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Introduction

How do you cover a semester long course of “Linear Algebra” in half the
time? That is what happened in the Fall of 2020 when classroom capacities
were reduced due to Covid. I was teaching a 80 minute lecture to half of
the class on Tuesdays, and repeating the same lecture to the other half on
Thursdays. I had to concentrate on the basics, trying to explain concepts on
simple examples, and to cover several concepts with each example. Detailed
notes were produced (with lines numbered), which I projected on a screen,
and made them available to students. Questions were encouraged, but not
of a review nature (students were very cooperative). Pictures were drawn
on a white board, and the most crucial concepts were also discussed there.
On “free days” students were directed to specific resources on the web,
particularly to lectures of G. Strang at MIT, and 3bluelbrown.com that
contains nice visualizations. I managed to cover the basics, sections 1.1-5.5
(although many sections were thinner then).

Chapters 1-5 represent mostly the transcripts of my lectures in a sit-
uation when every minute counted. Toward the end of the sections, and
in exercises, non-trivial and useful applications are covered, like Fredholm
alternative, Hadamard’s inequality, Gram’s determinant, Hilbert’s matrices
etc. I tried to make use of any theory developed in this book, and thus avoid
“blind alleys”. For example, the QR factorization was used in the proofs
of the law of inertia, and of Hadamard’s inequality. Diagonalization had
many uses, including the Raleigh quotient, which in turn led us to principal
curvatures. Quadratic forms were developed in some detail, and then ap-
plied to Calculus and Differential Geometry. Gram-Schmidt process led us
to Legendre’s polynomials.

I tried to keep the presentation focused. For example, only the Euclidean
norm of matrices is covered. It gives a natural generalization of length for
vectors, and it is sufficient for elementary applications, like convergence of
Jacoby’s iterations. Other norms, semi-norms, definition of a norm, etc are

iv
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left out.

Chapters 6 and 7 contain applications to Differential Equations, Calculus
and Differential Geometry. They are also based on classroom presentations,
although in different courses. In Differential Equations after intuitive pre-
sentation of the basics, we cover the case of repeated eigenvalues of deficiency
greater than one, which is hard to find in the literature. The presentation
is based on the matrix exponentials developed in the preceding section, and
it leads to the theory of the Jordan normal form. Detailed discussion of
systems with periodic coefficients allowed us to showcase the Fredholm al-
ternative.

Applications to Differential Geometry is a unique feature of this book.
Some readers may be surprised to find discussion of Gaussian curvature in a
Linear Algebra book. However, the connection is very strong as is explained
next. Principal curvatures are the eigenvalues of the generalized eigenvalue
problem Ax = ABz, where A and B are matrices of the second and the first
fundamental quadratic forms respectively. The corresponding generalized
eigenvectors give coordinates of the principal directions in the tangent plane
with respect to the basis consisting of tangent vectors to the coordinate
curves. This involves several key concepts of Linear Algebra.

One of the central results of Linear Algebra says that every symmetric
matrix is diagonalizable. We include a very nice proof, due to .M. Gelfand
[9]. In addition to its simplicity and clarity, Gelfand’s proof shows the power
of abstract reasoning, when it is advantageous to work with the transfor-
mation that the matrix represents, rather than the matrix itself. Generally
though we tried to keep the presentation concrete.

A detailed solution manual, written by the author, is meant to enhance
the text. In addition to routine problems, it covers more challenging and
theoretical ones. In particular, it contains discussion of Perron-Frobenius
theorem, and of Gram determinants.

A word on notation. It is customary to use boldface letters to denote
vectors a, b, etc. Instructors use bars @, b, when writing on a board. Roman
letters are also used, if there is no danger of confusing vectors with scalars.
We begin by using boldface letters, then gradually shift to the Roman ones,
but still occasionally use boldface letters, particularly for the zero vector 0.
When discussing Differential Geometry, we use boldface letters for vectors
in the tangent plane, Roman letters for their coordinate vectors, while N is
reserved for the unit normal to the tangent plane.



vi INTRODUCTION

1 It is a pleasure to thank my colleagues Robbie Buckingham, Ken Meyer
> and Dieter Schmidt for a number of useful comments.
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Chapter 1

Systems of Linear Equations

In this chapter we develop Gaussian Elimination, a systematic and practical
way for solving systems of linear equations. This technique turns out to be
an important theoretical cornerstone of the entire subject.

1.1 Gaussian Elimination

The following equation with two variables x and y
20 —y =3

is an example of a linear equation. Geometrically, this equation describes
a straight line of slope 2 (write it as y = 2x — 3). The point (2,1) with
x = 2 and y = 1 is a solution of our equation so that it lies on this line,
while the point (3, 1) does not satisfy the equation, and it lies off our line.
The equation has infinitely many solutions representing geometrically a line.
Similarly the equation

dr+y =9

has infinitely many solutions. Now let us put these equations together, and
solve the following system of two equations with two unknowns

20 —y =3
dr+y=29.

We need to find the point (or points) that lie on both lines, or the point
of intersection. The lines are not parallel, so that there is a unique point
of intersection. To find its coordinates, we solve this system by adding the
equations:

6x =12,
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2 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

so that x = 2. To find y, use the value of x = 2 in the first equation:
2.-2—-y=3,

so that y = 1.

We used an opportunity to eliminate y when solving this system. A
more systematic approach will be needed to solve larger systems, say a
system of four equations with five unknowns. We indicate such an approach
for the same system next. Observe that multiplying one of the equations
by a number will not change the solution set. Similarly the solution set is
preserved when adding or subtracting the equations. For example, if the
first equation is multiplied by 2 (to get 4z — 2y = 6) the solution set is not
changed.

From the second equation we subtract the first one, multiplied by two
(subtract 4z — 2y from the left side of the second equation, and subtract 6
from the right side of the second equation). The new system

20 —y=3
3y=3
has the same solution set (obtained an equivalent system). The x variable
is now eliminated in the second equation. From the second equation obtain
y = 1, and substituting this value of y back into the first equation gives

2 —1=3,or x =2. Answer: x = 2 and y = 1. (The lines intersect at the
point (2,1).)

Proceeding similarly, the system
20 +y=3
—8x — 4y = —12
is solved by adding to the second equation the first one multiplied by 4:

20 4+y=3
0=0.

The second equation carries no information, and it is discarded, leaving only
the first equation:
2r+y=3.

Answer: this system has infinitely many solutions, consisting of all pairs
(z,y) (points (z,y)) lying on the line 2z +y = 3. One can present the
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1.1. GAUSSIAN ELIMINATION 3

answer in several ways: y = —2x 4 3 with x arbitrary, r = —%y + % with y
arbitrary, or y =t and = = —%t + %, with ¢ arbitrary. Geometrically, both
equations of this system define the same line. That line intersects itself at
all of its points.

For the system

20 — 3y = —1
20 — 3y =0

subtracting from the second equation the first one gives

20 — 3y = —1
0=1.

The second equation will never be true, no matter what = and y are. Answer:
this system has no solutions. One says that this system is inconsistent.
Geometrically, the lines 2 —3y = —1 and 2x — 3y = 0 are parallel, and have
no points of intersection.

The system
20 —y =3
dr+y =9
:L"—y:—%

has three equations, but only two unknowns. If one considers only the
first two equations, one recognizes the system of two equations with two
unknowns that was solved above. The solution was x = 2 and y = 1. The
point (2,1) is the only one with a chance to be a solution of the entire
system. For that it must lie on the third line x —y = —1. It does not.
Answer: this system has no solutions, it is inconsistent. Geometrically, the
third line misses the point of intersection of the first two lines.

The system of two equations

20 —y+52z=1
r+y+z=-2

affords us a “luxury” of three variables x, y and z to satisfy it. To eliminate
x in the second equation we need to subtract from it the first equation
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1
avoid working with fractions, let us switch the order of equations

1
multiplied by % (From the second equation subtract x — 3Y +-z=

rTH+y+z=-2
20 —y+52=1

which clearly results in an equivalent system. Now to eliminate z in the sec-
ond equation we subtract from it the first equation multiplied by 2. Obtain:

TH+y+z=-2
—3Jy+32=5.

Set z = t, an arbitrary number. Then from the second equation we shall
obtain y as a function of ¢. Finally, from the first equation x is expressed as
a function of ¢. Details: from the second equation

—3y+3t=5,

5
givingy =t — 3 Substitute this expression for y, and z = ¢, into the first

equation:
5
vHt—o+t=-2,
1 . P :
so that © = —2t — —. Answer: this system has infinitely many solutions of
1
the form x = —2t — 3 y=1t— 3 z =1t, and t is an arbitrary number. One
can present this answer in vector form:
1

@ 2t~ 1 27 [t

y | =] t-32 =t| 1]- 3 5

z t 1 0

The next example involves a three by three system

T—y+z=4
—2z4+y—2z=-5
3r+4z =11

of three equations with three unknowns. Our plan is to eliminate z in the
second and third equations. These two operations are independent of each



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1.1. GAUSSIAN ELIMINATION 5

other and can be performed simultaneously (in parallel). To the second
equation we add the first one multiplied by 2, and from the third equation
subtract the first one multiplied by 3. Obtain:

r—y+z=4
-y+z=3
Jy+z2=-1

Our next goal is to eliminate y in the third equation. To the third equation
we add the second one multiplied by 3. (If we used the first equation to do
this task, then z would reappear in the third equation, negating our work
to eliminate it.) Obtain:

r—y+z=4
—y+z2=3
4z =38.

We are finished with the elimination process, also called forward elimi-
nation. Now the system can be quickly solved by back-substitution: from the
third equation calculate z = 2. Using this value of z in the second equation,
one finds y. Using these values of y and z in the first equation, one finds x.
Details: from the second equation —y +2 = 3 giving y = —1. From the first
equation £ + 1+ 2 =4 so that x = 1. Answer: t =1,y = —1 and z = 2.
Geometrically, the three planes defined by the three equations intersect at
the point (1, -1, 2).

Our examples suggest the following rule of thumb: if there are more vari-
ables than equations, the system is likely to have infinitely many solutions.
If there are more equations than variables, the system is likely to have no
solutions. And if the numbers of variables and equations are the same, the
system is likely to have a unique solution. This rule does not always apply.
For example, the system

T—y=2
—2x+2y=—4
3r—3y==6

has more equations than unknowns, but the number of solutions is infinite,
because all three equations define the same line. On the other hand, the
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6 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

system

T—2y+3z2=2
20 —4y + 62z = —4

has more variables than equations, but there are no solutions, because the
equations of this system define two parallel planes.

The method for solving linear systems described in this section is known
as Gaussian elimination, named in honor of C.F. Gauss, a famous German
mathematician.

Exercises

1. Solve the following systems by back-substitution.

a. r+3y=-—1
—2y=1.
Answer. :E:%,y:—%.
b. r+y+3z=1
y—z=2
2z =—-2.
c. r +4z=2
20—z =
—3z=-3
Answer. = -2, y=3,z=1.
d. r—y+22=0
y—z=3.

Answer. z = —t+ 3,y =t+ 3, z = t, where t is arbitrary.

c. Tt+y—z—u=2
3y —3z+5u=3
2u=0.

Answer. z=1,y=t+1, z =t, u= 0, where t is arbitrary.

2. Solve the following systems by Gaussian elimination (or otherwise), and
if possible interpret your answer geometrically.

a.
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z+3y=-1
—r—2y=3.

Answer. x = —7, y = 2. Two lines intersecting at the point (—7,2).
b. 20 —y =3

r+2y=4

-+ 5y =3.

Answer. x =2, y = 1. Three lines intersecting at the point (2, 1).

c. z+2y=-1
—2x —4y =3.

Answer. There is no solution, the system is inconsistent. The lines are
parallel.
d. T+ 2y=-—1

—2x —4y =2.

Answer. There are infinitely many solutions, consisting of all points on the
line x + 2y = —1.

e. r+yt+z=-2
T+2y=-3
r—y—z=4.
Answer. z =1, y = —2, 2 = —1. Three planes intersect at the unique point
(1,-2,-1).
f. r—y+22=0
T+z2=3

20 —y+32=3.

Answer. z = —t + 3,y =t + 3, z = t, where t is arbitrary.
g.



10

12
2]

14

15

16

17

18

19
20
21

22

8 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

r—2y+z2=1
20 —4dy+2z2=3
dr—y+3z2=5.

Answer. There are no solutions (the system is inconsistent). The first two
planes are parallel.

3. Three points, not lying on the same line, uniquely determine the plane
passing through them. Find an equation of the plane passing through the
points (1,0,2), (0,1,5), (2,1,1).

Answer. 2x — y+ z = 4. Hint. Starting with ax + by + cz = d, obtain three
equations for a, b, ¢ and d. There are infinitely many solutions, depending
on a parameter t. Select the value of ¢ giving the simplest looking answer.

4. Find the number a, so that the system
20 — 3y = —1
ar —6y =95.

has no solution. Can one find a number a, so that this system has infinitely
many solutions?

5. Find all solutions of the equation
br —3y =1,

where x and y are integers. (Diophantine equation.)

Hint. Solve for y: y = % = 2x — %"’1 Set %"’1 =n. Then z = 3n — 1,
leading to y = 5n — 2, where n is an arbitrary integer.

1.2 Using Matrices

We shall deal with linear systems possibly involving a large number of un-

knowns. Instead of denoting the variables by z,y, z,..., we shall write
r1,%2,X3,...,Ty, Where n is the number of variables. Our next example
is

Tl — X9 +x3=—1

201 — 20+ 223 =0
—3x1 + 43 = —10.
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The first step of Gaussian elimination is to subtract from the second equation
the first one multiplied by 2. This will involve working with the coefficients
of 1, x9, x3. So let us put these coefficients into a matriz (or a table)

1 -1 1
2 -1 2
-3 0 4

called the matriz of the system. It has 3 rows and 3 columns. When this
matrix is augmented with the right hand sides of the equations

1 -1 1, —1
2 -1 2! 0
-3 0 41-10

one obtains the augmented matriz. Subtracting from the second equation
the first one multiplied by 2 is the same as subtracting from the second row
of the augmented matrix the first one multiplied by 2. Then, to the third
row we add the first one multiplied by 3. Obtain:

@ -1 1., —1
0 10 2
0 -3 71-13

We circled the element, called pivot, used to produce two zeroes in the first
column of the augmented matrix. Next, to the third row add 3 times the
second row:

D -1 1.,-1
0o © 0 2
0 0 @'-7

Two more pivots are circled. All elements under the diagonal ones are now
zero. The Gaussian elimination is complete. Restore the system correspond-
ing to the last augmented matrix (a step that will be skipped later)

1 — X9 +x3=—1
ZEQZQ
7:E3:—7.

This system is equivalent to the original one. Back-substitution produces
r3 = —1, 9 = 2, and from the first equation

r1—2—-1=—1,



10

11

12

13

14

15

10 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

or x1 = 2.
The next example is

3r1+2x0 —4z3 =1

TG — X9 +x3 =2

5:E2 - 7:E3 =—-1 s
with the augmented matrix

3 2 4, 1

1 -1 1! 2

0 5 —7r-1

(Observe that we could have started this example with the augmented ma-
trix, as well.) The first step is to subtract from the second row the first

one multiplied by —=. To avoid working with fractions, we interchange the

first and the second rows (this changes the order of equations, giving an
equivalent system):

1 -1 1, 2

32 -4, 1

0 5 —7r-1
Subtract from the second row the first one multiplied by 3. We shall denote

this operation by Rs — 3Ry, for short. (Ry and R; refer to row 2 and row 1,
respectively.) Obtain:

D -1 1. 2
0 5 —7!-5
0 5 —7'-1

There is a “free” zero at the beginning of third row R3, so we move on to
the second column and perform Rz — Ro:

D -1 1, 2
0 ® —7!-5
0 0 0 4

The third equation says: 0xq1 + Oxg + 0x3 = 4, or
0=4.

The system is inconsistent, there is no solution.
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The next example we begin with the augmented matrix

3 2 —4, 1
1 -1 1! 2
0 5 —71-5

This system is a small modification of the preceding one, with only the
right hand side of the third equation is different. The same steps of forward
elimination lead to

D -1 1, 2
0 ® -7!-5
0 0 0' 0

The third equation now says 0 = 0, and it is discarded. There are pivots in
columns one and two corresponding to the variables x1 and z2 respectively.
We call 1 and zo the pivot variables. In column three there is no pivot
(pivot is a non-zero element, used to produce zeroes). The corresponding
variable z3 is called free variable. We now restore the system, move the
terms involving the free variable z3 to the right, let xz3 be arbitrary, and
then solve for the pivot variables x1 and x9 in terms of x3. Details:

Tl — X9 + T3 =2

5:E2 — 7:E3 =-5 5
(2.1) Tl — X9 = —x3 + 2
5:E2 = 7:E3 —5.
From the second equation
7
To = 5:E3 —1.

From the first equation of the system (2.1) express x1

7 2
:E1::E2—2E3—|—2:3$3—1—JE3+2:3$3—|—1.
2 7 . . wp
Answer: z; = =73 + 1, 20 = —x3 — 1, and z3 is arbitrary (“free”). We
can set x3 = t, an arbitrary number, and present the answer in the form

2
r1=-t+1, 20 ==-t—1, 23 =1.
1= 5 2= 5 3
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Moving on to larger systems, consider a four by four system

To— X3+ T4 =2
2x1 + 619 — 204 = 4
1+ 2x9 +3 — 224 =0

1+ 3x9 — x4 =2,

with the augmented matrix

01 -1 1,2
26 0 —-2'4
12 1 -2,0/|"
{13 0—1:2J

We need a non-zero element (or pivot) at the beginning of row one. For that
we may switch row one Ry with any other row, but to avoid fractions we do
not switch with row two. Let us switch row one R; with row three R3. We
shall denote this operation by Ry < Rg, for short. Obtain:

12 1 -2,0
26 0 -2'4
01 -1 1,2]"
13 0 -1'2
Perform Ry — 2R; and R4 — R1. Obtain:
® 2 1 -2,0
0@ -2 2'4
0 1 -1 1,2]|"
[0 1 -1 1:2J

To produce zeroes in the second column under the diagonal, perform R3 —
1 1
§R2 and R4 — §R2. Obtain:

® 2 1 -2,0

[0@—2 2:4]
0 0 0 0,0]°

{0 0 0 O:OJ

1
The next step is optional: multiply the second row by 3 We shall denote
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1
this operation by ERQ. This produces a little simpler matrix:

D 2 1 -2,0
0@ -1 12
0 0 0 0,0
0 0 0 0'0

The pivot variables are z1 and x9, while z3 and x4 are free. Restore the sys-
tem (the third and fourth equations are discarded), move the free variables
to the right, and solve for pivot variables:

1+ 229 +23— 224 =0
Tog— T3+ x4 =2,
T, + 229 = —x3 + 224
To=23—T4+2.
The second equation gives us x2. Then from the first equation

:E1:—2:E2—:E3—|—2:E4:—2(:E3—:E4—|—2)—:E3—|—2:E4:—3:E3—|—4:E4—4.

Answer: 1 = —3x3+4x4 —4, xo = x3 — x4 + 2, T3 and x4 are two arbitrary
numbers. We can set x3 = t and x4 = s, two arbitrary numbers, and present
the answer in the form z1 = -3t +4s —4, zo =t — s+ 2, x3 =1, x4 = s.

The next system of three equations with four unknowns is given by its
augmented matrix

1 -1 0 2, 3
-1 12 1'-1
2 -2 4 010

Performing Ry + R and R3 — 2R produces zeroes in the first column under
the diagonal term (the pivot)

® -1 0 2.3
0 02 3!2
0 0 4 —414

Moving on to the second column, there is zero in the diagonal position.
We look under this zero for a non-zero element, in order to change rows
and obtain a pivot. There is no such non-zero element, so we move on to
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14 CHAPTER 1. SYSTEMS OF LINEAR EQUATIONS

the third column (the second column is left without a pivot), and perform
Rg - 2R21

@ -1 0 23
0 0@ 3!2
0 0 0 @'0

The augmented matrix is reduced to its row echelon form. Looking at this
matrix from the left, one sees in each row zeroes followed by a pivot. Observe
that no two pivots occupy the same row or the same column (each pivot
occupies its own row, and its own column). Here the pivot variables are z1,
x3 and x4, while x4 is free variable. The last equation —10z4 = 0 implies
that x4 = 0. Restore the system, keeping in mind that x4 = 0, then take
the free variable x5 to the right:

1 =3+ 22
2:173:2.

Answer: z1 =3+ 9, z3 =1, x4 = 0 and x4 is arbitrary.

We summarize the strategy for solving linear systems. If a diagonal el-
ement is non-zero, use it as a pivot to produce zeroes underneath it, then
work on the next column. If a diagonal element is zero, look underneath it
for a non-zero element to perform a switch of rows. If a diagonal element
is zero, and all elements underneath it are also zeroes, this column has no
pivot; move on to the next column. After matrix is reduced to the row eche-
lon form, move the free variables to the right side, and let them be arbitrary
numbers. Then solve for the pivot variables.

1.2.1 Complete Forward Elimination

Let us re-visit the system

1 -1 1, —1
2 -1 2! 0
-3 0 41-10

Forward elimination (Ry — 2Ry, R3 + 3R, followed by R3 + 3R2) gave us

O -1 1,-1
0o @O 0 2
0 0 @'-7

Then we restored the system, and quickly solved it by back-substitution.
However, one can continue to simplify the matrix of the system. First, we
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shall make all pivots equal to 1. To that end, the third row is multiplied by

1 1
= an elementary operation denoted by ?Rg. Obtain:

O -1 1,-1
0o © 0 2
0 0 @'-1

Now we shall use the third pivot to produce zeroes in the third column above
it, and then use the second pivot to produce a zero above it. (In this order!)
Performing R — R3 gives

D -1 0., 0
0o O 0, 2
0 0 D'-1
(The other zero in the third column we got for free.) Now perform R; + Ro:
@ 0 0, 2
0O 0, 2
0 0 O'-1
The point of the extra elimination steps is that restoring the system, imme-
diately produces the answer x1 = 2, o = 2, 3 = —1.

Complete forward elimination produces a matrix that has ones on the
diagonal, and all off-diagonal elements are zeros.

Exercises

1. The following augmented matrices are in row echelon form. Circle the
pivots, then restore the corresponding systems and solve them by back-
substitution.

a. [ 2 —1;0_
0 36"
b. [2 —2,4]
0 00"
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4 —1,5
0 0'3]"°

Answer. No solution.

d. [2 -1 0, 3]
0 31, 1
|0 0 2'—4 |

Answer. 1 =2, 20 =1, z3 = —2.

e. 1 -1 1, 3]
| 0 L 2'—1 "

Answer. z1 = =3t + 2, zo = —2t — 1, x3 = t, ¢ is arbitrary.

f. (2 —1 0, 2]
10 0 1'—4 "

Answer. :Elz%t—l—l,:ngzt, T3 = —4.

g (5 —1 2, 3]
0 3 1,-1
0 0 0r—4

Answer. The system is inconsistent (no solution).

h.

2. For the following systems write down the augmented matrix, reduce it to
the row echelon form, then solve the system by back-substitution. Which
variables are pivot variables, and which ones are free? Circle the pivots.

a.
%:El — %ZEQ =1
2x1 + 619 = —2.
b- :E2—2E3:1

T1+ 222 +23=0
31+ 20+ 223 =1.

Answer. z=1,y=0, z = —1.

C.
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3:E1—2:E2—:E3:0
1+ 2w + 23 = —1
ZE1—6ZE2—3ZE3:5.

Answer. No solution.

d.

31 — 220 — 23 =0

1+ 229 +x3 = —1

1 — 6x9 — 313 = 2.
Answer. 7 :—%, ZEQZ—%t—%, r3 =t.
e.

Ty —22 Fag4=1

201 — 2o+ a3+ 14 = —3

To+ T3 — Ty =—9.

Answer. 1= —t—4, 20 =—t+s—5,x3=1t, T4 = s.

3. Solve the following systems given by their augmented matrices.

a. (1 -2 0, 2]
2 3 1|4
1 5 115 |

Answer. No solution.

b. (1 -2 —3.:1]
2 -3 —1'4|.
|3 5 —415 |

Answer. z = —Tt+5,y=—-5t+2,z=1t.
c. 1 -2 -1 3.1

2 4 1 0,5

1 -2 2 =314
Answer. 1 = —t+2s+2,z9=s5,23=2t+1, 14 = t.
d. 1 -1 0 1.0

2 -2 1 —1'1
3 -3 2 012
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Answer. z1 =t, zo =t, x3=1, 4 = 0.

. 00 36
01 —2,0
1o 11

Answer. 1 = —1, 29 =4, x3 = 2.

4. Solve again the systems in 2(a) and 2(b) by performing complete Gaussian
elimination.

5. Find the number a for which the following system has infinitely many
solutions, then find these solutions.

- 3
0 —1' -2
1 0 a' 1
Answer. a =1; 1 = —x3 + 1, 190 = x3 — 2, z9 is arbitrary.

6. What is the maximal possible number of pivots for the matrices of the
following sizes.

a. H x 6. b. 11 x 3. c. 7x 1. d. 1 x8. e. nxXn.

1.3 Vector Interpretation of Linear Systems

In this section we discuss geometrical interpretation of systems of linear
equations in terms of vectors.

1 5
Given two three-dimensional vectors Cy = | —1 | and Cy = | —4 |,
3 2
we may add them by adding the corresponding components Cy + Cy =
6 I
—5 |, or multiply Cy by a number x1 (componentwise): ©1Cy = | —x1 |,
5 31
or calculate their linear combination
z1 + dxo
2101 + 2202 = | —x1 — 422 |
3x1 + 219

where 9 is another scalar (number). Recall that the vector C joins the
origin (0,0,0) to the point with coordinates (1, —1,3). The vector z1C}
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points in the same direction as C if 1 > 0, and in the opposite direction
in case r1 < 0. The sum Cy + Cy corresponds to the parallelogram rule of
addition of vectors.
-3
Given a vector b = 2 |, let us try to find the numbers x1 and zs,
4
so that

21C1 +22C5 =b.

In components, we need

xr1 + dxg = —3
—:E1—4:E2:2
3x1+ 220 =4.

But that is just a three by two system of equations! It has a unique solution
r1 = 2 and z9 = —1, found by Gaussian elimination. So that

b=2C; — Cs.

The vector b is a linear combination of the vectors C1 and Cs. Geometrically,
the vector b lies in the plane determined by the vectors C; and Cy (this plane
passes through the origin). One also says that b belongs to the span of the
vectors C1 and Cs, denoted by Span{Cy,Cs}, and defined to be the set of
all possible linear combinations x1C1+x2C5. The columns of the augmented
matrix of this system

1 5,-3
—1 4! 2
321 4

are precisely the vectors C7, Csy, and b. We can write the augmented matrix
as [Cy Oy : b] by listing its columns.
-3
In place of b, let us consider another vector B = 2 |, and again try

1
to find the numbers z1 and x2, so that

21Cy + 29Cy = B.
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In components, this time we need

T1 + dxo = —3
—:E1—4:E2:2
3r1 +2x0=1.

This three by two system of equations has no solutions, since the third
equation does not hold at the solution x1 = 2,292 = —1 of the first two
equations. The vector B does not lie in the plane determined by the vectors
Cy and Cy (equivalently, B is not a linear combination of the vectors C
and Cb, so that B does not belong to Span{Cy,C2}). The columns of the
augmented matrix for the last system

1 5,-3
-1 —4: 2 :[01 Cng]
3 201

are the vectors C, C, and B.
The above examples illustrate that a system with the augmented matrix

[C1 Cs : b] has a solution exactly when (if and only if) the vector of the
right hand sides b belongs to the span Span{Cj, C2}. Observe that Cy and
C5 are the columns of the matrix of the system.

Similarly, a system of three equations with three unknowns and the

augmented matrix [C; Cy C3 : b] has a solution if and only if the vector
of the right hand sides b belongs to the span Span{Ci,Cs,C3}. In other
words, b is a linear combination of C1, Cy and C if and only if the system

with the augmented matrix [C7 Co Cs : b] is consistent (has solutions). The
same is true for systems of arbitrary size, say a system of seven equations
with eleven unknowns (the columns of its matrix will be seven-dimensional
vectors). We discuss vectors of arbitrary dimension next.

In Calculus and Physics one deals with either two-dimensional or three-
dimensional vectors. The set of all possible two-dimensional vectors is de-
noted by R?, while R? denotes all vectors in the three-dimensional space we
live in. By analogy, R" is the set of all possible n-dimensional vectors of the

ay

a2
form .|, which can be added or multiplied by a scalar the same way

Gn
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as in R? or in R®. For example, one adds two vectors in R*

ai
az
as
a4

by
b2
b3
by

_|_

ai + by
az + by
as + bs
aq + by

by adding the corresponding components. If ¢ is a scalar, then

ai
az
as
a4

cay
can
cas
cay

21

It is customary to use boldface (or capital) letters when denoting vectors,

ai
az
as
a4

for example a =

, b=

by
by
b3
by

. (We shall also write a =

ai
az
as
a4

when it is clear from context that a € R* is a vector.) Usual algebra rules
apply to vectors, for example

for any scalar c.

b+a=a+b,

cla+b)=ca+chb,

Recall that matriz is a rectangular array (a table) of numbers. We say
that a matrix A is of size (or of type) m x n if it has m rows and n columns.

For example, the matrix

1
an]

-1 2
0 4

is of size 2 x 3. It has three columns a; =

|

1

-1

o |

-1
0

], and

2
ag = [ 4 ], which are vectors in R2. One can write the matrix A through

its columns

A matrix A of size m x n

A:[a1a2a3].

A:[a1a2

ap |
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has n columns, and each of them is a vector in R™.
The augmented matrix for a system of m equations with n unknowns

has the form [a; az ... an: b], and each column is a vector in R™. The
system is consistent (it has a solution) if and only if the vector of the right
hand sides b belongs to the span Span{aj,as,...,a}, which is defined as
the set of all possible linear combinations ria; + xoag + - - - + Tpan.

One defines the product Az of an m x n matrix A =[a; ag ... a, | and
Tl

Z2

of vector z = { } in R™ as the following linear combination of columns

L,
of A
x1
Z2
Am:[alaz...an] . =141 +x2a2 +---+ Tpan .
Tn

The vector Az belongs to R™. For example,

3

e E T e H

{ y1 |
Y2 | . . . .
Ify = { . is another vector in R™, it is straightforward to verify that

Az +y)=Az + Ay.
Indeed,

A(:L'"i'y):($1+y1)a1+“-+($n+yn)an
=zia1+ ...+ Tpan +y1a1 + ...+ ypan = Az + Ay.

One also checks that
Acx) = cAx,

for any scalar c.
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We now connect the product Az to linear systems. The matrix of the
system

(3.1) T, — To + 3x3 =2
2x1 + 629 — 223 =4
9r1 + 220 +2x3=0

1 -1 3 2
isA=|2 6 -2 |, and the vector of right hand sides is b = | 4
) 2 1 0
x1
Define x = | xo |, the vector of unknowns. (Here we do not use boldface
x3

letters to denote the vectors b and x.) Calculate

1 -1 3 T r1 — T2 + 313
Ax = 2 6 —2 o = 2x1 4+ 622 — 223
5 2 1 3 51 + 272 + T3

It follows that the system (3.1) can be written in the matrix form
(3.2) Az =b.

Any m x n linear system can be written in the form (3.2), where A is the
m X n matrix of the system, b € R™ is the vector of right hand sides, and
x € R" is the vector of unknowns.

Analogy is a key concept when dealing with objects in dimensions greater
than three. Suppose a four-dimensional spaceship of the form of four-
dimensional ball (2% + 23 + z3 + 23 < R?) passes by us. What will we
see? By analogy, imagine people living in a plane (or flatland) and a three-
dimensional ball passes by. At first they see nothing (the ball is out of their
plane), then they see a point, then an expanding disc, then a contracting
disc, followed by a point, and then they see nothing again. Can you now
answer the original question? (One will see: nothing, one point, expanding
balls, contracting balls, one point, nothing.)

Exercises
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1
1. Express the vector b= | 0 | as a linear combination of the vectors C; =
4
1 0 1
0|,Co=1] -1 |,and C3=| 2 |. In other words, find the numbers
1 1 3

1, T2, x3 so that b = 21C1 +x9Cy+x3C3. Write down the augmented matrix
for the corresponding system of equations.

Answer. z1 = %, Ty = %, T3 = %.
5
2. Is it possible to express the vector b = 3 | as a linear combination
-3
1 2 3
of the vectors Cy = 11,0, = 1 |,and C3 = 2 |7
—1 —1 —2
Answer. Yes.
5
4 . ..
3. Is it possible to express the vector b = ;| asa linear combination
-3
0 0 0
1 —2 1
of the vectors C1 = e Cy = N and C3 = 9 ?
—1 —1 —2

Answer. No.

4. Calculate the following products involving a matrix and a vector.

SERIE! e | 1.

1 20 1 T + 229
b. |0 -1 1 To |. Answer. —I9 + 3
1 -2 1 x3 T — 229 + T3

1 -2 0
C'[3—1 1] 2
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-1 2 )
0 -1 -1 —2
d. 1 4 [ 9 ] Answer. .
3 0 -3
h
e. [ 3 -1 1 ] 0 Answer. 6.
- 3 -
0]
1 -2 0 0
f. [3 1 1] 0 Answer.[o].
- 0 -
5. Does the vector b lie in the plane determined by the vectors C; and C57
[0 [ 2] [ 1
a. b= 1 s 01 = 1 s 02 = 0
| —4 | —2 | | 1
Answer. Yes
[ 5] [ 2] [ 1
b. b= 1 (,Ci=] -11,Co=1 -3
| —4 | 0 ] | 0
Answer. No.
2 2 —4
C b= 1 s 01 = —1 s Cg = —2
—2 | 3 4
Answer. Yes.
2 3] -1
d b= 4 |,Ci=|-1],C=1| -3
5 | 1] 2

Answer. No.

