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1. INTRODUCTION 

WE STUDY existence of periodic solutions for a nonlinear non-coercive boundary value problem 

uy = P(&) Y = 1, 

Au =f(x,y,z,u,Du) O<y<l, 

u=o y = 0. (I) 

Here f is 2~ periodic in x and z and also depends on u and its first derivatives, we are looking 
for 2x periodic in x and z solution u(x, y, z). 

The case p(uXX) = - Fu,, F = const > 0 corresponds to the boundary condition for the water 
waves on a running stream (see [6]). We show in Section 5 that the problem (1) is ill-posed 
in this case. This fact supports the belief that the water wave problem in three dimensions 
without surface tension (which differs from (1) basically in that the upper boundary is free) 
is ill-posed, see [5]. 

Our interest in the problem (1) lies primarily in the fact that the problem is non-coercive, 
and so one cannot use the general theory to get apriori estimates, see [2], [3] for discussion. 
However, if we assume F < 0 (or the gravity to be pointing up) we can prove existence of 
periodic solutions for (1). Namely, we have the following 

THEOREM 1. Assume that for the problem (1) with f2n periodic in x and z we have: 

(9 p(O) = 0, P(O) >O 
(ii) p E Q, f, fu, fu,,fu,,fu, EC3 (in all arguments). 

Then for Ilf(x, y, 29 0, O>ll3? IIf&> Y, 
Ilfkk Y 7 z,o, 0) II 

z, 0, ul3, Ilf&,Y~ 27 0, w3, llf&Y, z> 0, Qll37 
3 su ffi ciently small, the problem (1) has a C? solution, 2n periodic in x and 

Z. 
The proof by a contractive mapping argument is carried out in Section 4. It uses apriori 

estimates for a linear problem which are derived in Section 3 by Fourier analysis. To simplify 
the presentation we shall assume ci(O) =l. 

Remark. Using Nash’s implicit function theorem it is possible to prove existence for p = 
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P(uxx, h, uzz) andf=f(x, y, Z, 11. Du, D’u), but it requires more differentiability of p and 
f, see [2], [3] for details. 

2. NOTATION AND THE PRELIMINARIES 

By V we shall denote the domain 0 c x, z s 2x, 0 s y s 1; the upper part of its boundary 
(_v = 1) we denote by V,. We shall write I/ .I/,,, for the mth Sobolev norm for functions in V and 
I/,,, for functions on V,. Corresponding Sobolev spaces we denote by K” and fim. By 
G” (m > 3) we denote the subspace of K” consisting of functions II E H”’ such 
thatI/,,,_i<x. The norm in G” is denoted by / . jm, /u/, = l]u\\,,, + J/ll,jl,- I. Clearly G” is 
a Banach space. 

We shall write ul, i = 0, 1, 2, 3 for u, ux, tiy, 11: correspondingly; D u = grad U. We shall 
write S(r) for any function which tends to 0 as I--, 0. All positive constants independent of 
unknown functions we denote by c. 

We need the following standard lemma, see for example [2]. 

LEM,MA 1. Suppose that the functions wl, . . . , w, E C(V) or 

q(w7. . . f IV,) possesses continuous derivatives up to order 
maxjwil cl. Then 

i 

C”‘(VJ. Suppose that q= 
m 2 1 bounded by c on 

I/dw7 . . . , wJ/lm 6 Cl(WJj, + 1) for maX]lWi]jL- < 1. (2) 

(We denote ]]w]/,,, =max]]w&,J. If in addition we assume ~(d, . . , 0) = 0, m 2 1 then 
i 

l/d%, . . . t ~%)llm = 60l4lm)~ (3) 

where 6(r) --j 0 as t -+ 0. 

Remark. The lemma is also true for functions Q? = &x, y, z, wi, . . . , wJ) with q E P in all 
variables. Conclusion (2) is as before, and for (3) the corresponding assumption is 
&, Y, Z? 0, . * . 7 0) = 0 for all (x, y, z) E V or V,. 

To prove theorem 1 we define the map T: u ---, u by solving the following linear problem 

uy - ox, = P(U.lX> - u.u y= 1, 

Au =f(x,y,z, u, Du> O<y<l, 

v=o y = 0. (4) 
Clearly, the fixed points of T are solutions of (1). 

