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Abstract

‘We use bifurcation theory to obtain the exact multiplicity of solu-
tions for a class of Neumann problems, where the nonlinearity changes
concavity at most once on some interval. Our results cover both the
cubics and the Euler’s problem of buckling of an elastic rod. We also
study the direction of bifurcation from the trivial solution.
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1 Introduction

We use bifurcation theory to study the exact multiplicity of solutions for a
class of Neumann problems

(1) ' +Af(u)=0, on(0,1), «'(0)=1'(1)=0.

While a number of exact multiplicity results are known for the corresponding
Dirichlet problem, see e.g. (8], [10], [5], [4] and the numerous references in
those papers, relatively little seems to be known on the exact multiplicity
of the Neumann problem, see e.g. J. Smoller and A. Wasserman [8] or R.
Schaaf [7] for the previous works.




We investigate the problem (1) in several directions. Our main result
deals with the ezact multiplicity of solutions, which behave like polynomials
with simple real roots. We begin by considering nonlinearities f(u), which
behave like cubics with three distinct roots, and then generalize. Our model
case is a cubic f(u) = (u— a)(u — b)(c — u), with the roots a < b < ¢, which
changes it concavity only once at some r € (a, ¢). Without loss of generality
we shall assume that b = 0, and so a < 0 < ¢ (otherwise replace u — b — u),
and that r € [0, ¢), since otherwise we may replace u by —u in (1). So that
we assume that f(u) € C3[a, c| satisfies

(2) fla)=f(0)=f(c)=0, a<0<ec
f(u) <0 forué€(a,0) and f(u)>0 forue (0,c¢)

(3) f"(u) >0 for u € (a,7) and f"(u) <0 for ue (r,c),
for some r € [0, ¢].

A very particular example is given by the Euler’s problem of buckling of
an elastic rod

(4) v’ + Asinu=0, on(0,1), /' (0)=4/'(1)=0.

Here 7 = 0, and we obtain an exact global diagram. The standard proof
of this result as on page 8 in S.-N. Chow and J. Hale [1] uses time map
analysis, which is relatively easy only if one uses the particular form of the
nonlinearity.

Notice that the above conditions imply that f’(0) > 0, and then the
Crandall-Rabinowitz theorem on bifurcation from simple eigenvalues [2] im-
plies that there are infinitely many solution curves bifurcating from the
trivial solution at the eigenvalues Ax of the linearized (at zero) problem.
Under some additional technical assumptions listed below (conditions (5)
and (6)) we show that all these curves continue for all Ay without any turns,
and that these curves exhaust the solution set of (1). We thus obtain an
ezact count of all solutions of (1) at any value of the parameter A. Similar
result, using time map analysis, was given previously by J. Smoller and A.
Wasserman (8], but only for cubic nonlinearities. We conjecture that the
conditions (5) and (6) can be dropped.
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Crucial to our study will be to show that any non-constant solution of
(1) is non-degenerate, i.e. the corresponding linearized problem has only
the trivial solution. For that we need two technical conditions. In case
J2 f(u) du > 0, we define the number 6 € (0, ¢) by the condition ff flu)du =
0. We shall sometimes assume that

(5) f"u)<0 for0<u<r,
and that
(6) 6 <r.

Observe that in case of a cubic f(u) = (u + a)u(c — u) we have r = &4,
= ¢3¢, and also that the condition (6) is satisfied if ¢ > (1 + v/3)a.

In another direction we study the direction of bifurcation from the trivial
solution u = 0 for rather general nonlinearities f(u). For the Dirichlet
problem it is well-known that the direction of bifurcation is governed by the
sign of f”(0). For Neumann problem this sign is irrelevant, as it can be
always switched by a change of variables —u — u. In Section 4 we show
that bifurcation at the odd-numbered eigenvalues is to the right, provided -
that f'(0) < 0.

In Section 5 we show that one can use exact multiplicity results for
the Dirichlet problem to derive similar results for the Neumann problem.
A number of exact multiplicity results for the Dirichlet problem has been
given in recent years, see e.g. [4], [5] and the references given there. In
particular we obtain another approach to the Euler’s problem of buckling
of an elastic rod. In Section 6 we work in the opposite direction, and show
that our results on the Neumann problem imply some new results for the
Dirichlet problem.