6. Does the vector b belong to Span{Cy, Cs,C3}?

1 1 0 1
a. b= 1 ,01: 0 ,02: 1 ,03: 1
1 0 0 0

Answer. No.
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1 1 0 0
b. b=|1|,00=]0|,C=]1],05=]0
1 0 0 1

Answer. Yes.
7. Let A be of size 4 x 5, and z is in R*. Is the product Az defined?
8. Let A be of size 7 x 8, and = € R8. Is the product Az defined?

9. Let A be of size m x n, 0 is the zero vector in R" (all components of 0
are zero). Calculate the product A0, and show that it is the zero vector in
R™.

1.4 Solution Set of a Linear System Ax =b
When all right hand sides are zero the system is called homogeneous:
(4.1) Az =0.

On the right side in (4.1) is the zero vector, or a vector with all components
equal to zero (often denoted by 0). Here the matrix A is of size m x n.
The vector of unknowns z is in R". The system (4.1) always has a solution
r=0,0orxy =x9=---=x, =0, called the trivial solution. We wish to
find all solutions.

Our first example is the homogeneous system

Ty —x9+x3=0
—2x1 +20—23=0
3x1 — 229 + 423 =0,

with the augmented matrix

1 -1 1,0
-2 1 -1,0
3 -2 410

Forward elimination (Ry + 2Ry, R3 — 3Ry, followed by R3 + Rs) leads to

D -1 1,0
0o @ 1.0/,
0 0 @0
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or

Ty —x9+23=0
—z9+x3=0
2:E3:0.

Back-substitution gives z1 = xzo = x3 = 0, the trivial solution. There are
three pivot variables, and no free variables. The trivial solution is the only
solution of this system. Homogeneous system must have free variables, in
order to have non-trivial solutions.

Our next example has the augmented matrix

1 -1 1.0
-2 1 -1,0 |,
3 -2 210

which is a small modification of the preceding system, with only one entry
of the third row changed. The same steps of forward elimination (Ry+ 2Rq,
R3 — 3Ry, followed by R3 + R3) lead to

D -1 1.0
0 @ 1!0],
0 000
or

Ty —x9+23=0

—r2+23=0,

after discarding a row of zeroes. Solving for the pivot variables z1, x2 in
terms of the free variable x3, obtain infinitely many solutions: z; = 0,
T9 = x3, and x3 is arbitrary number. Write this solution in vector form

I 0 0
To | =| xz3 | =23 | 1 | =x3u,
T3 T3 1

where u = . It is customary to set z3 = t, then the solution set of this

— = O

system is given by ¢ u, all possible multiples of the vector u. Geometrically,
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the solution set consists of all vectors lying on the line through the origin
parallel to u, or Span{u}.

The next example is a homogeneous system of four equations with four
unknowns given by its augmented matrix

1 0 -1 1,
-2 1 3 4
-1 1 2 5
5 -2 -7 —T!

R

Forward elimination steps Ry + 2R1, R3 + R1, R4 — 5R1 give

1 0 -1 1,0
0 1 1 6:0
0 1 1 6,0
0 -2 -2 -1210
Then perform R3 — Ry and Ry + 2Rs:
® 0 -1 1,0
0 @ 1 6:0
0O 0 00,0
0 0 0 0'0

Restore the system

1 —x3+x4=0
T9 + a3+ 624 =0,

express the pivot variables x1,z9 in terms of the free ones x3, x4, then set
xg =t and x4 = s, two arbitrary numbers. Obtain infinitely many solutions:

r1=t—8, x9 = —t—6s, 3 =t, and 4 = s. Writing this solution in vector
form )
t—s 1 —1
—t—0s =1 -1 + s -0 =tu+sv
t 1 0 ’
] 0 1

we see that the solution set is a linear combination of the vectors u =

and v = , or Spanf{u,v}.
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In general, if the number of free variables is k, then the solution set of
an m X n _homogeneous system Ax = 0 has the form Span{uq,us,...,ur}
for some vectors uq, us, . .., ui that are solutions of this system.

An m x n homogeneous system Az = 0 has at most m pivots, so that
there is at most m pivot variables. That is because each pivot occupies its
own row, and the number of rows is m. If n > m, there are more variables
in total than the number of pivot variables. Hence some variables are free,
and the system Ax = 0 has infinitely many solutions. For future reference
this fact is stated as a theorem.

Theorem 1.4.1 An m X n homogeneous system Az = 0, with n > m, has
infinitely many solutions.

Turning to non-homogeneous systems Ax = b, with vector b # 0, let us
re-visit the system

201 — 20+ 523 =1
1+ T2+ 23 =2,

for which we calculated in Section 1.1 the solution set to be

I —2 1

1
T3 1 0
-2 1 1
denoting u = 1 | andp=—=| 5 |. Recall that ¢t u represents vectors
1 0

on a line through the origin parallel to the vector u (with ¢ arbitrary). The
vector p translates this line to a parallel one, off the origin. Let us consider
the corresponding homogeneous system:

2x1 —x2+ 523 =0
1 +x2+23=0,

with the right hand sides changed to zero. One calculates its solution set to
be tu, with the same u. In general, the solution set of the system Ax = b
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is a translation by some vector p of the solution set of the corresponding
homogeneous system Ay = 0. Indeed, if p is any particular solution of the
non-homogeneous system, so that Ap = b, then A(p+y) = Ap + Ay =
Ap = b. Tt follows that p + y gives the solution set of the non-homogeneous
system.

We conclude this section with a “book-keeping” remark. Suppose one
needs to solve three systems Ax = by, Az = by and Ax = b3, all with the
same matrix A. Calculations can be done in parallel by considering a “long”
augmented matrix [ A by b b3 ] If the first step in the row reduction
of A is, say Ro — 2R1, this step is performed on the entire “long” second
row. Once A is reduced to the row echelon form, restore each of the systems
separately, and perform back-substitution.

Exercises
1 2 -1 2 —1
1. Let A= |1 2 0 |,b1=1]3], b= 0 [. Determine the
1 2 -1 2 2
solution set of the following systems. (Calculations for all three cases can

be done in parallel.)

a. Ax = 0.
e
Answer. z =1 1
b. Ax = bl.
[ —2 3
Answer. z =1 11+10
i ] 1
c. Az = bo.

Answer. The system is inconsistent (no solutions).

2. Let A be a 4 x 5 matrix. Does the homogeneous system Az = 0 have
non-trivial solutions?

3. Let A be a n x n matrix, with n pivots. Are there any solutions of the
system Az = 0, in addition to the trivial one?

4. Let 1 = 2, zo = 1 be a solution of some system Ax = b, with a 2 x 2
matrix A. Assume that the solution set of the corresponding homogeneous
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1 .
system Az = 0 is t [ _3 ], with arbitrary ¢. Describe geometrically the
solution set of Ax = b.

Answer. The line of slope —3 passing through the point (2,1), or zy =
—3x1+ 7.

5. Show that the system Az = b has at most one solution if the correspond-
ing homogeneous system Az = 0 has only the trivial solution.

Hint. Show that the difference of any two solutions of Az = b satisfies the
corresponding homogeneous system.

6. Let = and y be two solutions of the homogeneous system Az = 0.
a. Show that x 4 y is also a solution of this system.
b. Show that cix + coy is a solution of this system, for any scalars cq, co.

7. Let z and y be two solutions of a non-homogeneous system Ax = b, with
non-zero vector b. Show that z + y is not a solution of this system.

8. True or false?

a. If a linear system of equations has a trivial solution, this system is
homogeneous.

b. If A of size 5 x 5 has 4 pivots, then the system Az = 0 has non-trivial
solutions.

c. If Ais a4 x5 matrix with 3 pivots, then the solution set of Ax = 0
involves one arbitrary constant. Answer. False.

d. If Ais a5 x 6 matrix, then for any b the system Az = b is consistent
(has solutions). Answer. False.

1.5 Linear Dependence and Independence

Given a set of vectors uy, ug,...,u, in R™, we look for the scalars (coeffi-
cients) z1, 9, ..., o, which will make their linear combination to be equal
to the zero vector

(5.1) TiU] + ToUg + -+ xpuy =0.

The trivial combination x1 = 1o = - -+ = x,, = 0 clearly works. If the trivial
combination is the only way to produce zero vector, we say that the vectors
Ui, U2, ..., Uy are linearly independent. If any non-trivial combination is
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equal to the zero vector, we say that the vectors uy,us,...,u, are linearly
dependent.

Suppose that the vectors ui,us,...,u, are linearly dependent. Then
(5.1) holds, with at least one of the coefficients not zero. Let us say, z1 # 0.
Writing x1u1 = —xoug — - - - — Ty, €Xpress

€2 L,
Uy = ——U2 — - Unp ,
1 1

so that uq is a linear combination of the other vectors. Conversely, suppose
that uq is a linear combination of the other vectors u; = youo + - - - + Yply,
with some coefficients o, ..., y,. Then

(—1)U1 +yous + - -+ Ypup = 0.

We have a non-trivial linear combination, with at least one of the coeffi-
cients non-zero (namely, (—1) # 0), producing the zero vector. The vectors
ui, U2, ..., U, are linearly dependent. Conclusion: a set of vectors is lin-
early dependent if and only if (exactly when) one of the vectors is a linear
combination of the others.

For two vectors uq,us linear dependence means that uq; = yous, for some
scalar 19, so that the vectors are proportional, and they go along the same
line (in case of R% or R?). For three vectors ui,us,us linear dependence
implies that u; = youg + y3us (geometrically, if these vectors are in R? they
lie in the same plane).

1 1 1
For example, a1 = | =1 |,a0=| —3 |,and ag = | 1 | are linearly
2 3 1

dependent, because
ag = 2(11 —as.

1 —2 1
while the vectors by = | —1 |, by = 2 |,and by = 4 | are linearly
2 —4 -5
dependent, because
1
by = <——> by + 0b3.
2
2 1 -1
The vectorsuy = | 0 |, us=| —3 |, and ug = 1 |, are linearly
0 0 3

independent, because none of these vectors is a linear combination of the
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other two. Let us see why wus is not a linear combination of u; and usg.
Indeed, if we had uo = x1 uq + x2usg, or

1 2 -1
-3 = 0 + T2 1 )
0 0 3

then comparing the third components gives xo = 0, so that

1 2
-3 =T 0 s
0 0

which is not possible. One shows similarly that u; and us are not linear
combinations of the other two vectors. A more systematic approach to
decide on linear dependence or independence is developed next.

Vectors uq, us, . .., u, in R™ are linearly dependent if the vector equation
(5.1) has a non-trivial solution. In components, the vector equation (5.1) is

an m x n homogeneous system with the augmented matrix [uy uz ... uy,:0].
Apply forward elimination. Non-trivial solutions will exist if and only if
there are free (non-pivot) variables. If there are no free variables (all columns
have pivots), then the trivial solution is the only one. Since we are only
interested in pivots, there is no need to carry a column of zeroes in the
augmented matrix when performing row reduction.

Algorithm: perform row reduction on the matrix [u ug ... u,]. If the num-
ber of pivots is less than n, the vectors ui, us, ..., u, are linearly dependent.
If the number of pivots is equal to n, the vectors ui,us, ..., u, are linearly
independent. (The number of pivots cannot exceed the number of columns
n, because each pivot occupies its own column.)

1 4
Example 1 Determine whether the vectors u; = | 2 |, uo = | 5 |,
3 6
0
and ug = | 1 | are linearly dependent or independent.
1

Using these vectors as columns, form the matrix

W N =
S Ut
e )
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Performing row reduction (Re — 2Ry, R3 — 3Ry, followed by Rs —2R3) gives

® 4 0
03 1
0 0 €

All three columns have pivots. The vectors uq, uo, ug are linearly indepen-
dent.

2 1
Example 2 Let us re-visit the vectors u;1 = | 0 |, us = | =3 |, and
0 0
-1
uz = 1 | from a previous example. Using these vectors as columns,
3
form the matrix
@ 1 -1
0 a3 1],
0 0 @&

which is already in row echelon form, with three pivots. The vectors are
linearly independent.

1 0
. 0 -1
Example 3 Determine whether the vectors vy = | L | e= )
2
1
-1 .
and vy = o | are linearly dependent or independent. Using these vec-
5
tors as columns, form the matrix
1 0 1
0 -1 -1
-1 1
2 3 5

Performing row reduction (R3+ Ry, Ry—2R;, followed by R3+ Ro, R4+3Rz2)
gives

OOO@
OO@O
|
—
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There is no pivot in the third column. The vectors vy, vo, and v3 are linearly
dependent. In fact, vg3 = v1 + v9.

If n > m, any vectors uq,us, ..., u, in R™ are linearly dependent. In-
deed, row reduction on the matrix [uj us ... u,] will produce no more than
m pivots (each pivot occupies its own row), and hence there will be columns
without pivots. For example, any three (or more) vectors in R? are linearly
dependent. In R® any four (or more) vectors are linearly dependent.

There are other instances when linear dependence can be recognized at
a glance. For example, if a set of vectors 0, uy,us, ..., u, contains the zero
vector 0, then this set is linearly dependent. Indeed,

1-04+0-u1+0-ug+---+0-u,=0

is a non-trivial combination producing the zero vector. Another example:
the set uq, 2uq, us, ..., u, is linearly dependent. Indeed,

(=2) - up+1-2u3+0-us+---+0-u, =0

is a non-trivial combination producing the zero vector. More generally, if a
subset is linearly dependent, the entire set is linearly dependent.

We shall need the following theorem.

Theorem 1.5.1 Assume that the vectors ui, ua, ..., u, in R™ are linearly
independent, and a vector w in R™ is not in their span. Then the vectors
UL, UL, - . ., Up, W are also linearly independent.

Proof: Assume, on the contrary, that the vectors wuq, uo, ..., u,, w are
linearly dependent. Then one can arrange for

(5.2) iUl + ToUg + - -+ Tply + Tppw =0,

with at least one of the x;’s not zero. If x,, 11 # 0, we may solve this relation
for w in terms of uy, ug, .. ., Up:

x1 Z2 Tn
w= - up — U = — Un,,
Tn+1 Tnt1 Tnt1
contradicting the assumption that w is not in the span of uy,us, ..., uy. In

the other case when z,41 = 0, it follows from (5.2) that

TiuL + Touz + - -+ Tpup =0,
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with at least one of the x;’s not zero, contradicting the linear independence
of uy, ug, ..., Uy.

So that assuming that the theorem is not true, leads to a contradiction
(an impossible situation). Hence, the theorem is true. &

The method of proof we just used is known as proof by contradiction.
Exercises

1. Determine if the following vectors are linearly dependent or independent.

2 —4
-1 2
a. L 0 Answer. Dependent.
- 3 - - _6 -
F 11T 91
b. 1|, 2 Answer. Independent.
- 3 - - 7 -
1 0 0
-1 0 0
c. 2 |, 2 (,10]. Answer. Dependent.
-3 —4 0
4 5 0
-1 0 -2
d. 2 1, 2 |, 2 1. Answer. Dependent.
-3 —4 -2
]
1 1 1 2
e. i1l a2l 12l Answer. Independent.
1 2 2 2
2 0 -2
f [ 3 ], [ 4 ], [ 9 ] Answer. Dependent.
-1 2
g. [ 0 ], [ _3 ] Answer. Independent.
-2 1 0
h. 01, , 1 2 |. Answer. Independent.
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—2 -1 3 -3
. 0 2 2 2
i N ol | 7 | 5 Answer. Independent.
. o] L O] | Of | 4]
27 [ =171 [ 47 [ -3
0 3 -2 2
j L ol | —7 |’ 1 Answer. Dependent.
. 0] L O | O] [ O]
1 [ —1 2
1 —1 2
k 1l 22| o Answer. Independent.
1] [ 3 1
—2 0 1
L. 11,10, [ 9 ] Answer. The concept of linear de-
0 0

pendence or independence is defined only for vectors of the same dimension.

2. Suppose that u; and uy are linearly independent vectors in R3.

a. Show that the vectors uj + ug and u; — ug are also linearly independent.
b. Explain geometrically why this is true.

3. Suppose that the vectors uj; + ue and u; — ug are linearly dependent.

Show that the vectors uq and us are also linearly dependent.

4. Assume that the vectors uq, ug, us, uq in R™ (n > 4) are linearly inde-
pendent. Show that the same is true for the vectors wq, u1 + uo, u1 + uo +
U3, U1 + ug + u3z + uq.

5. Given vectors ui,ug, us in R3, suppose that the following three pairs
(u1,u9), (u1,us) and (ugz,us) are linearly independent. Does it follow that
the vectors u1, us, ug are linearly independent? Explain.

6. Show that any vectors uy, ua, Ui + us, u4 in R® are linearly dependent.

7. Suppose that some vectors uy, ug, u3 in R™ are linearly dependent. Show
that the same is true for uq,usg, us, u4, no matter what the vector ugy € R"
is.
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8. Suppose that some vectors uq, us, u3, uq in R™ are linearly independent.
Show that the same is true for uy, us, us.

9. Assume that ui, us, us, us are vectors in R® and us = 0. Justify that
these vectors are linearly dependent. (Starting from the definition of linear
dependence.)

10*. The following example serves to illustrate possible pitfalls when doing
proofs.

For any positive integer n

n2:n+n+---—|—n,

where the sum on the right has n terms. Differentiate both sides with respect
to the variable n
Mm=1+1+4---+1,

which gives
2n=mn.

Dividing by n > 0, obtain
2=1.

Is there anything wrong with this argument? Explain.
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Chapter 2

Matrix Algebra

In this chapter we develop the central concept of matrices, and study their
basic properties, including the notions of inverse matrices, elementary ma-
trices, null spaces, and column spaces.

2.1 Matrix Operations

A general matrix of size 2 X 3 can be written as

a a a
A= 11 12 13 )
a1 a2 azg

Each element has two indices. The first index identifies the row, and the
second index refers to the column number. All of the elements of the first

row have the first index 1, while all elements of the third column have

1 -2 0
the second index 3. For example the matrix [ 3 [ ] has a1; = 1,

2
alg = —2,a13 =0, ag; = 3, agy = %, a3 = m. A 1 x 1 matrix is just the
scalar aqy.
Any matrix can be multiplied by a scalar, and any two matrices of the

same size can be added. Both operations are performed componentwise,
similarly to vectors. For example,

ail a2 b1 b1z air +bi1 a2 + b2
a1 ag | + | bar bao | = | a21 +bar a2 +ba |,
asy ase b31 b3z | as1 +b31  azz + b32
5A—5 | (1 @12 @13 | _ dai1 daiz dSai3

az a2 a3 | dag1 dagzy dags

39
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If A is an m x n matrix, given by its columns A = [aj a2 ... ay], and
€1
€2
T = . is a vector in R", recall that their product
Tn
(1.1) Ar = z1a1 + o090 + - - - + T

is a vector in R™. Let B be a m X p matrix, given by its columns B =
[b1 b2 ... by]. Each of these columns is a vector in R". Define the product
of two matrices as the following matrix, given by its columns

AB = [Aby Ab,y ... Ab,].

So that the first column of AB is the vector Ab; in R™ (calculated using
(1.1)), and so on. Not every two matrices can be multiplied. If the size of
A is m x n, then the size of B must be n x p, with the same n (m and p are
arbitrary). The size of AB is m x p (one sees from the definition that AB
has m rows and p columns).

For example,

1 -1 1 2 -1 2 —2 2 -2
0 -3 2 1 -1 2|=|-97 —10],
—4 20 -3 2 -2 -6 2 —4

1 -1 1 1 ~1 1 —2
-3 2 1l=2] 0of+1] =3 |+(=3)|2]|=]|-9],
—4 2 0] | -3 4 2 0 —6

and the second and third columns of the product matrix are calculated
similarly.

If a matrix A has size 2 x 3 and B is of size 3 x 4, their product AB
of size 2 x 4 is defined, while the product BA is not defined (because the
second index of the first matrix B does not match the first index of A). For
a matrix C of size 3 x 4 and a matrix D of size 4 x 3 both products C'D and
DC' are defined, but C'D has size 3 x 3, while DC' is of size 4 x 4. Again,
the order of the matrices matters.
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2.1. MATRIX OPERATIONS 41

Matrices of size n x n are called square matrices of size n. For two square
matrices of size n, both products AB and BA are defined, both are square
matrices of size n, but even then

BA #+ AB,
in most cases. In a rare case when BA = AB one says that the matrices A
and B commute.

Aside from BA # AB, the usual rules of algebra apply, which is straight-
forward to verify. For example (assuming that all products are defined),

A(BC) = (AB) C,
(AB)C)D = A(BC) D = (AB) (CD) .

It does not matter in which order you multiply (or pair the matrices), so
long as the order in which the matrices appear is preserved. Also,

A(B+C)=AB+ AC,
(A+B)C = AC + BC,
2A(—3B) = —6AB.

1 00
A square matrix I = | 0 1 0 | is called the identity matriz of size
0 0 1

3 (identity matrices come in all sizes). If A is any square matrix of size 3,
then one calculates

TA=AI=A,
and the same is true for the unit matrix of any size.
2 00
A square matrix D= | 0 3 0 | is an example of a diagonal matriz,
0 0 4

which is a square matrix with all off-diagonal entries equal to zero. Let A
be any 3 x 3 matrix, given by its columns A = [a; az as]. One calculates

AD = [2(11 3(12 4(13] .

So that to produce AD, the columns of A are multiplied by the corresponding
diagonal entries of D. Indeed, the first column of AD is

2 2
Al O = [a1 as ag] 0 = 2a1 + Oag + Oag = 2a; ,
0 0
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and the other columns of AD are calculated similarly. In particular, if

p 0 O
A= 0 g 0 | is another diagonal matrix, then
0 0 r
p 00 2 00 2p 0 0
AD=1]10 ¢q O 0 3 0|=1] 03 0
0 0 r 0 0 4 0 0 4r

In general, the product of two diagonal matrices of the same size is the
diagonal matrix obtained by multiplying the corresponding diagonal entries.

A row vector R = [ 2 3 4 ] can be viewed as a 1 x 3 matrix. Similarly,

1
the column vector C = | —2 | is a matrix of size 3 x 1. Their product RC
5
is defined, it has size 1 x 1, which is a scalar:
1
RC=[23 4] | -2 |=2-1+3-(-2)+4-5=16.
5

We now describe an equivalent alternative way to multiply an m x n
matrix A and an n X p matrix B. The row i of A is

RZ’ = [ail a;o ... am] s

blj
bgj
{ bnj J

To calculate the ij element of the product AB, denoted by (AB)Z-j, just
multiply R; and Cj:

while the column j of B is

C; =

(AB)ij = Ricj = ailblj + ai2b2j + -+ ambnj .

e el [m s

For example,
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1 because

0
-2

—
w

—

[R—

| —

]:3-0+1(—2):—2,
[ 3 1][_;’]:3(—3)“-2:—7.

5 If A= [ @ @2 413 ], the transpose of A is defined to be
G21 a2 0a23

ailp asi

AT =
= | a2 a22
a13 azs

s To calculate AT, one turns the first row of A into the first column of A7, the
7 second row of A into the second column of AT, and so on. (Observe that in
8 the process the columns of A become the rows of AT.) If A is of size m x n,
s then the size of AT is n x m. It is straightforward to verify that

(a7)" = 4,

10 and

(AB)T = BT AT,

-

1 provided that the matrix product AB is defined.

12 A matrix with all entries equal to zero is called the zero matriz, and is
0 0

13 denoted by O. For example, O = | 0 0 | is the 3 X 2 zero matrix. If the
0 0

12 matrices A and O are of the same size, then A + O = A. If the product AO
15 is defined, it is equal to the zero matrix.

16 Powers of a square matriz A are defined as follows: A2 = AA, A3 = A?A,
17 and so on. A™ is a square matrix of the same size as A.

18 Exercises
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1. Determine the 3 x 2 matrix X from the relation

1 -1 01
2X+10 2| =-3|-120
3 0 0 2

2. Determine the 3 x 3 matrix X from the relation

3X+1=0.
-1 0 0
Answer. X = 0 —% 0
0 0 —%
3. Calculate the products AB and BA, and compare.

1 -1
a. A=1|0 2 ,B:[é_éf].

3 0

1 -3 1 -
Answer. AB=| 0 4 2 ,BA:[3 4 ]
3 -3 6
b. A=[1 -1 4],B=] -1
1 -1 4
Answer. AB=10, BA=| —1 1 —4
2 =2 8

1 -1 -1 2
: A_[3 0],3_[ . 1].

(2 -1 1 -1 2
Ak 1],3_[3 21].
Hint. The product BA is not defined.

1 1 1 200
e. A=]11 1|,B=]0 3 0

111 00 4

a 0 0 0 2000

0 b 0 O 0300
f A= 0 0 ¢ O B = 0 040

0 0 0 d 00 0 5
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[2& 0 O 0_|
0 3b 0 O
Answer. AB = BA = 0 0 4e 0
0O 0 O 5d

1 11 2 0 0

g A=|11 1 1|,B=]0 -1 0
1 11 0 0 0

Hint. B is diagonal matrix.

2 2 2
Answer. BA=| —1 —1 —1 |. Observe the general fact: multiplyng A
0 0 O

by a diagonal matrix B from the left results in rows of A being multiplied
by the corresponding diagonal entries of B.

4. Let A and B be square matrices of the same size. Can one assert the
following formulas? If the answer is no, write down the correct formula. Do
these formulas hold in case A and B commute?

(A—B)(A+B) = A*> - B2
(A+B)? = A% + 2AB + B2,
c. (AB)? = A’B?.

=3

5. Suppose that the product ABC is defined. Show that the product
CT BT AT is also defined, and (ABC)! = ¢TBT AT,

6. Let A be a square matrix.

. Show that (4%)" = (AT)%.

a

b. Show that (A")T = (AT)n, with integer n > 3.
10 0 0 .

7.LetA:[1 0]75OandB:[0 2]750.Ver1fythatAB:O.
010

8. Let A= | 0 0 1 |. Show that 43 = O.
0 0O
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3 1 -2
9. Let H=| 0 —4 1
1 2 0

a. Calculate HT.

b. Show that transposition of any square matrix A leaves the diagonal
entries unchanged, while interchanging the symmetric off diagonal entries
(aij and Qi with ¢ # j)

c. A square matriz A is called symmetric if AT = A. Show that then
a;; = aj; for all off diagonal entries. Is matrix H symmetric?

d. Let B be any m x n matrix. Show that the matrix B B is square and
symmetric, and the same is true for BBT.

10. Let x € R".
a. Show that 27 is a 1 X n matrix, or a row vector.

b. Calculate the product z72 in terms of the coordinates of z, and show
that 72 > 0, provided that = # 0.

2.2 The Inverse of a Square Matrix

An n x n matrix A is said to be invertible if there is an n X n matrix C such
that
CA=1, and AC=1,

where [ is an n x n identity matrix. Such matrix C' is called the inverse of
A, and denoted A%, so that

(2.1) AtA=AA"T=T.
e 121 1 2 -1

For example, if A = [ 3 9 ], then A7 = [ 3 9 ], because

2 1 2 —1]_[ 2 -1)[21]_[10]_,

3 2 -3 2| | -3 2 3 2| |0 1] °°
Not every square matrix has an inverse. For example, A = [ 0 (1) ] is not
. . . . . o C11 C12
invertible (no inverse exists). Indeed, if we try any C' = [ I ] , then

21 €22

101 c11 c12 | | co1 22 10
AC_[O 0:||:621 622:|_|:0 0:|?£|:0 1:|’
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for any choice of C. Non-invertible matrices are also called singular.

If an n X n matrix A is invertible, then the system
Az =b

has a unique solution z = A~'b. Indeed, multiply both sides of this equation
by A1
A7 Az = A1,

and simplify to Tz = A™'b, or & = A~'b. The corresponding homogeneous
system (when b = 0)

(2.2) Az =0

has a unique solution z = A~10 = 0, the trivial solution. The trivial solution
is the only solution of (2.2), and that happens when A has n pivots (a pivot
in every column). Conclusion: if an n x n matrix A is invertible, it has n
pivots. It follows that in case A has fewer than n pivots, A is not invertible
(singular).

Theorem 2.2.1 An n X n matrix A is invertible if and only if A has n
Pprvots.

Proof: If A is invertible, we just proved that A has n pivots. Conversely
assume that A has n pivots. It will be shown later on in this section how to
construct the inverse matrix A~ &

Given n vectors in R", let us use them as columns of an n x n matrix,
and call this matrix A. These columns are linearly independent if and only if
A has n pivots, as we learned previously. We can then restate the preceding
theorem.

Theorem 2.2.2 A square matrix is invertible if and only if its columns are
linearly independent.

Suppose A is a 3 x 3 matrix. If A is invertible, then A has 3 pivots, and
its columns are linearly independent. If A is not invertible, then the number
of pivots is either 1 or 2, and the columns of A are linearly dependent.

Elementary Matrices

The matrix

&
%)
~—~

|
w
N—
Il
S O =
|
S W o
= o O



10

11

12

13

14

15

16

17

18

19

20

21

22

48 CHAPTER 2. MATRIX ALGEBRA

is obtained by multiplying the second row of I by —3 (or performing —3 R,
on the identity matrix I). Calculate the product of this matrix and an
arbitrary one

1 00 ail a2 ais ary ai2 a3
0 -3 0 agy age azz | = | —3a1 —3az —3as3
0 01 azy asz ass asy aso ass

So that multiplying an arbitrary matrix from the left by Fo(—3) is the same
as performing an elementary operation —3 Ry on that matrix. In general, one
defines an elementary matriz E;(a) by multiplying the row i of the n x n
identity matrix I by number a. If A is an arbitrary n X n matrix, then
the result of multiplication F;(a)A is that the elementary operation aR; is
performed on A. We call E;(a) an elementary matrixz of the first kind.
The matrix
0 0 1
010
1 00
is obtained by interchanging the first and the third rows of I (or performing
R; < Rz on I). Calculate the product of Fq3 and an arbitrary matrix

Eq3=

0 01 ai1 a2 Qi3 az1 Qg2 as3
010 az1 a2z a3 | = | a1 azx ao3
100 azy asz ass a1 a2 a13

So that multiplying an arbitrary matrix from the left by Fi3 is the same as
performing an elementary operation Ry <+ R3 on that matrix. In general,
one defines an elementary matrix F;; by interchanging the row ¢ and the
row j of the n x n identity matrix I. If A is an arbitrary n x n matrix, then
the result of multiplication E;;A is that an elementary operation R; < R;
is performed on A. Ej; is called an elementary matriz of the second kind.
The matrix
1 00
Ei32)=10 1 0
2 01
is obtained from I by adding to its third row the first row multiplied by
2 (or performing R3 + 2R; on I). Calculate the product of F13(2) and an
arbitrary matrix

100 a1 a2 ais arl a2 a3
010 az1 azy ag3 | = a1 a2 a3
2 01 azy asz ass as1 +2a11  asz +2a12  asz + 2a;3



10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

2.2. THE INVERSE OF A SQUARE MATRIX 49

So that multiplying an arbitrary matrix from the left by F13(2) is the same
as performing an elementary operation R3-+2R; on that matrix. In general,
one defines an elementary matrix F;j(a) by performing R; + aR; on the
n X n identity matrix I. If A is an arbitrary n x n matrix, the result of
multiplication F;j(a)A is that an elementary operation R;+aR; is performed
on A. E;; is called an elementary matriz of the third kind.

We summarize. If a matriz A is multiplied from the left by an elemen-
tary matriz, the result is the same as applying the corresponding elementary
operation to A.

Calculating A~!

Given an n X n matrix A, we wish to determine if A is invertible, and if it
is invertible, calculate the inverse A~!.

Let us row reduce A by applying elementary operations, which is the
same as multiplyng from the left by elementary matrices. Denote by E; the
first elementary matrix used. (In case one has a1; = 1 and ag; = 2, then
the first elementary operation is Ry — 2Ry, so that Fy = E19(—2). If it so
happens that a;; = 0 and ag; = 1, then the first elementary operation is
R; < Ry, and then Ej = Ej5.) The first step of row reduction results in
the matrix F1A. Denote by Es the second elementary matrix used. After
two steps of row reduction we have Ey (E1A) = EoF1A. If A is invertible,
it has n pivots, and then we can row reduce A to I by complete forward
elimination, after say p steps. In terms of elementary matrices:

(2.3) E, - EyE A=1.

This implies that the product E), - - - EoFy is the inverse of A, E, - - - FoFy =
Al or

(2.4) E, - EyE1 T=A"".

Compare (2.3) with (2.4): the same sequence of elementary operations that
reduces A to I, turns I into A™1.