3. A PRIORI ESTIiMATES FOR THE LINEAR PROBLEM (4) 

To simplify notation we rewrite (4) as 

“Y - uxx = g(x, 2) y = 1, 

Au =f(x, y> z) O<Y<l, 

v=o Y = 0, 

where f and g are given functions, 2~ periodic in x and z. 
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L~srsr.4 2. Assume g, fE W. Then the problem (5a. b, c) has a unique, 2;r periodic in x and 

z, solution, and 

14 m+ I s c(iiiL + IlflLJ (m 2 0 an integer). (6) 

Proof. Represent u, f, g by their double Fourier series; use summation convention: 

U(X, y,Z) = VjkCy) eijx+'kz,f(x,y,Z) =f,~v)eii'-ikr,g =gjkeijxfikr, (i = V-1). 

Substituting these expressions into (5) and suppressing the indices j, k (i.e. writing u for ujk, f 

for fik and g for gjk) we get: 

u’(l) + j2u(l) = g (7.0) 

u”(y) - (j’ + k’)u(‘y) = f(y) (7.6) 

u(0) = 0. (7.c) 

Set p = d( j2 + k*). For p # 0 solution of (76)) (7~) is 

u(y) = ysinh py + i d f (t) sinh p(y - t) dt. 
I 

(8) 

To find y we substitute this into (7.~2): 

y(p cash p + j2 sinh p) + 
I 
O1f (t)[cosh ~(1 - C) + Gsinh ~(1 - t)] dt = g. (9) 

Denote A = p cash p + j’ sinh p and notice that 

A 3 c(p + j’) ep. (10) 

Using (8) and (9) we get: 

i 

.2 

Au(y) = g sinh py - 
0 
'f (t)[cosh ~(1 - t) sinh py + $sinh ~(1 - r) sinh py] df 

+ i [ f (t)[p sinh &Y - t) cash p + j2 sinh p(y - t) sinh p] dt 

= g sinh py - 
i Y 

‘f(t) [cash p( 1 - t) sinh py + f sinh p( 1 - t) sinh py] dt 

- oyf(f)[4 +;A21 k, 
I 

where 

Al = cash ~(1 - t) sinh py - sinh p(y - t) cash p, 

A2 = sinh ~(1 - r) sinh py - sinh p(_y - t) sinh p. 

Using standard identities for hyperbolic functions we compute: 

Al = sinh it cash pCy - l), 

A? = sinh pt sinh ~(1 - y), 
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so that finally 

I 
1 

Au(y) = g sinh py - 
Y 

f(t)[cosh p( 1 - t) sinh py + g sinh p( 1 - t) sinh py] dt 

- 
I 
aY f(r)[sinh Pt cash @‘y - 1) + g sinh pr sinh p( 1 - y)] dr. 

Since sinh x, cash x - e”/2 as x+ + co, we easily estimate: 

Combining the estimates (10) and (12) we derive: 

Using the Schwarz inequality and restoring the subscripts we have: 

(11) 

(12) 

(13) 

In the case j = k = 0 we easily obtain from (7) 

I ~1i~m(~)~2d~~c[l~~~2+jollfoo(r)12d~]~ (14) 

Differentiating (ll), and going through the same steps as in derivation of (13), we estimate: 

Iu;X12~c[lP,x12+ [If,*(t)I’d] (vj’itk). (15) 

Combining (13), (14), (15) we get: 

1141: s ma + Ilfll& (16) 

Also using (15) we have: 

mi = 3 I u;k@) I 2 s ma + Ilfll& 

and hence by (La) 

(17) 
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Adding (16) and (17) 

Ml 6 c(ikE + llfll’o), (IS) 

which proves lemma 2 for m = 0. 
To get higher order estimates let LY denote any derivative in x and z variables only. 

Differentiating (5) we get: 
il_ LIZ a 

“Y “X.X g y= 1. 

Ava=f O<y<l, 

v*= 0 y = 0. (19) 

BY (18) 
-7 

II”% + II”i% c 4% + llf %,. 

Summing over all such (Y, IcyI s m 

& llu~ll: + II: c mi7 + lIfll3 

By the definition of Sobolev norms 

,w~mll”mll~ = lI”Ili+I - ,,~_,ll”,&ll” - a~~_211”,~~,l” 

- . . . - llD~““IIs~ Il”llb-1 - 4”,,llX-1. 