We record the following simple observations as a lemma. What it basi-
cally says is that solution of any Neumann problem (1) looks like cosz on
the interval [0, na].

Lemma 1 Let f € C(R). The problem (1) has only one minimal and only
one mazimal values. Moreover, there is an integer n > 1 so that u'(i/n) =0
fori=1,...,n—1, and either ' > 0 or ' < 0 holds on every interval

((t = 1)/n,i/n).

Proof:  Follows from the fact that any solution of the equation in (1) is
symmetric with respect to any of its critical points, which is easily seen from
the uniqueness for initial value problems.




This lemma implies that it suffices to study monotone on (0, 1) solutions
of (1). In case u(z) is increasing on (0,1), observe that f(u(0)) < 0 and
fu(1)) > 0.

2 Non-degeneracy of solutions

The following lemma is a variation of Sturm comparison result, similar to
the one in [6].

Lemma 2 Assume that on some interval (o,7) we have 2'(a) <0, and

(7 2" +a(z)2<0, and z>0,
while
(8) w' +a(z)w =0, w(a)>0 and w'(a)>0,

with a(z) continuous on (c,). Then the function w(z) cannot vanish on
(a,7). If the inequality (7) is strict on a set of positive measure then w(z)
cannot vanish on (a,v]. Similarly, assume that (7) holds with both signs
reversed and also 2'() < 0, while

(9) w' +a(z)w=0 on (o,7), w(y)<0 and w'(y)>0.

Then the function w(z) cannot vanish on (a,v). If the inequality (7) (with
the sign reversed) is strict on a set of positive measure then w(x) cannot
vanish on [a,7y).

Proof:  Assuming otherwise, let £ € (o, v) be the smallest root of w(z).
Since w(a) > 0, it follows that w(z) > 0 on [, £). Multiplying (7) by w,
and subtracting (8) multiplied by z, then integrating over (o, ¢), we obtain

—2(w'(§) - Z()w(a) + z(e)w'(a) 0,

which is a contradiction, since w'(§) < 0, and so the first term is positive,
while the other two are non-negative.

The second part of the lemma is proved similarly.

Remark. We may switch the signs of the inequalities in both (8) and (9).

Lemma 3 Let u(z) be any increasing solution of the Neumann problem (1)
with values in the interval (a,c). Then u(l) < 4.




Proof: Just multiply the equation (1) by v’ and integrate over (0, 1).

We shall also need the following elementary lemma. We define 8 € (0, ¢)
! _ 1B
by f/(8) = g

Lemma 4 Under the conditions (2) and (8) the function h(u) = f(u) —
f'(u)u has the following properties: h(0) = h'(0) = h(8) = 0, h(u) < 0 for
u € (a,B), h(u) >0 for u € (B,¢).

Proof: Clearly r < 3, and since h/(u) = — f"(u)u, the proof easily follows.
The following lemma will be our main tool. We begin with the increasing
solutions.

Lemma 5 Let f(u) satisfy the conditions (2), (3) and (5). Then in case
r > 0 any solution of the Neumann problem

(10) W'+ flu)=0, >0 on(0,1), (0)=1du/(1)=0,
satisfying a < u < 7, is non-degenerate, i.e. the problem
(11) Liwl=w"+ f(w)w=0, on(0,1), w'(0)=w'(1)=0

has no nontrivial solutions. In case r = 0 the same conclusion holds for any
solution of (10) satisfying a < u < c.

Proof: Since u(z) is increasing, clearly we have

(12) f(u(0)) <0 and f(u(1)) >0,

so that u(0) € (a,0), and u(1) € (0, c). Differentiate the equation (10)
(13) ulr + f(u)ug = 0.

- (We mix two notations for derivatives to make the proofs more transparent.)
It follows that the functions w(z) and uz(z) satisfy the same linear equation,
and since they are not multiple of each other (w/(0) = 0, but v, (0) =

—f(u(0)) > 0), it follows that w(z) must vanish on (0,1). We shall show
that this is impossible.

