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The purpose of this paper is to prove the following maximum

principle.

Theorem 1. Let u(x) be a real-valued function of class C4 on the
interval [0,2], which satisfies the inequalities
Lu = (ax)u’’)' " =0 for 0 < x <1

(1)
u(0) =z 0, v (0) =0, u(d) =z 0, w() =0,

uhere a(x) is a real-valued function of class CZ[O,E], a(x) > 0 on

10,8]1. Then u(x) =z 0 for 0 = x = ¢

%ﬂlﬁiézx. In the conditions of the above theorem assume that

(a(x)u’’)’’ =0 for 0 < x < ¢

w' (0) =0, u (&) =0.
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Then u attains its minimum at either x = 0 or x = L.

T—

This corollary generalizes the maximum principle.in S.N. Choy

D.R. Dunninger and A. Lasota [1], who proved it for a(x) =1

J.R. Kuttler [4] noticed

which he proved

representation

u(x)

where k(x,§) is the Green’s function of the operator L with

for a{x) = 1. His proof used the following

i
= [ k(x,&)Lu(&)d€ + po(x)u(OJ + qo(x)u’(O)
0

+ pl(x)u(ﬂ) - ql(x)u’(QL

Later,

that this result follows from the Theorenm ;.

homogeneous boundary conditions, and the functions Pgr 9 Py-9; are

solutions of the following problems

Lpo
qu
Lpl

qu

= 0, pO(O) =1, pé(O) = po(ﬂ) = pé[ﬂ) = Q,
=0, q{(0) =1, q,(0) =q,(8) = q/() =0,
=0, p (&) =1, p,(0) = pj(0) = p; (&) =0,
=0, qf(t) = -1, q,(0) = q1(0) = q;(&) = 0.

(3)

In case a(x) = 1, the functions k,po,qo,pl,q1 are relatively simple,

so that by inspection one sees that they are all positive in (0,¢),

which proves the Theorem 1.

For a general a(x) the representation (2) is still valid, but is

far more complicated,

to be feasible.

so that a direct proof as above does not appear

Indeed, to write down k(x,£) we need first to define

the following functions

X at

-+

a(t)

X

X X tat
yix) = —~, vix) = Jyt)dt, wix) = [ , z{x) = [ w(t)dt,
o a(t) o 0

A =y(@)zW{)

Then for x = § we have (with G(g,x) = G(x,£); see [2, p. 84])

- v(Ow(l).

K(x,8) = 1 {[-2(E)u(®) + v(E) (D) - 2(0) + EAIV(x)

+ [z(§)y(€) - v(E)w(l) - Alz(x)}.

(4)

"
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We establish positivity of k,po,qo,pl,ql by an indirect argument,
yhich involves counting of inflection points of u(x). It appears
that this idea is new.

The proof of the Theorem 1 follows from the following lemmas,

which appear to be of independent interest.

Lemma 1. Let u(x) be a real-valued function of class C_[O,EJ, which

satisfies

Lu = (a(x)u”}” > 0 for 0 = x =

(5)
u(0) = uw (0) = u(@) = v’ (&) = o,

where a(x) € CZ[O,Z], a(x) > 0 for 0 = x = {. Then u(x) > 0 in
(0,2).

Proof. 'Denote U = a(x)u”. Since U” > 0 on [0,2] it follows that U
and hence u” can have at most two zeroes on [0,2], so that u(x) can
have at most two inflection points. It follows that u(x) is of one
sign in a sufficiently small neighborhood of both x = 0 and x = 4.

Also, since J‘Ba(x)u”zdx = J'zuLudx, it follows that u(x) cannot be
0 (0] :
negative everywhere on [0,¢].

Assume first that u is positive near x = 0. We claim that
u”(0) > 0 (obviously u”(0) = 0). Assume on the contrary that
u”(0) = 0. Then u”’(0) = O. Integrate (5) twice

X
a(0)u”(0) + x(au”)’ (0) + J (x-t)Lu(t)dt
- 0
xa{0)u”’(0) + [ (x-t)Lu(t)dt.
0

al(x)u”(x)

The function on the right is positive for all x in (0,¢]. Then
4"(x) > 0 on (0,2], contradicting the boundary conditions at x = L.
A4 similar argument shows that u”(£) > 0 in case u is positive near

x=g,

Suppose next that u is negative near x = 0. Then u”(0) = 0. We

“laim that u”{x) < 0 for x € (0,2z) for some sufficiently small z.

L3

“Ppose u”(Q) = 0, since the claim is obvious for u”(0) < 0. Then

0 <0, for otherwise we would have u(0) = u’(0) = u”(0) = u”’(0)
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= 0, and then from the equation u””(0) > 0, which would imply that
u(x) is positive near x = 0, a contradiction, and the claim follows.
We are now ready to prove the lemma. Assume that u(x) is

negative near x = 0. Then u” is negative near x = 0. Since u(x)
cannot remain non-positive for the entire interval, it has to turn
back, become positive, turn down again, and then (assuming no more
zeroes) turn concave up again when entering x = g, i.e., it would
have to possess at least three inflection points, a contradiction.
Gimilar contradictions arise if one assumes u(x) to be negative near

x = {, or positive near the end-points but negative inside of the

interval.