The result is a method for computing A™'. Form a long matrix [A: I]
of size n x 2n. Apply row operations on the entire long matrix, with the
goal of obtaining I is the first position. Once this is achieved, the matrix in
the second position is A™!. In short,

[AEI]—)[IEA_l].
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1 2 -1
Example 1 Let A= 2 3 —2 |. Form the matrix [A: I]:
-1 -2 0
1 2 -1,10 0
2 3 -2,010
1 -2 010 0 1

1 2 -1, 10 0
0 -1 0!-2 10
0 0 -1' 101

12 -1, 1 0 0

01 0, 2 -1 0

00 1'-1 —1
Perform R, + Rs:

(1 2 0, 0 0 —1]

010 2 -1 0

Finally, perform Ry — 2Rs:

1

_= O
o O
|
NI
|
N
|
o =

—4 2 -1
The process is complete, A™1 = 2 -1 0
—1 0 —1
-1 2 1
Example 2 Let B = 2 —4 -3 |. Form the matrix [B: I]:
1 -2 1
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Perform Rs + 2R; and Rs + R; on the entire matrix:
D

0

0

— N
O = O
= o O

2 1,
0 €,
0 2!

Game over! The matrix B does not have a pivot in the second column. So
that B has fewer than 3 pivots and is therefore singular (there is no inverse),
by Theorem 2.2.1.

For a 2 x 2 matrix A = [ (Z 2 ] there is an easier way to calcu-

late the inverse. One checks by multiplication of matrices that A~ =

1 d b , provided that ad — bc # 0. In case ad — bc = 0, the
ad—bc | —c a

matrix A has no inverse, as will be justified later on.

The inverses of diagonal matrices are also easy to find. For example, if

a 0 0 100
A= 10 b 0 |, with non-zero a,b,c, then A=t = | 0 % 0 |. If one
00 c 00 1

(&
of the diagonal entries of A is zero, then the matrix A is singular, since it

has fewer than three pivots.
Exercises

1. Write down the 3 x 3 elementary matrix which corresponds to the follow-
ing elementary operation: to row 3 add four times the row 2. What is the
notation used for this matrix?

1 00
Answer. E93(4)=10 1 0
0 41

2. Write down the 3 x 3 elementary matrix which corresponds to the follow-
ing elementary operation: multiply row 3 by —5.

3. Write down the 4 x 4 elementary matrix which corresponds to the follow-
ing elementary operation: interchange the rows 1 and 4.

00 01
0100
0010J'

Answer. Ey =
{1 0 00
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4. Explain why the following matrices are singular (not invertible).

[0 0
a. A—_41].
[ -3 0
b. A__ 50].
1 0 0
C A=10 -4 0
0 00
0 1 1
d. A=12 4 5
00 0

Hint. Count the number of pivots.

5. Find the inverses of the following matrices without performing the Gaus-
sian elimination.

1
a. A=10
0

AN

0
0
1

Hint. A = E53(4). Observe that Fo3(—4)A = I, since performing R3 — 4R,
on A gives I. It follows that A=! = Ep3(—4).

1 0 0
Answer. A=t =] 0 1 0
0 -4 1
[ 0 0 01 —|
01 00
b. A= 001 0]
1 0 0O

Hint. A = Fq14. Then E14A = I, since switching the first and the fourth
rows of A produces I. It follows that A~ = E,.

Answer. A1 = A.

(oW
N
Il
O ORI
|
o = O
o O O
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4 0 0
e A=]10 0 0

0 0 5

1 -1
coas[l ]

1 2 0
a A= -1 1
1 -2 1
1 3
b A= 2 6
[0 01
c A=|0 -1 1
1 -2 1
1 2 3
d A=12 0 2
3 2 1
1 1 2
e A=1(10 0 1
1 01
1 01
f A= 1 1 1
1 1
[ 1 1
g A= 1 2
-1 -1
1 —1
b 4=13 =2
1 -1 0
1. B=13 -2 0
0 0 5

Compare with the preceding example.

block diagonal matriz.

Answer. [

53

Answer. The matrix is singular.

-2 1
-3 1]

1 =2 2
Answer. A~! = % 1 1 -1
1 4 -1

Answer. The matrix is singular.

1 2 1
Answer. A== 1 -1 0
1 0 0
-1 1 1
Answer. A~! = }1 1 —2 1
-1
0
Answer. A1 = | 1
0
Answer. A~! = |:
-1 -3
Answer. A~! = 1 1 2
-1 0 -1
-2 1
-1 _
Answer. A _3 1
-2 1 0
Answer. B~1 = —3 1 0
1
5

The matrix B is an example of a
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1 -1 0 0 -2 1 0 0

13 =20 0 1| -3 10 0

h C = 0 0 5 0 Answer. C~1 = 0 0 % 0
0 0 0 -1 00 0 -1

The matrix C is another example of a block diagonal matrix.

7. The third column of a 3 x 3 matrix is equal to the sum of the first two
columns. Is this matrix invertible? Explain.

8. Suppose that A and B are non-singular n x n matrices, and (AB)? =

A?B?. Show that AB = BA.
9. Let F13 and E94 be 4 x 4 matrices.

0010
0 001
a. Calculate P = E13F94. Answer. P = 1000
0100

b. Let A be any 4 x 4 matrix. Show that PA is obtained from A by
interchanging row 1 with row 3, and row 2 with row 4.

Ry R3
(If A is given by its rows A = Ry , then PA = i )
Rg Rl
L Ry J L Ry J

c. Show that P?2 =1I.
The matrix P is an example of a permutation matriz.

10. a. Suppose that a square matrix A is invertible. Show that AT is also
invertible, and

(4 = (a )"
Hint. Take the transpose of AA™! = 1.

b. Show that a square matrix is invertible if and only if its rows are linearly
independent.

Hint. Use Theorem 2.2.2.

c. Suppose that the third row of a 7 x 7 matrix is equal to the sum of the
first and the second rows. Is this matrix invertible?

11. A square matrix A is called nilpotent if A¥ = O, the zero matrix, for
some positive integer k.
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S O O
= o O

a. Show that A = is nilpotent.  Hint. Calculate A%.

o O O+
S O = O

0 0

b. If A is nilpotent show that I — A is invertible, and calculate (I — A)™".
Answer. (I —A) ' =T+ A+ A% ... 4 AL

2.3 LU Decomposition

In this section we study inverses of elementary matrices, and develop A =
LU decomposition of any square matrix A, a useful tool.

Examining the definition of the inverse matrix (A™'A = AA™! = I) one

sees that A plays the role of inverse matrix for A™1, so that A = (A_l)_l,
or
(A7) =4,

Another property of inverse matrices is

1
(cA)_1 = EA_I , for any number ¢ # 0,

1
which is true because (cA) (—A‘1> = AAT' =T
c

Given two invertible n X n matrices A and B, we claim that the matrix
AB is also invertible, and

(3.1) (AB)"' =B'47!.
Indeed,
(B'A ) (AB) =B ' (A'A) B=B'IB=B""'B=1,

and one shows similarly that (AB) (B_IA_I) = . Similar rule holds for
arbitrary number of invertible matrices. For example

(ABC)' =c'B7tA™t,
Indeed, apply (3.1) twice:

(ABC) ' =[(AB)C] ' =Cc' (4B) ' =c'B AL,
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We show next that inverses of elementary matrices are also elementary
matrices, of the same type. We have

1 1
because the elementary matrix F;(—) performs an elementary operation —R;
a
on Ej;(a), which results in I. So that

(3.2) Ei(a)™' = Ei(%) .

1
For example, Ey(—5)"1 = EQ(—g), so that in the 3 x 3 case

1 00 1 00
0 =5 0 =10 -1 0
0 01 0 01
Next
(3.3) E;' = Ejj,

(the matrix Fj; is its own inverse) because
EijEij =1.

Indeed, the matrix Fj;; on the left switches the rows i and j of the other Ej;,
putting the rows back in order to give I. Finally,

(3.4) Eij(a)™' = Ejj(—a),

because
Ei'(—a)Eij(a) =1.

Indeed, performing Rj—aR; on E;;(a) produces I. For example, Fi3(4)7t =
Eq13(—4), so that in the 3 x 3 case

-1

=~ O
O = O
— O O
Il
Lon
O = O
— O O



10

11

12

13

14

15

16

17

2.3. LU DECOMPOSITION 57

Some products of elementary matrices can be calculated at a glance, by
performing the products from right to left. For example,

(3.5) L = E15(2) E13(—3) Ez3(4) = E12(2) [E13(—3) E23(4)]
1 00 1 00 1 00 1 00
=12 10 010 010 = 210
0 01 -3 0 1 0 41 -3 4 1

Indeed, the product of the last two matrices in (3.5)

1 00 1 00 1 00
Eis(-3)Ex®) =] 01 0|]l0o10|l=] 010
-3 0 1 0 4 1 -3 4 1

is obtained by applying Rs — 3Ry to E23(4). Applying Ro + 2R to the last
matrix gives L in (3.5).

This matrix L is an example of lower triangular matriz, defined as a
square matrix with all elements above the diagonal ones equal to 0 (other

2 00
elements are arbitrary). The matrix Ly = | 3 —3 0 | gives another
0 =5 0
example of a lower triangular matrix. All elementary matrices of the type
1 -1 0
E;j(a) are lower triangular. The matrix U = | 0 —3 4 | is an example of
0 00

upper triangular matriz, defined as a square matrix with all elements below
the diagonal ones equal to 0 (the elements on the diagonal and above the
diagonal are not restricted).

1 -1 1
Let us perform row reduction on the matrix A = 2 -1 2 |. Per-
-3 7 4

forming R — 2Ry, R3 + 3R, followed by Rs — 4Rs, produces an upper
triangular matrix

[

1 1
(3.6) U=]10 10
0O 07
Rephrasing these elementary operations in terms of the elementary matrices

Eo3(—4)E13(3)E1a(—2)A=U.
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To express A, multiply both sides from the left by the inverse of the matrix
E23(—4)E13(3)E12(—2)1

A= [Egg(—4)E13(3)E12(—2)]_1 U= Elg(—Q)_1E13(3)_1E23(—4)_1U
= E12(2) E13(—3)Exs(4)U = LU,

where L is the lower triangular matrix calculated in (3.5), and the upper
triangular matrix U is shown in (3.6), so that

1 -1 1 1 00 1 -1 1
A= 2 -1 2| = 210 0 10
-3 7 4 -3 4 1 0 07

Matrix A is decomposed as product of a lower triangular matrix L, and an
upper triangular matrix U.

Similar A = LU decomposition can be calculated for any n x n matrix
A, for which forward elimination can be performed without switching the
rows. The upper triangular matrix U is the result of row reduction (the
row echelon form). The lower triangular matrix L has 1’s on the diagonal,
and (L)j = a if the operation R; — aR; was used in row reduction (here
(L)ji denotes the j,i entry of the matrix L). If the operation R; — aR; was
not used in row reduction, then (L);; = 0. For example, suppose that the
elementary operations R3 — 3R followed by R3+4Rs reduced a 3 x 3 matrix
A to an upper triangular matrix U (so that ao; = 0, and we had a “free

1 00
zero” in that position). Then L= | 0 1 0
3 -4 1

We shall use later the following theorem.

Theorem 2.3.1 Fvery invertible matriz A can be written as a product of
elementary matrices.

Proof: By the formula (2.3), developed for computation of A=,

E,--EyE A=1,

for some elementary matrices Eq, Es, . . ., E,. Multiply both sides by (E), - - -E2E1)_1,

to obtain
A=(E, - BB\ ' I=E'Ey' - B

The inverses of elementary matrices are themselves elementary matrices. <
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If one keeps the A = LU decomposition of a large matriz A on file, then
to solve

Az =LUx =b,
for some b € R", set
(3.7) Ur=y,
and then
(3.8) Ly=b.

One can quickly solve (3.8) by “forward-substitution” for y € R", and then
solve (3.7) by back-substitution to get the solution x. This process is much
faster than performing Gaussian elimination for Az = b “from scratch”.

Exercises

1. Assuming that A and B are non-singular n X n matrices, simplify:

a. B(AB) ' A. Answer. I.
b. (24)71 A2, Answer. %A.
-1
c. [4 (AB)! A} . Answer. 1B.

2. Without using Gaussian elimination find the inverses of the following
3 X 3 elementary matrices.

1 00
a. E13(2). Answer. Ej3(—2) = 010
-2 01
1 00
b. Es(5). Answer. Ex(3)=10 & 0 |.
0 01
0 01
c. FEis. Answer. F13=| 0 1 0
1 00

3. Identify the following 4 x 4 matrices as elementary matrices, and then
find their inverses.
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1 000
0 0 01
a A= 0010l Answer. A = Eoy, A7 = Eoy.
0100
10 00
01 00 _
b B = 00 10 Answer. B = E34(—5), B™! = E34(5).
00 -5 1
1 000
10100 B 1 1
c C= 00 1 0 Answer. C' = Ey(7), C7" = Ey(3).
0007

4. Calculate the products of the following 3 x 3 elementary matrices, by
performing the multiplication from right to left.

1 00
a. Elg(—3)E13(—1)E23(4). ADSWGI‘. -3 1 0
-1 4 1
010
b. E12E13(—1)E23(4). Answer. 1 0 0
-1 4 1
-1 4 1
C. E13E13(—1)E23(4). Answer. 010
1 00
1 0 O
d. E12(2)E23(—1)E23. Answer. 2 0 1
0 1 -1
0 10
e. Es5(3)E13(—1)E12. Answer. | 1 0 O
0 -3 3
5. Find the LU decomposition of the following matrices.
1 2 10 1 2
a. [34]. Answer.L—[31],U—_0_2].
1 1 1 1 0 0] 11 1
b 1 2 2 Answer. L=|1 1 0|, U=[0 1 1
1 2 3 11 1] 0 01
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1 1 -1
c. 1 2 2
2 3 5
1 1 1 1 0 0 1 11
d. -1 1 0 Answer. L=| -1 1 0 (,U=[0 2 1
2 2 3 2 01 0 0 1
1 2 1 0
0 2 1 -1
© 2 43 1]
0 -2 0 2
{1 0 0 0] 1 2 1 0}
0O 1 00 0 21 —1
Answer. L = 9 01 0 , U= 00 1 L
LO -1 1 1 LOOO OJ
[0 1 -1
6. a. For the matrix A = | 1 2 2 | the LU decomposition is not
2 3 4

possible (explain why). Calculate the LU decomposition for the matrix
E12A.

b*. Show that any non-singular n x n matrix A admits a decomposition
PA = LU, where P is a permutation matrix.

Hint. Choose P to perform all row exchanges needed in the row reduction
of A.

7. Assume that A = F15(3) E3(—2) Eas.
a. Express the inverse matrix A~! as a product of elementary matrices.

Answer. A7 = Eoq Es(—%) E1a(-3).

10 0
b. In case A is 3 x 3, write down A~1. Answer. A7! = 0 0 —%
-3 1 0

8. Suppose that S is invertible and A = S~'BS.
a. Show that B = SAS~ L.
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b. Suppose that A is also invertible. Show that B is invertible, and express
B~

9. Assume that A, B and A+ B are non-singular n X n matrices. Show that
(A" +B ) = A(A+B)'B.

Hint. Show that the inverses of these matrices are equal.

10. Show that in general
(A+B) ' £ A '+ B!,

Hint. A = 31, B = 51 provides an easy example (or a counterezample).

2.4 Subspaces, Bases and Dimension

The space R® is a vector space, meaning that one can add vectors and
1
multiply vectors by scalars. Vectors of the form | zo | form a subset (a
3
1
part) of R3. Let us call this subset H;. For example, the vectors | —2
3
1 2
and | 3 | both belong to Hy, but their sum | 1 | does not (vectors in
0 3
0
H, have the first component 1). Vectors of the form | xo | form another
3
subset of R?, which we call Ho. The sum of any two vectors in Ho

0 0 0
To |+ | Y2 | = | T2+ Y2
T3 Y3 T3+ Y3

belongs to Hs, and also a scalar multiple of any vector in Hs
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belongs to Ho, for any scalar c.

Definition A subset H of vectors in R"™ is called a subspace if for any
vectors u and v in H and any scalar ¢

(i) u +v belongs to H (H is closed under addition)
(ii) cu belongs to H  (H is closed under scalar multiplication).

So that addition of vectors, and multiplication of vectors by scalars, do not
take us out of H. The set Hy above is a subspace, while H; is not a subspace,
because it is not closed under addition, as we discussed above (H; is also
not closed under scalar multiplication). In simple terms, a subspace H is
a part (subset) of R"™, where one can add vectors and multiply vectors by
scalars without leaving H.

Using ¢ = 0 in part (ii) of the definition, one sees that any subspace
contains the zero vector. Hence, if a set does not contains the zero vector,

€1
it is not a subspace. For example, let H3 be a subset of vectors iz of
3
T4
R*, such that z1 + zo + 23 + 24 = 1. Hs is not a subspace, because the zero
0
0
vector 0 does not belong to Hs.
0

A special subspace, called the zero subspace {0}, consists of only the zero
vector in R"™. The space R" itself also satisfies the above definition, and it
can be regarded as a subspace of itself.

Given vectors vy, vg, ..., v, in R" their span, S = Span{v,va,...,vp},
is a subspace of R". Indeed, suppose z € S and y € S (€ is a mathematical
symbol meaning “belongs”). Then = = z1v1 + x2v2 + -+ - + vy and y =
Y1v1 + Yy2v2 + - -+ + ypv, for some numbers x; and y;. Calculate z +y =
(x1+y1)vi + (2 +y2)ve + -+ (xp+yp)vp € S, and cx = (cx1)v1 +
(cxo)vg + -+ - + (cxp)vy € S, verifying that S is a subspace.

Definition Given a subspace H, we say that the vectors {uy, ug, ..., uq}
in H form a basis of H if they are linearly independent and span H (so that
H = Span{uy, u, ..., uq}).

Theorem 2.4.1 Suppose that q vectors U = {uy,uz, ..., uqs} form a basis
of H, and let r > q+ 1. Then any r vectors in H are linearly dependent.
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Proof:  Let vy,vs,...,v,. be some vectors in H, with » > ¢. We wish to
show that the relation

(4.1) T1v1 + Tovy + -+ xpv, =0

has a non-trivial solution (not all x; are zero). Express v;’s through the
basis U:

V] = a11U] + ag1u2 + - - -+ Ag1Ug
Vg = @12U] + A22U2 + - - -+ Ag2Ug

Vp = A1,UL + Q2pU2 + -+ -+ Ggrlg ,

with some numbers a;j, and use them in (4.1). Rearranging, obtain:

(@111 + aroxe + - - -+ a1,xy) Ul + (@2171 + agexo + - - - + agpxy) ug + - -

+ (a1 + agera + - - -+ agrxy) ug = 0.

To satisfy the last equation, it is sufficient to make all of the coefficients
equal to zero:

a1z + ajpre + - -+ apxy =0

ag1x1 + agewe + - - - + agpxy =0

aq1T1 + agaT2 + -+ -+ agrx, = 0.

We have a homogeneous system with more unknowns than equations. By
Theorem 1.4.1 it has non-trivial solutions. &

It follows that any two bases of a subspace have the same number of
vectors. Indeed, if two bases with different number of vectors existed, then
vectors in the larger basis would have to be linearly dependent, which is not
possible by the definition of a basis. The common number of vectors in any
basis of H is called the dimension of H, denoted by dim H.

It is intuitively clear that the space R? is two-dimensional, R? is three
dimensional, etc. To justify rigorously that R? is two-dimensional, let us
exhibit a basis with two elements in R?, by considering the standard basis,
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1
consisting of e; = [ 0 ] and e; = [ (1) ] These vectors are linearly inde-

pendent and they span R?, because any vector z = [ 2 ] € R? can be
1
written as & = z1e1 +x2ey. In R? the standard basis consists of e; = | 0 ,
0
0 0
eo=| 1| andeg = | 0 |, and similarly for other R".
0 1

Theorem 2.4.2 If dimension of a subspace H is p, then any p linearly
independent vectors of H form a basis of H.

Proof: Let uq,us,...,u, be any p linearly independent vectors of H. We
only need to show that they span H. Suppose, on the contrary, that we
can find a vector w in H which is not in their span. By Theorem 1.5.1, the
p+1 vectors uy, ug, ..., up, w are linearly independent. But that contradicts
Theorem 2.4.1. &

It follows that in R? any two non-collinear vectors form a basis. In R?
any three vectors that do not lie in the same plane form a basis.

Suppose that vectors B = {by, by, ..., b,} form a basis in some subspace
H. Then any vector v € H can be represented through the basis elements:

v = x1b1 —I—:Egbg—l—"'—l—:prp

with some numbers x1, 9, ..., z,. This representation is unique, because if
there was another representation v = y1b1+y2b2+- - -+y,b,, then subtraction
would give

O=(x1—y1)bi + (z2—y2) ba+ -+ (xp — yp) bp,

and then z1 = y1,22 = ¥y2,...,7p = Yp, by linear independence of vectors
in the basis B. The coefficients x1, z2, ..., z, are called the coordinates of v
with respect to the basis B, with the notation

[v]p =
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Example 1 Two linearly independent vectors by = [ _1 ] and by = [ 3 ]

form a basis of R?, B = {by, ba}. The vector v = [ _g ] can be decomposed

as v = 3by + ba. It follows that the coordinates [v]p = [ :13 ] .

Example 2 The vectors by = [ _1 ], by = [ 3 ] and bz = [ _3 ] do not

form a basis of R?, because any three vectors in R? are linearly dependent,
and in fact, b3 = 2by + bs. As in the Example 1, b; and by form a basis of

R2, B = {by, bs}, and [bs] g — [ 2 ]

1
1 0
Example 3 Let us verify that the vectors by = | 0 |, by = | —1 |,
1 1
1
b3 = | 2 | form a basis of R, and then find the coordinates of the vector
3
3
v= | 3 | with respect to this basis, B = {by, b, b3}.
4

To justify that the three vectors by, ba, bg form a basis of R®, we only need
to show that they are linearly independent. That involves showing that the
matrix A = [by bg bg] has three pivots. Let us go straight to finding the
coordinates of v, representing

v = x1b1 + T9bo + x3b3,

and in the process it will be clear that the matrix A has three pivots. We
need to solve a 3 x 3 system with the augmented matrix

1 0 1,3
[blbgbgz’u]: 0 -1 2:3
1 1 3[4

The matrix of this system is precisely A. Perform R3 — R;, followed by
R3 + Ry. Obtain: .

@ 0 1,3
0 € 2,3
0 0 @'4
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The matrix A has three pivots, therefore the vectors by, bo, bg are linearly
independent, and hence they form a basis of R3. Restoring the system,

obtain 3 = 1, 29 = —1, 1 = 2, by back-substitution. Answer: [v]p =
2
-1
1
Exercises

1. Do the following subsets form subspaces of the corresponding spaces?
a. Vectors in R3 with 27 + 29 > 1.

Answer. No, the zero vector is not included in this subset.

b.  Vectors in R3 with 22 + 23 + 23 < 1.

Answer. No, the subset is not closed under both addition and scalar multi-
plication.

c.  Vectors in R® with x; 4+ x4 = 0.
Answer. Yes.

d.  Vectors in R* with z9 = 0.
Answer. Yes.

e.  Vectors in R? with z1z9 = 1.

Answer. No, not closed under addition (also not closed under scalar multi-
plication).

f.  Vectors in R? with x129 = 0.

Answer. No, not closed under addition (it is closed under scalar multiplica-
tion).

g.  Vectors in R? with 1 = 229 = —3x3.

Answer. Yes, these vectors lie on a line through the origin.

0

h. Vectors in R® of the form | x5
2

Lo
Does this subset contain the zero vector?

Answer. Not a subspace, even though this subset contains the zero vector.
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2. Show that all vectors lying on any line through the origin in R? form a
subspace.

3. a. Show that all vectors lying on any line through the origin in R? form
a subspace.

b. Show that all vectors lying on any plane through the origin in R? form a
subspace.

4. a. Explain why the vectors b; = [ ; ] and by = [ _1

R?, and then find the coordinates of the vector e; from the standard basis
with respect to this basis, B = {b1, ba}.

i)

] form a basis of

Answer. [e1]p = [

b. What is the vector v € R? if [v]p = [ :13 ]?

-2
Answer. v = [ 5 ]

c. For each of the following vectors vy = [ f :|,’U2 = [ (2) ],and vy = [ _g ]

find their coordinates with respect to this basis, B = {b1, ba}.

Hint. Calculations can be performed simultaneously (in parallel) by consid-

-1,2,0,-2
9 11112 2]. Perform Ry — 2Rq on

the entire matrix, then restore each sylstem.

Awswer [l = | 1 | el = | 373 | lla = | |

ering the augmented matrix

~1 2/3 2
1 0 1
5. Verify that the vectors by = | 0 |, bo = | —1 |, b3 = | 2 | form a
1 1 3
1
basis of R3, and then find the coordinates of the vectors v; = | 0 | and
4

2
vy = | 1 | with respect to this basis, B = {by, b, b3}.
9
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1 1 0
2 1 -1

6. a. Show that the vectors by = N by = L by = 1| are
3 1 —2

linearly dependent, and express bs as a linear combination of b; and bs.
Answer. bg = —by + bs.

b. Let V = Span{by, b, b3}. Find a basis of V', and dimension of V.
Answer. B = {b1, b2} is a basis of V. Dimension of V is 2.

c. Find the coordinates of by, be, b3 with respect to the basis in part (b).

Auwswer. o = | o | o= | § | o= | 7 |

€1

7. Let E = {eq, e2, e3} be the standard basis in R?, and = | z2 |. Find
x3

the coordinates [z]g.

x1
Answer. [z]g = | z2
3

2.5 Null Spaces and Column Spaces

We now study two important subspaces associated with any m X n matrix
A.

Definition The null space of A is the set of all vectors x € R" satisfying
Az = 0. It is denoted by N(A).

Let us justify that the null space is a subspace of R". (Recall that the
terms “subspace” and “space” are used interchangeably.) Assume that two
vectors 1 and zo belong to N(A), meaning that Az; = 0 and Aze = 0.
Then

A(:E1 —I—:Eg) = Ax1+ Az =0,

so that x1 +x9 € N(A). Similarly, A (cx1) = cAx; = 0, so that czq € N(A),
for any number ¢, justifying that N(A) is a subspace.

Finding the null space of A requires solving the homogeneous system
Az = 0, which was studied previously. We can now interpret the answer in
terms of dimension and basis of N(A).
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—1 2 0 1
Example 1 A = 2 —4 1 -1 |. The augmented matrix of the
3 —6 1 -2

system Az =0 is .
-1 2 0 1,0
2 —4 1 -1!0
3 =6 1 =210

Perform Rs 4+ 2R, R3 + 3Ri:

D 2 0 1,0
00@® 10
00 1110

The second column does not have a pivot, but the third column does. For-
ward elimination is completed by performing R3 — Ra:

J
0
0

O@O
o O O

2 1
0 1,
0 0
Restore the system, take the free variables zo and x4 to the right, and solve
for the basis variables z1 and z3. Obtain x1 = 2z + x4, T3 = —x4, Where

xo and x4 are arbitrary numbers. Putting the answer in the vector form,
obtain:

2T9 + x4 2 1
X9 . 1 + x4 0
—XT4 0 -1
T4 0 | 1
[ 2 1
. 1 0
So that N(A) is span of the vectors u = 0 and v = REE N(A) =
0 1

Span{u,v}. Conclusions: the null space }V(A) is a subspace of R* of di-
mension two, dim N(A) = 2, the vectors v and v form a basis of N(A).

For an arbitrary matrix A the dimension of the null space N(A) is equal
to the number of free variables in the row echelon form of A.

If the system Ax = 0 has only the trivial solution x = 0, then the null
space of A is the zero subspace, or N(A) = {0}, consisting only of the zero
vector.
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Definition The column space of a matriz A is the span (the set of all possible
linear combinations) of its column vectors. It is denoted by C(A).

If A= [a1az...a,] is an m X n matrix given by its columns, the column

space C'(A) = Span{aq,as,...,a,} consists of all vectors of the form
(5.1) T101 + Toas + -+ - + THay = AT,
with arbitrary numbers 1, xs, . .., z,. Columns of A are vectors in R™, so

that C(A) is a subset of R™. In fact, the column space is a subspace of R™,
because any span is a subspace. The formula (5.1) shows that the column
space C(A) can be viewed as the range of the function Ax.

The rank of a matriz A, denoted by rank A, is the dimension of the
column space of A, rank A = dim C(A).

Example 2 Determine the basis of the column space of the following two
matrices. Express the columns that are not in the basis through the ones in
the basis.

[@ 13 03

. 0 1 10

(i) A= 0 % 0@ 1 = [a1 a2 a3 aq a5},
{ 0 00 0 oJ

where a;’s denote the columns of A. The matrix A is already in row echelon
form, with the pivots circled. The pivot columns a1, a9, a4 are linearly
independent. Indeed, the matrix [a; as a4] has three pivots. We show
next that the other columns, a3 and as, are linear combinations of the pivot
columns a1, ag, a4. Indeed, to express a5 through the pivot columns we need
to find numbers x1, x9, x3 so that

r1a1 + Toag + T304 = a5 .

The augmented matrix of this system is

[a1 a as’ag) = {

Back-substitution gives 1 = xo = x3 = 1, so that

(5.2) as =a1 +ag+aq.
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To express ag through the pivot columns we need to find new numbers 1,
T9, T3 so that
ria1 + Troao + r3a4 = ag .

The augmented matrix of this system is

{ @ 1 0,3 }

. o 11

[a1a2a4.a3]— 0 0 ®:0 .
L 0 0 0'0 J

Back-substitution gives 3 = 0, xo = —1, 1 = 2, so that

(5.3) az = 2(11 — asg.

We claim that the pivot columns ai,as,as form a basis of C(A), so that
dimC(A) = rank A = 3. We already know that these vectors are linearly
independent, so that it remains to show that they span C(A). The column
space C'(A) consists of vectors in the form v = ¢ya1 +coa2+c3as+cqas+csas
for some numbers ¢y, c2, ¢3, ¢4, ¢5. Using (5.2) and (5.3), any vector v € C(A)
can be expressed as

v = c1a1 + caas + c3 (2a1 — ag) + cqaq + c5 (a1 + a2 + ayq)

= (c1 +2¢3+¢5) a1 + (co — c3 + ¢5) az + csaq,

which is a linear combination of a1, ao, ay.

2 1 3 0 3 _|
.. 0 -1 1 1 0
(il) B= 9 0 4 2 4 = [b1 b2 b3 by b5 ],
-2 -2 -2 1 -3
where b;’s denote the columns of B.

Calculation shows that the row echelon form of B is the matrix A from
the part (i) just discussed. It turns out that the same conclusions as for
A hold for B: by, bs, by form a basis of C(B), while b5 = by + by + by and
bs = 2by — bo, similarly to (5.2) and (5.3). Indeed, to see that by, by, by are
linearly independent, one forms the matrix [by by by] and row reduces it to
the matrix [a] ag as] with three pivots. To express bs through by, ba, by, one

forms the augmented matrix [by by by : bs | and row reduces it to the matrix

[a1 az a4 : as], which leads to b5 = by + by + by. Similar reasoning shows that
in any matrix, columns with pivots form a basis of the column space.
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Caution: C(B) is not the same as C(A). Indeed, vectors in C(A) have the
last component equal to zero, while vectors in C(B) do not.

We summarize. To obtain a basis for the column space C(B), reduce B
to its row echelon form. Then the columns with pivots (from the original
matrix B) form a basis for C(B). Other columns are expressed through the
pivot ones by forming the corresponding augmented matrices, and perform-
ing Gaussian elimination. The dimension of C(B), or rank B, is equal to
the number of pivot columns.

Recall that the dimension of the null space N(B) is equal to the number
of columns without pivots (or the number of free variables). The sum of the
dimensions of the column space and of the null space is equal to the total
number of columns, which for an m x n matrix B reads:

rank B+ dim N(B) = n,
and is known as the rank theorem.

Exercises

1. Find the null space of the given matrix. Identify its basis and dimension.

[ é Z ] . Answer. The zero subspace of Rz, of dimension 0.

b. A= [ :13 :2 ] Answer. N(A) is the span of [ f ], dimension = 1.
0 0 g
c. O= EE Answer. N(O) = R*, dimension = 2.
0 1 -2
d. 4 3 —6
-4 -2 4
1 -1 -2 2 1
e. E=1|2 -2 —4|. Answer. N(F)= Span 01,1 ,
3 -3 —6 1
dimension = 2.
1 0 0
f. F=12 -2 0. Answer. N(F)= {0}, the zero subspace, of
3 -3 —6

dimension zero.
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2 1 3 0
g 2 0 41
-2 -1 =31

—2

1

Answer. The null space N(A) is spanned by e dim N(A) = 1.

0
2 1 3 0
h. 2 0 4 1
-2 -2 =21

i. H= [ -1 1 3 0 ] Hint. The null space is a subspace of R%.

1 3 0
1 0 0 . .
Answer. N(H) = Span ol 11110 , dimension = 3.
o) Lol LY
2. A 4 x 5 matrix has two pivots. What is the dimension of its null space?

3. The rank of a 9 x 7 matrix is 3. What is the dimension of its null space?
What is the number of pivots?

4. The rank of a 4 x 4 matrix is 4.
a. Describe the null space.
b. Describe the column space.

5. The rank of a 3 x 3 matrix is 2. Explain why its null space is a line
through the origin, while its column space is a plane through the origin.

6. Assume that matrix A is of size 3 x 5. Explain why dim N(A4) > 2.
7. For a 4 x 4 matrix A the dimension of N(A) is 4. Describe A.
Answer. A= 0.

8. Find the basis of the column space for the following matrices, and deter-
mine their rank. Express the columns that are not in the basis through the
ones in the basis.

11 -1
a 02 4]

-1 1 -1
b. [ 1 2 10 ] Answer. (3 = 4C1 4+ 3C5, rank = 2.
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c. [ _é 1 2 ] Answer. rank = 1.