Differentiating the equation (13), and using (12), we have

(14) w4+ F(W)tge + f (W)u =0, uge(0) >0, ug(1) <O0.
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Denote by ¢ and 7 the points where u(§) = 0 and u(n) = 7. Incase 7 > 0
we clearly have 0 < £ <1< 7. Incase r =0 we have 0 < { =7 < 1. The
function z = u”(z) (which is positive to the left of £ = ¢ and negative to
its right) will be our first test function. Observe that L{u”] < 0 and 4" > 0
on (0,¢), and also 4/ (0) = —f(u)uz(0) = 0. It follows by the first part of
Lemma 2 that w(z) cannot vanish on (0,£]. In case £ = 7, ie. 7 = 0, by
a similar argument w(z) cannot vanish on (£,1) and the proof ends here.
Hence we assume for the rest of the proof that r > 0 and a < v < 7.
By the above w(z) can vanish only on (€,1). It is easy to see that w(z)
would have to vanish exactly once on (£,1). This follows from the identity
uw'w' — v'w = constant, which is obtained from the equations (9) and (13).
Hence, we may assume that

w(0) < 0 < w(l),
and that w(v) = 0 at some v € (£,1).
To cover the interval (£,1) we shall use another test function
(15) z(z) = u" - 2f'(0)u +~,
with the positive constant v to be chosen. We have
(16)  Llz] = —f"(wui + 2f'(0) [f(w) = F'(uw)u] +7F'(u) = g4(2)-

Let a < u1 < up < ¢ be the roots of f'(u). Define the point 0 < a < ¢ by
u(a) = uy in case u(0) < u3, otherwise set & = 0. Since by our assumptions
u(1) < r < ug, we conclude that

(17) fllu(z)) >0 for a<z<l.

Observe that

(18) g (@) = =" (wyul + 2f" (W) [f(u) — £(0)u]
+7f"(wuy >0 forz € (o,1),

ie. g,(z) is increasing on (a,1). Observe also that 2/ = —f'(u)u’ —
2f'(0)u’ < 0, i.e. 2(z) is a decreasing function on (e, 1), and since z(0) > 0,
it follows that z(x) is positive to the left of its root, and negative to the
right. When v = 0, by Lemma 4, go(z) < 0 for all z € (0,1), while z(z)
changes sign exactly once at z = £. We now increase v > 0. Then the root




of z(z) moves continuously to the right, becoming equal to v at some 7, and
then becoming equal to 1 if v is sufficiently large.

If gy(z) < 0 for all z € (0,1) then by Lemma 2 w(z) cannot vanish on
(0,v], a contradiction. (Notice that z/(0) = 0.) Otherwise, at some vg < ¥
we have g,,(1) = 0, and then for v > 4o the increasing function g,(z) will
assume both positive and negative values on (0,1). As we increase -, the
root of g,(z) moves continuously to the left, becoming equal to ¢ if v is
sufficiently large. We now increase v until the roots of z(z) and g,(z) meet,
say at some p € (£,1). We have

(19 G(@) <0 on (), 6(2)>0 on (1),
z>0 on(e,p), 2<0 on(ul).

We show next that w(z) cannot vanish on either (0,4 or [u,1), which
will result in a contradiction.

Case I. Assume that w(z) vanishes on (0, yJ.

(i) Assume first that o = 0. Then on (0, u) we have L[z] < 0, while z > 0
and z'(0) = 0. By Lemma 2 w(z) cannot vanish on (0, 1], a contradiction.
(ii) Assume that o > 0. Since w(0) < 0, w'(0) = 0 and vw"(z) = —f'(u)w <
0 for z € (0, e), it follows that w(z) is decreasing on (0, @), and in particular
w'(a) < 0. By Lemma 2 w(z) cannot vanish on (a, u], a contradiction.

Case II. Assume that w(z) vanishes on [u,1).

On (p,1) we have L[z] > 0, while z < 0 and 2'(1) = 0. By Lemma 2
w(z) cannot vanish on [u,1), a contradiction.

Remarks.

1. Examining the proof, we see that under the conditions of the lemma
the problem (more general than the linearized problem (11))

Liv) =w"+ fllu)w=0, on(0,1), w'(0)>0, w'(1)>0
has no nontrivial solutions. Here we assume that w(0) > 0 > w(1).
2. Clearly the same result holds in case u/(z) < 0 on (0, 1).

3. In the proof of this lemma we did not use that f(c) = 0. Hence the
lemma holds for the functions f(u) which are positive for all u > 0,
provided they satisfy all other conditions.




We now remove the assumption that solution is a monotone function.

