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1. INTRODUCTION 

IN THIS paper we show that the monotone iteration scheme can be successfully applied to 
equations other than coercive elliptic and parabolic. For this we first state the monotone 
scheme in a more general situation than usual (see e.g. [2, 9])-theorem 1, and then apply 
it to noncoercive elliptic and hyperbolic problems. Our generalization consists essentially in 
allowing subelliptic estimates instead of elliptic ones and not requiring Schauder’s estimates. 
Also, boundary conditions are allowed to be nonlinear. The price we pay is higher differ- 
entiability requirements. 

Recently, D. Dunninger has extended the monotone scheme in another direction. namely 
to treat singular elliptic equations, see [3]. It appears that his results can be used in combination 
with ours. 

Our conclusion is that the monotone scheme seems to be applicable in any problem with 
a weak maximum principle, provided there is some gain of derivatives for the corresponding 
linear problem. In addition to the applications considered in this paper, such a situation arises, 
for example, for Tricomi’s equation, where there is a maximum principle due to Agmon, 
Nirenberg and Protter, see [l]. Telegraph equation is another example. 

2. NOTATION AND THE PRELIMINARY LE.MMAS 

Let D be a bounded domain in R", and let dD = rl U Tz U . . . U rk denote a part (or the 
whole) of its boundary. By ]I. II,,, we denote the mth Sobolev norm and ] u IL= = ess s;p j K I. We 

shall write c for all irrelevant constants. 
We shall use the following standard lemmas, see e.g. [4] for proofs. 

LEMMA 1. Suppose that w(x) E C” and q = 9(x, w) has continuous derivatives up to order 
m 3 1 bounded by c on / WI =S co, x E D. Then 

II QG7 w) II ,4c(I]w]lm+ 1) for/wlL=6cg 

LEMMA 2. Suppose fi, fi E Cm (D) such that all norms appearing below are bounded; 
m L [n/2] + 1. Then 

llflfillm c 4lfillmllfillm~ 
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LEMMA 3. (Interpolation inequality.) If f E C”‘(D) and 0 <j < m, then 

llfll, s cllfll~Vflllt-’ m. 

3. THE GENERAL THEOREIMS 

THEOREM 1. We consider the following nonlinear boundary value problem 

Lu =f(x, u) in D 

Bp=g,(x.u) onI,,j=1,2 ,..., k. 
(1) 

Here L and Bj are linear partial differential operators of orders mo and Mj respectively. We 
make no explicit assumptions on their order, type and smoothness of coefficients (and on the 
domain 0). Instead, we require problem (1) to satisfy the following conditions. 

(i) Consider the linear problem 

Lu - nu = F(x) in D 

BjLl + R,u = G,(X) on I’j. 
(1)’ 

We assume that for any F EC”‘O(D) and Gj ECmJ(Ij) the problem (1)’ is (uniquely) solvable 
for u ECmo(D) II Cm/(JYj) and the following estimate holds (m - positive integer) 

(ii) We assume that if 

Lu - RLL 2 0 in D 

B,u+S2ju~O onrj,j=l,..., k, 
(3) 

for any constants Q, Rj 2 0, then u s 0 in D. This “inverse positivity condition” usually 
follows from a weak maximum principle. 

(iii) There exists a function V(X), called supersolution, such that 

Lg,-f(x,q?)~O inD 

BjQl a g,(X, 9) on each l-j. 
(4) 

(iv) There exists a subsolution v(x), defined by reversing the inequalities in (4). 
(v) v(x) S q,(x) everywhere in D. 
We denote 

m= max t?Ijf 
Osjrk 

and assume finally that p, y EC”“(D) n PJ(lY); f, g E C” in V. = D x {a s u c b} and 
Vj s rj X {a G u S b} correspondingly. 

Then the problem (1) has a solution U(X) ECmo(D) n C”Q(r,). 

Proof. Without loss of generality we may assume that 

agj fU s 0 in V. and - 2 0 in V,. 
au (5) 
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For if otherwise, we may set R =m;x if(x, u) 1, R, =m;x ig,(x, u) /, and consider instead of 
II I 

(1) an equivalent problem 

Lu - Ru =f(x, u) - Ru 

BjU + S2,ll = gj(X, U) + R,U, 
(6) 

for which the condition (5) is satisfied. 
Next, as is standard, we define a nonlinear transformation u = Tu by solving 

Lu =f(x, u) in D 

Bju = gj(x, U) on each rj. 
(7) 

T is monotone, i.e. ui < u2 implies Tul s Tuz. Indeed, setting w = Tul - TUZ, we have by (5) 