-3 —6
-1 2 )
d A= -1 2 9
2 0 -2
—1 2
Answer. C(A) = Span -1 1,2 ,rank =2, C3 = —C7 + 2C5.
2 0
0 0 1]
e. A= 0 2 )
10 -3 |
Answer. C(A) = R3.
2 1 3 0]
f. 2 0 4 1
—2 -1 -3 1|

Column space is spanned by C7, Cy and Cy. Rank is 3. C3 = 2C; — Cs.
1 -1 0 1 1

g¢. B=|2 -1 1 1 -3
0 1 1 -1 -5

1 —1
Answer. C(B) = Span 2, -1 ,rank =2, C3 =C1 +Cy, Cy =
0 1
—Cy, C5 = —4Cy — 5C%.
2 1 -2
9. Consider the following subspace of R3: V = Span o, 1], —4
1 0 —6

Find a basis of V and dim V.

Hint. Use these vectors as columns of a matrix.

-1 -1
10.LetA—[ 1 1].

a. Show that the vector [ _1 ] belongs to both the null space N(A) and

the column space C'(A).
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b. Show that N(A) = C(A).

c. Show that N (Az) = R2.

11. Let A be an arbitrary n X n matrix.

a. Show that any vector in N (A) belongs to N(A?).

b. Show that the converse statement is false.

-1 -1
Hint. = .
int. Try A [ 1 1 ]
12. Let A be an m X n matrix with linearly independent columns.
a. Show that the system Ax = b has at most one solution for any vector b.

Hint. If C4,C,,...,C, are the columns of A, and z1,z9,...,z, are the
components of x, then z1C; + 2Co + ... + z,C;, = .

b. Suppose that b € C(A). Show that the system Ax = b has exactly one
solution.
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Chapter 3

Determinants

A 4 x 4 matrix involves 16 numbers. Its determinant is just one number,
but it carries significant information about the matrix.
3.1 Cofactor Expansion

To each square matriz A, one associates a number called the determinant of
A, and denoted by either det A or |A|. For 2 x 2 matrices

a
c

b
d

‘:ad—bc.

For 3 x 3 matrices the formula is

a1l a2 ais
(1-1) a1 Q22 G23 | = 11022033 + 012023031 1+ Q13021032 — 11023032
azp asz2 as3
—a12G210a33 — 013022431 -

It seems impossible to memorize this formula, but we shall learn how to
produce it.

For an n x n matrix A define the minor M;; as the (n — 1) x (n — 1)
determinant obtained by removing the row i and the column j in A. For
example, for the matrix

10 -3
A=|-16 2|,
32 1
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. 6 2 -1 2
the minors are My :‘2 1‘:2, Mo :‘ 3 1‘:—7, M3 =
-1 6
‘ 3 9 ‘ = —20, and so on. Define also the cofactor

Cij = (1) My; .

For the above matrix, Cy; = (—1)'My; = 2, Cp = (=1)"2M, = 7,
Ci3 = (—1)3 M3 = —20, and so on.

Cofactor expansion will allow us to define 3 x 3 determinants through
2 X 2 ones, then 4 x 4 determinants through 3 x 3 ones, and so on. For an
n X n matrix the cofactor expansion in row i is

|A] = ai1Ci1 + apCio + - - - + ainCin
The cofactor expansion in column j is
|A] = a1;C1j + ag;Caj + -+ - + ap;Cnj -

For 3 x 3 determinants there are 6 cofactor expansions (in 3 rows, and in
3 columns), but all of them lead to the same formula (1.1). Similarly, for
n x n determinants all cofactor expansions lead to the same number, |A|.
For the above matrix, cofactor expansion in the first row gives

Al =1-C11+0-Ciz+(-3) - C13 = 62.

In practice one does not calculate (—1)"™/, but uses the checker-board pattern

to get the right signs of the cofactors (and similarly for larger matrices). Let
us expand the same determinant in the second row:

10 -3

0 -3 1 -3 10
-1 6 2 :—(—1)‘ ‘+6‘ ‘—2‘ ‘:62.
59 1 2 1 3 1 3 2

One tries to pick a row (or column) with many zeroes to perform a
cofactor expansion. Indeed, if a;; = 0 there is no need to calculate Cj;,
because a;;C;; = 0 anyway. If all entries of some row are zero, then |A| = 0.
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Example Expanding in the first column

(2) g g _Zi 508 1 4 —

=210 4 -2 =23 =2-3-4.-5=120.
0 0 4 =2 00 5 0 5
0 00 5

(The 3 x 3 determinant on the second step was also expanded in the first
column. )

The matrix in the last example was upper triangular. Similar reasoning
shows that the determinant of any upper triangular matriz equals to the
product of its diagonal entries. For a lower triangular matrix, like

2 0 00
12 -3 0 0
2 14 g|=2 () 40=0,
—1 2 70

the expansion was performed in the first row on each step. In general, the
determinant of any lower triangular matriz equals to the product of its diag-
onal entries. Diagonal matrices can be viewed as either upper triangular or
lower triangular. Therefore, the determinant of any diagonal matriz equals
to the product of its diagonal entries. For example, if I is the n x n identity
matrix, then

= 20) = (=2) (-2) o (-2) = (-2)"

Cofactor expansions are not practical for computing n X n determinants
for n > 5. Let us count the number of multiplications it takes. For a
2 x 2 matrix it takes 2 multiplications. For a 3 x 3 matrix one needs to
calculate three 2 x 2 determinants which takes 3 - 2 = 3! multiplications,
plus 3 more multiplications in the cofactor expansion, for a total of 3!+ 3.
For an n X n matrix it takes n! 4+ n multiplications. If n = 20, this number
is 2432902008176640020, and computations would take many thousands of
years on the fastest computers. An efficient way for computing determinants,
based on Gaussian elimination, is developed in the next section.

Exercises
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. T 0 z
1. Find z so that 1 9 ‘ = ‘ 15 | Answer. z = —1.
1 1 -1
2. Let A= -1 1 2 |. Calculate the det A
0 2 3

a. By expanding in the second row.

b. By expanding in the second column.
c. By expanding in the third row.
Answer. |A] = 4.

3. Calculate the determinants of the following matrices.

(1 0 0
a. | 0 2 0 Answer. 3!
| 0 0 3
[ 1 0 0 0 _|
0 -2 0 0
_4!
b. 0 0 _3 e Answer. —4!
| 0 0 0 —4
c. Any diagonal matrix.
1 0
[ 1 0 0
e. -5 2 0 Answer. 6.
6 12 3

f. Any lower triangular matrix.

g. Any upper triangular matrix.

0 0 a
h. 0 b 5 |. Answer. —abc.
c —2 3

{ 1 -1 0 3 }
. 0 2 -2 1
1. L 1 o 0 92 J Answer. —27.

1 1 1 2
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2 0 00
0 a b 0 ) .
I (A block diagonal matrix.)
0 0 0 3
Answer. 2 - 5. 3 =6 (ad — bc).
c d
a b 0 0
c d 0 0 ) .
k. 00 ¢ f (A block diagonal matrix.)
0 0 g h
b e f | _
Answer. d ‘ 1y ‘ = (ad —bc) (eh — fg).
2 -1 0 5
4 -2 0 -3
1. 1 3 0 1 Answer. 0.
0 -7 0 8
m. A matrix with a row of zeroes. Answer. The determinant is 0.

4. Calculate |A2| and relate it to |A] for the following matrices.

2 —4
a A—[O 3].
1 -1
was[t 1]
[0 0 0 1]
0 1 0 0
5. Let A= | : : -. ¢ ! | annXxn matrix. Show that |A| = —1.
0O ... 10
|1 0 ... 0 0
Hint. Expand in the first row, then expand in the last row.
210 ... 00
1 21 ... 00
012 ... 00
6. Calculate the n x n determinant D,, = .
0 00 1
0 00 1
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Hint. Expanding in the first row, obtain the recurrence relation D, =
2D, 1 — D,,_9. Beginning with Dy = 3 and D3 = 4, use this recurrence
relation to calculate D4y = 5 and D5 = 6, and so on.  Answer. D,, = n+1.

7. Let A be a 5 x 5 matrix, with a;; = (¢ — 3)j. Show that |A| = 0.
Hint. What is the third row of A?

8. Suppose that a square matrix has integer entries. Show that its deter-
minant is an integer. Prove that the converse statement is not true, by

considering for example

NJOBO |

N[0 [

3.2 Properties of Determinants

Ry
Ry
An n X n matrix A can be listed by its rows A = .|, which are n-

R,
dimensional row vectors. Let us highlight R; (the row ¢) in A:

a1 a2 ... Qinp
A = ;1 ;2 v Qin
L @n1 Qn2 ... Qpp |

Using the summation notation, the cofactor expansion in row 7 takes the
form

n
|A| = ai1Ci1 + ai2Cia + - - - + ainCip, = Z a;sCis .
s=1

The first three properties deal with the elementary row operations.

Property 1. If some row of A is multiplied by a number k to produce B,
then det B = kdet A.



10

11

12

13

14

15

16

17

18

19

20

3.2. PROPERTIES OF DETERMINANTS 83

Indeed, assume that row 7 of A is multiplied by k. We need to show that

R R
(2.1) IB|=| kR; | =k| Ri | =k|A|.
Ry, Ry,

Expand |B| in row i, and use the summation notation:

n

|B| = Z (kais) Cis = k‘iaisC’is = k‘|A| ,
s=1

s=1

justifying Property 1. (In row i cofactors are the same for B and A, since
row ¢ is removed in both matrices when calculating cofactors.) In (2.1), the
number k is “factored out” of row i.

If B = kA, then all n rows of A are multiplied by k to produce B. It
follows that det B = k" det A (by factoring k out of each row), or

kA| = k™| A].

Property 2. If any two rows of A are interchanged to produce B, then
det B = —det A.

Indeed, for 2 x 2 matrices this property is immediately verified. Suppose

Ry R3
that A is a 3 x 3 matrix, A= | Ry | and B = | Ry | is obtained from
R3 Ry

A by switching rows 1 and 3. Expand both |B| and |A| in the second row.
In the expansion of |B| one will encounter 2 x 2 determinants with the rows
switched, compared with the expansion of |A|, giving | B| = —| A|. Then one
justifies this property for 4 x 4 matrices, and so on.

It follows that if a matrix has two identical rows, its determinant is zero.
Indeed, interchange the identical rows, to get a matrix B. By Property 2,
|B| = —|A|. On the other hand B = A, so that |B| = |A|. It follows that
|A| = —|A|, giving |A| = 0. If two rows are proportional the determinant is
again zero. For example, using Property 1,

Ry Ry

kR; |=k| Ry |=0.
Rs Rs
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Assume that row j in A is replaced by R;, so that R; = R;. The resulting
matrix has zero determinant:
Ry
R;
R;

Ry,

Indeed, let us expand this determinant in j-th row:
ai1Ci1 + ai2Cja + -+ + ainCjn, = 0.

(Once row j is removed, the cofactors are the same as in the matrix A.)
Comparing that with the cofactor expansion of |A| in row i:

ai10i1 + apCi + - -+ ainCipn = |A|,
we conclude the following theorem.
Theorem 3.2.1 If all elements of row i are multiplied by the cofactors of

another row j and added, the result is zero. If all elements of row i are
multiplied by their own cofactors and added, the result is |A|. In short,

Zaiscjs = ij #Z
s=1 |A| ifj=1.

Property 3. If a multiple of one row of A is added to another row to
produce a matrix B, then det B = det A. (In other words, elementary
operations of type R; + kR; leave the value of the determinant unchanged.)

Indeed, assume that B was obtained from A by using R; +kR;. Expand |B|
in row j, use the summation convention and the preceeding Theorem 3.2.1:

|B| = Rj + kR; | = Z (ajs + k‘ais) st = Zajsts + k‘zaists = |A| .

s=1 s=1 s=1
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Using the Properties 1,2,3, one row reduces any determinant to that of
upper triangular matrix (which is the product if its diagonal entries). This
method (based on Gaussian elimination) is very efficient, allowing computa-
tion of 20x 20 determinants on basic laptops. (Entering a 20x20 determinant
is likely to take longer than its computation.)

Example To evaluate the following 4 x 4 determinant, perform R; < Ra,
and then factor 2 out of the (new) first row:

0 12 3 2 -2 0 —6 1 -1 0 -3
2 20 —6|_ |0 12 3/ J0 12 3
1 10 1 1 10 1 1 10 1
2 -2 4 4 2 -2 4 4 2 -2 4 4

Performing R3 — Ry, Ry — 2R for the resulting determinant (dropping the
factor of —2, for now), followed by R3 — 2R, and finally R4 + R3, gives:

1 -1 0 -3 1 -1 0 -3 1 -1 0 -3
o 12 3| (o 12 3| o 1 2 3
1 10 1| |0 20 4| |0 0 -4 -2
2 -2 4 4 0 0 4 10 0 0 4 10

1 -1 0 -3

o 1 2 3

=10 0 -4 _o|=11-(-4-8=-32.
0 0 0 8

The original determinant is then (—2) - (—32) = 64.

In practice one combines row reduction with cofactor expansion. For
example, after performing Ry + R; and R3 — R,

1 0 2 1 0 2 11
-1 1 -1|=|0 11 zl-ll 3|:2,
11 ) 01 3

the determinant is evaluated by expanding in the first column.

If Gaussian elimination for A does not involve row exchanges, |A| is
equal to the product of the diagonal entries in the resulting upper triangular
matrix, otherwise |A| is + the product of the diagonal entries in the row
echelon form. It follows that |A| # 0 is equivalent to all of these diagonal
entries being non-zero, so that A has n pivots, which in turn is equivalent to
A being invertible. We conclude that A is invertible if and only if |A| # 0.
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Determinants of elementary matrices are easy to calculate. Indeed,
|Ei(k)| = k (a diagonal matrix), | E;;| = —1 (by Property 2), and | E;;(k)| = 1
(a lower triangular matrix). We can then restate Property 1 as

|Ei(k)A] = E|A] = [Ei(k)|A],

Property 2 as
|Eij Al = —|A] = |Eql|Al,

and Property 3 as
|Eij(k)A| = |A] = |Ey (k)| Al

Summarize:

(2:2) |[EA| = |E][A],
where F is an elementary matrix of any kind.
Property 4. For any two n X n matrices
(2.3) |AB| = |A||B] .

Proof:  Case (i) |A| = 0. Then A is not invertible. We claim that AB
is also not invertible. Indeed, if the inverse (AB)™! existed, we would have
AB(AB)™! = I, which means that B(AB)™" is the inverse of A, but A has

no inverse. Since AB is not invertible, |AB| = 0, and (2.3) holds.

Case (ii) |A| # 0. By Theorem 2.3.1 a non-singular matrix A can be written
as a product of elementary matrices (of various kinds)

A=FE\Ey--E,.
Applying (2.2) to products of two matrices at a time
(2.4) |Al = [Er[ [Ez- - - Ep| = [Ev| [Ea - -+ | Ep|.
Similarly
|AB| = |Ev\Ey - -+ EpB| = [Er[ |Ey - - - Ep Bl = [EA| |Eo| - - [Ep| |B| = |A]|B],

using (2.4) on the last step. O

Recall that powers of a square matrix A are defined as follows: A? = AA,
A3 = A2A etc. Then |A%| = |A||A| = |A|?, and in general

|A¥| = |A|*, for any positive integer k.
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Property 5. If A is invertible, then |A| # 0, and

1
A7 = — .
A
Indeed,
[AAT =1 =1,
(2.5) AllAT =1,
1
by Property 4. Then |A| # 0, and |A7!| = T

We conclude again that in case |A| = 0, the matrix A is not invertible
(existence of A™1 would produce a contradiction in (2.5)).

Property 6. |AT| =|A|.

Indeed, the transpose AT has the rows and columns of A interchanged,
while cofactor expansion works equally well for rows and columns.

The last property implies that all of the facts stated above for rows are
also true for columns. For example, if two columns of A are proportional,
then |A| = 0. If a multiple of column i is subtracted from column j, the
determinant remains unchanged. If a column of A is the zero vector, then
|A| = 0.

Exercises

1. Calculate the following determinants by combining row reduction and
cofactor expansion.

1 20
a. 3 -1 1
1 -2 1
0 -2 3
b 3 -1 1 Hint. Perform R < Rj.
1 -1 1
0o -2 3

Answer. 0.

[\
|
—
|
—
w N o=
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1 0 -1 1
1 1 2 -1
d. 01 2 3 Answer. 12.
2 1 -2 3
1 1 -1 1
1 1 2 1
e. 1 -1 2 3 Answer. —14.
2 1 -2 3
1 1 -1 1
1 2 2 -1
f. 1 2 9 3/ Answer. —10.
2 1 -2 3
1 1
g. a b ¢ | (Vandermonde determinant.)
2 2

Hint. Perform Ry — aR;, R3 — a’R1, then expand in the first column.

Answer. (b—a)(c—a)(c—0).
a b c
2. Assuming that | d e f | =05, find the following determinants.
g h k
a b c
a. d+3a e+3b f+3c|. Answer. 5.
g h k
a b c
b. 2d 2e 2f |. Answer. 10.
g h k
3a 3b 3c
c. 2d 2e 2f |. Answer. 30.
g h k
a b c

d. 2d+3a 2e+3b 2f+3c|.
g h k
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d
e. a
g
d
f. g
a
a
g d
g
a
h. d
g

> o

e

h

b
b
e
h
b
e

h

f

c Answer. —5.
k

/

k Answer. 5.

c

—c

—f |- Answer. —5.
—k

0

0

0

3. a. If every column of A adds to zero, show that |A| = 0.

b. If every row of A adds to zero, what is |A|?

89

4. Let A and B be 4 x 4 matrices, such that |A| = 3, and |B| = . Find the
following determinants.

a. |AT|.
b.  |24].
c. |BY.
d. |BA|.
e. |A7B.
f.  |2AB7!

|A%2(-B)T|.  Answer. 2.

Answer. 48.

Answer. %.

Answer. 96.

2

g
5. Let A be a 7 x 7 matrix such that | — A| = |A|. Show that |A| = 0.
6

. True or false?

a. |BA|=|AB].
b. |—A|=|A|. Answer. False.

c.  If A3 is invertible, then |A| # 0.  Answer. True.

d. |A+ B|=|A|+|B|. Answer. False.

o

(A7 = [(A71)?] = #, provided that |A| # 0.

Answer. True.
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7. Show that
1 11
z a c|=0
y b d

is an equation of the straight line through the points (a,b) and (¢, d) in the

xy-plane.

Hint. The graph of a linear equation is a straight line.

8. Show that
1 1 1 1
r ai b1 C1
=0
y az by co
Z as bg C3

is an equation of the plane passing through the points (a1, as, as), (b1, b2, b3)
and (¢, ¢, c3).

Hint. Expanding in the first column, obtain a linear equation in x, ¥, z.

1 2 0 1 -2 1
9. Let A= 0 -1 1| andB=| 2 -4 2 |. Calculate det (A3B).
1 -2 1 1 -3 1
Hint. What is det B?
1 1 1 1 1
2
2 2 4 2 2
10. Calculate the n x n determinant
2 2 2 ... n 2
2 2 2 ... 2 n+1

Hint. Apply Ry — 2Ry, R3 — 2Ry, and so on.  Answer. (n — 1)!.
11. Let A be an n X n matrix, and the matrix B is obtained by writing the

n(n—1)
rows of A in the reverse order. Show that |B| = (—1)" 2 : |Al.

Hint. 14243+ - +n—1="01

12. Let A be an n x n skew-symmetric matriz, defined by the relation
AT = —A.

a. Show that a;; = —a;;.

b. Show that all diagonal entries are zero (a;; = 0 for all 7).
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c. Let n be odd. Show that |A| = 0.
13. Let A be an n x n matrix, with a;; = min(i, j).

1
1

K

b. Show that |A| =1 for any n.

11

22 } , and find its determinant.

a. If n =4, show that A = 3 3
3 4J

NN DN

Hint. From the column n subtract the column n — 1, then from the column
n — 1 subtract the column n — 2, and so on.

14. Let n be odd. Show that there is no n x n matrix A with real entries,
such that A% = —1.

15. If the rows of A (or the columns of A) are linearly dependent, show that
|A| = 0.

Hint. One of the rows is a linear combination of the others. Use elementary
operations to produce a row of zeros.

3.3 Cramer’s Rule

Determinants provide an alternative way for calculation of inverse matrices,
and for solving linear systems with a square matrix.

Let

a1 Q22 ... Q2q

\‘anl ap2 ... annJ

be an n x n matrix, with |A| # 0. Form the adjugate matriz

aip aig ... aln“

(3.1) A=

011 021 . e Cnl

. Cio Cy ... Cpo
AdjA=| .7 . .

Cln C2n Cnn
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consisting of cofactors of A, in transposed order. Theorem 3.2.1 implies that
the product of A and Adj A

A 0 ... 0
. |A]
AAdjA = ' = |A|I,
0 0 ... |4

where [ is the n x n identity matrix. Indeed the diagonal elements of the
product matrix are computed by multiplying elements of rows of A by their
own cofactors and adding (which gives |A|), while the off-diagonal elements
of the product matrix are computed by multiplying rows of A by cofactors of

1
other rows and adding (which gives 0). It follows that A (m Adj A> =1,

producing a formula for the inverse matrix

Cii Cu ... Cn
1 1 | Ciz Cr ... Cp
3.2 Al = —AdjA=— .
3.2) 4] Al ;
Cin Copn ... Cyn

Example 1 A= [ Z Z :| Then |A| = ad — bC, 011 = d, 012 = —C,
021 == —b, 022 = a, giving

1 d —b
A7 =
ad—bc[—c a]’

provided that ad — bc # 0. What happens if |A| = ad — bc = 0?7 Then
A has no inverse, as a consequence of the following theorem, proved in the

preceding section.

Theorem 3.3.1 An n x n matriz A is invertible if and only if |A| # 0.

1 1 0
Example 2 Find the inverseof A= | 0 0 -1
1 2 0
0 -1 0 -1
Calculate |A| = 1, C; = I 9 0 I =2,Cpp = —I 1 0 I = -1, Ci3 =
0 0 0 1 0 1 1
Il 2'—07021—— 9 0|—07022—|1 0|—07023——|1 o | =
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1 0

_1,031:‘0_1‘:—1,032:—(1)_(1)‘:1,033_‘(1)(1)‘:0_
Obtain: )
Cii O O3 2 0 -1
AV =1 Cly Cyp C3 | =| -1 0 1
Ciz3 Chz Cs3 i 0 —1 0

We now turn to an n x n system of equations Az = b, with the matrix

a1 a2 ... Qip b1
a1 a2 ... QA9n . . b2
A= . . . , the vector of right hand sides b=
apl Ap2 ... Gpp by
€1
X9 .
the vector of unknowns =z = . |, or in components
Tn
(3.3) a11T1 + a12%2 + - - -+ a1y = by

a21T1 + a22%2 + - - - + 2pTy = by

Define the matrix

b1 a2 ... Qip

b2 as2 ... Q2p
Ay=1| . . ) ;

bn ap2 ... Qpp

obtained by replacing the first column of A by the vector of the right hand
sides. Similarly, define

ajl b1 ... A1n aij; a2 ... b1

asy b2 ... A9n as1 agy ... bg
Ay = - A=

Anl bn N 4 Y o) anpl ap2 ... bn

By expanding in the first column, calculate

(3.4) |A1| = 01C11 + b2C1 + - - - + b, C1
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where Cj; are cofactors of the original matrix A. One shows similarly that
|Ai] = 01C1; + b2C2; + - - - + b, Chi
for all .

Theorem 3.3.2 (Cramer’s rule) Assume that |A| # 0. Then the unique
solution of the system (3.3) is given by

| A _ A | An|

r1 = |A| , Lo = |A| yeeey Iy = |A| .

Proof: By the preceding theorem 3.3.1, A™! exists. Then the unique
solution of the system (3.3) is © = A~'b. Using the expression of A~! from
011 021 PN C’I’Ll

(3.2)
T bl
x2 1 | Ciz C ... Cpa by

Xr = .

M

Now compare the first components on the left, and on the right. Using (3.4)

1 | A4
1 = = (01C11 + 2021 + -+ 0,Cp1) = — .
Al |A]
One shows similarly that x; = |é1'|| for all 1. O

Cramer’s rule calculates each component of solution separately, without
having to calculate the other components.

Example 3 Solve the system

20 —y=3
—x+5y=4.
1] e
Solution:$:475:§ y:izg'
2 -1 9’ ' 2 —1' 9
-1 5 -1 5

Cramer’s rule is very convenient for 2 x 2 systems. For 3 x 3 systems it
requires a tedious evaluation of four 3x 3 determinants (Gaussian elimination
is preferable).
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For an n x n homogeneous system
(3.5) Az =0

we shall use the following theorem, which is just a logical consequence of
Theorem 3.3.1.

Theorem 3.3.3 The system (3.5) has non-trivial solutions if and only if
|A| = 0.

Proof:  Assume that non-trivial solutions exist. We claim that |A| = 0.
Indeed, if |A| # 0, then by Theorem 3.3.1 A™! exists, so that (3.5) has only
the trivial solution (x = A7l = 0), a contradiction. Conversely, assume
that |A] = 0. Then by Theorem 3.3.1, the matrix A is not invertible, hence
the system (3.5) has free variables, resulting in non-trivial solutions. O

3.3.1 Vector Product

In Calculus a common notation for the coordinate vectors in R?isi=e;, j =
eo and k = e3. Given two vectors a = a1i+asj+ask and b = bii+boj+bsk
the vector product of a and b is defined to be the vector

(3.1) axb= (agbg — agbg) i+ (a3b1 — albg)j + (a1b2 — agbl) k.
Perhaps it is not easy to memorize this formula, but determinants come to
the rescue:
i j k
axb=|a ay ag
b1 by b3

Indeed, expanding this determinant in the first row gives the formula (3.1).
By the properties of determinants it follows that for any vector a

i j k
axa=|a ax a3z |=0,
ap az ag

where 0 is the zero vector, and similarly
axb=-bxa,
for any vectors a and b. Recall also the notion of the scalar product

a-b=aib; + agbs + azbs.
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If ¢ = c1i 4 o + esk, then the triple product is defined as a - (b X c).
Obtain (using expansion in the first row)

ay ag as
a-(b X C) = a1 (b263 — bgCg)—l—ag (b361 — b163)+a3 (b162 — bgcl) =| by by b3
C1 C2 (3

If V' denotes the volume of the parallelepiped determined by vectors a, b, c,
it is known from Calculus that

ay ag asg
V:|a-(b><c)|:| b1 b2 bg |
C1 Co C3

If vectors a, b, ¢ are linearly dependent, then this determinant is zero. Ge-
ometrically, linearly dependent vectors lie in the same plane, and hence the
volume V = 0.

Since |AT| = | A|, it follows that the absolute value of the determinant

aq b1 C1
ay by c
a3 by c3

also gives the volume of the parallelepiped determined by vectors a, b, c.

There are a number of useful vector identities involving vector and scalar
products. For example,

ax(bxc)=b(a-c)—c(a-b),

which is memorized as a “bac minus cab” identity. The proof involves a
straightforward calculation of both sides in components.

3.3.2 Block Matrices

Assume that a 4 x 4 matrix A is partitioned into four submatrices

a1 ass | asz azy | | A1 | A

- )
az1 azy | asz as4 Az | Ay
L as1 Q42 | @43 Qa4 J

ail a2 ‘ aiz ai4 }
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. . ail a2 a3 a4 as; as2
with 2x2 matrices A; = , Ao = 3 , Az = K K )
a1 Qo2 a3 24 aq1 Q42

Ay = [ 233 234 ] Suppose that a 4 x 4 matrix B is partitioned similarly
43 Q44

bir bi2 | b1z bus —I
bar baa | bag by _ [ B | By ]
b31 b32 ‘ b33 b34 ‘ B3| By |’

bsr baz | baz bas

with 2 x 2 matrices B, By, B3, By. It follows from the definition of matrix
multiplication that the product AB can be evaluated by regarding A and B
as 2 x 2 (block) matrices
(3.2)

AB — [ [ A1B1+ AyBs | A1By + A3By

B [ A3Bi + AyBs | AsBy + AyBy |

AI‘A2:||:BI‘B2:|
As | Ay | | B3| By

where A1 B and the other terms are themselves products of 2 x 2 matrices.
In other words, we treat the 2 x 2 blocks as numbers, until the last step.

Using the expansion of determinants |A| = > £a14,a2i,03i504i,, it is
possible to show that for the 4 x 4 matrix A, partitioned as above,

[ Al = |Ax] [A4] — | A2] [A3],

where again we treat blocks as numbers, and |A4;| are 2 x 2 determinants.

A | O

04, ] , where

In particular, for 4 x 4 block diagonal matrices A = [

O is the 2 x 2 zero matrix, one has
| A = [Ax] [As].

The last formula can be also justified by Gaussian elimination. Indeed, the
row echelon form of A is an upper triangular matrix, and the product of its
diagonal entries gives |A|. That product splits into |A1| and |Ay|.

By | O

——/|, where B, By and O are 2 x 2 matrices,
O | By

If, similarly, B = [
then by (3.2)

AL |O 1 [B|OT] [AB]| O
| O |ABy |
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Aot 147" o
O | Ay - 0] AZ ’

provided that A1_1 and AZI exist.

It follows that

Similar formulas apply to other types of block matrices, where the blocks
are not necessarily square matrices. For example, let us partition a 3 x 3
matrix A into four submatrices as follows

Y Zn 212 213 [ Ay Ay
asr a32 as3
where A; = [ @ a2 ], Ay = @13 ] of size 2 x 1, Az = [ as] ass ]
a1 a2 | 423
of size 1 x 2, and a scalar A4 = ags if size 1 x 1. If a 3 x 3 matrix B is
B, | B
partioned similarly B = Bl B—z]’ then it is straightforward to check
3 | D4
that the product AB can be calculated by treating blocks as numbers:
[ an az | a3 [ by bz | bis
AB = | a1 a | ass ba1 bay | b2
| a31 a3z | ass | bs1 bgp | bss
:'Al\Ag] [31\32'2[01\02]
| A3 | Ay | | Bs| By | Cs|Cy )

where C7 = A1By1 + AsBs is of size 2 x 2, Cy = A1 By + AsBy is of size
2x1,C3=A3B1 + A4B3 is of size 1 x 2, and a scalar Cy = A3By + A4By
(all matrix products are defined). So that the block structure of AB is
the same as that for A and B. In case Ao = O and A3 = O, the matrix

air a2 0 Al O
A= as1 Q99 0 = [ ! is block-diagonal, with the inverse
0] ass |
0 0 ‘ ass
a1 a o 17"
11 612 -1
A
ATV = ax ap ‘ 0 = |—2 3 ;
0 0 ‘ ass i ass

provided that AIl exists, and ass # 0. For the determinant one has

ail a2 0
|Al=1| a21 a2 | 0 |=|A1]ass = (a11a22 — ai2a21)ass.
0 0 ‘ ass
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Exercises

99

1. Use the adjugate matrix to calculate the inverse for the following matrices.

1 2
a. L1l
1 =2 C
b. [ 9 4 ] . Answer. The matrix is singular.
1 20 1 -2 2
¢ C=110 -1 1 Answer. C~! = % 1 1 -1
1 -2 1 1 4 -1
0 -1 0 01 0
d. D=1 00 Answer. D™'=| -1 0 0
0 05 00 %
1 2 3
e 4 5 6 [. Answer. The matrix is singular.
7 8 9
1 00
f 0 -5 0 ].
0 09
[ 1 11 _| [ 0O 0 -1 0 _|
_ 10 0 -1 4|1 0 1 -1
g. G= 10 0 . Answer. G = 0 0 0 L
0 0 1 0 -1 -1 0
[ 1110 _| [ 1 1 1 =2 _|
|1 101 11 11 -2 1
h. H= 101 1l Answer. H™" = 3 1 _9 1 e
01 1 1 -2 1 1 1
. | cosf —sind 1 cosf sinf
L= [ sinf  cosf ] Answer. R = [ —sinf cos# ]

2. Use Cramer’s rule to solve the following systems. In case Cramer’s rule
does not work, apply Gaussian elimination.

a.

:L'1—:L'2:2
2x1 +x0 = —3.
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b. 5ZE1—$2:0

221+ 20 =0.

c. 41 — 229 =5
—2x1 +x0=-—1.

Answer. The system is inconsistent.

d. 2:E1—$2:1
—2x1 +x0=—1.

Answer. x1 = %t + %, ro = t, t is arbitrary.

© ZE1—ZE3:1
1 +3r2 +23 =0
T+ 2o +x3=1.

Answer. 11 = 2, mo = —%, 23 = .

f. :Eg—:l?g:l
1 +3r2 +23=0
T+ 2o +x3=1.

Answer. 71 =3, 10 = — 5, 13 = —3.

& T1+x9 —23=1

T, + 329 + 223 = 2

T1+x9—3x3=1.

Answer. x1 = %, To = %, z3 = 0.

h. T, + 3x9 + 223 = 2

1+ a9 —33=1
2x9 + 5x3 = —1.
Answer. The system has no solution.

3. Let A be an n X n matrix.
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a. Show that
|Adj Al = A",

Hint. Recall that AAdjA = |A|I, so that [AAdjA| = |A||AdjA| =
det (JAT) = |A|™

b. Show that Adj A is singular if and only if A is singular.

4. a. Show that a lower triangular matrix is invertible if an only if all of its
diagonal entries are non-zero.

b. Show that the inverse of a non-singular lower triangular matrix is also
lower triangular.