Lemma 6 Let f(u) satisfy the conditions (2), (3) and (5). Then any solu-
tion of the Neumann problem (1) satisfying a < u < r, is non-degenerate.
In case r = 0 the same conclusion holds for any solution of (1) satisfying
a<u<ec.

Proof: Since we have already proved this lemma for monotone solutions,
let us assume that the solution of (10) u(z) changes monotonicity exactly
once, with say u'(z) > 0 on (0,1/2), v/(1/2) = 0 and v/(z) < 0 on (1/2,1).
Arguing as in the previous lemma, we conclude that w(z) must vanish on
both (0,1/2) and (1/2,1). We may assume that w(0) < 0. Observe that
w(z) may vanish only once on (0,1/2), and that w(1/2) # 0 (since otherwise
ug would have to vanish inside (0,1/2), which is impossible). It follows that
w(1/2) > 0. If w'(1/2) < 0, then we obtain a contradiction on the interval
(0,1/2), by Lemma 5. Otherwise, we obtain a contradiction on the interval
(1/2,1), completing the proof for this case.

For the general case, assume that u(z) has n intervals of monotonicity,
with v/(i/n) =0 fori=1,...,n— 1. As above, w(z) must vanish exactly
once inside each interval of monotonicity. We may assume that w(0) < 0,
and then w(l/n) > 0. To avoid a contradiction on the first interval of
monotonicity we must have w'(1/n) > 0. To avoid a contradiction on the
second interval, we must have w(1/2) < 0 and w'(2/n) < 0, and arguing
inductively w((n —1)/n)w'((n —1)/n) > 0, and w((n —1)/n) # 0. We then
obtain a contradiction on the last interval.

3 Exact multiplicity of solutions

We now consider a class of Neumann problems, depending on a positive
parameter A

(20) o +Af(u) =0, on(0,1), «'(0)=4'(1)=0.

Lemma 7 For any continuous solution curve the number of mazimum points
of the solution u(x) stays constant in A. Moreover any solution of (20) with
a given number of intervals of monotonicity is uniquely determined by its
mazimum (or minimum) value (i.e. the mazimum value of solution uniquely
identifies both A and the corresponding solution u(x)).




Proof: By Lemma 1 the critical points of solutions can occur only at
z = i/n. Since solution varies continuously in A, these critical points must
stay in the same place, and hence their number stays constant on a branch.
Turning to the second part, let (A, u(z)) and(uv(z)) be two solution pairs of
(20), with both u(z) and v(z) monotone on (0,1). Then u(v/Az) and v(y/fz)
are two different solutions of the same initial value problem, a contradiction.
If u(z) and v(z) have n > 1 intervals of monotonicity, we obtain a similar
contradiction on the first interval.

The following lemma says that for large X solutions of (20) concentrate
their values near either a or ¢ (or both) except for narrow transition layers.

Lemma 8 Consider solutions of (20) satisfying a < u < ¢, and assume
that the condition (2) holds. If [¢ f(u)du > O then for large A any solution
of (20) tends to a, ezcept on some subintervals of (0,1), whose total length
tends to zero. If [° f(u)du < O then for large A any solution of (20) tends
to c, except on some subintervals of (0,1), whose total length tends to zero.
If [ f(u) du = O then for large A any solution of (20) tends to either a or

¢, or both, except on some subintervals of (0,1), whose total length tends to
zero.

Proof: Let us consider the first case, [ f(u)du > 0, with the other ones
being similar. We know by the previous lemma that as A — oo solution keeps
the same number of maximums and minimums, and also a < u(x) < c.
If u(z) failed to approach one of the roots of f(u) on some subinterval
of (0,1), we would have large values of u”(z) on that interval, which is
impossible without the solution getting large or more oscillatory. Solution
cannot approach 0 on some subinterval, since it is convex for u < 0, and
concave for v > 0. So it can only approach either a or ¢. If m, and M
denocte respectively the minimum and the maximum values of the solution,
then from (20) we obtain fn];l f(u)du = 0. It follows that solution must
approach a except for transition intervals, whose length is o(A). (And the
maximum value approaches 6, defined by ff f(u)du=0.)

Theorem 1 Assume that [, f(u)du > 0, and moreover f(u) satisfies the
conditions (2), (8), (5) and (6), which imply in particular that
(21) f'(0) > 0.