Lw =f(x, Ul) -f(x, u*) 20 

Bjw = g(X, UI) - g(Xf ~2) s 0, 

So that by condition (ii) w = Tul - TUZ S 0. 
Next, we let u1 = Tq, and show that u1 G q. Indeed, by (4) 

L(u1-(?9=f(x,v)-LQ,~O 
Bj(Ul- T,) = g(X, v,> - BjV s 0 

and hence u1 - 91 G 0 using condition (ii). 
By induction we get a nonincreasing sequence of iterates ui_1 = Tui, i = 1, 2,. . . , 

ui+l s ui. Similarly, we get a nondecreasing sequence of iterates u1 = TV, uiil = Tuit i = 1, 
29.. . 9 vi+1 2 ui. By monotonicity of T and the condition (u) we have ui s u, for all i, 
and hence both the sequences {Ui} and {Ui} converge pointwise. Call lim Ui(X) = a(x), 

i-e* 

lim Ui(x) = c(x). We show next that ci has the desired smoothness and ri = Tti. 
i-am 

Indeed, since zi - u,+ 0 pointwise and is bounded (by ~JJ - v) it follows that ri - u,+ 0 
in L*, i.e. IId - u,[/o+ 0. Also, IIu,/lo < c uniformly in n. Then by (2) and lemma 1 

uniformly in n. By induction 

IIkl+lllmtl s c 
( Ilf(x7 un)llm + ,i IlgiCxt un> II-) s c 

uniformly in n (n ~m).Bylemma3wehaveforanyO<~<f 

llUP - U,I),+i_ < cIIup - U,Il~~ll-E)‘(m*l)IIup - &lj#(mfi) 

G cl/up - u,~~~~~+~)-, 0 as n,p + cQ, 

so that {u,} is a Cauchy sequence in Hm+leE. Then by imbedding and trace theorems for 
Sobolev spaces and the choice of m we conclude that {u,} is a Cauchy sequence also in 
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Cmo(D) and CmJ(rj). H ence u EC”O fl Cmj(Ij), and we can pass to the limit in 

&I-l =f(x, n,) in D 

B,un - I = gj(X, u,) on each I-j, 

to get the desired solution for the problem (1). 

Remark 1. If conditions (i) and (ii) are simultaneously satisfied only for 51 = 0, then the result 
holds provided f,(x, u) s 0 in Vo, as it is clear from the proof. Similarly, if the same conditions 
can only be satisfied if some Qi = 0, then the theorem holds provided @,(x, u)/du 2 0 in 
V,, for that j. 

Remark 2. In the case gj = gj(X) the estimate (2) can be relaxed to consider 

ll”ll~+i~c~j\~\l~+ lZ/\Gji!m-o)70>0. 

provided g,(x) E Cm’” for that j. 

(4' 

Remark 3. Let P be a subspace of Cm0 which is presened under action of the solution operator 
T. If in addition to the conditions of theorem 1 we have t@, q E P then the conclusion of the 
theorem holds and moreover ti E P. As an example of P we may consider functions which are 
Xl, . . t tk periodic in variables xi, . . . , xk. Another common example is spherically symmetric 
functions. 

Remark 4. Boundary conditions need not be prescribed on all parts of aD. We do not study 
uniqueness questions at present. 

Remark 5. If instead of (2) we have a stronger estimate 

then it suffices to assume f, g E Cm-i, with m as defined above. 

THEOREM 2. Let D1 C DZ C . C D, C . . be bounded domains in R”. D, = fi D, may 
I 

be unbounded, and let aD = rl U I?1 U . . . U rk be a part (or the whole) of their common 
boundary. Assume that for each n the problem 

Lu =f(x, u) in D, 
(8) 

B,K = g,(x, U) on each Ii 

satisfies all conditions of the theorem 1. Assume that the problem 

Lu =f(x, u) in D, 

B,u = g,(x, u) on each I, 
(9) 

has super- and subsolutions t/~‘, ~1 (as defined above) with TJ =Z Q: in D,. Then the problem 
(9) has a solution u ECmo(D,) II C”‘(Tj). 
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Proof. It is clear that for any n, 9: and i+9 are super- and subsolutions of (8). Call solution 
of (8) by u”, t,!~ c U” < 47. Consider the sequence {u”} on DI. Since 11~“$, G c independent of 
n, we have by repeated application of estimates (2): I/ d/j,_ I G c, so that by Sobolev imbedding 
and definition of M 

II~“IIC”~-a(~=~ + ,F, II~~“lIcm~-~(~,) c C, 

for some CY> 0. Since the imbedding Cpta + Cp is compact we can (in k + 1 steps) select a 
subsequence {u”~} converging in Cn”(D1) nC”‘Q(l-‘,) to a solution of (8). Next, we consider 
{u”~} on Dt (ni 5 2). In the same way we extract a subsequence which converges in Dz to a 
solution of (8). By repeating this process for D3, Di, . . . and then taking the usual diagonal 
subsequence, we establish the theorem. 