Lemma 2. Assume that a(x) > 0 on [0,2], a(x) € Cz[O,Z]. Then the
functions pO(x),qO(x),pl(x),ql(x) (defined in (3)) are positive on
(0,2). ’

Proof. Since a(x)u” = Cy * CX with some constants c, and Cy it
follows that u(x) has no more than one inflection point in (0,2), and
that u”(x) is of one sign near x = 0 and x = £ (possibly in a deleted
neighborhood of 0 or £). From the Taylor’s formula it follows that
u”u > O near both x = 0 and x = {, provided u’ = 0 at that point.

(i) Consider pO(x) (pO(O) = 1). Assume that it becomes
negative somewhere in (0,2), and that p6 < 0, Py < 1 near x = 0 (the
other case when p6> 0, py > 1 near x = 0 is easier). Then po(x) has
to become concave up under the x axis, and then (assuming there is no
more zeroes) concave down entering x = £. So that po(x) has to
possess at least two inflection points, a contradiction.

(ii) Consider ql(x). It is positive near x = . Assume that
ql(x) vanishes somewhere on (0,2), and that qi is negative near X = ¢
{the other case is easier). Then a; has to be concave up under the
x-axis, and (assuming no more seroes) concave down near x = 0, which

leads to the same contradiction as before.

Positivity of pl(x) and qo(x) is established similarly.
Lemma 3. A < O (A appears in (4)).

Proof. One easily sees that

Ay
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¢ L t 2

t 2 dt
A=(£atdt) —gmgmdt»

s that the proof follows by Schwarz’s inequality, applied to the

t 1
.-sduct of the linearly independent functions and .

va(t) va(t)

s+acf of Theorem 1. Define u, to be the solution of Luc = g with

ammr——

esnstant € > 0 and homogeneous boundary conditions. Then
;;u.uc) > 0, and by lemmaé 1 and 2 it follows that u+u8 > 0 at each
« € (0,8). From the representation (2) it follows that u, 0 as
¢ + 0 (uniformly in x), and hence u = 0 on [0,£]. (We could have
med a priori estimates instead of the representation (2) to show
tatu > 0ase> 0.)

We apply our maximum principle to develop a monotone iteration

szheme for the problem

(a(x)u”)” = f£(x,u) 0<x<t

(6)
u(0) = «, u' (0) =8, ul@) =7, -u' &) =3,

»"ich describes the displacement curve u(x) of a uniform elastic beam
:f length £, supporting a distributed load of intensity f(x,u(x)).
b=re a(x) = EI, where E is the Young’s modulus, 1 - the moment of

wertia, see e.g., [6].

™eorem 2. For the problem (6) assume that a(x) e C2[0,£] and the
fzllowing.

(i) There exists a supersolution ¢(x) € C4[0,£], i.e.,
'21x)¢")” = f(x,¢) for 0 < x < £, ¢(0) = a, ¢’ (0) = B, ¢(8) = 7,
“$°(¢) = §, and a subsolution Y(x) € C4[O,£] defined by reversing the
#ve inequalities. Moreover ¢ = ¢ for 0 = x = L

(11) f is continuous and increasing in u for 0 = x s ¢ and

¥ 2 U s ¢ Then the problem (6) has a c? solution u(x), and
55“5¢)
iﬁﬁi. Set u. = ¢y and define inductively a sequence {un(x)} by

& 0
“iving (n =0, 1, ...)
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(au” )" = f(x,u ) for 0 < x < ¢ u
n n

n+l l(D) = a,u;+1(0) = g,

+

un+1(£) =7, -un+1(£) = 3.

Similarly, starting with vy = ¢ one defines a sequence {vn(x)L
Using the Theorem 1 one sees that

Y = ul = u2 < ... Sus = v2 = vl = ¢
Call u(x) = lim un(x), v(x) = lim vn(x). To see that u(x) is a

N n->o
(minimal) solution of (6) we rewrite (7) as
L
un+l(x) = g k(x,g)f(g,un(ﬁ))dg + apo(x)
+ qu(x) + ypl(x) + Sql(x), it

and pass to the limit as n » o, using the monotone convergence
theoren.

Theorem 2 provides a computationally feasible scheme requiring
solution of the linear problem (7) at each step. If one uses finlta
differences to solve (7), one has to deal with very ill-conditioned’
matrices (for a(x) = 1 the condition number ~ n4, where n is the '
number of subdivision points). This causes round-off errors to
accumulate in Gaussian elimination (we have found there was no gain
in accuracy when increasing n past some moderate number, n = 20 for
£ = 2 in our experiments), while if one uses iterations it may take
hundreds of thousands of them to solve (7) with moderate accuracy.

We suggest one uses the formula (8) and numerical integrationtﬁ
solve (7) whenever the Green’s function k(x,€) is not too involved %ﬁ
program. We had tried this approach for a(x) = 1, and had no ;,
difficulty computing solution with n = 200 mesh points for £ = 2 “3ﬁ§
good accuracy. It turns out that the Green’s function k(x,£§) is
"small" for moderate values of £, which makes the convergence fast.

Indeed, for a(x) = 1 elementary computations show that




¢

¢
max L kGo€)eE = o kcd, g)ae =
0]

Osx=<¢ 0

max k(x,€) = k(é,%) - ¢

O=x, £=¢
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