Then at Ap = ",2’62 the Neumann problem (20) has a curve of solutions
bifurcating off a trivial solution u = 0. These curves continue without any




turns for all A > An, and they ezhaust the set of non-constant solutions of
(20), satisfying a < u < c. (See Figure 1.)

lu

A1 Ao A3

Figure 1

Proof: Multiplying the equation (20) by v/, and integrating between

any two consecutive points of negative minimum and positive maximum, we
U

2 .
conclude that f(u)du = 0, where u; < 0 and ug > 0 are respectively
uy1
the minimum and the maximum values. Since u; > a, it follows that us < 6.

Since by our assumptions 8 < r, it follows that u(z) < r for all z, so that
by Lemma 5 all solutions of the problem (20) are non-degenerate.

It is well-known that bifurcation from zero occurs from the problem (20)
at A = A, see [2] (see also [9] for a recent nice presentation, which develops
the Crandall-Rabinowitz result in R?, avoiding the use of Banach spaces).
The direction of bifurcation is necessarily to the right, since if a curve were
to bifurcate to the left, it would have no place to go as A — 0 (it cannot turn,
cannot enter another A;, and it has to dissappear by A = 0). By Lemma 8
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as A — oo on any curve either minimum value goes to a or the maximum

value goes to ¢ (or both). By Lemma 7 we see that these curves exhaust the
set of non-constant solutions.

Remark. In case the condition (6) does not hold, we can assert non-
degeneracy only of small solutions, i.e. solutions satisfying u(z) € (a,r).

Example 1. f(u) = (u — a)(u — b)(c — u), a cubic with three distinct
real roots @ < b < c. By a shift u — u — b we may assume that f(u) =
(u+a)u(c—u). In case ¢ > (1++/3)a the theorem 1 applies. In particular, we
obtain uniqueness of solution with a given number of maxima, and satisfying
—a < u < c¢. We see that our theorem 1 provides an extension of the
corresponding result in J. Smoller and A. Wasserman [8].

Example 2. f(u) =sinu, with —7 < u < 7. This is a classical problem of
buckling of an elastic rod, going back to Euler. Using quadrature methods
it is shown that there are solutions curves bifurcating off the trivial solution
at A, = n?7?%, and continuing for all A > Ay, see e.g. [1]. We recover that,
without using the particular form of the nonlinearity. (Here r = 0.)

Our results apply to rather general nonlinearities with arbitrary number
of roots, u1,us.... In particular if we assume that f(u) changes concavity
exactly once on any interval (ug, ug+2), and the area of each positive hump
is less or equal to that of the adjacent to its left negative hump, then we can
obtain the exact number of solutions of (20). Indeed, we may consider our
problem on each interval (uy,ug+2) separately, since the above assumption
on the areas of the humps excludes the possibility of solutions with values
in more than two humps.

We conclude this section by remarking that solutions of the Neumann
problem can be continued into periodic solutions. For example, for the
elastic rod problem
(22) v + Asinu =0

we can give an ezact count of non-constant periodic solutions of any period
for any value of the parameter A\. In particular, the number of periodic
solutions of period 2 satisfying —m < u(z) < 7 is equal to twice the largest
n such that n?7? < A. Similarly we count the periodic solutions of (22) with
values in (7, 37), and so on.
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4 Direction of bifurcation from the trivial solution

We study the direction of bifurcation from the trivial solution for the prob-
lem

(23) W +Af(w) =0, on(0,L), u(0)=uu(L)=0.

We consider more general f(u) € C3(R) than in the rest of the paper.
Namely, we assume that f(0) = 0, while f'(0) > 0, taking f/(0) = 1 without
restricting the generality. Then if f(u) = O(u?) as u — 0, the classical the-

orem of Crandall-Rabinowitz [2] implies that non-trivial solutions bifurcate
off u = 0 at the eigenvalues A\, = %“rz For the much studied Dirichlet

problem the direction of bifurcation is determined by the sign of f”(0). For
the Neumann problem (23) the sign of f”(0) is irrelevant, as it can always
be switched by making a change —u — u. Instead, the direction of bifur-

cation is governed by f"/(0). We begin with the principal eigenvalue, and
then generalize.

Theorem 2 Assume that f(u) € C3(R) satisfies

(24) f(0)=0, f(0)=1, f"(0)<0.