Remark. The functions QI and 11, are allowed to be unbounded in D,. 

4. A NONLINEAR NONCOERCIVE ELLIPTIC PROBLEM 

We shall apply theorem 1 to the following boundary value problem: 

u,v - 4, = g(x, z, u). y=l (lOa) 

Au =f(x,y,z, u), O<y<l (lob) 

u = 0, y = 0. (1Oc) 

Here f and g are assumed to be 2~ periodic in x and z, and we are looking for a 2.7 periodic 

in x and z solution U(X, y, 2). In [5,6] we discussed the relevance of (10) as a model noncoercive 
problem and its connection with the theory of water waves. In order to prove our esistence 
result we need the following lemmas. 

LEMX~ 4. Consider the problem 

KY - u,, + Q,u = g(x, z), )‘=l 

Au - Ru = f(x,y,z), O<y<l (11) 

u = 0, y = 0. 

Let the functions f, g E H”, m 3 0, be 2n periodic in x, z. Then for any Q, Ri > 0 problem 
(11) has a unique 212 periodic in X, z solution u(x, y, z) and 

II4 m+Z s 4llfllm + Mm + ll&llm). (12) 

Proof. Let u(x, y, z) be any 2n periodic in X, z function, satisfying U(X, 0, z) = 0. Multiply 
(lob) by u and integrate by parts. Periodicity and (10~) imply that the integral 
_fa~ u (au/&z) dS will have contributions only from the top (y = 1) part of the boundary (where 
au/&r = c+), i.e. we have 

- vu.vu-njuu+luul=~fu, 
I 

where we denote J w =JpJ,$ Jp w(x, y, z) dr dy dz and JI w = Ja,7J? w(x, 1, z) ctu dz. 
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Using (lOa) and periodicity we get: 

I I 
vuy = u(u, - 

t t 
n,u+g)=-jrr,u,-nl~~v+jTgv. 

so that 

- 
j 
Vu.vv-Rjuv-~4vx-!2,JTL‘v+~gv= jfv. (13) 

Next we let v to be successively equal to u, LL~.~, uzz in (13). obtaining the following formulas 

- j\vu;2- s-2 ju2- jui- 52, juz+ jgu= jfu, (14) 

- j VU .VU, - n j ,J,, - J+L - d, /+,, + JTg4, = jfh (13 

- 
j 

Vu.VUZL-R juu,,-~u,u,l~-a,~u~~,,+~gu~~= jfh. (16) 

Notice that by (10~) Jtu’ <J jVuj2 and J ~1~ sJ/Vuj’. Then we estimate [writing LHS (14) 
for the left-hand side of formula (14)]: 

ILHS(14)~bj~Vu~‘-:~~~~-~~;‘~ij~Vill’-~~g’. 

Also 

IRHS(14)l~~jf2+?jlc’~2jf’16jlV~l~. 

Combining, we get: 

In formula (15) we integrate by parts, obtaining 

j jVu,l”+ n jd+ Jr&+ n,~ui+jlgu~*= jfh 

Estimating exactly as in the case of (14) we get: 

Similarly starting with (16), we get: 

Then by (lob), (18) and (19) we estimate 

ju;ysC(jfZ+ jut,+ j&)sc(jf~+~g2). 

(17) 

(18) 

(19) 

(20) 
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Adding the estimates (17)-(20) we obtain 

II U/l? s 4lfllO + ll8llo + llkT~ll0L 
which proves the lemma for m = 0. 

The higher estimates are easily obtained by differentiation of equations (11). see [j-7]. 
Existence of solution for the linear problem (11) follows by an elementary Fourier series 

analysis. 

LEMMA 5. Let u(x, y, z) be 212 periodic in X. z and 

U --u Y 
xx + R,u s 0, y=l 

All - c-211 2 0, O<y<l 

u s 0, y=o 

Thenu=SOintheentirestripS:O~ySl, --3c<x,z<x. 

Proof. By the maximum principle u(x, y, z) assumes its maximum on the boundary of the 
strip S. We argue next that a positive maximum cannot be assumed on the top (y = 1) part 
of the boundary. Indeed, in such case at the point of maximum we would have U, > 0 by 
Hopf’s lemma, and then 

u, 2 lly + n,u > 0. 

a contradiction. Hence u G 0 in S. 
We can now state our existence result. 

THEOREM 3. Assume that problem (10) has a subsolution ~(x, y, z) and a supersolution 
9(x, y, z) with q s cp. Suppose that 2.~ periodic in x and z functions ~(x, y, z), e(x, y, z), 
f(x, y, z, u), gz(x, z) belong to C3 for 0 Sy 6 1, -= <x, z < xc; W=S u G q. Then problem 
(10) has a 2n periodic in x, z solution u(x, y, z) E C’(s). 