From the equation (5.b) uYY = f - uxx - uzz, so that using (20) 

ll”&-1 =Z C[llflltn-1 3- I/“,xlIL + ll”LIIIL-1) s 4ml f llfll3. 

Combining (20), (21), (22) we get: 

I/“II~+l + li??l s cm/k% + llf llil> 
which finishes the proof of lemma 2. 

(20) 

(21) 

(22) 

4. PROOF OF THEOREM 1 

We proceed to show that the map T defined by (4) satisfies the conditions of contractive 
mapping theorem in a sufficiently small ball around the origin in the space G”, m 2 4. Denote: 

6 = Ilf&Y, z, 0, w- 11 i = 0, 1,273; 6= lIf(X,Y, z, 090) /lm-l 

(i) T is a contraction. Indeed, let u1 = Tu’, uz = Tu’ with lull,,,, /u’i, s r. Set U = u1 
- u’, V = d - d. Define y(t) = p(r) - t, q;(O) = g;‘(O) = 0. Then from (4) 

vy - VI, = &CL> - d&) y = 1, 

AV=f(x,y,z,u’,Du’)-f(x,y,z,u’,~-) O<y<l, 

v=o y = 0. (23) 
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By the mean-value theorem we write: 

By Sobolev lemma we have (independent of t): 

IIf& + (1 - ~)&ll~- C ~(lIdll~-~ + IlLI/,-1) s cr, 
Ilt Du’ + (1 - t) DK’\( L’ s c(l/~llIVl + ll~211r71) =s cf., 

and hence using corollary of lemma 1 we estimate: 

(24) 

Ilf(x,y, z, u’, Du’) -f(x,y, 2, u’, D$I llm-I 

3 

s 

=[ 
sup Ilfu<(w, z, m’ + (1 - 0u2, r Du’ + (1 - t,Du? -f&.y, z, 0,O) jjm-r 

i=O Octal 

(25) 

Applying lemma 2 to (23) and using (24), (25) we have: 

lV/,~ (i&i 6(r)) lNnwwlm~ 

provided r and 0i, i = 0, 1, 2, 3 are sufficiently small. 
(ii) T takes sufficiently small ball into itself. Indeed, let ju\, < r, u = Tu and we want to 

show that (uj,,, < r. We shall use part (i) setting ur = U, ur = u and u? = 0, u2 = Tu’. First, 
notice that by lemma2 

Hence by (i) 

I u21rn s Ilfb, y, z, 0, Wlm - 1 = 04. 

so that 

assuming 0, 6 r/2. 
Finally, fixing m = 4 we complete the proof of the theorem 1. 
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5. CASE F > 0 

THEOREM 2. In the case F = p(O) >O the problem (1) is ill-posed in the 
consider a simplified linear homogeneous problem: 

1~ + Fu, =0 (F>O) y=l. 

Au = 0 O<_v<l. 

II = 0 y = 0. 

following sense: 

(26) 
Then for a dense countable set of numbers F the problem (26) has nontrivial X7 periodic in 
x and z solutions, while for the complimentary (dense) set of F the only such solution is the 
trivial one. 

Proof. Setting 

ll(_y, y , Z) = j kF_ r uiko/) ei’x - ik’ 

we find that ujk = cjk sinh d( j’ i- k’)y, where the constants c,k must satisfy 

cjk(V( j’ + k’) cash d( j’ + k’) - Fj’ sinh d( j’ + k’)) = 0. 

Consider the set 8 = {q.k}, where we denote 

(27) 

E;;.,k = v/(i’ + k’) 
.? 

I 
coth d/j’ + k’). 

If FE g, i.e. F=$,.ko for some (jO, ko) then u =(ev”“‘kG + e-ijar-ikoz) sinhm y is a 
nontrivial (real) solution of (26). 

The set 3 is clearly countable, it remains to show that it is dense. For that it suffices to 
approximate any rational t = p/q by numbers from 5. Consider 

F 4”,9’“, = 
d(q’” + q”“t?) 

q’” 
coth d(q”’ + q”‘?) * f, 

as n -+ m, completing the proof. 
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