point of maximum. we have &(Po> 5 0. &,(Po) G 0. 

and hence at PO 

0 < E/3 s 1T, - lT,r,, + &ii = &,, z(], c(p,)) =&O, ZfJ, b> c O. 

a contradiction. 
Therefore (11) is justified, and we obtain existence of solution ~1~ to (10) with /:L!~: 9 2 s c. Since 

(by Sobolev imbedding, n = 3) the set {u”} is compact in C’, if we now let E- 0 along some 
sequence, we can pass to the limit (along a subsequence) in (lo), obtaining a C’ solution of the 
original problem (10). 

5. PROPERTIES OF EIGENVALUES AND EIGENFUNCTIOSS 

Let u(x, y. z) be 27~ periodic in x, z, nontrivial solution of 

Ll!. - UXX = 0 y = 1. (12a) 

Au + J.u = 0 o<y< 1 (12) 

cl=0 y = 0. 

It is easy to see that all eigenvalues ;I are real, and the eigenfunctions corresponding to different 
eigenvalues are orthogonal in L’(V). More precisely, we have the following lemma. 

LEMMA\ 5. The eigenvalues of (12) form a sequence 0 < ,!1 < 2.: < A3 < . . . . lim i., = x. The 
fJ-= 

principle eigenvalue A, = ,7?/3; it is simple, its eigenspace is spanned by @t = sin(.r/2)y 2 0. 
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Proof. Substituting 
x 

U(X,JJ. Z) = C Lljk(Y) e’ix-‘k’ 
I.k= --s 

into (12)) we get 

u;k + (j. - j’ - k+,, = 0 O<y<l, 

ujk(O)= 0. U;k(l) + j’Ujk(l) = 0 (--r < j, k < x). 
(13) 

Let ~~,~(n=1,2,. . .) be nonzero solutions of tan v = -( v/jz), j # 0. It is easy to see from 
(13) that the eigenvalues are (A, = Ao,O,O) 

~n,j,k = v:,, f j’ i- k’ j,n=l,2 ,...; k=0,1,2 . . . . . 

A n.0.k = 

2 

+ k’ n, k = 0, 1,2, . . . . 

Corresponding (real) eigenfunctions are 

+ n.1.k 
= sin(k,.,,, _ j' _ k?)I'z): (cI eijx+ikz + c2 ,-ljXT_ik: + C, eijx-ikz + C, e-I!.~-IkZ), 

where cl, c2 are arbitrary complex constants. 

Remark. Let N(A) denote the number of eigenvalues of (12) which are less than i.. Then using 
standard techniques (see e.g. Courant and Hilbert, Vol. l), it is easy to show that N(A) - 
(1/6)A3’* for A-+ %. The asymptotic formula is the same for the problem obtained from (12) by 
changing (12a) to u = 0. 

Notice that results of his section are parallel to the ones for coercive problems. 

Acknowledgemenrs-I wish to thank L. Sirenberg for posing the problem and his attention to my work. I am grateful to 
A. Leung for useful discussions. 

REFERENCES 

1. ADAW R. A., Soboleo Spaces, Academic Press, New York (1975). 
2. FRIEDMAN A., Partial Differenrial Equations,_@bert E. Krieger, New York (1976). 
3. KORMN P., Existence of solutions for a class ofnonlinear non-coercive problems, Communs Partial diff. Eqns 8, 

819-816 (1983). 
4. KORMAN P., Existence of periodic solutions for a class of nonlinear problems, Nonlinear Analysis 7, 313-879 (1983). 
5. KORMAN P., On application of the monotone iteration scheme to noncoercive elliptic and hyperbolic problems, 

Nonlinear Analysis 8,97-105 (1981). 
6. LIONS J. L. & MXXNES E., Non-Homogeneous Boundary Value Problems and Applications. Vol. 1. Springer, New 

York (1972). 
7. SHINBROT M., Water waves over periodic bottoms in three dimensions, J. Inst. Math. Applic. 25,367-X (1980). 
8. SERRIN J., The problem of Dirichlet for quasilinear elliptic differential equations with many independent variables. 

Phil. Trans. R. Sot. Lond. 264.113496 (1969). 
9. TSAI L. Y., Existence of solutions of nonlinear elliptic systems, Bull. Inst. Math. Acad. Sinica 8, 11 l-117 (1980). 