Proof. We apply theorem 1. Conditions (i) and (ii) are satisfied in view of lemmas 4 and 
5 (see remark 5 for the smoothness requirement). The remaining conditions of theorem 1 are 
assumed here. As an example for theorem 3 we have the following. 

PROPOSITION 1. Consider problem (10). Assume that the functions f and g are 2x periodic in 
x, z, belong to C3 and are sublinear in U, i.e. 

lf(x,y,z, u)l Gco(l + b+)> 

Ig(x,z,u) ~Co(1 + ]u]“),O c CYcl 
(21) 

for all real K and (x, y, z) in the strip 0 S y s 1. Then problem (10) has a C’ solution. 

Proof. According to theorem 3 we have only to exhibit super- and subsolutions. Let cp = 
b(l - e-y), b = const > 0. In order for 9, to be a supersolution for (lo), we need according 
to (4) and (21) 

be-’ 2 ~(1 + [b(l - e-‘)I”} >g(x. t, pl) 

-be-‘S -co{1 -t [b(l - e-y)l”)~f(x,y,z, q)> 
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which is easily achieved by taking 6 large enough. Similarly, one sees that v = -6(1 - e-Y) 
is a subsolution, completing the proof. 

Remark. Proposition 1 can also be proved via Schauder’s fixed point theorem. 

5. NONLIiUEAR WAVE EQUATION 

For simplicity we consider a one-dimensional wave equation for an infinite string (with 
prescribed initial conditions) 

u1.X - Llrr=f(X,f,U), --J: <xc rJ,t>O 

u(x, 0) = g(x) (22) 

L&v 0) = h(x) (g, h E C,r). 

although our results generalize to general hyperbolic equations in two and three dimensions. 

THEOREM 4. Assume that for 0 s t s T, --x < x < = the following conditions hold: 
(i) There exists a supersolution &x, t), i.e. 

%X - Q)rr =% f (x. t, v7) 

vC(x> 0) 2 g(x) 

l&(x, 0) 3 h(x). 

(ii) There exists a subsolution ~(x, f), defined by reversing the inequalities in (i). 
(iii) q < q. 
(iv) fu =S 0 for inf r& =5 u G sup q. 

(v) f E CJ in a;l’arguments f:: inf y < u G sup, and g EC& h E Cd, q, q E C’. 

Then problem (22) has a C* sol:;ion u(x, r):‘with w c LL s 9 for 0 s t c T. ---<XX<. 

Proof. We proceed to verify conditions of theorem 1. As is well-known, if 

then u(x, t) s 0 for 0 G t s T, see e.g. [8, p. 1961. This verifies the condition (i). Condition 
(ii) follows from the following 

LEMMA 6. Consider the problem 

u,,-L11,,=f(~,t),--<<~<x,O~t~T 

4x, 0) = g(x) 

4x, 0) = h(x), g, h E C;. 

(22)’ 
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Denote by 11. Ijrn (integer m 5 0) the mth Sobolev norm in x, f space. Then 

II4 m+l s C(llfllm + llgllm-1 + IlmA c = c(J-1. (23) 

We postpone the proof of this lemma, which supplies the desired estimate, in view of remark 
2 to theorem 1. 

Next we recall a standard fact, that for f, g, h E C’ problem (22)’ has a unique solution 
u(x, t) E c’. 

Now theorem 4 follows by applying theorem 1 to any finite domain D, containing the 
domain of influence for problem (22) for t G T. 

Proof of lemma 6. We start with the standard energy inequality, see 14, p. 321. 

(CL: + uf) dr s c (j__;f’&+/_=y+h?)d+=c(T). (24) 

Notice that for each t, u(x, t) is of compact support, so that 

I 

3c 
u’(x, t) dx s c 

I Y K; + uf) dx. (25) 
--r --r 

Then integrating (24) in t from 0 to T, and using (25), we get the estimate (23) form = 0. The 
higher estimates are obtained by differentiation of (22)‘. 

An example for theorem 4 is given by proposition 2. 

PROPOSITION 2. Assume that for - = < x < x, 0 < t G T, --r < u < =, we have: 

(i) If(x, t, u)l S c(l + jula), 0 < a< 1 
(ii) fu S 0; f, g E C3. 
Then problem (22) has a C’ solution u(x, t) for 0 s t < T, - = < x < x. 

Proof. Similarly to proposition 1, we show that cp = C(2t - e-‘) and li, = -q are super- and 
subsolutions for (22), provided the constant b is chosen large enough. 
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