Then bifurcation from zero at A\, = —%; is to the right (i.e. in the direction

of increasing A).

Proof:  According to the Crandall-Rabinowitz theorem the solution set
of (23) near (u = 0, = ;) is exhausted by a solution curve (A(s), s¢1(z) +
s¢(s,z)), where s is a parameter defined near s = 0, and A(0) = A,
¥(0,z) = 0, and ¢1(x) = cos Fz. Observe that both branches of the so-
lution curve must bifurcate to the same side. Indeed, if u(z) is a solution

of (23), u(L — ) gives another solution of (23) at the same A. We conclude
that

(25) N(0) = 0.

(Otherwise, the solution set near (A1,0) would consist of two curves, con-
tradicting the Crandall-Rabinowitz theorem.) We differentiate the equation
(23) twice in s, then set s = 0. Using that us(0,z) = ¢1(z), (24) and (25),
we obtain

(26> u{sls + Auss = —Alf”(O) C052 %.’K, on (05 L))
U (0) = uigy (L) = 0.
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The problem (26) is a linear equation at a resonance, with the right hand
side orthogonal to the kernel. Its solution is given by

1
(27 uss = —f”(O)(% — = cos 37I:E) +AcosZz = —f"(0)tgs + Acos Tz,

6 L L L
where A is an arbitrary constant. Observe that
1 1 2
(28) Ugs = ST geosTE> 0 forallz e (0,L).
For |s| small, i.e. near the bifurcation point, we have by the Taylor’s formula
1
(29) U = 5CO8 %m + §szuss + o(s%).

Similarly, for small u we have
1 1
(30) Flu) = w5002 + 3 7(0)® + ofu?).

We now multiply the equation (23) by ¢1(z) = cos ¥z, and integrate. Using
(30), we have for small u

(31) (A= A1) fOL ucos T dz + —é—f”(O) OLu2 cos Fz dz
+5/"(0) 0Lu3 cosFrdr+...=0,

where we denote by ... the higher order terms. Using (29), we have

L - L ,r
(32)/ ucos & dz = s/ cos” T dx+o(s) >0 for s > 0 and small.
0 0

Observe that fOL cos® Zz dz = 0. Using (27) and (28), it follows that
(33)  1f"(0) OL u? cos Fz dz = $%f(0) fOL ugs cos® Fx dz + o(s®)
= —-%-sg’f”(O)2 JE g5 cos? Zzdz+0(s®) <0 for s >0 and small. |
Similarly,
(34) JE u cos Izdz=s® JE cost Zxdr+o(s®) >0
for s > 0 and small.

Using (32), (33) and (34), we see from (31) that A > A; for s > 0 and small,
i.e. the direction of bifurcation is to the right.

Remark. Similar analysis shows that under the conditions (24) bifurcation
from zero from higher eigenvalues A; is to the right, provided k is odd.
The oddness of k is used to show that u(L — z) gives a different from u(z)
solution, implying that A’(0) = 0.
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5 Reduction to the Dirichlet problem

‘We now show that it is sometimes possible to use exact multiplicity re-

sults for the Dirichlet problem to derive similar results for the Neumann

problem. Again, we begin with increasing solutions, and then generalize.

For the increasing solution of (1) we have u(0) < 0 and u(1) > 0. Since
u(l)

/ f(u)du = 0, we observe that when A is varied, u(1) is an increasing
u(0)

function of —u(0). We consider the Dirichlet problem corresponding to (1)

(35) v +Af(u)=0, on(0,1), u(0)=u(l)=0.

It is well-known that any positive solution of (35) is even with respect to the
unique point of maximum at z = 1/2, while any negative solution is even
with respect to the unique point of minimum at z = 1/2.

In the following lemma we make no convexity assumptions on f(u).

Lemma 9 Assume that f(u) € Cla,c| satisfies (2). Assume that for A > 0
the problem (35) has a unique positive solution, whose mazimum value lies in
(0, ¢) and is increasing in A, and a unique negative solution, whose minimum
value lies in (a,0) and is decreasing in A. The Neumann problem (1) has
for A > 0 at most one increasing solution, with values in (a,c).