5. Let A be a nonsingular matrix with integer entries. Show that the inverse
matrix A~! contains only integer entries if and only if |A| = £1.

Hint. If |A] = 41, then by (3.2): A=! = +Adj A4 has integer entries. Con-
versely, suppose that every entry of the inverse matrix A~! is an integer. It
follows that |A| and |A~!| are both integers. Since we have

[AlAT =]AATY =11 =1,

it follows that |A| = £1.

6. For an n x n system Az = b assume that the determinant of A is zero (so
that Cramer’s rule does not work). Show that either there is no solution, or
else there are infinitely many solutions.

7. Justify the following identities, for any vectors in R3.
a.a-(bxc)=(axb)- c
b.ax(bxc)=b(a-c)—c(a-b).

o

. |]la x b|| = ||a]| ||b||sinf, where 0 is the angle between a and b.
d. (axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c).
Hint. Write each vector in components. Part d is tedious.

8. a. Find the inverse and the determinant of the following 5 x 5 block
diagonal matrix

1 -3 0 0 0
[ -1 4 0 0 0 —|
A= 0 0 cosf® —sinf 0O | .
0 0 sinf cosf O
0O 0 O 0 4
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4 3 0 0 O
11 0 0 O
1 Answer A= | 0 0 cosf sinf 0 |,|Al =4
0 0 —sinf cosf O
00 0 0 1
I I 0 0
X9 X9 0 0
> b.Letx=| z3 |,y=| 0 [,z=]| 23 |,w=]| 0
0

] ) e

3 Evaluate Ay, Az, Aw, and compare with Az.
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Eigenvectors and Eigenvalues

4.1 Characteristic Equation

3 1
1 3

=[] lal=[ ]2l

so that Az = 2z, and the vectors z and Az go along the same line. We say
that z is an eigenvector of A corresponding to an eigenvalue 2.

The vector z = [

! ] is very special for the matrix A = [ ] . Calcu-

-1
late

In general, we say that a vector x € R™ is an eigenvector of an n X n
matriz A, corresponding to an eigenvalue X\ if

(1.1) Az =Xx, ©#0.
(Eigenvalue is a number denoted by a Greek letter lambda.) Notice that
the zero vector is not eligible to be an eigenvector. If A is 2 x 2, then an

eigenvector must satisfy = = [ 1 ] # [ 0 ]
X9 0

If ¢ # 0 is any scalar, and (1.1) holds, then
A(cx) =cAx =chz = \(cx) ,

which implies that ¢z is also an eigenvector of the matrix A, corresponding

1 . . .
_q1 | sives us infinitely many
eigenvectors of the 2 x 2 matrix A above, corresponding to the eigenvalue
A =2

to the same eigenvalue A. In particular, c [

103
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Let us rewrite (1.1) as Ax = Mz, or Az — Az = 0, and then in the form
(1.2) (A= X))z =0,

where I is the identity matrix. To find x one needs to solve a homoge-
neous system of linear equations, with the matrix A — AI. To have non-zero
solutions x # 0, this matrix must be singular, with determinant zero:

(1.3) |A—A|=0.

Expanding this determinant gives a polynomial equation for A, called the
characteristic equation, and its roots are the eigenvalues. (The polynomial
itself is called the characteristic polynomial.) If the matrix A is 2 x 2, obtain
a quadratic equation, which has two roots A\; and Ay (possibly equal). In
case A is 3 x 3, one needs to solve a cubic equation, with three roots A1, Ao
and A3 (possibly repeated). An nxn matrix has n eigenvalues A1, Ag, ..., \p,
some possibly repeated. To calculate the eigenvectors corresponding to Aq,

we solve the system
(A= X\1D)z=0,

and proceed similarly for other eigenvalues.

3 1
1 3

31 10 31 A0 3—-X 1
A_AI_[1 3]‘A[0 1]_[1 3]_[0 A]“[ 1 3—A]'
(To calculate A — A\, subtract A from each of the diagonal entries of A.)
The characteristic equation

Example 1 Consider A = [ ] Calculate

|A— M| =

3—-A 1
1 3—A

l:@—AP—l:O

has the roots A\ = 2 and A9 = 4, the eigenvalues of A (writing 3 — A = +1
gives the eigenvalues quickly).

(i) To find the eigenvectors corresponding to A\; = 2, we need to solve the

system (A —2I)x =0 for z = [ il ], which is
2

1+ 29 =0

1 +x9=0.
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1 1
(The matrix A — 21 = 11 is obtained from A — AI by setting A = 2.)
Discard the second equation, set the free variable xo = ¢, an arbitrary

. — -1
number, and solve for 1 = —c¢. Obtain: x = [ Z ] = c[ 1 ] are the
eigenvectors corresponding to A\; = 2.
(ii) To find the eigenvectors corresponding to Ay = 4, one solves the system

(A—4)x =0, or

—x1+ 22 =0
:El—:EQZO,

1 1

because A—41 = [ 1 1

] . Discard the second equation, set xo = ¢, and

. [ 1 . .
solve for 1 = ¢. Conclusion: = = ¢ 1 | are the eigenvectors corresponding

to /\2 =4.

2 11
Example 2 Let A= 0 2 0
1 5 2
The characteristic equation is :
2—A 1 1
|[A—M\| = 0 2—A 0 =0.
1 5! 2—A

(Subtract A from the diagonal entries of A to obtain A — AI.) Expand the
determinant in the second row, then simplify

2-XN[((2=XN?*-1] =0,

(2-X) (N —4r+3)=0.

Setting the first factor to zero gives the first eigenvalue Ay = 2. Setting the
second factor to zero, A2 — 4\ +3 =0, gives A\ = 1 and A3 = 3.

Next, for each eigenvalue we calculate the corresponding eigenvectors.

(i) Ay = 2. The corresponding eigenvectors are solutions of (A — 2I)z = 0.
0 1 1

Calculate A —2I =] 0 0 . (In future calculations this step will be
15

0
0



10

11

12

13

14

15

106 CHAPTER 4. EIGENVECTORS AND EIGENVALUES

performed mentally.) Restore the system (A — 2I)x = 0, and discard the
second equation consisting of all zeroes:

To+ 23 =0
1+ 5x9 =0.

We expect to get infinitely many eigenvectors. So let us calculate one of
them, and multiply the resulting vector by c¢. To this end, set z3 = 1.

5
Then x9 = —1, and 1 = 5. Obtain: ¢ | —1 |. (Alternatively, set the free
1
variable x3 = ¢, an arbitrary number. Then zo = —c and x1 = 5¢, giving
5
againc | —1 |.)
1
(ii) Ao = 1. The corresponding eigenvectors are non-trivial solutions of

(A —TI)x = 0. Restore this system:

1+ 20 +23=0
:E2:0
1+ 5x9 +23=0.

From the second equation zo = 0, and then both the first and the third

equations simplify to z1 + 3 = 0. Set x3 = 1, then z1 = —1. Obtain:
-1
c 0 |. (Alternatively, set the free variable x3 = ¢, an arbitrary number.
1
-1
Then xo = 0 and z1 = —¢, giving again ¢ 0 1.
1

(iii) A3 = 3. The corresponding eigenvectors are non-trivial solutions of
(A —3I)x = 0. Restore this system:

—x1+x2+23=0
—:E2:0

1+ 5x9 —x3=0.
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From the second equation zo = 0, and then both the first equation and the
third equations simplify to 1 — 3 = 0. Set xz3 = ¢, then x1 = ¢. Obtain:

1 1
c | 0 |. One can present an eigenvector corresponding to A3 =3as | 0 |,
1 1

with implied arbitrary multiple of c.

4.1.1 Properties of Eigenvectors and Eigenvalues

A square matriz is called triangular if it is either upper triangular, lower
triangular, or diagonal.

Property 1 The diagonal entries of a triangular matrix are its eigenvalues.

2
For example, for A= | —1
3

JA=X|=| -1 3-X 0 |=0,

giving
2-XN)B=XN(4-X)=0.
The eigenvalues are Ay = 2, Ao = 3 and A3 = 4. In general, the determinant

of any triangular matrix equals to the product of its diagonal entries, and
the same reasoning applies.

For an n x n matriz A define its trace to be the sum of all diagonal
elements
trA=ai;+ax+--+an.
Property 2 Let A\, Ao, ..., A\, be the eigenvalues of any n X n matrix A,
possibly repeated. Then

MF+X+--+ A, =trA
AL A2 A, = | AL

These formulas are clearly true for triangular matrices. For example, if

2 00
A=|-1 3 0],
5 —4 3
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then Ay = 2, Aa = 3, A3 = 3, so that Ay + Ao + A3 = trA = §, and
A1 A A3 = Al =18.

Let us justify Property 2 for any 2 x 2 matrix A = [ ZH 212 ] The
21 (22

characteristic equation

air — A a2
asr Gz — A

= (a11 — A) (a22 — A) — aj2a21 =0
can be expanded to

A2 — (@11 + ag) A + a11a22 — ajzaz; =0,
or

(1.4) N~ (trA) A+ ]A]=0.

The eigenvalues A1 and Ao are the roots of this equation, so that we can
factor (1.4) as
(A=XA)(A=2X2) =0.

Expanding
(1.5) /\2—(/\1—1—/\2) A+ A A =0.

Comparing (1.4) with (1.5), which are two versions of the same equation,
we conclude that A\; + Ay = tr A, and A\ \g = |A|, as claimed.

—4 6
=R

then A + X9 = —1, \{Ay = —6. We can now obtain the eigenvalues \; = —3
and Ao = 2 without evaluating the characteristic polynomial.

For example, if

Property 3 A square matrix A is invertible if and only if all of its eigen-
values are different from zero.

Proof: Matrix A is invertible if and only if |A| # 0. But, |A] = A1 -
Ao - -+ A # 0 requires all eigenvalues to be different from zero. O

It follows that a matrix with the zero eigenvalue A = 0 is singular.

1
Property 4 Let A be an eigenvalue of an invertible matrix A. Then X is

an eigenvalue of A, corresponding to the same eigenvector.
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Proof: By Property 3, A # 0. Multiplying Az = Az by A~! from the left
1

gives z = M1z, or A7z = N %

For example, if A has eigenvalues —2, 1,4, then A~! has eigenvalues
—1,1,1.

We say that two matrices A and B are similar if there is an invertible
matriz P, such that B = P~ AP (one can then express A = PBP™!).

Property 5 Two similar matrices A and B share the same characteristic
polynomial, and therefore they have the same set of eigenvalues.
Proof: The characteristic polynomial of B

|B— M| =|P AP — M| = |P"'AP — AP~ 'IP|
= |P7Y(A—= X)) P| = |P7Y|A - \||P|=|A— )|

is the same as the characteristic polynomial of A, by using properties of
determinants (on the last step we used that |P~1| = |1?|) &

Property 6 Let A be an eigenvalue of A. Then A\? is an eigenvalue of A%
corresponding to the same eigenvector.

Indeed, multiplying the relation Ax = Az by matrix A from the left gives
A%z = A(Az) = A(\x) = Mz = Ao = M.

One shows similarly that A¥ is an eigenvalue of A¥, for any positive integer k.
For example, if A has eigenvalues —2, 1,4, then A3 has eigenvalues —8, 1, 64.

Exercises
1 2 —4 1
1. Verify that the vector | 0 | is aneigenvector of the matrix | 0 2 0
1 1 -3 2

corresponding to the eigenvalue A = 3.

2. Determine the eigenvalues of the following matrices. Verify that the sum
of the eigenvalues is equal to the trace, while the product of the eigenvalues
is equal to the determinant.

1 2
a. A—[O_l].
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Answer. Ay =1, g = =1, trA=X\ + X2 =0, |A] = M2 = —1.

S E

3 1 =2
d 0 0 4
0 0 -7
Answer. A1 =3, A0 =0, 3= -7, tr A= X1 + Ag+ A3 = —4, |A| =0.
e. A= 3 2 . Answer. \{ = —1, Ay = 5.
4 1
[ -2 0 0
. A= 4 2 1 |. Answer. A\j = =2, Ao =1, A3 = 3.
| 3 1 2
[ -2 -1 4]
g. A= 3 2 =5 . Answer. A1 = —1, Ao =1, A3 =1.
| 0 0 1|
[-1 1 0]
h. A= 1 -2 1. Answer. A\; = =3, Ao = —1, A3 =0.
0 1 -1

—_
s
|
| —
—= O
|
o =
| I

Answer. A\ =—i, o =10, trA=XA1 + X3 =0,det A=A o =1.

3. Calculate the eigenvalues and the corresponding eigenvectors for the
following matrices.

2 1 . -1 . 1
a. [5 _2]. Answer./\1:—3vv1th[ 5:|,/\2—3W1th|:1:|.

]. Answer. /\1:3With[(1)],/\2:—5with[(1)].

4 6 . -2 . -3
c. [_1 _1]. Answer./\lzlvvlth[ 1],/\2:2W1th[ 1].

]. Answer. /\1:—2With[_f],/\2:2with[?].
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o O O O
O O O

f.  Any n x n diagonal matrix.

2 1 1
g. —1 —2 1 |. Hint. Factor the characteristic equation.
3 30
0 —1 1
Answer. Ay = -3 with | —1 |, Ay = 0 with 1 |,X3=3with | 0
1 1 1
2 —4 1
h. 0 2 0. Hint. Expand in the second row.
1 -3 2
—1 3 1
Answer. A\ = 1 with 0 [,X=2with | 1 |, A3=3with | 0
1 4 1
1 2 1
i 2 =21
0 05
—1 2 3
Answer. A\ = —3 with 2 [, A=2with [ 1 [, A3=05 with | 2
0 0 8

4. Let A be a 2 x 2 matrix, with trace 6, and one of the eigenvalues equal
to —1. What is the determinant |A|? Answer. |A] = —T7.

5. a. Write down two different 2 x 2 matrices with trace equal to 5 and
determinant equal to 4.

b. What are the eigenvalues of any such matrix?  Answer. 1 and 4.
6. Let A be a 3 x 3 matrix with the eigenvalues —2, 1, i.
a. Find |[43].  Answer. —3.

b. Find [A7Y].  Answer. —2.
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7. Let A be an invertible matrix. Show that zero cannot be an eigenvalue
of AL,

8. Assume that the matrix A has an eigenvalue zero. Show that the matrix
AB is not invertible, for any matrix B.

9. Let A be an eigenvalue of A, corresponding to an eigenvector x, and k
is any number. Show that k) is an eigenvalue of kA, corresponding to the
same eigenvector .

10. a. Show that the matrix AT has the same eigenvalues as A.
Hint. [AT = X|=|(A-XD)T|=]A - )|

b. Show that the eigenvectors of A and A” are in general different.

11
Hint. Consider say A = [ 0 92 ]

11. Let A be an eigenvalue of A, corresponding to an eigenvector x.

a. Show that A\? + 5 is an eigenvalue of A2 + 51, corresponding to the same
eigenvector x.

b. Show that 3A\? + 5 is an eigenvalue of 342 4+ 5I, corresponding to the
same eigenvector .

c. Consider a quadratic polynomial p(x) = 322 —7x+5. Define a polynomial
of matriz A as p(A) = 3A%2 — TA + 5I. Show that p(\) is an eigenvalue of
p(A), corresponding to the same eigenvector x.

12. Let A and B be any two n xn matrices, and c1, co two arbitrary numbers.

a. Show that tr (A + B) = tr A+ tr B, and more generally tr (c;A + coB) =
citrA+ cotr B.

b. Show that tr (AB) = tr (BA).

Hint. tr (AB) = Z aijbji = Z bjiaij =tr (BA)
4,j=1 4,j=1

c. Show that it is impossible to find two n X n matrices A and B, so that
AB—-BA=1.

d.* Show that it is impossible to find two n X n matrices A and B, with A

invertible, so that
AB—-BA=A.
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Hint. Multiply both sides by A~!, to obtain A (A_IB) — (A_IB) A=1.
13. Show that similar matrices have the same trace.

14. Suppose that two n x n matrices A and B have a common eigenvector
x. Show that det (AB — BA) = 0.

Hint. Show that x is an eigenvector of AB — BA, and determine the corre-
sponding eigenvalue.

15. Assume that all columns of a square matrix A add up to the same
number b. Show that A = b is an eigenvalue of A.

Hint. All columns of A — bl add up to zero, and then |A — bI| = 0.

4.2 A Complete Set of Eigenvectors

Throughout this section A will denote an arbitrary n x n matrix. HKigen-
vectors of A are vectors in R"™. Recall that the maximal number of linearly
independent vectors in R" is n, and any n linearly independent vectors in
R™ form a basis of R™. We say that an n x n matrix A has a complete set
of eigenvectors if A has n linearly independent eigenvectors. For a 2 x 2
matrix one needs two linearly independent eigenvectors for a complete set,
for a 3 x 3 matrix it takes three, and so on. A complete set of eigenvectors
forms a basis of R™. Such eigenvector bases will play a prominent role in
the next section. The following theorem provides a condition for A to have
a complete set of eigenvectors.

Theorem 4.2.1 FEigenvectors of A corresponding to distinct eigenvalues
form a linearly independent set.

Proof: We begin with the case of two eigenvectors u; and wus of A,
corresponding to the eigenvalues A1 and Ao respectively, so that Au; = Auq,
Auo = Aoug, and Ao # ;. We need to show that u; and wug are linearly
independent. Assume that the opposite is true. Then us = auq for some
number o # 0 (if @ = 0, then uy = 0, while eigenvectors are non-zero
vectors). Evaluate

A’LL2 =A (ozul) = a/\1u1 = /\1’LL2 75 /\2’LL2 5

contradicting the definition of us. Therefore u; and uo are linearly indepen-
dent.
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Next, consider the case of three eigenvectors uq, us, ug of A, correspond-
ing to the eigenvalues A, Ao, A3 respectively, so that Au; = Ajuq, Aug =
Agug, Aus = Aguz and Aj, Ao, A3 are three different (distinct) numbers. We
just proved that u; and usy are linearly independent. To prove that wuy, us, ug
are linearly independent, assume that the opposite is true. Then one of these
vectors, say us, is a linear combination of the other two, so that

(2.1) uz = ouy + Pug,

with some numbers « and 3. Observe that a and 3 cannot be both zero,
because otherwise ug = 0, contradicting the fact that ug is an eigenvector.
Multiply both sides of (2.1) by A to get:

Auz = aAuq + fAus,

(2.2) A3z = aijul + BAous .
From the equation (2.2) subtract the equation (2.1) multiplied by A3. Obtain
Oé(/\l —/\3)U1—|—ﬁ(/\2 —/\3)UQ =0.

The coefficients a (A1 — A3) and 3 (A2 — A3) cannot be both zero, which im-
plies that u; and wuo are linearly dependent, a contradiction, proving linear
independence of wui, ug, u3. By a similar argument we show that any set of
four eigenvectors corresponding to distinct eigenvalues is linearly indepen-
dent, and so on. O

If an n X n matrix A has n distinct eigenvalues A1, Ao, ..., A, then the
corresponding eigenvectors ui,us, ..., u, are linearly independent accord-
ing to this theorem, and form a complete set. If some of the eigenvalues
A1, A2, ..., A, are repeated, then A has fewer than n distinct eigenvalues.
The next example shows that some matrices with repeated eigenvalues still
have a complete set of eigenvectors.

2 11
Example 2 A= | 1 2 1 |. Expanding the characteristic equation
1 1 2
2—A 1 1
|[A— M| = 1 2—A 1 =0,

1 1 2—A
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in say the first row, produces a cubic equation
N —6A2+ 9N —4=0.

To solve it we need to guess a root. A\; = 1 is a root, which implies that the
cubic polynomial has a factor A — 1. The second factor is found by division
of the polynomials, giving

A=1)(A>=51+4) =0.

Setting the second factor to zero, A> — 5\ 4+ 4 = 0, gives the other two roots
Ao = 1 and A3 = 4. The eigenvalues are 1,1,4. The eigenvalue A\ = 1 is
repeated, while the eigenvalue A3 = 4 is simple.

To find the eigenvectors of the double eigenvalue Ay = 1, one needs to
solve the system (A — I)z = 0, which is

1 +x2+23=0

1 +x2+23=0
T+ 29 +23=0.

Discarding both the second and the third equations leaves
T1+x9+23=0.

Here x5 and x3 are free variables. Letting x3 =t and zo = s, two arbitrary

numbers, calculate x1 = —t — s. The solution set is then
—t—s -1 -1
S =t 0| +s 1 | =tuy + sug,
t 1 0
-1 -1
where u; = 0 |, and ugs = 1 |. Conclusion: the linear combina-
1 0

tions with arbitrary coefficients, or the span, of two linearly independent
eigenvectors uq and ug gives the space of all eigenvectors corresponding to
A1 = 1, also known as the eigenspace of A1 = 1.

The eigenvectors corresponding to the eigenvalue A3 = 4 are solutions of
the system (A — 41I)x = 0, which is

=211+ 12 +23=0
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1 — 229 +23=0

1 +x9 —223=0.

Discard the third equation as superfluous, because adding the first two equa-
tions gives negative of the third. In the remaining equations

—2r1 + w2 +23=0

1 —2x9 +23=0

set x3 = 1, then solve the resulting system

—2r1+ 10 = -1
r1 — 2:L'2 =-1 s
1
obtaining x1 = 1 and z9 = 1. Conclusion: ¢ | 1 | are the eigenvectors
1
corresponding to A3 = 4, with ¢ arbitrary. The answer can also be written
1
as cug, where ug = | 1 | is an eigenvector corresponding to Az = 4.
1

Observe that wuz is not in the span of w; and uy (because vectors in
that span are eigenvectors corresponding to A1). By Theorem 1.5.1 the
vectors uq, ug, ug are linearly independent, so that they form a complete set
of eigenvectors.

3
0
value. The system (A — 3I)z = 0 reduces to

—2
Example 3 Let A = [ 3 ] Here A\ = Ay = 3 is a repeated eigen-

—2:E2 =0.

So that xo = 0, while z1 is arbitrary. There is only one linearly independent
. 1 . .
eigenvector [ :%1 ] =1 [ 0 ] . This matrix does not have a complete set of

eigenvectors.
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4.2.1 Complex Eigenvalues

—1
For the matrix A = [ (1) 0 ] the characteristic equation is
e S U B
|A—/\I|—‘ Y ‘—/\ +1=0.
Its roots are A\ = i, and A9 = —i. The corresponding eigenvectors will also

have complex valued entries, although the procedure for finding eigenvectors
remains the same.

(i) Ay = i. The corresponding eigenvectors satisfy the system (A — il ) x = 0,
or in components
—’i:El — T2 = 0

:El—i:Eg:O.

Discard the second equation, because it can be obtained multiplying the
first equation by 4. In the first equation

—’i:El — T2 = 0

i .
], where c is

c
set xo = ¢, then £1 = —= = ci. Obtain the eigenvectors ¢ [ 1
i

any complex number.
(ii) A2 = —i. The corresponding eigenvectors satisfy the system (A + il) x =
0, or in components

’i:El — X9 = 0

1+ 129 =0.

Discard the second equation, because it can be obtained multiplying the
first equation by —i. In the first equation

’i:El—:Eg:O

i
is any complex number.

c . . . —1
set 9 = ¢, then 1 = — = —ci. Obtain the eigenvectors c [ i ], where ¢
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Recall that given a complex number z = z + iy, with real x and y, one
defines the complex conjugate as Z = x — iy. If z = x, a real number, then
Z=1x =z One has 2z = 22 + y? = |z|?, where |z| = /22 + y? is called the
modulus of z. Given complex numbers 21, 2o, . . ., 2, one has

21tttz =Z1+204+ -+ 2Zn,

zl.Z2...zn:EI.Ez...zn‘
21

2
Given a vector z = . |, with complex entries, one defines its complex

Zn

conjugate as z = . |. The eigenvalues of the matrix A above were
Zn

complex conjugates of one another, as well as the corresponding eigenvectors.

The same is true in general, as the following theorem shows.

Theorem 4.2.2 Let A be a square matriz with real entries. Let A be a
complex (not real) eigenvalue, and z a corresponding complex eigenvector.
Then A is also an eigenvalue, and Z a corresponding eigenvector.

Proof: We are given that
Az = Az

Take complex conjugates of both sides (elements of A are real numbers)
Az =)z,

which implies that A is an eigenvalue, and Z a corresponding eigenvector.
(The i-th component of Az is Y ;| aikzk, and Y ;| Gikzk = Y p—q GikZk-)

Exercises

1. Find the eigenvectors of the following matrices, and determine if they
form a complete set.

. L2
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Answer. [ _1 ] with Ay = —1 and [ (1) ] with Ay = 1, a complete set.

w12

1
Answer. [ 0 ] corresponding to A\; = A9 = 1, not a complete set.

Answer. [ (1) ] a

d. —3 —5

Hint. Observe that A\ =

then obtain the other two roots Ay =

0
1

nd
6
—6
4

A —120—16 =0,

—1

and 1 | corresponding to Ay = Ao =

0

corresponding to A3 = 4, a complete set.

-2
Answer. 0
1
01 1
e. 0 01
0 01

1
Answer. | 0 | corresponding to Ay = Ay =0, and | 1
0

2

1

A3 = 1, not a complete set.

-1 1
f. 1 -1
1

Answer.

0
-2
1
1

1
1
0
-1
corresponding to A\ = —2, -1
1

corresponding to A3 = 1, a complete set.

corresponding to A1 = A2 = 1, a complete set.

—2 is a root of the characteristic equation

—2 and A\; = 4 by factoring.

1
—2,and | —1
1

corresponding to

corresponding to
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0 1 2
g. -5 -3 -7
1 0 0
-1
Answer. | —1 | corresponding to A\ = Ay = A3 = —1, not a complete set.
1

2. Find the eigenvalues and the corresponding eigenvectors.

N

Answer. \{ =1 — i with [ !

],and/\gzl—l—iwith [ _i ]

1
3 3 2
b 1 1 -2
-3 -1 0
i —1 -1
Answer. A\ = —2¢ with | —i |, Ao = 2¢ with i |, A3 =4with | —1
1 1 1
1 2 -1
¢ -2 -1 1
-1 1 0
141 1—1
Answer. A\ = —it with | 1—4 |, Ay = ¢ with | 1+4 |, A3 = 0 with
2 2
1
1
3
[ 6989 —sing ], 0 is a real number.
sinf  cos®

Hint. A\ = cosf — isinf, Ay = cosf + isin.

3. Let A be an n X n matrix, and n is odd. Show that A has at least one
real eigenvalue.

Hint. The characteristic equation is a polynomial equation of odd degree.
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4. Find the complex conjugate Z and the modulus |z| for the following

numbers.
a. 3 — 4i. b. 5i. c. —T7. d. cos T +ising. e e'? 0 is real.

5. Let A be a 2 x 2 matrix with tr A = 2 and det(A4) = 2. What are the
eigenvalues of A?

6. A matrix A% has eigenvalues —1 and —4. What is the smallest possible
size of the matrix A? Answer. 4 x 4.

4.3 Diagonalization

An n X n matrix A

a1 a2 ... Qip
agz1 a2 ... Q2p

A= . . . :[0102...Cn]
anpl ap2 ... Qpn

can be written through its column vectors, where

ai ai12
a21 a22

Cy = i , Cy = . oo, Cp = .
Qan1 an?2 QAnn ‘
€1
€2
Recall that given a vector z = .|, the product Azx was defined as the
Tn
vector
(3.1) Ax = 21C1 + 29Cy + - - - + 2,C,, .
If B =[K;K,...K,] is another n x n matrix, with the column vectors

K, Ko, ..., K,, then the product AB was defined as follows
AB = A[K 1 Ky ... K| =[AK1 AK, ... AK,],

where the products AK;, AKos, ..., AK, are calculated using (3.1).
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Let D be a diagonal matrix

A 0 ...00
0 X ... 0
(3.2) p=| . " .
0 0 ... A\ J
Calculate the product
A1 0 0
0 Ao 0
AD= |A| . Al . A = [MCy A2Cy ... NGy

Lol Lol D]

Conclusion: multiplying a matriz A from the right by a diagonal matriz D,
results in the columns of A being multiplied by the corresponding entries
of D. In particular, to multiply two diagonal matrices (in either order)
one multiplies the corresponding diagonal entries. For example, let D; =

a 0 O 2 00
0 b 0|land Do=| 0 3 0 |, then
0 0 ¢ 0 0 4
20 0 O
DDy = DyD; = 0 3b 0
0 0 4c
Another example:
ail aiz a3 2 00 2a11 3ai2 4ag3
a1 a2 a3 0 3 0| =1 2a21 3ag 4ass
asy asz ass 0 0 4 2a31 3azz 4ass

Suppose now that the n X n matrix A has a complete set of n lin-

early independent eigenvectors uq, us, ..., Uy, so that Au; = Ajuq, Aug =
AU, ..., Auy, = Apuy, (the eigenvalues Aq, Ao, ..., A, are not necessarily
different). Form a matrix P = [uy ug ... uy,], using the eigenvectors as

columns. Observe that P has an inverse matrix P!, because the columns
of P are linearly independent. Calculate

(33) AP = [A’LLl A’LL2 e Aun] = [/\1’LL1 /\2 ug ... /\nun] = PD,
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where D is a diagonal matrix, shown in (3.2), with the eigenvalues of A on
the diagonal. Multiplying both sides of (3.3) from the left by P~!, obtain

(3.4) PlAP=D.
Similarly, multiplying (3.3) by P! from the right:
(3.5) A=PDP ',

One refers to the formulas (3.4) and (3.5) as giving the diagonalization of
matriz A, and matrix A is called diagonalizable. Diagonalizable matrices are
stmilar to diagonal ones. The matrix P is called the diagonalizing matriz.
There are infinitely many choices of the diagonalizing matrix P, because
eigenvectors (the columns of P) may be multiplied by arbitrary numbers. If
A has some complex (not real) eigenvalues, the formulas (3.4) and (3.5) still
hold, although some of the entries of P and D are complex.

1

Example 1 The matrix A = [ 1

4 . .
9 ] has eigenvalues A1 = —3 with
. . -1 .
a corresponding eigenvector u; = Ll and Ay = 2 with a correspond-

ing eigenvector up = [le] Here P = [_1 4], and D = [_3 0]-

1 1 0 2
1| -1 4
-1 _
Calculate P —5[ 11

s\ i)l ][]l

Not every matrix can be diagonalized. It follows from (3.3) that the
columns of diagonalizing matrix P are eigenvectors of A (since Au; = \ju;),
and these eigenvectors must be linearly independent in order for P~! to
exist. We conclude that a matriz A is diagonalizible if and only if it has a
complete set of eigenvectors.

]. The formula (3.4) becomes

2

Example 2 The matrix B = [ 10

] has a repeated eigenvalue \; =

-1

1]. The

Ao = 1, but only one linearly independent eigenvector u = [

matrix B is not diagonalizable.

Example 3 Recall the matrix

2 11
A=1(1 2 1
1 1 2
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from the preceding section. It has a repeated eigenvalue Ay = Ay = 1,
-1
together with A3 = 4, and a complete set of eigenvectors u; = 0 |,and
1
-1 1
Uy = 1 | corresponding to A\y = Ay =1, and ug = | 1 | corresponding
1

to A3 = 4. This matrix is diagonalizable, with

-1 -1 1 -1 2 1 00
P= 0 11 ,P—1:g -1 2 —-1|,D=]010
1 01 1 1 1 0 0 4

Recall that any n linearly independent vectors form a basis of R™. If

a matrix A has a complete set of eigenvectors, we can use the eigenvector

basis B = {uj,uz,...,uy}. Any vector x € R" can be decomposed as
€1

)
x = xug + Tous + - - - + Ty Uy, by using its coordinates [z]p = . with

respect to this basis B. Calculate

Ax = z1Au1 + 2o Aus + - - - + xp Auy, = T UL+ TodoUs F - - - F T AUy,

/\1:E1
/\QJEQ
It follows that [Ax]|p = i , and then
[ v |
[Az]p = D[z]p .

Conclusion: if one uses the eigenvector basis B in R™, then the function Az
(or the transformation Ax) is represented by a diagonal matriz D, consisting
of eigenvalues of A.

We discuss some applications of diagonalization next. For any two diag-
onal matrices of the same size

D1Dy = DoD1,
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since both products are calculated by multiplying the diagonal entries. For
general n X n matrices A and B, the relation

(3.6) AB = BA

is rare. The following theorem explains why. If AB = BA, one says that
the matrices A and B commute. Any two diagonal matrices commute.

Theorem 4.3.1 Two diagonalizable matrices commute if and only if they
share the same set of eigenvectors.

Proof: If two diagonalizable matrices A and B share the same set of
eigenvectors, they share the same diagonalizing matrix P, so that A =
PD{P~! and B = PDy,P~', with two diagonal matrices D; and D,. It
follows that

AB = PD1P~'PDyP~! = PD; (P_IP) DyP~' = PDDyP7!
= PDyD1P~!' = PD;P~'PD1P~!' = BA.

The proof of the converse statement is not included. &

If A is diagonalizable, then
A= PDP™,

where D is a diagonal matrix with the eigenvalues of A on the diagonal.
Calculate

A2 = AA=PDP ' PDP' = PDDP ! = pPD?pP!,

and similarly for other powers

Ak ok .. 0
AF — ppkp-1 = p 0 A? (.) p1
0 0 ... )k

Define the limit limy_.oo A¥ by taking the limits of each component of A*.
If the eigenvalues of A have modulus |\;| < 1 for all 4, then limy_,o, A¥ = O,
the zero matriz. Indeed, D* tends to the zero matrix, while P and P~! are
fixed.