Proof: Let u(z) and v(z) be two different increasing solutions. Let u(£) =
0 and v(n) = 0. If £ = n then by stretching we will get two positive solutions
of (35), corresponding to the same A, which is impossible. So we may assume
& < n. Observe that by reflecting the solutions across the line z = 1, we see
that u(z) satisfies the Dirichlet problem on the interval (¢,2 — §), and v(z)
on (1,2 —7n). If v(1) > u(l), then by stretching the intervals (£,2 — £) and
(n,2—mn) to the interval (0, 1), we obtain two positive solutions of the problem
(35), for two different values of the parameter, so that for u(z) the parameter
value is greater than the one for v(z), while the maximum values of the
solutions satisfy the reverse inequality, a contradiction. In case u(1) > v(1)
we observe that |u(0)] > |v(0)|, and obtain a similar contradiction for the
negative solutions of (35).

The following result follows immediately.

Theorem 3 Under the conditions of Lemma 9 the Neumann problem (1)
has for A > 0 at most one solution, with any given number of intervals of
monotonicity, and with values in (a,c).
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Examples. Assume f(u) = ug(u), where g(u) is a positive continuous
function on some interval (—R, R), R < oo, such that g(u) is decreasing for
u > 0 and increasing for u < 0. Uniqueness of both positive and negative
solution of (35) is well-known, and hence we conclude that the Neumann
problem (1) has at most one increasing solution. Observe that in contrast
to our main result, here f(u) may change concavity arbitrary many times.

If we now consider f(u) = sinu on the interval (—m,7), then g(u) = i%ﬂ
is decreasing for u > 0 and increasing for u < 0. We then obtain another easy
approach to the Euler’s problem of buckling of an elastic rod. Indeed, the
curves bifurcating from the trivial solutions at the eigenvalues A; cannot
turn in view of the Lemma 6. Since by [3] all solution curves continue

globally, we recover the classical bifurcation diagram, see e.g. page 8 in
S.-N. Chow and J.K. Hale [1].

6 Dirichlet from Neumann

We now consider the Dirichlet problem (35), with f(u) satisfying the con-
ditions (2) and (3). Observe that these conditions imply in particular
that f/(0) > 0, and hence bifurcation from zero occurs at each eigenvalue
M = k%?r?. Using our results for the corresponding Neumann problem we
can give a complete global picture for Dirichlet problem (35).

Theorem 4 Assume that f(u) satisfies the conditions (2), (3), (5) and (6).
Then the solution set of the Dirichlet problem (85) consists of infinitely many
curves bifurcating from the trivial solution at A = A\. At A = A; there is a
curve of negative solutions, which bifurcates forward and continues without
any turns for all X > A1. There is also a curve of positive solutions, which
bifurcates backward at A = A1. This curve makes exactly one turn at some
A < A1, and then continues without any turns for all A > . At each
A = Ak, for k > 2 and even, there is a curve of solutions, with both branches
bifurcating forward from the trivial one. Solutions on this curve have ezactly
k — 1 interior roots on (0,1). Both branches of this curve continue without
any turns for all A > Xg. (See Figure 2.)
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Proof:  Our claims about the positive and negative branches through
(A1, 0) follow easily from the results of [5]. We now turn to the sign-changing
solutions. It follows from [3] that the curves of sign-changing solutions,
bifurcating at (A, 0), continue globally. The curve through (As,0) is as-
ymptotic to ¢o = sin2wz, and hence solutions on the curve have exactly
one interior zero. Consider the branch of this curve where solutions have
a negative minimum followed by a positive maximum (on the other branch
the order is reversed). Denote £ the interior root of any solution on this
branch, ¢ = £()). Since solutions of autonomous equations are symmetric
with respect to the critical points, it follows that the negative minimum is
taken at the point @ = %, and the positive maximum at the point § = —%-l— %
We see that u(z) is an increasing solution of the Neumann problem on the
interval (c, B) of length 3. But then this Dirichlet branch cannot turn, since
otherwise we will have two increasing solutions of the Neumann problem on
the interval (0, %), and hence on the interval (0,1) by scaling, contradicting
our uniqueness result for the Neumann problem. The other branch through
Ao is treated the same way. The branches through other even eigenvalues
are examined similarly.

Remark We conjecture that the solution curves through the odd eigenvalues
are similar to the one through A;.
Example For the problem

v+ du(u+a)(c—u)=0 on(0,1), u(0)=u(l)=0,
with a > 0 and ¢ > (1 + v/3)a the Theorem 4 applies.
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