1 8

Example 4 Let A= [ 0 —1

] . Calculate A57.
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The eigenvalues of this upper triangular matrix A are Ay =1 and Ay = —1.
Since A1 # Ao, the corresponding eigenvectors are linearly independent, and
A is diagonalizable, so that

L1 0] 0
aer[l e

with the appropriate diagonalizing matrix P, and the corresponding P~!.
Then

157 0 1 0 1 8
57 -1 _ -1 _ _
A _p[ . (_1)57]13 _p[o _1]p _A_[O _1].

Similarly, A¥ = A if k is an odd integer, while A¥ = I if k is an even integer.

Exercises

1. If the matrix A is diagonalizable, determine the diagonalizing matrix P
and the diagonal matrix D, and verify that AP = PD.

4 =2 2 1 30
a.A—[1 1]. Ansvvelr.P—[1 1],D—[0 2].

b. A= [ 2 -1 ] Answer. Not diagonalizable.

2
2 0 . .
c. A= [ 7 ] . Answer. The matrix is already diagonal, P = I.

0 —
2 -1 1
d A=|10 2 1/|. Answer. Not diagonalizable.
0 0 2
1 3 6
ee. A=1| -3 -5 -6 |. Hint. The eigenvalues and the eigenvectors
3 3 4
of this matrix were calculated in the preceding set of exercises.
-2 -1 1 -2 00
Answer. P = 0 1 -1 |(,D= 0 -2 0

1 0 1 0 0 4
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-2 -1 1 0 00
Answer. P = 1 -1 1 (,D=[01 0
1 11 0 0 3
1 1 1
e A=11 11
1 1 1
-1 -1 1 0 00
Answer. P = 0 1 1(,D=(0 0 0
1 1 0 0 3
1 2 3 4
01 2 3 . :
h. A= 00 1 2 Answer. Not diagonalizable.
0 0 01

. a b—a _ |11 _ a0
1.A—[0 b ],b#a. Answer.P—[O 1],D—[ ]

[\)

o k E 1k k
.Showthat[ab a] :[“ b “].

0 b 0o v
3. Let A be a 2 x 2 matrix with positive eigenvalues A1 # As.

a. Explain why A is diagonalizable, and how one constructs a non-singular

matrix P such that A =P At 0 P11
0 Ao

1

5

b. Define the square root of matriz A as VA= P [

that <\/Z>2 — A

] P~!. Show

c. Le‘cB:[lg1 _E?].Find\/g. ADSWGI‘.\/§:|:£11 _i]

d. Are there any other matrices C' with the property A = C??

. - +vA1 0 -1
Hlnt.TryC’—P[ 0 :I:\//\_Q]P .
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4. Let A = [ _g _1 ] . Show that A* = A, where k is any positive integer.
11 . . -
5. Let A= 34 1 | Show that limy_.., A¥ = O, where the limit of

a sequence of matrices is calculated by taking the limit of each component.

6. Let A be a 3 x 3 matrix with the eigenvalues 0, —1, 1. Show that A” = A.

7. Let A be a 4 x 4 matrix with the eigenvalues —i, ¢, —1, 1.
a. Show that A =1.
b. Show that A% = I, and A" = A for any positive integer n.

8. Let A be a diagonalizable 2 x 2 matrix, so that A = P [ /\6 /\0 ] Pt
2

Consider a polynomial ¢(x) = 222 — 3z +5. Calculate g(A) = 2A? —3A+51.

Answer.

o QA% — 3A1 + 5 0 -1 Q(Al) 0 -1
q(4)="r 0 2A§—3A2+5]P =P 0 g0 [P

9. Let A be an n X n matrix, and let g(\) = |A — M| be its characteristic
polynomial. Write g(A\) = agA™ + a1 A" ' + -+ 4+ ap_1 A + a,, with some
coefficients ag,a1,...,a,. The Cayley-Hamilton theorem asserts that any
matrix A is a root of its own characteristic polynomial, so that

g(A) =apA" + a1 A"+ a1 A+ a, ] =0,

where O is the zero matrix. Justify this theorem in case A is diagonalizable.
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Orthogonality and Symmetry

5.1 Inner Products

ap b1

a2
Given two vectors in R", a = . and b = . |, define their inner

Lo o]

product (also known as scalar product or dot product) as
a-b=aiby +agbs + - -+ ayb, .

In three dimensions (n = 3) this notion was used in Calculus to calculate the

length of a vector |[a|| = va-a = \/a} + a3 + a2, and the angle 6 between

a and b, given by cosf = In particular, ¢ and b are perpendicular

a-b
Alall ol o
if and only if @ - b = 0. Similarly, the projection of b on a was calculated as
follows

. a [lal|]]b|| cos@ a-b
Proj,b = ||b|| cosf = = a.
‘ [lal| lal? lal?
(Recall that [|b|| cos@ is the length of the projection vector, while ﬁ gives
a

the unit vector in the direction of a.)

In dimensions n > 3 these formulas are taken as the definitions of the
corresponding notions. Namely, the length (or the norm, or the magnitude)
of a vector a is defined as

lall = Va-a=/a} + a3+ +a.

129
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a-b

The angle 6 between two vectors in R™ is defined by cosf = W-

Vectors a and b in R™ are called orthogonal if
a-b=0.

Define the projection of b € R™ on a € R™ as

(=
=)
(=

a -

Proj, b=

Let us verify that subtracting from b its projection on a gives a vector
orthogonal to a. In other words, that b — Proj, b is orthogonal to a. Indeed,

a'(b—Projab):a-b—%a-a:a'b—a-bzo,

using the distributive property of inner product (verified in Exercises).

1 2
. —2 1 N
For example if a = 0 and b= | 4 | are two vectors in R*, then
) I Y

a-b=06, ||la|]| =3, and

1 2/3

. a-b 6 2 2| -2 | | —4/3
PrOJab—||a||2a—§a—§a—§ ol = 0
2 4/3

Given vectors x,y,z in R"™, and a number ¢, the following properties
follow immediately from the definition of inner product:

T Y=y-T
z-(y+2)=z-y+x-z
(z+y) - z=z-2+y-2z

(cx)-y=c(z-y)=x-(y)

ezl = lef []=]] -

These rules are similar to multiplication of numbers.
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If vectors x and y in R™ are orthogonal, the Pythagorean Theorem holds:
|z +yl[ = |z + [yl
Indeed, we are given that x -y = 0, and then
lz+yllP = (@+y)- @+y) =z -z +2z-y+y-y=|z]”+]yl

If a vector u has length one, ||u|| = 1, w is called wunit vector. Of all
the multiples kv of a vector v € R™ one often wishes to the select the unit

vector. Choosing k = ﬁ produces such a vector, ﬁv = ﬁ Indeed,

1 1
||—|| of| = = ol = 1.
ol ]l

The vector u = ﬁ is called the normalization of v. When projecting on a

unit vector u, the formula simplifies:

u-b
2

Proj, b= u=(b-u)u.

|l

Vector € R™ is a column vector (or an n x 1 matrix), while 27 is a
row vector (or an 1 x n matrix). One can express the inner product of two
vectors in R™ in terms of the matrix product

(1.1) r-y=aly.
If A is an n x n matrix, then
Az -y=ux-ATy,
for any z,y € R™. Indeed, using (1.1) twice
Az -y = (Ax)T y=2TATy=2-A"Ty.

Given two vectors x,y € R™ the angle § between them was defined as

cosf = _ry .
][ [yl
To see that —1 < m < 1 (so that # can be determined), we need the
Tl Y

following Cauchy-Schwarz inequality

(1.2) |-y < |l=[|lyl]
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To justify this inequality, for any scalar A expand
0< [Pdz+yll* = Az +y) - Az +y) =N|[z|[*+2Xz -y + [|y]|*.

On the right we have a quadratic polynomial in A, which is non-negative for
all A\. It follows that this polynomial cannot have two real roots, so that its
coefficients satisfy

(2a-y)* — 4l |lyl[* <0,

which implies (1.2).

Exercises
1 2 1 (2)
1. Let z; = 2|, x0 = 3|, xz3 = 01, y1 = , Yo =
2 —4 -5 2
-1
1 1
1 IR
—2 1
a. Verify that x1 is orthogonal to x9, and y; is orthogonal to ¥s.
b. Calculate (221 — x2) - 3x3.

c. Calculate ||z1]], [|yall, ||v2ll, [lys]l-
d. Normalize x1, y1, Y2, Y3-

).

e. Find the acute angle between y; and y3.  Answer. m — arccos(—

=
=

Calculate the projection Proj,, 1.

g. Calculate Proj,, 3.  Answer. —x;.

h. Calculate Proj,, ys.

i. Calculate Proj, y2.  Answer. The zero vector.

2. Show that (z +y) - (x —y) = ||z]|? — ||y]|?, for any =,y € R".

3. Show that the diagonals of a parallelogram are orthogonal if and only if
the parallelogram is a rhombus (all sides equal).

Hint. Vectors x + y and x — y give the diagonals in the parallelogram with
sides = and y.
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4. 1f [[z]| =4, [lyl] = 3, and 2 -y = —1, find ||z + y[| and ||z — y||.
Hint. Begin with ||z + y||?.

5. Let x € R", and eq, e, ..., e, is the standard basis of R". Let 6; denote
the angle between the vectors z and e;, for all i (; is called the direction
angle, while cos 0; is the the direction cosine).

a. Show that
cos? ) + cos? 0y + - --+cos? b, =1.

Hint. cos; = II?II (z; is i-th the component of z).
b. What familiar formula one gets in case n = 27

6. Show that for z,y € R" the following triangle inequality holds

[+ yll < ][+ [lyll

and interpret it geometrically.

Hint. Using the Cauchy-Schwarz inequality, ||z +y||? = ||z||?>+2z-y+]||y||* <
[12]1* + 2[ 1] [y]] + []y]>-

x1 n <1
Z2 Y2 22 .

7. Let z = o,y = . and z = . be arbitrary vectors.
Tn Yn Zn

Verify that
z-(y+z2)=x-y+z-z.

8. If Ais an n X n matrix, e; and e; any two coordinate vectors, show that
Aej € = aij.

9. True or False?

a. ||Projqb|| < 110 Answer. True.
b. [|[Projqb|| < ||all. Answer. False.
c. Projoub = Proj,b. Answer. True.

10. Suppose that x € R", y € R™, and matrix A is of size m x n. Show
that Az -y =a- ATy.
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5.2 Orthogonal Bases

Vectors vi,va,...,vp in R"™ are said to form an orthogonal set if each of
these vectors is orthogonal to every other vector, so that v; - v; = 0 for all
i # j. (One also says that these vectors are mutually orthogonal.) If vectors
Ui, U, ..., up in R form an orthogonal set, and in addition they are unit
vectors (||ug|| = 1 for all 7), we say that uy, us, ..., u, form an orthonormal

set. An orthogonal set vi,vs,...,v, can be turned into an orthonormal set
(%

il

o)L ] .
2 _ |0 , and vy = 1 form an orthogonal set.

R IS Y

Indeed, v - vo = vy - v3 = vy - v3 = 0. Calculate ||vi|| = 3, ||ve]| = V21,

by normalization, or taking u; = for all 7. For example, the vectors

0
1 1 2 1
and ||vs|| = V6. Then the vectors u; = U1 =3 { }, Uy = ——=UVg =

1]

4 -1
1 0 1 1 1
— ,and ug = —=v3 = — form an orthonormal set.
Vot | 1 VBT VB O
2 2
Theorem 5.2.1 Suppose that vectors vi,va,...,v, in R"™ are all non-zero,

and they form an orthogonal set. Then they are linearly independent.
Proof: We need to show that the relation
(2.1) U1 + 2ov2 + -+ xpv, =0

is possible only if all of the coefficients are zero, 1 = 29 = --- =z, = 0.
Take the inner product of both sides of (2.1) with vy:

T1v1 V1 +T2v2 V1 + -+ TpUp v =0,

By orthogonality, all of the terms starting with the second one are zero.
Obtain
Il ||’U1||2 =0.

Since vy is non-zero, ||v1|| > 0, and then x; = 0. Taking the inner product
of both sides of (2.1) with vy, one shows similarly that xo = 0, and so on,
showing that all x; = 0. O
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It follows that non-zero vectors forming an orthogonal set provide a
basis for the subspace that they span, called orthogonal basis. Orthonormal
vectors give rise to an orthonormal basis. Such bases are very convenient,
as is explained next.

Suppose that vectors vy, vg, . . ., v, form an orthogonal basis of some sub-
space W in R™. Then any vector w in W can be expressed as

w = 2101 + T2v2 + -+ -+ TpUp,

and the coordinates x1, 9, . . ., T, are easy to express. Indeed, take the inner
product of both sides with v; and use the orthogonality:

w -V =TV - V1,
giving
1T = 715 -
[|v1][?
Taking the inner product of both sides with wvg, gives a formula for zo, and
so on. Obtain:
w - vy w - Vg w - U

= ——— T9=—> ..., =
o2’ [

(2.2) Tl = —F.
[lop]]?

The resulting decomposition with respect to an orthogonal basis is

w - V1 w - Vo w - vp

(2.3) w = v + vyt — v,
v [? [lupll? 7

[|val[?

So that any vector w in W is equal to the sum of its projections on the
elements of an orthogonal basis.

In case vectors uy, ug, ..., u, form an orthonormal basis of W, and w €
W, then
W = T1uU1 +$2u2+"'+$pup7

and in view of (2.2) the coefficients are
TI =W U, T2=W- U, ... ,Tp=W"Up.
The resulting decomposition with respect to an orthonormal basis is
w=(w-uy) up + (w-ug) ug+ -+ (w-up) up.

Suppose W is a subspace of R" with a basis {wy, ws, ..., wp}, not neces-
sarily orthogonal. We say that a vector z € R" is orthogonal to a subspace
W if z is orthogonal to any vector in W, notation z L W.
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Lemma 5.2.1 If a vector z is orthogonal to the basis elements wy, wa, ..., wp
of W, then z is orthogonal to W.

Proof: Indeed, decompose any element w € W as w = ziwi + xows +
-+ xpwy. Given that z - w; = 0 for all 4, obtain

ZrW=T12 W]+ T2z -Wa+ -+ xTp2wp =0,

so that z L W. O

Given any vector b € R"™ and a subspace W of R", we say that the
vector Proj ,, b is the projection of b on W if the vector z = b — Proj ,, b is
orthogonal to W. It is easy to project on W in case W has an orthogonal
basis.

Theorem 5.2.2 Assume that {vi,ve, ..., v} form an orthogonal basis of a
subspace W. Then

(2.4) Proj,, b= vy F e

(So that Proj,, b equals to the sum of projections of b on the basis elements.)

Proof: = We need to show that z = b — Proj,, b is orthogonal to all basis
elements of W (so that z L W). Using the orthogonality of v;’s calculate

b"U1

——21)1"[)1:()"[)1—()"01:0,
[|val]

z-vp=0b-v; — (Proj, b)-v1=>b-v

and similarly z - v; = 0 for all . &

In case b € W, Proj,, b = b, as follows by comparing the formulas (2.3)
and (2.4). If Proj,, b# b, then b ¢ W.

1 1 1
Example 1 Let vy = | =1 [, vo = | 1|, b= | 1], and W =
2 0 1

Span{v, va}. Let us calculate Proj,, b. Since vy - vo = 0, these vectors are
orthogonal, and then by (2.4)

b"U1 b"Ug 2 4/3
o2 T gl 2 =6 T2 = | 273
1 2 2/3

Proj,, b=
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The set of all vectors in R™ that are orthogonal to a subspace W of R"™ is
called the orthogonal complement of W, and is denoted by W+ (pronounced
“W perp”). It is straightforward to verify that W+ is a subspace of R".
By Lemma 5.2.1, W consists of all vectors in R" that are orthogonal to
any basis of W. In 3-d, vectors going along the z-axis give the orthogonal
complement to vectors in the zy-plane, and vice versa.

Example 2 Consider a subspace W of R* W = Span {w1, w2}, where

1 0

0 -1 1 .

1| w2 = L The subspace W~ consists of vectors x =
—2 1

B

that are orthogonal to the basis of W, so that = - w; = 0 and

HH

1
H
e — |

xZ - , Or in components

1+ 23— 224 =0

—r9+x4=0.

1 01

One sees that W is just the null space N (A) of the matrix A = [ 0 -1 0

of this system, and a short calculation shows that

{2} {_1}
1 1 0
W- = Span N 1

1] Lol

Recall that the vector z = b — Proj,, b is orthogonal to the subspace
W. In other words, z € W+. We conclude that any vector b € R" can be
decomposed as

b=Proj, b+z,

with Proj,, b € W, and 2z € WL, If b belongs to W, then b = Proj, b
and z = 0. In case b ¢ W, then the vector Proj , b gives the vector (or
the point) in W that is closest to b (which is justified in Exercises), and
||b— Proj,, b|| = ||z|| is defined to be the distance from b to W.
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Fredholm Alternative

We now revisit linear systems
(2.5) Az =b,

with a given m x n matrix A, x € R", and a given vector b € R™. We shall
use the corresponding homogeneous system, with y € R™

(2.6) Ay=0,

and the adjoint homogeneous system, with z € R™

(2.7) ATz =0.

Recall that the system (2.5) has a solution if and only if b € C(A), the
column space of A (or the range of the function Az, for z € R™). The

column space C(A) is a subspace of R™. All solutions of the system (2.7)
constitute the null space of AT, N(AT), which is a subspace of R™.

Theorem 5.2.3 C(A)* = N(AT).

Proof: To prove that two sets are identical, one shows that each element
of either one of the sets belongs to the other set.

(i) Assume that the vector z € R™ belongs to C(A)+. Then
2 Az = 2T Az = (zTA):Ezo,
for all x € R™. It follows that
TA=0,

the zero row vector. Taking the adjoint gives (2.7), so that z € N(AT).

(ii) Conversely, assume that the vector z € R™ belongs to N(AT), so that
ATz = 0. Taking the adjoint gives 27 A = 0. Then

Ay =z Az =0,

for all x € R™. Hence z € C(A)*. O

For square matrices A we have the following important consequence.
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Theorem 5.2.4 (Fredholm alternative) Let A be an n xn matriz, b € R™.

Then either

(i) The homogeneous system (2.6) has only the trivial solution, and the

system (2.5) has a unique solution for any vector b.

Or else

(ii) Both homogeneous systems (2.6) and (2.7) have non-trivial solutions,

and the system (2.5) has solutions if and only if b is orthogonal to any

solution of (2.7).
Proof:

If the determinant |A| # 0, then A~! exists, v = A7!0 = 0 is

the only solution of (2.6), and u = A~'b is the unique solution of (2.5). In
case |A| = 0, one has |AT| = |A| = 0, so that both systems (2.6) and (2.7)
have non-trivial solutions. In order for (2.5) to be solvable, b must belong to
C(A). By Theorem 5.2.3, C(A) is the orthogonal complement of N(A”), so
that b must be orthogonal to all solutions of (2.7). (In this case the system

(2.5) has infinitely many solutions of the form x+ cy, where y is any solution
of (2.6), and ¢ is an arbitrary number.)

&

So that if A is invertible, the system Az = b has a (unique) solution for
any vector b. In case A is not invertible, solutions exist only for “lucky” b,

the ones orthogonal to any solution of the adjoint system (2.7).

Least Squares
Consider a system

(2.8)

with an m x n matrix A, x € R"™, and a vector b € R™. If Cy,Cs, ..

Ax =b,

are the columns of A and x1, o, ..

can write (2.8) as

The system (2.8) is consistent if and only if b belongs to the span of Cy, Cy, . .

2101 + 2200 + - -+ 2,Cp, = b.

Ch

., Ty are the components of x, then one

in other words b € C(A), the column space of A. If b is not in C(A) the
system (2.8) is inconsistent (there is no solution). What would be a good
substitute for the solution? One answer to this question is presented next.

Assume for simplicity that the columns of A are linearly independent.
Let p denote the projection of the vector b on C(A), let  be the unique

solution of

(2.9)

A

T

D.

- Cn,
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(The solution is unique because the columns of A are linearly independent.)
The vector Z is called the least squares solution of (2.8). The vector AZ = p
is the closest vector to b in C(A), so that the value of || AZ—b|| is the smallest
possible. The formula for Z is derived next.

By the definition of projection, the vector b — p is orthogonal to C(A),
implying that b — p is orthogonal to all columns of A, or b — p is orthogonal
to all rows of AT, so that

AT (b—p)=0.
Write this as ATp = ATb, and use (2.9) to obtain
(2.10) AT Az = AT,
giving
7= (ATA)" AT,
since the matrix AT A is invertible, as is shown in Exercises.

The vector Z is the unique solution of the system (2.10), known as the
normal equations. The projection of b on C'(A) is

p=Az = A(ATA) " ATy,

and the matrix P = A (ATA)_1 AT projects any b € R™ on C(A).
Example 3 The 3 x 2 system

201+ 20 =3
:E1—2:E2:4
O0x1 4+ 0z =1

is clearly inconsistent. Intuitively, the best we can do is to solve the first two

equations to obtain x1 = 2, 9 = —1. Let us now apply the least squares
2 1 3

method. Here A= | 1 —2 [,b= | 4 |, and a calculation gives the least
0 0 1

squares solution

O =

7= (ATA) " ATh = [

I =l -14]

al= O
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The column space of A consists of vectors in R? with the third component
zero, and the projection of b on C(A) is

2 1 9 3
p=Az=|1 -2 [_1]2 40,
0 O 0
as expected.
Exercises

2
1. Verify that the vectors u; = % [ _1 ] and ug = [ 1;% ] form an

orthonormal basis of R?. Then find the coordinates of the vectors e; = [ (1) ]
and ey = [ (1) ] with respect to this basis B = {ug, us}.

Answer. [e1]p = [ %g ] lea] = [ _%g ]

1 1 1
; - 1 -1 _ - 1
2. Verify that the vectors u; = 7 1 Y U2 = i LUz = s (1)
form an orthonormal basis of R3. Then find coordinates of the vectors
1 -3
wy = | 1], wy= 0 |, and of the coordinate vector ey, with respect
1 3
to this basis B = {uy, ug, us}.
1
V3 0 7
Answer. [w]p = 0 |, [we]p= 06 , le2lB = —%
0 V) 0
2 1 1
3. Letvy=| =1 |,v= 0[,b=1|1 |, and W = Span{vy, va}.
2 -1 1

a. Verify that the vectors v; and v are orthogonal, and explain why these
vectors form an orthogonal basis of W.

b. Calculate Proj , b. Does b belong to W?
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1
c. Calculate the coordinates of w = 1 | with respect to the basis
-5
3
d. Calculate Proj, u. Does u belong to W?

B={v1,v). Answer. [w]p = [ -1 ]

e. Describe geometrically the subspace W.

f. Find W+, the orthogonal complement of W, and describe it geometrically.

SN Y EY U R I I 4
B A O

W = Spa’n{ulv uz, ’LL3}-
a. Verify that the vectors ui, us, ug are orthonormal, and explain why these
vectors form an orthonormal basis of W.

b. Calculate Proj, b.

c. Does b belong to W7 If not, what is the point in W that is closest to b7
d. What is the distance from b to W?

5. Let W be a subspace of R" of dimension k. Show that dim W+ =n — k.
6

7.

. Let W be a subspace of R". Show that (VVl)l =W.
Let q1, go, . . ., qx be orthonormal vectors, and @ = a1q1 +asqe + - - -+ arqx
their linear combination. Justify the Pythagorean theorem

lall* = at + a3+ -+ aj.

Hint. |la|]*=a-a=0aiq - q +a1a2q1 - @2+ - -~

8. Let W be a subspace of R", and b ¢ W. Show that Projw b gives the
vector in W that is closest to b.

Hint. Let z be any vector in W. Then

b —z|[* =] (b — Projw b) + (Projw b — 2) ||
= ||b — Projw b||? + ||Projw b — z||?,

by the Pythagorean theorem. (Observe that the vectors b — Projy b € W+
and Projy b — z € W are orthogonal.) Then ||b — z||? > ||b — Projw b||%.
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9. Let A be an m x n matrix with linearly independent columns. Show that
the matrix AT A is square, invertible, and symmetric.

Hint. Assume that ATAz = 0 for some € R". Then 0 = 2TAT Az =
(Az)" Az = ||Az||%, so that Az = 0. This implies that # = 0, since the
columns of A are linearly independent. It follows that AT A is invertible.

10. Let wq,wo, ..., w, be vectors in R™. The following n X n determinant
wp-w; wrwy2 ... W1Wp
G — wo W W2 w2 ... W2 Wp
Wp W, Wp--W2 ... Wp-*Wy

is called the Gram determinant or the Gramian.

a. Show that w1y, wo, ..., w, are linearly dependent if and only if the Gramian
G =0.

b. Let A be an m x n matrix with linearly independent columns. Show
again that the square matrix AT A is invertible and symmetric.

Hint. The determinant |A” A| is the Gramian of the columns of A.

11. Consider the system

201 + 10 =3
:E1—2:E2:4

2:E1—:E2:—5.

a. Verify that this system is inconsistent.

b. Calculate the least squares solution. Answer. T; =0, Ty = 0.

3
c. Calculate the projection p of the vector b = 4 | on the column space
-5
C(A) of the matrix of this system, and conclude that b € C(A)~ .

0
Answer. p=| 0
0
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5.3 Gram-Schmidt Orthogonalization

A given set of linearly independent vectors wy, wo, . . ., w, in R" forms a basis
for the subspace W that they span. It is desirable to have an orthogonal
basis of the subspace W = Span{wy, wy, ..., w,}. With an orthogonal basis
it is easy to calculate the coordinates of any vector w € W, and if a vector
b is not in W, it is easy to calculate the projection of b on W. Given an
arbitrary basis of a subspace W, our goal is to produce an orthonormal basis
spanning the same subspace W.

The Gram-Schmidt orthogonalization process produces an orthogonal ba-

sis vy, v2, ..., vp of the subspace W = Span{w, ws, ..., wy,} as follows
U1 = Wy
— w2 -v1
vz = W02 = ||v1||2”1
vy = w3 — 2y v
3= ||vl||2 L ||vz||2 2
_ Wp-v1 Wp-V2 Wp-Vp—1
Uy = W v v cee— v
p P qonlP T eefP72 [fop—1][Z 7 P~1

The first vector w; is included in the new basis as v1. To obtain vo, we sub-
tract from wo its projection on v1. It follows that vs is orthogonal to v1. To
obtain v3, we subtract from wjg its projection on the previously constructed
vectors v1 and ve, in other words, we subtract from wg its projection on the
subspace spanned by v and vs. By the definition of projection on a subspace
and Theorem 5.2.2, v3 is orthogonal to that subspace, and in particular, vs
is orthogonal to v1 and v2. In general, to obtain v,, we subtract from w,
its projection on the previously constructed vectors vy, va,...,v,—1. By the
definition of projection on a subspace and Theorem 5.2.2, v, is orthogonal
to vy, ve,. .., Vp_1.

The new vectors v; belong to the subspace W because they are linear
combinations of the old vectors w;. The vectors vy, vg,...,v, are linearly
independent, because they form an orthogonal set, and since their number
is p, they form a basis of W, an orthogonal basis of W.

Once the orthogonal basis v1,v9, ..., v, is constructed, one can obtain

Y
vl |

an orthonormal basis uy, us, . . .,u, by normalization, taking u; =



10

5.3. GRAM-SCHMIDT ORTHOGONALIZATION 145

1 1 0
-1 —2 1 .
Example 1 Let wy = e = o [rws= 1| It is easy
1 3 2

to check that these vectors are linearly independent, and hence they form a
basis of W = Span{w;, we, w3}. We now use the Gram-Schmidt process to
obtain an orthonormal basis of .

1
-1
-1

1

Start with v; = wy = . Calculate ||v1]]? = [|w1]]? = 4, wy - v =

wo - w1 = 4. Obtain

.
R

Next, w3 - vy = 0, w3 - v2 = 6, ||v2||?> = 14, and then

U3 = w3 — fEmbvl — E U
0 0 0
1 -1 10/7
—wa—0-v — Sy = 3 =
= W3 0 U1 14’02 1 7 3 _2/7
2 2 8/7
The orthogonal basis of W is
1 0 0
|1 ! 1 10
Ul - _1 9 U2 - 3 9 ,U3 - 7 _2
1 2 8

Calculate ||v1]| = 2, ||ve|| = V14, ||vs|| = %\/168. The orthonormal basis of
W is obtained by normalization:
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5.3.1 QR Factorization

Let A = [wyws ... w,] be an m X n matrix, and assume that its columns

w1y, Wa, ..., W, are linearly independent. Then they form a basis of the
column space C(A). Applying Gram-Schmidt process to the columns of A
produces an orthonormal basis {ui,ug,...,u,} of C(A). Form an m x n
matrix

Q:[u1u2 un],
using these orthonormal columns.

Turning to matrix R, from the first line of Gram-Schmidt process express
the vector wy as a multiple of uy

(3.1) w1, =T11u ,

with the coefficient denoted by 711 (17 = w1 - w1 = ||wy]]). From the second
line of Gram-Schmidt process express wo as a linear combination of v; and
vg9, and then of uq and uy

(3.2) Wg = T12U1 + T22U2 ,

with some coefficients 712 and 799 (112 = wsg - U1, 792 = wo - uz). From the
third line of Gram-Schmidt process express

w3 = r13U1 + T23U2 + T33U3,

with the appropriate coefficients (r13 = ws - u1, ro3 = w3 - ug, r33 = ws - u3).
The final line of Gram-Schmidt process gives

Wp = T1pUl + T2pU2 + -+ -+ Ty -

Form the n x n upper triangular matrix R

i1 T2 Tz ... Tin

0 T99 T23 ... Topn

R= 0 0 33 ... T3n
0 0 0 ... 7™

Then the definition of matrix multiplication implies that
(3.3) A=QR,

what is known as the QR decomposition of the matriz A.
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We now justify the formula (3.3) by comparing the corresponding columns
of the matrices A and QR. The first column of A is wi, while the first col-

r11
0

umn of QR is the product of @ and the vector } (the first column of

0
R), which gives r11uq, and by (3.1) the first columns are equal. The second

column of A is we, while the second column of QR is the product of () and

T12
22

the vector } (the second column of R), which is riouj +roousg, and by

0
(3.2) the second columns are equal. Similarly, all other columns are equal.

Example 2 Let us find the QR decomposition of

1 1 0
-1 -2 1
-1 2 1"

[ 1 3 2 J

The columns of A are the vectors wq, wo, w3 from Example 1 above. There-
fore the matrix @ = [u; uz uz] has the orthonormal columns uq, ug, ug pro-
duced in Example 1. To obtain the entries of the matrix R, we “reverse”

our calculations in Example 1, expressing w1, ws, w3 first through vy, ve, v3,
and then through wuq, us, u3. Recall that

A=

wp = v = ||’U1||’LL1 = 2’LL1,
so that r1; = 2. Similarly,
Wo = V1 + V2 = ||’U1||’LL1 + ||’U2||’LL2 = 2uq + vV 14us,

giving 712 = 2 and res = v/14. Finally,

3 3 3 v 168
wsy = 01)1—1—?1)2—1—’03 = 0u1+?||v2||u2—|—||v3||u3 = Oul—l—?v 14’LL2—|—T’LL3,

2
so that 13 = 0, T23 = % 14, 33 = —V1768 Then R = 0
0

ﬁ
[ BNN V]
-l
i3
D =
ool i
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and the QR factorization is

1
- 0 0 i} i
2
1 10 11 10 2 2 0
1 -2 1 2 V14 /168
— 3
1 21 1 3 9 0 V14 314
L3 2 2 /14 VIGs | | 0 VI
1 2 8 i T
L 2 14 168 |

Since the vectors wuj,us2,us are orthonormal, one has (as mentioned
above)
wy = (w1 - u1) wy
wy = (wg - up) u + (wg - ug) uz

w3 = (w3 - ur) uy + (w3 - ug) ug + (w3 - uz) ug.

Then
wi-Up wW2-Up W3-UL
R = 0 w9 - Uy W3- U
0 0 w3 - U3z

gives an alternative way to calculate R.

5.3.2 Orthogonal Matrices

The matrix @ = [ujusg ... u,] in the @R decomposition has orthonormal

columns. If Q is of size m x n, its transpose Q' is an n x m matrix with the

uy

ug

Lo ]

matrix, and we claim that (I is the n x n identity matrix)

rows ul,ud, ..., ul’ so that QT = . The product QTQ is an n x n

(3.4) QTQ=1.
Indeed, the diagonal entries of the product
QTQ = Uz [’LLl u ... un]

Uy
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are ulw; = u; - u; = ||ug||> = 1, while the off-diagonal entries are ulu; =
u; - u; = 0 for i # j.

A square n X n matriz with orthonormal columns is called orthogonal
matriz. For orthogonal matrices the formula (3.4) implies that

(3.5) QT =0 '.

Conversely, if the formula (3.5) holds, then QTQ = I so that @ has orthonor-
mal columns. We conclude that matriz Q is orthogonal if and only if (3.5)
holds. The formula (3.5) provides an alternative definition of orthogonal
matrices.

We claim that
Q|| = |[=|]

for any orthogonal matrix @), and all x € R™. Indeed,

Q2P =Qz Qr=2-Q"Qr=2-Q'Qu =1 Iz =[]

One shows similarly that

Qr-Qy=1x-y
for any z,y € R"™. It follows that the orthogonal transformation Qx preserves
the length of vectors, and the angles between vectors (since cos § = IImﬁ-ﬁyll =

Qz-Qy )
MQ=IMQul
Equating the determinants of both sides of (3.5), obtain |QT| = |Q7!,
giving |Q| = ﬁ or |Q|* = 1, which implies that

Q| = =1,
for any orthogonal matrix Q).
A product of two orthogonal matrices P and @ is also an orthogonal
matrix. Indeed, since PT = P~ and QT = @1, obtain
(PQ)T =QTPT =Q Pt =(PQ)T".
proving that P(Q) is orthogonal.
If P is a 2x2 orthogonal matrix, it turns out that either P = [

cos 6 sin @

or P = [ sinf —cos6

], for some number . Indeed, let P = [ 3 g ] be

cos@ —sinf
sin @ cos 6
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any orthogonal matrix. We know that the determinant |P| = ad — 5y = £1.
Let us assume first that |P| = ad — 3y = 1. Then

Pt 22042,

:aé—ﬁ7 —y o —y Qo
and also
T _ | @ 7
P _[ﬁ 5].
Since P71 = PT it followsthatézozandﬁ:—y,sothatP:[3 _Z].

The columns of the orthogonal matrix P are of unit length, so that o +~? =
1. We can then find a number 6 so that « = cos# and v = sin 6, and conclude

cos@ —sinf
that P> = [ sin @ cosf ]

In the other case, when |P| = —1, observe that the product of two
0

0 —1 ] P is an orthogonal matrix with determinant

1 0 cosf —sinf
equal to 1. By the above, [ 0 _1 ]P = [ sinf  cosf

orthogonal matrices [

] for some 6.

Then, with 6 = —,
p_ 1 0] "[cos® —sind |1 o0 cosf —sinf
|10 -1 sinf cosf | | 0 -1 sinf  cosf
_ cos) —sinf | | cosy sin @
| —sinf —cosf | | sinp —cosp |’

Exercises

1. Use the Gram-Schmidt process to find an orthonormal basis for the
subspace spanned by the given vectors.

1 1
a.wp =10 [|,we=]1
1 1
1
2 0
Answer. u; = 0 |,up=11
€ 0
V2
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1 -1
b w1 = —2 , W2 = 2
2 1
1 —2
Answer. up =5 | =2 |, uz = 31% 4
2 5
2 3 1
1 B 2 1
C wl - _1 7w2 - _4 7w3 - 0
0 1 —2
I
1 0 1
1 — 1 -1
Answer. uy Bl a1 w=% 2 'B=E | -1 |-
0 1 -3
1 1 1
q 1 10 |1
wl - _1 9 w2 - 0 9 w3 - 0 .
-1 1 0
1 1 0
1 0 1
1 _ 1 _ 1
Answer. u; = 3 _1 ur=s o b= s |
1 0
3 -1 3 -1
-2 0 —2 —2
e wy = 1 0 |. Answer. u; = % 1 |, uy = % 1.
1 0 1 1
-1 1 -1 3

f. Let W = Span{w, w2}, where wi,ws € R’ are the vectors from the
1
0
preceding exercise (e), and b = 1 |. Find the projection Proj , b.
—1
—1

Answer. Proj b =u; — ua.

2. Find an orthogonal basis for the null-space N(A) of the following matri-
ces.
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Hint. Find a basis of N(A), then apply the Gram-Schmidt process.

0 2 -1 0
a. A=| -2 1 2 1
-2 3 11
ol
0 1
— 1 — 1
Answer. ur = 0 ) U2 = s 9 |
2 -1
1
|1 -1 0 1
b.A—[1 9 _3]. Answer.ul—\/g 1

c. A=[1 -1 0 1].

ol o] ]

ADSWGI'.'LHZ%\‘ 0J7u2—\‘1J7u3_ \‘OJ
1

1 0
3. Let A = QR be the QR decomposition of A.

a. Assume that A is a non-singular square matrix. Show that R is also
non-singular, and all of its diagonal entries are positive.

S

b. Show that R = QT A (which gives an alternative way to calculate R).

4. Find the QR decomposition of the following matrices.

3 -1
a.A—[4 0 ]

3 _4 . '
Ansvver.@:[?l 5],R:[w1 up  wa ul]:[
5

o Ot

(SIS |
oy

[ I
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1 -1
—1 1
c. A= N
1 2
Hint. The columns of A are orthogonal.
1 _ 1
2
[—l f] 2 0
_ 2 _
Answer. Q = . \66_3 ’R_[O \/6]
I 2
2 V6
1 00
d A= -2 1 0
2 01
12 2 5 2 2
3368 Vb \/3 3
Answer. Q= | —2 5 o |,R=]0 ¥ 34_5
PR IS 0 o
3 3v6 V5 75
[ 11 —1]
—1 0 —1
e. A= IR
1 2 -1
1 1
1 0o -1
{_i o _i} 2 2 -1
Answer. Q = _i \/g i R=10 V2 -2
T 1 0 0 1
2 2 2

5. Let @ be an orthogonal matrix.

a. Show that Q7 is orthogonal.

b. Show that an orthogonal matrix has orthonormal rows.
c. Show that Q! is orthogonal.

6. Fill in the missing entries of the following 3 x 3 orthogonal matrix

cosf) —sinf
Q= | sinf cosf

* * *

7. a. If an orthogonal matrix ) has a real eigenvalue A show that A = £1.
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Hint. If Qz = Az, then N2z -z = Qz - Qz =z - QT Qx.
b. Give an example of an orthogonal matrix without real eigenvalues.

c. Describe all orthogonal matrices that are upper triangular.

-1 1 1
8. The matrix 1 -1 1 | has eigenvalues \{ = Ao = =2, A3 = 1.
1 1 -1
Find an orthonormal basis of the eigenspace corresponding to Ay = Ao = —2.
9. For the factorization A = QR assume that w1y, wo, ..., w, in R™ are the
columns of A, and wuy, uo, ..., u, are the columns of Q). Show that
w1-Uu1 W2 U3 wW3-UuUr ... Wp-UuUl
0 Wo - U2 W3 U2 ... Wy U2
R = 0 0 w3 U3 ... Wy U3
0 0 0 ce. Wp Uy
10. Let A be an nxn matrix, with mutually orthogonal columns vy, ve, . . ., Uy.
Show that
det A = <f|vy|[[|va|] - - - [[vn]] -

Hint. Consider the A = QQ R decomposition, where () is an orthogonal matrix
with det Q = +1. Observe that R is a diagonal matrix with the diagonal
entries ||vi|[, ||vel], - ., [|vnll-

11. a. Let A be an n X n matrix, with linearly independent columns
ai,ag, . . ., ay. Justify Hadamard’s inequality

| det A| < {laa|[|az]] - - - |lan]] -

Hint. Consider the A = QR decomposition, where () is an orthogonal
matrix with the orthonormal columns g1, o, . .., gn, and r;; are the entries
of R. Then a; = r1;q1 + r2jq2 + - - - + rj;qj. By the Pythagorean theorem
l|a;||* = r%j —|—r§j +-+ r?j > r?j, so that |r;;] < [|a;||. It follows that

|det A| = [det Q| [det R| = 1 ([r1a|[rao| - - - [rnnl) < [laal|l|az|] - - |[an]] -
b. Give geometrical interpretation of Hadamard’s inequality in case of three
vectors ai, as, as in R3.

Hint. In that case the matrix A is of size 3 x 3, and | det A| gives the volume
of the parallelepiped spanned by the vectors a1, as, as (by a property of triple
products from Calculus), while the right hand side of Hadamard’s inequality
gives the volume of the rectangular parallelepiped (a box) with edges of the
same length.
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5.4 Linear Transformations

Suppose A is an m xn matrix, x € R™. Then the product Az defines a trans-
formation of vectors x € R™ into the vectors Ax € R"™. Transformations
often have geometrical significance as the following examples show.

1 0

_ | ) _
Let:n—[:Ez]beanyvectorlnR.IfA—[0 0

_[m
],thenA:n— 0 ],

. 1 0
gives the projection of x on the x1-axis. For B = [ 0 1 ]v By = [ il ]’
— —T2

-2 0

0 —9 , then

provides the reflection of x across the xq-axis. If C = [

. —2:E1 )
Cx = [ 9,
direction, which is also stretched in length by a factor of 2.

], so that x is transformed into a vector of the opposite

Suppose that we have a transformation (a function) taking each vector z
in R™ into a unique vector T'(z) in R™, with common notation 7'(z) : R" —
R™. We say that T'(x) is a linear transformation if for any vectors u and v
in R™ and any scalar ¢

(i) T(cu)=cT(u) (T is homogeneous)
(i) T(u+wv)=T(u)+T(v). (T is additive)

The property (ii) holds true for arbitrary number of vectors, as follows by
applying it to two vectors at a time. Taking ¢ = 0 in (i), we see that T(0) = 0
for any linear transformation. (7'(z) takes the zero vector in R™ into the
zero vector in R™.) It follows that in case T'(0) # 0 the transformation 7'(x)
is not linear. For example, the transformation T'(z) : R? — R? given by

I 0
T X9 = 21 — @y + 5wy is not linear, because T 0 =
3 r1 + T2+ 1 0

[ (1) ], is not equal to the zero vector [ 8 ]

If A is any m x n matrix, and z € R™, then T'(x) = Ax is a linear trans-
formation from R™ to R™, since the properties (i) and (ii) clearly hold. The
2x2 matrices A, B and C above provided examples of linear transformations
from R? to R2.

It turns out that any linear transformation 7'(z) : R™ — R™ can be
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1 0
0 1
represented by a matrix. Indeed, let e; = | ,e0 = e =
0 0
0 1Al
0 T2
be the standard basis of R™. Any x = in R™ can be written

1 Tn
as
T =1x1e1 +x2€2 + -+ Tpey .
We assume that the vectors T'(z) € R™ are also represented through their

coordinates with respect to the standard basis in R™. By linearity of the
transformation 7T'(z)

(4.1) T(x) = 1T (e1) + x2T(e2) + - - - + xn T (en) -

Form the m x n matrix A = [T'(e1) T'(e2) ... T(e,)], by using the vectors
T'(e;)’s as its columns. Then (4.1) implies that

T(z) = Ax,
by the definition of matrix product. One says that A is the matriz of linear
transformation T'(z).

Example 1 Let T(x) : R? — R? be the rotation of any vector z € R? by
the angle 6, counterclockwise. Clearly, this transformation is linear (it does
not matter if you stretch a vector by a factor of ¢ and then rotate the result,
or if the same vector is rotated first, and then is stretched). The standard

basis in R? is e; = [ (1) ], ey = [ (1) ] T'(ey) is the rotation of ej, which

. . . . 0
is a unit vector at the angle  with the zj-axis, so that T'(e;) = [ 2?1819 ]
Similarly, T'(e2) is a vector in the second quarter at the angle 6 with the
. —sind
x9-axis, so that T'(eg) = [ St ] Then
cos

A=[T(e1) T(ez)] = [ A ] ’

sin @ cos 0

the rotation matriz. Observe that this matrix is orthogonal. Conclusion:
T(x) = Az, so that rotation can be performed through matrix multiplica-



10

11

12

13

14

15

16

5.4. LINEAR TRANSFORMATIONS 157

tion. If x = [ il ], then the vector
2

cosf —sinf T
sin @ cos To

is the rotation of x by the angle 6, counterclockwise. If we take § = 7, then

A:[O—l],and
Ml

1 0
I

is the rotation of z = [ ] by the angle 7 counterclockwise.

Z2

Matrix representation of a linear transformation depends on the basis
used. For example, consider a new basis of R?, {es, 1}, obtained by changing
the order of elements in the standard basis. Then the matrix of rotation in
the new basis is

—sinf cosf
B =[T(e2) T(e1)] = [ cosf sinf ] '
x1
Example 2 Let T(z) : R® — R? be rotation of any vector z = | x
T3

around the z3-axis by an angle 6, counterclockwise.

It is straightforward to verify that 7'(z) is a linear transformation. Let
e1, ez, e3 be the standard basis in R3. Similarly to Example 1, T'(e;) =
cos 6 —sind

sinf |, T(ey) = cosf |, because for vectors lying in the xqx9-plane
0 0
0
T(x) is just a rotation in that plane. Clearly, T'(e3) = e3 = | 0 |. Then
1

the matrix of this transformation is

cos@ —sinf O
A= sinf cosf O
0 0 1

Again, we obtained an orthogonal matrix.
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Sometimes one can find the matrix of a linear transformation 7'(z) with-
out evaluating T'(x) on the elements of a basis. For example, fix a vector
a € R" and define T'(x) = Proj,z, the projection of any vector x € R™ on
a. It is straightforward to verify that T'(x) is a linear transformation. Recall
that Projq,x = ﬁ a, which we can rewrite as

a-x (I(ITZE (I(IT

a = = xT.
lall? lal®  [lal[?

(4.2) Proj,x =

Define an n xn matrix P = ﬁ”;HTZ, the projection matriz. Then Proj,x = Px.

1
Example 3 Let a = | 1 | € R?. Then the matrix that projects on the
1
line through a is
1 1 11
1 1
P:§1[111]:§111
1 1 11

For any = € R3, Px = Proj ,z.

We say that a linear transformation 7'(z) : R™ — R™ has an eigenvector
x, corresponding to the eigenvalue A if

T(x)=Mx, z#0.

Theorem 5.4.1 Vector = is an eigenvector of T(x) if and only if it is an
eigenvector of the corresponding matrixz representation A (with respect to
any basis). The corresponding eigenvalues are the same.

Proof: Follows immediately from the relation T'(x) = Ax. O

In Example 2, the vector es is an eigenvector for both the rotation T'(x)
and its 3x3 matrix A, corresponding to A = 1. For Example 3, the vector a is
an eigenvector for both the projection on ¢ and its matrix P, corresponding
to A= 1.

Suppose that we have a linear transformation 77 (x) : R — R™ with the
corresponding m x n matrix A, and a linear transformation Ty(z) : R™ — RF
with the corresponding k xm matrix B, so that T} (z) = Ax and T(x) = Buz.
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It is straightforward to show that the composition Ty (Ty(z)) : R® — RF is

a linear transformation. We have

T3 (Ti(z)) = BT (z) = BAx,

so that k& x n product matrix BA is the matrix of composition T5 (77 (x)).

Exercises

1. Is the following map T'(x) : R? — R? a linear transformation? In case it

is a linear transformation, write down its matrix A.

=

Answer.

b7 |

Answer.

Answer.

2 2:E1—:E2
; ]) = | z1+tax+1
2 L 3:E1
No, T(0) # 0.
2 i 2:E1—:E2

! :|> = xr1 + T2
X9 0

Yes, T'(z) is both homogeneous and additive. A =

T —5:E2
:El ]) = 2x1 + x2
2 3:E1 — 3:E2
0 -5
Yes. A= 1| 2 1
3 -3
2:E1 — X9
€1
2|
2 3
No.
- ary + bxo
! ]) = | ex1+dxo
€2

er1+ fxo

S = N
—

. Here a, b, c,d, e, f are arbitrary scalars.
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a b
Answer. Yes. A= | ¢ d
e f

T1T2
() [ 3
2 0

Answer. No.

2. Determine the matrices of the following linear transformations.

i T i i T4 0 0 01
T2 | a3 |0 0 1 0
a. T 5 = | Answer. A = 010 0
L T4 | | T1 1 0 00
il i r1 — 2:E3 — T4 1 0
b. T :E2 =| —21+5x9+ax3—2x4 |. Answer. A=| -1 5
3 5y + 2x3 — day 05
L T4 -
" ’V T, + x9 — 223 —| ’V 1 1 —2—|
1
. —2x1 + 329 + T3 . -2 3 1
c. T ( ig = 0 . Answer. A= 0 0 L
3 2x1 4+ 620 — 223 2 6 —2
€1
d. T To = Tr1+31x9—2x3 . Answer. A= [ 7T 3 =2 ]
T3
e. T(x) projects € R3 on the xjxs-plane, then reflects the result with
respect to the origin, and finally doubles the length.
-2 00
Answer. A = 0 -2 0
0 00

f. T(z) rotates the projection of z € R? on the xjzo-plane by the angle @
counterclockwise, while it triples the projection of x on the z3-axis.

cosf —sinf O
Answer. A= | sinf cosf O
0 0 3

g. T(x) reflects € R? with respect to the z;x3 plane, and then doubles
the length.
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2 0 0
Answer. A= 0 -2 0
0 0 2

1
h. T'(x) projects x € R* on the subspace spanned by a = { B J .

Hint. Use (4.2).

3. Show that the composition of two linear transformations is a linear trans-
formation.

Hint. T2 (Tl(:El + :L'g)) = T2 (Tl(:El) + Tl(:Eg)) = T2 (Tl(:El)) -+ T2 (Tl(:Eg))

4. A linear transformation T'(u) : R® — R™ is said to be one-to-one if
T(u1) = T'(ug) implies that u; = us.

a. Show that T'(u) is one-to-one if and only if 7'(u) = 0 implies that v = 0.
b. Assume that n > m. Show that T'(u) cannot be one-to-one.

Hint. Represent T'(u) = Au with an m x n matrix A. The system Au =0
has non-trivial solutions.

5. A linear transformation 7'(x) : R™ — R™ is said to be onto if for every
y € R™ there is x € R"™ such that y = T'(z). (So that R™ is the range of

a. Let A be matrix of T'(x). Show that 7'(x) is onto if and only if rank A = m.

b. Assume that m > n. Show that T'(x) cannot be onto.

6. Assume that a linear transformation 7'(z) : R — R" has an invertible
matrix A.

a. Show that T'(z) is both one-to-one and onto.

b. Show that for any y € R™ the equation T'(x) = y has a unique solution
x € R™. The map y — x is called the inverse transformation, and is denoted
by z=T71(y).

c. Show that T~(y) is a linear transformation.

7. A linear transformation T'(x) : R* — R? projects vector = on 2
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a. Is T'(x) one-to-one? (Or is it “many-to-one”?)

b. Is T'(z) onto?

c. Determine the matrix A of this transformation.  Hint. Use (4.2).
d. Calculate N(A) and C(A), and relate them to parts a and b.

cosf —sinf

8. Consider an orthogonal matrix P = . .
—sinf —cos@

a. Show that P~! = P for any 6.

b. Show that P is the matrix of the following linear transformation: rotate
x € R? by an angle 6 counterclockwise, then reflect the result with respect
to x1 axis.

c. Explain geometrically why PP = I.

1 0 cosf) —sinf
0 -1 sin cos
matrix and the matrix representing reflection with respect to x; axis.

d. Show that P = [ ] , the product of the rotation

e. Let @ be the matrix of the following linear transformation: reflect z € R?
with respect to x1 axis, then rotate the result by an angle 6 counterclockwise.

cosf —sinf 1 0 cos 6 sin 6
ShOWthatQ_[sinH COSH] [0 —1]_[51110 —COSH]'

f. Explain geometrically why QQ = I.

5.5 Symmetric Transformations

A square matriz A is called symmetric if AT = A. If a;; denote the entries
of A, then symmetric matrices satisfy

a;j = aj;, foralliand j.

(Symmetric off-diagonal elements are equal, while the diagonal elements

1 3 —4
are not restricted.) For example, the matrix A = 3 -1 0] is
-4 0 0

symmetric.

Symmetric matrices have a number of nice properties. For example,

(5.1) Az -y=x-Ay.
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Indeed, by a property of inner product
Az y=z-ATy=2z- Ay.

Theorem 5.5.1 All eigenvalues of a symmetric matriz A are real, and
etgenvectors corresponding to different eigenvalues are orthogonal.

Proof: Let us prove the orthogonality part first. Let x # 0 and X\ be an
eigenvector-eigenvalue pair, so that

(5.2) Az = \x.
Let y # 0 and p be another such pair:
(5.3) Ay = py,
and assume that A # p. Take inner product of both sides of (5.2) with y:
(5.4) Az -y=Azx-y.
Similarly, take the inner product of z with both sides of (5.3):
(5.5) x-Ay=px-y.
From (5.4) subtract (5.5), and use (5.1)
O=A—pz-y.
Since A—p # 0, it follows that -y = 0, proving that x and y are orthogonal.
Turning to all eigenvalues being real, assume that on the contrary A =

<1

<2

a+1tb, with b # 0, is a complex eigenvalue and z = { } is a corresponding

Zn
eigenvector with complex valued entries. By Theorem 4.2.2, A = a — ib is

Z1
Z2
also an eigenvalue, which is different from A = a + b, and z = is a

- ]

corresponding eigenvector. We just proved that z - Z = 0. In components

2 Z=ma ¥ 2B+ iy = | |+ |z =0.
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But then zy = z0 = --- = 2z, = 0, so that z is the zero vector, a contradic-
tion, because an eigenvector cannot be the zero vector. It follows that all
eigenvalues are real. O

For the rest of this section W will denote a subspace of R"™, of dimension
p. Let T(z) : R* — R™ be a linear transformation. We say that W is an
invariant subspace of T'(x) if T'(x) € W, for any x € W. In other words,
T(z) maps W into itself, T'(z) : W — W.

Observe that for an n X n matrix A, and any two coordinate vectors e;
and e; in R", one has Ae; - e; = (A),; - the 4, j entry of A.

A linear transformation T'(x) : W — W is called self-adjoint if
T(x) - y=x-T(y), foral z,yec W.

Using matrix representation T'(xz) = Az, relative to some basis wy, wa, . . ., wy
of W, we can write this definition as

(5.6) Az -y=a-Ay=ATz .y, forallz,yc RP.

If A is symmetric, so that A = AT, then (5.6) holds and T'(z) is self-adjoint.
Conversely, if T'(z) is self-adjoint, then (5.6) holds. Taking x = e; € RP
and y = ¢; € RP in (5.6) gives (A4);; = (AT)Z.j, so that A = AT, and A is
symmetric. We conclude that a linear transformation T'(x) is self-adjoint if
and only if its matriz (in any basis) A is symmetric.

Theorem 5.5.2 A self-adjoint transformation T'(z): W — W has at least
one eigenvector x € W.

Proof:  Let symmetric matrix A be a matrix representation of 7'(x) on
W. Eigenvalues of A are the roots of its characteristic equation, and by
the fundamental theorem of algebra there is at least one root. Since A
is symmetric that root is real, and the corresponding eigenvector has real
entries. By Theorem 5.4.1, T'(x) has the same eigenvector. &

The following theorem describes one of the central facts of Linear Alge-
bra.

Theorem 5.5.3 Any symmetric n X n matric A has a complete set of n
mutually orthogonal eigenvectors.

Proof:  Consider the self-adjoint transformation T'(x) = Az : R" — R™.
By the preceding theorem, T'(x) has an eigenvector, denoted by f;, and
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let A1 be the corresponding eigenvalue. By Theorem 5.4.1, Af; = A1f1.
Consider the (n — 1)-dimensional subspace W = fi", consisting of z € R"
such that = - fi = 0 (W is the orthogonal complement of f;). We claim
that for any x € W, one has T'(x) - f1 = 0, so that T'(z) € W, and W is an
invariant subspace of T'(z). Indeed,

T(:E)'fl:AZE'fl::E'Aflz/\l:E'fl:O.

We now restrict T'(x) to the subspace W, T'(xz) : W — W. Clearly, T'(x) is
self-adjoint on W. By the preceding theorem T'(z) has an eigenvector f, on
W, and by its construction fy is orthogonal to fi. Then we restrict T'(x)
to the (n — 2)-dimensional subspace W; = f3-, the orthogonal complement
of fo in W. Similarly to the above, one shows that W is an invariant
subspace of T'(x), so that T'(x) has an eigenvector f3 € Wy, which by its
construction is orthogonal to both f; and f». Continuing this process, we
obtain an orthogonal set of eigenvectors fi, fo,..., fn of T'(x), which by
Theorem 5.4.1 are eigenvectors of A too. &

Was it necessary to replace the matrix A by its “abstract” version T'(x)?
Yes. Any matrix representation of 7'(z) on W is of size (n — 1) x (n — 1),
and definitely is not equal to A. The above process does not work for A.

Since symmetric matrices have a complete set of eigenvectors they are
diagonalizable.

Theorem 5.5.4 Let A be a symmetric matriz. There is an orthogonal ma-
trix P so that

(5.7) PlAP=D.

The entries of the diagonal matrix D are the eigenvalues of A, while the
columns of P are the corresponding normalized eigenvectors.

Proof: By the preceding theorem, A has a complete orthogonal set of
eigenvectors. Normalize these eigenvectors of A, and use them as columns
of the diagonalizing matrix P. The columns of P are orthonormal, so that
P is an orthogonal matrix. &

Recall that one can rewrite (5.7) as A = PDP~!. Since P is orthogonal,
P~1 = PT_ and both of these relations can be further rewritten as PTAP =
D, and

(5.8) A=PDPT.
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0 -2

Example The matrix A = [ 9 3

] is symmetric. It has an eigen-

. . . . -1
value Ay = 4 with the corresponding normalized eigenvector % [ ],

2
and an eigenvalue Ao = —1 with the corresponding normalized eigenvector
2 -1 2
1 _ 1 . . . .
7 [ 1 ], Then P 7 [ 9 1 ] is the orthogonal diagonalizing matrix.
. -1 2 .
A calculation shows that P! = % 9 1 (this is a very rare example

of a matrix equal to its inverse). The formula (5.7) becomes
L -1 2 0 -2 L -1 2] |4 0
V5 2 1 -2 3|5 2 1| |0 —1]°

A symmetric matriz A is called positive definite if all of its eigenvalues
are positive. A symmetric matriz A is called positive semi-definite if all of
its eigenvalues are non-negative.

Theorem 5.5.5 A symmetric matriz A is positive definite if and only if

(5.9) Az x>0, forallx #0 (x € R").
Proof:  If A is positive definite, then A = PDPT by (5.8), where the
A0 ...00
0 X ... 0
matrix P is orthogonal, and the diagonal matrix D = . . .
{ 0 0 ... A\ ‘
has positive diagonal entries. For any x # 0, consider the vector y = PTx,
Y1
Y2
y= " |. Observe that y # 0, for otherwise P72 = 0, or P~'2 = 0, so
Un

that x = P0 = 0, a contradiction. Then for any x # 0
Az-xz = PDP 2.2 = DP 2 -PTo = Dy.-y = /\1y%—|—/\2y§—|—' . '—I—/\nyi > 0.

Conversely, assume that (5.9) holds, while A and x # 0 is an eigenvalue-
eigenvector pair:

Axr = \z.
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Taking inner product of both sides with z, gives Az - x = \||z||?, so that

Ax -
/\::E—;U>0,
IEd]

proving that all eigenvalues are positive, so that A is positive definite. <

The formula (5.9) provides an alternative definition of positive definite
matrices, which is often more convenient to use. Similarly, a symmetric
matriz is positive semi-definite if and only if Ax -x > 0, for all z € R".

Write a positive definite matrix A in the form
[ A0 ...00 1

0 X ... O pr
{ 0 0 ... M\ ‘

One can define square root of A as follows

VA0 ... 0
0 VX ... 0

A=prPDPT =p

VA=P pPT

0 0 ... VA

2
using that all eigenvalues are positive. It follows that (\/Z) = A, by squar-
ing the diagonal entries. (Other choices for v/A can be obtained replacing

Vi by £V/A;.)

If A is any non-singular n X n matrix (not necessarily symmetric), then
the matrix AT A is positive definite. Indeed, (ATA)T = AT (AT)T = AT A,
so that this matrix is symmetric, and for any vector x # 0 (z € R™)

AT Az = A - (AT & = Aw - Aw = ||Ax])> > 0,

because Az # 0 (if Az = 0, then z = A~10 = 0, contrary to = # 0). By
Theorem 5.5.5, the matrix AT A is positive definite. Let now A be an m x n
matrix. Then AT A is a square n x n matrix, and a similar argument shows
that AT A is symmetric and positive semidefinite.
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Singular Value Decomposition

We wish to extend the useful concept of diagonalization to non-square ma-
trices. For a matrix A of size m X n the crucial role will be played by two
square matrices AT A of size n x n, and AT A of size m x m. Both ma-
trices are positive semidefinite (symmetric), and hence both matrices are
diagonalizable, with non-negative eigenvalues.

An m x n matrix A maps vectors from R"™ to R™ (if x € R™, then
Az € R™). We shall use orthonormal bases in both R™ and R™ that are
connected to A.

Lemma 5.5.1 If z is an eigenvector of AT A corresponding to the eigen-
value X\, then Az is an eigenvector of AAT corresponding to the same eigen-
value X. Moreover, if x is unit vector, then the length ||Az|| = V/X.

If 1 and x4 are two orthogonal eigenvectors of AT A, then the vectors
Az and Az are orthogonal.

Proof: We are given that

(5.10) AT Az = Mz

for some non-zero z € R"™. Multiplication by A from the left
AAT (Az) = ) (Az)

shows that Az € R™ is an eigenvector of AAT corresponding to the eigen-
value \. If z is a unit eigenvector of AT A | multiply (5.10) by z7:

2T AT Ax = XaTo = \||z])> = X,

(Ax)" (Ax) = X,

(5.11) ||Az[|*> = X,

justifying the second claim. For the final claim, we are given that AT A zy =
Aox9 for some number Ao and non-zero vector xo € R™, and moreover that
Tl Tg = 0. Then

A:E1 . A:E2 =T - ATA:E2 = /\2:E1 cT9 = 0,

proving the orthogonality of Az, and Axs. &
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If \; are the eigenvalues of AT A with corresponding eigenvectors z;, then
the numbers o; = v/\; > 0 are called the singular values of A. Observe that
g; = ||A:EZ|| by (5.11).

For a non-square matrix A the elements a;; are still considered to be
diagonal entries. For example, if A is of size 2 X 7, then its diagonal consists
of a11 and ase. An m x n matriz is called diagonal if all off-diagonal entries
are zero.

Singular Value Decomposition. Any m X n matrix A can be factored into

A=1%Q3,

where Q1 and (2 are orthogonal matrices of sizes m x m and n X n respec-
tively, and ¥ is an m X n diagonal matrix with singular values of A on the
diagonal.

To explain the process, let us assume first that A is of size 3 X 2, mapping
R? to R3. Let 1 and x5 be the orthonormal eigenvectors of AT A, which is
a 2 x 2 symmetric matrix. We use them as columns of a 2 x 2 orthogonal

matrix Q2 = [x1x2]. Let us begin by assuming that the singular values
o1 = ||Az1]| and o2 = ||Axs|| are both non-zero (positive). The vectors
@ = f;—ﬁl and o = % are orthonormal, in view of Lemma 5.5.1. Let

q3 € R? be unit vector perpendicular to both ¢; and ¢ (g3 = %q1 X g2).
Form a 3 x 3 orthogonal matrix Q1 = [¢1 ¢2 ¢3]. We claim that

01 0
(5.12) A=Qi| 0 o | QL.
0 0

Indeed, since QT = @Q~! for orthogonal matrices, it suffices to justify an
equivalent formula

01 0
(5.13) TAQa=| 0 oo
0 0

The 1, j entry on the left is (here 1 <7 <3,1<j < 2)
g Avj=ojq; 4,

which is equal to o7 if i = j = 1, it is equal to o9 if i = j = 2, and to zero for
all other 7, j. The matrix on the right in (5.13) has the same entries. Thus
(5.12) is justified.
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Let us now consider the case when o1 = Axy # 0, but Azy = 0. Define
G = i—?, as above. Form a 3 x 3 orthogonal matrix Q1 = [q1 g2 ¢3], where
g2 and g9 are chosen to be orthonormal vectors that are both perpendicular

to q1. With Q2 = [x1 23], as above, we claim that

g

[

A=Q Q7.

o O
o O O

Indeed, in the equivalent formula (5.13) the 7, 2 element is now
qZ-T A:E2 = 0,

so that all elements of the second column are zero.

We now consider general m x n matrices that map R — R™. If
x1,T9,..., T, are orthonormal eigenvectors of AT A, define an n x n or-
thogonal matrix Q2 = [x1x3 ... z,]. Assume that there are exactly r < n
positive singular values 01 = Axy,09 = Axs,...,0, = Az, (which means
that in case r < n one has Azx; = 0 for i > r). Define ¢; = f;—?, ey G = f;—?.
These vectors are mutually orthogonal by Lemma 5.5.1. If r = m these vec-
tors form a basis of R™. If r < m, we augment these vectors with m — r
orthonormal vectors to obtain an orthonormal basis q1, ¢, ..., ¢y in R™.
(The case r > m is not possible, since the r vectors ¢; € R™ are linearly
independent.) Define an m x m orthogonal matrix Q1 = [q1 ¢2 ... Gm]. As
above,

A=QixQ7,

where ¥ is an m X n diagonal matrix with r positive diagonal entries
01,09, ...,0., and the rest of the diagonal entries of ¥ are zero. It is cus-
tomary to arrange singular values in decreasing order o1 > 09 > - -0, > 0.

Singular value decomposition is useful in image processing. Suppose that
a spaceship is taking a picture on the planet Jupiter, and encodes it, pixel
by pixel, in a large m X n matrix A. Assume that A has r positive singular
values (r may be smaller than m and n). Observe that

A=Q2Q) = oiqix] + oaqeal + -+ orgral

which is similar to the spectral decomposition of square matrices considered
in Exercises. Then it is sufficient to send to the Earth 2r vectors, x;’s and
¢;’s, and r positive singular values o;.
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Exercises

1. Given an arbitrary square matrix A show that the matrices A + AT and
AAT are symmetric. If A is non-singular, show that AA” is positive definite.

2. a. Given an arbitrary square matrix A and a symmetric B show that
AT BA is symmetric.

b. Suppose that both A and B are symmetric. Show that AB is symmetric
if and only if A and B commute.

3. Explain why both determinant and trace of a positive definite matrix are
positive.

4. Write the matrix A in the form A = PDPT with orthogonal P and
diagonal D. Determine if A is positive definite (p.d.).

Jo1 -1 [ -1 0
a.A—_1 0]. Answer.P—ﬂ[ 1 1],D—[ 0 1],notp.d.
-1 2 oy [-21 =20
b. A= 9 2]. Answer.P—\/g[ 1 2],D—[ 0 3].
[0 2 0
c. A=12 00
|0 0 5
1 1
-5 5 0 -2 0 0
Answer. P = % % 0f,D= 0 2 0 |, not p.d.
0 01 005
2 -1 1
d A=| -1 2 -1
1 -1 2
4 1 1
V3 V2 V2 4 0 0
Answer. P = —% 0 % , D=0 1 0 [, p.d.
L L o0 001
V3 V2
5. Let an n x n matrix A be skew-symmetric, so that AT = —A.

a. Show that each eigenvalue is either zero or purely imaginary number.

Hint. If Ax = Az and Aisreal, then z-z > 0 and Ax-x = Ax-x = :L"AT:E_:
—x-Ax = —Ax-x,sothat A = 0. If Az = Az and )\ is complex, then Az = Az
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and z-Z>0. Obtain \z-2=Az-Z2=2- ATz = —2. AZ = —\z- Z, so that
A=\

b. If n is odd show that one of the eigenvalues is zero.
Hint. What is |A|?

c. Show that the matrix I + A is non-singular.

Hint. What are the eigenvalues of this matrix?

d. Show that the matrix (I — A)(I + A)~! is orthogonal.

6. Given an arbitrary square matrix A, show that the matrix AT A + I is
positive definite.

7. Assume that a matrix A is symmetric and invertible. Show that A=! is
symmetric.

8. Let
(5.14) A= Alulu{ + /\gugug 4+t /\nunug ,
where the vectors uy, uo, . .., u, € R" form an orthonormal set, and A1, Ag, ..., A\,

are real numbers, not necessarily different.
a. Show that A is an n x n symmetric matrix.

b. Show that uq,us, ..., u, € R" are the eigenvectors of A, and A1, Ao, ..., Ay
are the corresponding eigenvalues of A.

c. For any x € R" show that
Ax = \Proj, ® + A\oProj, x + - - + A\, Proj, x.

(The formula (5.14) is known as the spectral decomposition of A, and the

eigenvalues A\, Ao, ..., A, are often called the spectrum of A.)
-5 -1 1 1
9. a. Determine if A = _1 _f _é (; is positive definite.
1 0 78

Hint. Let x = ey, then Az -z = —5.
b. Show that all diagonal entries of a positive definite matrix are positive.

Hint. 0 < Aey, - e, = agy,.
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10. Assume that a matrix A is positive definite, and S is a non-singular
matrix of the same size. Show that the matrix ST AS is positive definite.

11. Let A = [a;5] and U = [u;;] be positive definite n x n matrices. Show
n
that Z QijUi5 > 0.
ij=1
Hint. Diagonalize A = PDP~! where the entries of the diagonal ma-
trix D are the positive eigenvalues Ai, Aa,..., A\, of A. Let V = PUP™!.

The matrix V' = [v;] is positive definite, and hence its diagonal entries
are positive, v;; > 0. Since similar matrices have the same trace, ob-
n

tain: Y aguy = tr (AU) = tr (PAUP™") = tr (PAP' PUP™") =
ij=1
tr (DV) = Av11 + Aqvag + - -+ + Apvpn > 0.

2 —4
12. Calculate the singular value decomposition of A= | —2 -8
1 -8

1/3 2/3 2/37[12 0 NERE:
Answer. A= | 2/3 -2/3 1/3 3 [ ]
2/3  1/3 —2/3 0

5.6 Quadratic Forms

All terms of the function f(x1,x9) = 2 — 3z1w2 + 523 are quadratic in its

variables x1 and xo, giving an example of a quadratic form. If x = [ il ]
2

3

I —5 1] . . _
3 % ] , it is easy to verify that
2

andA:[

flzy,20) = Az - @

This symmetric matriz A is called the matriz of the quadratic form f(x1, z2).
The quadratic form g(x1, x2) = 23 + 523 involves only a sum of squares. Its

. 1 . .
matrix is diagonal [ 0 g ] Such quadratic forms are easier to analyze.

For example, the equation
JE% + 5:E§ =1

defines an ellipse in the zjz9-plane, with the principal azes going along the
x1 and x9 axes. We shall see in this section that the graph of

x? — 3wy29 + 525 =1
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o

In general, given a symmetric n X n matrix A and z = ) e R",

is also an ellipse, with rotated principal axes.

n
one considers a quadratic form Ax-x, with the matrix A. The sum Z ;T
j=1
gives the component ¢ of Az, and then

n n n n
Ax -x = E Ty E aijznj = E E aijzniznj .
=1 7=1

i=1 j=1

n n n
This sum is equal to Z Z a;jx;xj, and one often writes Azx-x = Z a;;T; %,
j=1i=1 i,j=1
meaning double summation in any order. If a quadratic form includes a term
k x;x;, with the coefficient £, then its matrix A has the entries a;; = a;; = %,
so that A is symmetric.

A quadratic form is called positive definite if its matriz A is positive
definite, which implies that Ax - x > 0 for all x # 0 by Theorem 5.5.5.

Example 1 Consider the quadratic form

Ax -x = ZE% + 2:E§ + 3:E§ — 2x120 + 27073,

T 1 -1 0
where | zo | € R?. The matrix of this form is A = | —1 2 1 |. To
T3 0 1 3

see if A is positive definite, let us calculate its eigenvalues. Expanding the
characteristic polynomial |[A — AI| in the first row, gives the characteristic
equation

A —6A*+9N—2=0.

Guessing a root, Ay = 2, allows one to factor the characteristic equation:
A=2) (N> —4r+1) =0,

so that Ay = 2—+/3 and A3 = 2+ /3. All eigenvalues are positive, therefore
A is positive definite. By Theorem 5.5.5, Az -« > 0 for all x # 0, which is
the same as saying that

ZE% + 2:E§ + 3:E§ — 22120 + 22023 > 0,
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for all x1, x9, T3, except when x1 = x9 = x3 = 0.

A0 .00
0 A ... O

(6.1) p=| . " :
Lﬂ 0 xn‘

Dz -z = Ao + Xoxd + -+ A\y22 .

For a diagonal matrix

the corresponding quadratic form

is a sum of squares. In fact, a quadratic form is a sum of squares if and only
if its matrix is diagonal.

It is often advantageous to make a change of variables x = Sy in a
quadratic form Az -z, using an invertible n X n matrix S. The old variables
x1,%2,..., T, are replaced by the new variables y1,92,...,yn. (One can
express the new variables through the old ones by the transformation y =
S~1z.) The quadratic form changes as follows

(6.2) Az -z =ASy-Sy=STASy -y
The matrices STAS and A are called congruent. They represent the same
quadratic form in different variables.

Recall that for any symmetric matrix A one can find an orthogonal
matrix P, so that PTAP = D, where D is the diagonal matrix in (6.1).
The entries of D are the eigenvalues of A, and the columns of P are the
normalized eigenvectors of A (see (5.8)). Let now x = Py. Using (6.2)

Az -2 =PTAPy-y=Dy-y =y + \ays + -+ My -

It follows that any quadratic form can be reduced to a sum of squares by an
orthogonal change of variables. In other words, any quadratic form can be
diagonalized.

Example 2 Let us return to the quadratic form z? — 3z129 + 523, with

. . 1 -3 .
its matrix A = [ 3 % ] One calculates that A has an eigenvalue
2

. . . . —1
A = % with the corresponding normalized eigenvector \/Ll_o [ 3 ], and an
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_ _ _ o 3
eigenvalue Ay = % with the corresponding normalized eigenvector \/Ll_o [ 1 ] )

-1 3
Then P = 715 [ 3 1 ] is the orthogonal diagonalizing matrix. Write the

) L 1 1 -1 3 Y1 ] .
change of variables x = Py, which is = — ,
& !y [fﬂz] ¢10[ 31Hyz "

components as

(6.3) w1 = —= (—y1 + 3y2)

To = \/%_0 (3y1 + y2) -

ﬁ

Substituting these expressions into the quadratic form x? — 3x129 + 523, and
simplifying, obtain

1 1
ZE% — 3z1T2 + 5:E§ = 71/% + 51/% )

so that the quadratic form is a sum of squares in the new coordinates.

We can now identify the curve
(6.4) x? — 3xyx9 + 525 =1

as an ellipse, because in the y;,y2 coordinates

11 1
(6.5) 71/% + 51/% =1
is clearly an ellipse. The principal axes of the ellipse (6.5) are y; = 0 and

y2 = 0. Corresponding to y2 = 0 (or the y; axis), obtain from (6.3)

(6.6) T1= =y
€T = 3\/%_0 Y1,

a principal axis for (6.4), which is a line through the origin in the x;z2-plane

| [ -1
V10 3
serving as a parameter on this line. This principal axis can also be written in
the form x5 = —3x1, making it easy to plot in the x1xo-plane. Similarly, the
line zo = %:El through the other eigenvector of A gives the second principal
axis (it is obtained by setting y; = 0 in (6.3)). Observe that the principal

parallel to the vector (one of the eigenvectors of A), with y;
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axes are perpendicular (orthogonal) to each other, as the eigenvectors of a
symmetric matrix. (Here P is an orthogonal 2 x 2 matrix with determinant
cos 6 sin 6
sinf —cos6
to reflection with respect to z; axis followed by a rotation. The change of
variables * = Py produces the principal axes in the xx2-coordinates from
the principal axes in the y;yo-coordinates through reflection followed by a
rotation.)

|P| = —1. Hence, P is of the form ], which corresponds

Example 3 Let us diagonalize the quadratic form —x? —3x125 + 323, with
-1 —3 . .

the matrix B = 3 % . The matrix B has the same eigenvectors as

2

the matrix A in the Example 2 (observe that B = A — 2I). Hence the

diagonalizing matrix P is the same, and we use the same change of variable

(6.3) to obtain

7 3
—:13% — 3170 + 3:13% = Ey% — §y§.
The equation
— — — e 1
21/1 21/2

gives a hyperbola in the y;yo-plane (y2 = + %y% — %), extending along the

yo-axis. It follows that the curve
—x? — 3xyx0 + 323 =1
is also a hyperbola, with the principal axes xo = —3z1 and z9 = %:El. (This
hyperbola extends along the xo = %:El axis.)
Simultaneous Diagonalization

Suppose that we have two quadratic forms Az - x and Bz - z, with x € R™.
Each form can be diagonalized, or reduced to a sum of squares. Is it possible
to diagonalize both forms simultaneously, by using the same non-singular
change of variables?

Theorem 5.6.1 Two quadratic forms can be simultaneously diagonalized,
provided that one of them is positive definite.

Proof: Assume that A is a positive definite matrix. By a change of
variables = S1y (where S; is an orthogonal matrix), we can diagonalize
the corresponding quadratic form:

Az x =My 4+ Aays + -+ Ay -
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Since A is positive definite, its eigenvalues A1, Ao, ..., A, are positive. We
now make a further change of variables y; = ﬁzl, Yo = ﬁzg, e Yn =

%zn, or in matrix form y = Sez, where
n

_1
I (1) ... 0
s_| 0 Ve
\‘ 0 0o ... \/EJ
a diagonal matrix. Then
(6.7) Az z=22 424+ +22=2-2.

Denote S = S1S3. The change of variables we used to achieve (6.7) is
=51y =5152z=5z

By the same change of variables z = Sz, the second quadratic form Bzx-z
is transformed to a new quadratic form STBSz - z. Let us now diagonalize
this new quadratic form by a change of variables z = Pu, where P is an
orthogonal matrix. With the second quadratic form now diagonalized, let
us see what happens to the first quadratic form after the last change of
variables. Since PT = P! for orthogonal matrices, obtain in view of (6.7):

A:L"-:L":z-z:Pu-Pu:u-PTPu:u-u:u%—l—ug—l—"'—l—ufl,

so that the first quadratic form is also diagonalized. (The change of variables
that diagonalized both quadratic forms is x = Sz = SPu = S15:Pu.)

The Law of Inertia

Recall that diagonalization of a quadratic form Azx-x is a sum of square terms
Sy A\iy?, where \;’s are the eigenvalues of the n x n matrix A. The number
of positive eigenvalues of A determines the number of positive terms in the
diagonalization. A non-singular change of variables z = Sz transforms the
quadratic forms Az -z into STASz - z, with a congruent matrix STAS. The
diagonalization of ST ASz - z will be different from that of Az -z, however
the number of positive and negative terms will remain the same. This fact
is known as the law of inertia, and it is justified next.

Theorem 5.6.2 If |S| # 0, then the congruent matriz ST AS has the same
number of positive eigenvalues, and the same number of negative eigenvalues
as A.
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Proof:  The idea of the proof is to gradually change the matrix S to an
orthogonal matrix @ through a family S(t), while preserving the number
of positive, negative and zero eigenvalues of the matrix S(¢)T AS(t) in the
process. Once S(t) = @, this matrix becomes Q' AQ, which is a similar
matrix to A, with the same eigenvalues.

Assume first that |A| # 0, so that A has no zero eigenvalue. Write
down S = QR decomposition. Observe that |R| # 0 (because |Q||R| =
|S| # 0), and hence all diagonal entries of the upper triangular matrix R
are positive. Consider two families of matrices S(t) = Q[(1 — ) + tR]
and F(t) = ST(t)AS(t) depending on a parameter ¢, with 0 < ¢ < 1.
Observe that |S(t)] # 0 for all ¢t € [0, 1], because |Q| = =+1, while the
matrix (1 —¢)I + tR is an upper triangular matrix with positive diagonal
entries, and hence its determinant is positive. It follows that |F(t)| # 0
for all ¢t € [0,1]. As ¢ varies from 0 to 1, the eigenvalues of F(t) change
continuously. These eigenvalues cannot be zero, since zero eigenvalue would
imply |F'(t)| = 0, which is not possible. It follows that the number of positive
eigenvalues of F(t) remains the same for all ¢. When ¢t = 0, S(0) = @
and then F(0) = QT(t)AQ(t) = Q~(t)AQ(t), which is a matrix similar
to A, and hence F(0) has the same eigenvalues as A, and in particular
the same number of positive eigenvalues as A. At t = 1, F(1) = STAS,
since S(1) = S. We conclude that the matrices A and ST AS have the same
number of positive eigenvalues. The same argument shows that the matrices
A and ST AS have the same number of negative eigenvalues.

We now turn to the case |A| = 0, so that A has zero eigenvalue(s). If
€ > 0 is small enough, then the matrix A — el has no zero eigenvalue, and
it has the same number of positive eigenvalues as A, which by above is the
same as the number of positive eigenvalues of ST (A — eI) S, which in turn
is the same as the number of positive eigenvalues of ST AS (decreasing e, if
necessary). Considering A + eI, with small € > 0, one shows similarly that
the number of negative eigenvalues of STAS and A is the same. O

Rayleigh Quotient

It is often desirable to find the minimum and the maximum values of a
quadratic form Az -z over all unit vectors z in R™ (i.e., over the unit ball
[|z|]] = 1 in R™). Since all eigenvalues of a symmetric n X n matrix A are
real, let us arrange them in increasing order Ay < Ao < --- < A, with some
eigenvalues possibly repeated. Even with repeated eigenvalues, a symmetric
matrix A has a complete set of n orthonormal eigenvectors &1, &s, . . ., &n,
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according to Theorem 5.5.3. Here A& = A\1&1, Aéy = Noéa, ..., A& = Nén,
and ||&|| = 1 for all 4.

When x = £ the quadratic form Az - x is equal to
A& & =M1 -6 = A

which turns out to be the minimum value of Az -z. Similarly, the maximum
value of Ax - x will be shown to be A, and it occurs at z = &,.

Proposition 5.6.1 The extreme values of Ax - x over the set of all unit
vectors are the smallest and the largest eigenvalues of A:

||Ir|1|in Az -x =M\, it occurs at x = &1,
z||=1

Hmﬁmx Az -x = M\,, taken on atx=E¢,.
z||=1

Proof: Since A& - &1 = A1 and A&, - &, = A, it suffices to show that for
all unit vectors z

(6.8) M<Az-x < \,.

Since the eigenvectors &1, &s, ..., &, form an orthonormal basis of R", we
may represent
rx=c&1+ o+ + b,

and by the Pythagorean theorem
(6.9) G+t ot =|[=1.
Also
Az = 1 A& + A& + -+ + A&y = c1hi&r + 2o + -+ Anén
Then, using that & - {; =0 for i # j, and & - & = |&]|? = 1, obtain
Az -z = (a1 +e2dobo + -+ enAn&n) - (161 + o + -+ cnbn)
=M+ XG4 F A <A (H G+ ) =My,
using (6.9), and the other inequality is proved similarly. O

Az - x .
The ratio is called the Rayleigh quotient, where the vector z is no
T T

longer assumed to be unit. Set o = [|z||. The vector z = 2z is unit, and
then (since x = az)
Ax -z  Az-z
= =Az-z.
xT-x z-z

Suppose that Az1 = Az, Az, = Az, and eigenvectors x1,x, are not
assumed to be unit.
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Theorem 5.6.3 The extreme values of the Rayleigh quotient are

Az - x
min =A1, it occurs at x =x1 (or at x = a&y, for any a #0),
ZER" T - T
Az - x .
max = A\p, it occurs at © =z, (or at x = a&,, for any a #0).
zER" T T
. . : 1 .
Proof: In view of Proposition 5.6.1, with z = W:E, obtain
x
Az - x
min = min Az -z= ).
2€R" T-T  ||z||=1

The minimum occurs at z = &1, or at x = a&; with any «. The second part
is justified similarly. O

Exercises

1. Given a matrix A, write down the corresponding quadratic form Az - z.

2 —1
a. A= 1 _3 ] Answer. 2:17% — 2T1T9 — 3:17%.
-1 3
b. A= 3 (2) ] Answer. —z? + 3z129.
2
[0 -3 -3
c. A= —% 1 2 |. Answer. :1:% — 3x120 — 6123 + 42073 — 2:17%.
-3 2 -2

[\)

. Write down the matrix A of the following quadratic forms.

2 =3
a. 212 —6riz2 +573.  Answer. A = [ ] .

_1
b.  —xjzo —473.  Answer. A = [ ? i ]
-1 -

3 —1 0
c. 3:17% — 2x120 + 8xox3 + :17% — 5:17%. Answer. A= | -1 1 4
0 4 -5
0 3 -3
d. 3x1xo — 6123 + 41003, Answer. A = % 0 2
-3 2 0
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e. —ZE% + 4ZE% + 2:E§ — bx1x0 — dx123 + 42013 — 83714
-1 -3 =2 0
5 4 2 0
_ 2
Answer. A = 5 9 9 _4
0 0 —4 0

3. Let A be a 20 x 20 matrix with a;; =i + j.
a. Show that A is symmetric.

b. In the quadratic form Az - z find the coefficient of the x3xg term.
Answer. 22.

c¢. How many terms can the form Ax -z contain?  Answer. % = 210.
4. Diagonalize the following quadratic forms.
a. 3:17% + 2x129 + 3:17%.

-1 1
11

2

Answer. P = % [ ] , the change of variables x = Py gives 2y +4y3.

b. —4xixo9+ 3:17%.

2 -1
1 2

1

Answer. P = 7 [ ], obtain —y? + 4y3.

c. 323+ 23 — 223 + daoxs.

1 0 0
Answer. P = | O —% % , the change of variables x1 = y1, 2 =
2 1
0 %
_ 1 2 — 2 1 d 32 — 32 + 22
sY2 + EYs, T3 = EY2 + zys produces 3yi — 3y; + 2y3.
d. —:17% — :17% — :17% + 22129 + 22123 + 22073,

Hint. The matrix of the quadratic form has eigenvalues -2,-2,1. The eigen-
value -2 has two linearly independent eigenvectors. One needs to apply
Gram-Schmidt process to these eigenvectors to obtain the first two columns
of the orthogonal matrix P.
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Answer. The orthogonal P = , the change of variables

§|H o §|H
SESINS-
SIFSHS

3, T3 = %yl - %yz + %ys

S
<

T1 =~ syl — oYe + Uss, 02 = ey +
produces —2y? — 2y3 + 3.

5. Consider congruent matrices A and ST AS, with |S| # 0. Assume that A
has zero eigenvalue. Show that ST AS also has zero eigenvalue of the same
multiplicity as A.

Hint. By the law of inertia, the matrices ST AS and A have the same number
of positive eigenvalues, and the same number of negative eigenvalues.

6. a. Let A be a 3 x3 symmetric matrix with the eigenvalues A1 > 0, Ay > 0,
and A3 = 0. Show that Az -z > 0 for all z € R3. Show also that there is a
vector o € R such that Azg - zg = 0.

Hint. If P is the orthogonal diagonalizing matrix for A, and x = Py, then
Az -7 = My + Aays > 0.

b. Recall that a symmetric n X n matrix is called positive semi-definite if
Az -x > 0 for all z € R™. Using quadratic forms, show that a symmetric
matrix A is positive semi-definite if and only if all eigenvalues of A are
non-negative.

c. Show that a positive semi-definite matrix with non-zero determinant is
positive definite.

d. A symmetric n X n matrix is called negative semi-definite if Az - x < 0
for all x € R™. Show that a symmetric matrix A is negative semi-definite if
and only if all eigenvalues of A are non-positive.

7. An n X n matrix with the entries a;; is known as the Hilbert

_ 1
= -1
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matrix

r 1 1 1 7

1 - - -

2 3 n

1 1 1
2 3 4 n+1

a=(1 1 1 1
n -+ 2

1 1 1 1
ln n+1 n+2 7 2n—1.

Show that A is positive definite.

Hint. For any © € R", x # 0,

. _ n TiT; n ol i+j—2
Az -z = 2@3':1 p Zi,j:l Tilj fo t dt

= fol (X !Eiti_l)z dt>0.

5.7 Vector Spaces

Vectors in R™ can be added, and multiplied by scalars. There are other
mathematical objects that can be added and multiplied by numbers (scalars),
for example matrices or functions. We shall refer to such objects as vectors,
belonging to abstract vector spaces, provided that the operations of addition
and scalar multiplication satisfy the familiar properties of vectors in R"™.

Definition A wvector space V' is a collection of objects called vectors, which
may be added together and multiplied by numbers. So that for any z,y € V
and any number ¢, one has x +y € V and cx € V. Moreover, addition
and scalar multiplication are required to satisfy the following natural rules,
also called azioms (which hold for all vectors z,y,z € V and any numbers
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1 ¢,Cp,Co):

r+y=y—+ax,
r+(y+2)=(r+y)+z,
there is a unique “zero vector”, denoted 0, such that x + 0=z,
for each x in V there is a unique vector —z such that = + (—z) = 0,
lr ==,
(c1c2) x = ¢1 (cox)
clx+y)=cr+cy,

(c1+ )z =crz+com.

2 The following additional rules can be easily deduced from the above axioms:

Ox=0,
c0=0,
(-)x=—=x.

3 Any subspace in R" provides an example of a vector space. In particular,
+ any plane through the origin in R? is a vector space. Other examples of
5 vector spaces involve matrices and polynomials.

s Example 1 Two by two matrices can be added and multiplied by scalars,
7 and the above axioms are clearly satisfied, so that 2 x 2 matrices form a
s vector space, denoted by Msyo. Each 2 x 2 matrix is now regarded as a
o wvector in Mayo. The role of the zero vector 0 is played by the zero matrix

0 0
.o=[00]

1
1 The standard basis for Moo is provided by the matrices E11 = [ 0 ],

0 0
0 1 0 0 0 0
2 Fiy = [0 0:|, Ey1 = [1 0:|, and FEoy = [0 1],sothatthe
13 vector space Maoyso is four-dimensional. Indeed, given an arbitrary A =
1 [ - de ] € M2, one can decompose
az1  G22

A =a11E11 + a1aE12 + a1 Eo1 + azEaa,

15 S0 that a11, a12, as1, ase are the coordinates of A with respect to the standard
16 basis.
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One defines similarly the vector space M,,x, of m X n matrices. The
dimension of M, «, is mn.

Example 2 One checks that the above axioms apply for polynomials of
power n of the form a,a™ + an_12" 1 + - - -+ asx® 4+ a1x + ag, with numerical
coefficients ag, a1, as, . . ., a,. Hence, these polynomials form a vector space,
denoted by P,. Particular polynomials are regarded as vectors in P,. The
vectors 1,x,2%,..., 2" form the standard basis of P,, so that P, is an
(n + 1)-dimensional vector space.

Example 3 The vector space P,(—1,1) consists of polynomials of power
n, which are considered only on the interval x € (—1,1). What is the reason
for restricting polynomials to an interval? We can now define the notion of
an inner (scalar) product. Given two vectors p(z),q(z) € P,(—1,1) define
their inner product as

The norm (or the “magnitude”) ||p(z)|| of a vector p(z) € P,(—1,1) is
defined by the relation

1
Ip(@)|? = pla) - pla) = / P (x) dx

1

so that |[p(z)|| = /p(z) - p(x). If p(z)-q(x) = 0, we say that the polynomials
are orthogonal. For example, the vectors p(z) = z and ¢(z) = 2% are

orthogonal, because
1
z -z’ :/ 23dr=0.
-1
Calculate

1
||1||2:1-1:/ ldr =2,
1

so that the norm of the vector p(x) = 1is ||1|| = V2. The projection of q(x)
on p(z)
p(z) - q(x)
(z)
p(z) - p(z)

is defined similarly to vectors in R™. For example, the projection of 22 on 1

PI‘Oj p(x) Q(:E) =

1=

1
Proj, 2% = -
I‘OJllE 1'1 3,
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! 2
since 22 - 1 :/ w?de ==,
_1 3

The standard basis 1,x, 2, ..., 2" of P,(—1,1) is not orthogonal. While
the vectors 1 and z are orthogonal, the vectors 1 and z? are not. We now
apply the Gram-Schmidt process to produce an orthogonal basis
po(z), p1(x), p2(z), . . ., pn(x), but instead of normalization it is customary to
standardize the polynomials by requiring that p;(1) = 1 for alli. Set po(z) =
1. Since the second element x of the standard basis is orthogonal to py(x),
we take p1(x) = z. (Observe that pg(z) and p;(x) are already standardized.)
According to the Gram-Schmidt process, calculate (subtracting from z? its
projections on 1, and on x)

2 2
o 271wt o, 1
v 1-1 oz 03

Multiply this polynomial by %, to obtain po(z) = % (3:E2 — 1), with po(1) =
1. The next step of the Gram-Schmidt process involves (subtracting from
23 its projections on po(z), p1(z), p2(7))

3 a1 _:E3'JE 23 - po(w)

;U — —
1-1 T-T p2(x) - po(x

)pg(:n) =1 -z
Multiply this polynomial by %, to obtain psg(x) = % (5:133 - 3:E), with p3(1) =
1, and so on. The orthogonal polynomials po(z), p1(z), p2(z), p3(z), ... are
known as the Legendre polynomials. They have many applications.

Next, we discuss linear transformations and their matrices. Let V7, V5 be
two vector spaces. We say that a map T : V1 — V4 is a linear transformation
if for any x, x1, 9 € V1, and any number c

T(cx) = cT'(x)
T(:E1 -+ :Eg) = T(:El) + T(:Eg) .

Clearly the second of these properties applies to any number of terms. Let-
ting ¢ = 0, we conclude that any linear transformation satisfies 7'(0) = 0
(T'(x) takes the zero vector in Vj into the zero vector in V;). It follows
that in case T(0) # 0, the map is not a linear transformation. For exam-
ple, the map T : Myyo — Maxo given by T(A) = 3A — I is not a linear
transformation, because T'(0) = —I # O.

Example 4 Let D : P, — P; be a transformation taking any polynomial
p(r) = aszt + aslﬂs + agx? + a1z + ag into

D (p(x)) = 4asx® + 3azx® + 2a02 + ay .
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Clearly, D is just differentiation, and hence this transformation is linear.

Let T'(x) be a linear transformation 7' : V; — V5. Assume that B; =
{wy,we,...,wp} is a basis of Vi, and By = {21, 22, ..., 25} is a basis of V5.
Any vector z € V} can be written as

T =21w1 + Tawa + -+ -+ TpWp,

x1
Z2
with the coordinates |[x|p, = € RP. Any vector y € V5 can be

]

written as
Yy =wy121 + Y222+ +YsZss
Y1
. . Y2
with the coordinates [y|p, = : € R®. We show next that the co-
Ys

ordinate vectors [x]p, € RP and [T(z)]p, € R® are related by a matrix
multiplication. By the linearity of transformation 7'(x)

T(x)=ax1T(e1) + z2T(e2) + - - -+ T (ep) -
In coordinates (here [T'(z)]p, is a vector in R?)
(7.1) [T(2)]B, = 21[T'(e1)] B, + w2[T(e2)]B, + - - - + xp[T(e)] 5, -

Form a matrix A = [ [T'(e1)|B, [T(e2)]B, --- [T(ep)]B,], of size s x p, by
using the vectors [T'(e;)] g, as its columns. Then (7.1) implies that

[T(x)]B, = Alz], ,

by the definition of matrix multiplication. One says that A is the matriz of
linear transformation T (z).

Example 5 Let us return to the differentiation D : Py — P5, and use the
standard bases By = {1, z, 22 23, 2%} of Py, and By = {1, z,22% 23} of P;.
Since

D1)=0=0x14+0xz+0xx?+0x 23,
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obtain the coordinates [D(1)]p, = . (Here 0 x 1 means zero times the

o O O O

vector 1, 0 x z is zero times the vector x, etc.) Similarly,

Dx)=1=1x14+0xz+0x2z?+0x 2,

1 0
. . 0 2 . . 2 2
giving [D(@)]p, = | o | Next, D(a?) = 2, giving [D()]s, = | - |.
0 0
0
D) = 342, giving [D(a)]p, = | § |, D(a*) = 4%, giving [D(a")]p, =
0
0
8 . The matrix of the transformation D is then
4
01000
00 200
A= 00030
0000 4
This matrix A allows one to perform differentiation of polynomials in P,
through matrix multiplication. For example, let p(z) = —22* + 2 4+ 52 — 6,
—6
5 5
with p/(x) = —823+322+5. Then [p(x)]z, = | 0 |, [/(«)]s, = { g}
I
) .
and one verifies that
5 01000 _g
O 100200 0
31 |0 0030 1 '
-8 000 0 4 {_2J

The matrix A transforms the coefficients of p(x) into those of p'(x).
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Exercises

1. Write down the standard basis S in Ms«3, and then find the coordinates

1 -3 2 . . .
of A= [ 5 0 4 ] with respect to this basis.
1 00 010 0 01
ADSWGT-EMZ[O 0 0],E12=[0 0 0],E13=[0 0 0]7E21=
S
-3
0 0 0 0 2
[100]’E22_[ 0]’E23_[001]’[A]5_ -5
0
- 4_

2. a. Show that the matrices 41 = [ (1) 8 ], Ay = [ (1) g ] and A3z =

1 2 . .
[ 3 0 ] are linearly independent vectors of Msys.

b. Let C = [ g 3 ] Show that the matrices Ay, Ao, A3, C' are linearly

dependent vectors of Msyyo.

Hint. Express C as a linear combination of A;, As, As.

c. Let Ay = [ 8 (1) ] Show that B = { A1, A, A, A4} is a basis of Maxo.
3 4 . . . .
d. F= 0 _7 | Find the coordinates of F' with respect to the basis B.

Answer. [F]p =

N O N =

3. Calculate the norm of the following vectors in P>(—1,1).

z. Hint. ||z|]? =2z -2 = f_ll 22 dx.

®

b. p(z) =2? —1.  Answer. |22 —1|| = k.

V15
c. q(x) =+v2. Answer. |[V2|| = 2.
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4. Apply the Gram-Schmidt process to the vectors 1,z + 2,22 — 2 of
P5(—1,1), to obtain a standardized orthogonal basis of Py(—1,1).

5. Let I : P — P, be a map takmg any polynomlal p(x) = azx® + asw? +
a1z + ag into I (p(x ))—@34 +ar % 3 +a1%5 + apx.

a. Identify I with a calculus operation, and explain why I is a linear trans-
formation.

b. Find the matrix representation of I (using the standard bases in both P3
and Py).

0 0 0 0

1 0 0 0

Answer. | 0 1/2 0 O

{ 0 0 1/3 0

0 0 0o 1/

c. Is the map I onto?

N
. . a b .
6. Let T : Myys — Mosyo be a map taking matrices A = [ ¢ d ] into

T(A):[ii 2?].

a. Show that T is a linear transformation.

b. Find the matrix representation of T' (using the standard bases).

00 2 0
0 0 0 2
Answer. 1000l
01 00
7. Let T : Msyos — Moyo be a map taking matrices A = [ (Z 2 ] into

T(A) = [ f Z ] Show that T is not a linear transformation.

Hint. Consider T'(O).
8. Justify Rodrigues’ formula for Legendre polynomials

1 Jd»
e (G

P,(z) =

Hint. Differentiations produce a polynomial of degree n, with P,(0) = 1.
To see that f_ll P, (x) Py, (x) dx = 0, with n < m, perform m integrations by
parts, shifting all derivatives on P, (x).



