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Abstract

We obtain some new exact multiplicity results for the Dirichlet
boundary value problem

∆u+ λf(u) = 0 for x ∈ Bn, u = 0 for x ∈ ∂Bn,

on a unit ball Bn in Rn. We consider several classes of nonlinearities
f(u), including both positive and sign-changing cases. Crucial part of
the proof is to establish positivity of solutions for the corresponding
linearized problem. As an application we obtain exact multiplicity
results for the Holling-Tanner population model.
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1 Introduction

We study positive solutions of the Dirichlet boundary value problem de-
pending on a positive parameter λ:

∆u+ λf(u) = 0 for x ∈ Bn, u = 0 for x ∈ ∂Bn,(1.1)

on the unit ball Bn in Rn, n ≥ 2. From the well-known result of B. Gidas,
W.-M. Ni and L. Nirenberg [6] any positive solution of (1.1) is radially
symmetric, i.e. u = u(|x|), and hence (1.1) reduces to an ordinary differential
equation of the form (2.2) below.

The set of positive solutions of (1.1) (or equivalently of (2.2)) consists of
simple curves in the function spaceR+×X = {(λ, u)}, whereX = C2,α(Bn),
and each solution curve can be parameterized by the maximal value of the
solution, see [12] or [18]. To determine the exact shape of the solution curve,
and to count the number of solutions for each given λ > 0, it is important
to study the singular points on the solution curve. The singular points are
where the curve makes a turn (so we called them the turning points), and
at a turning point (λ, u), the linearized equation

∆z + λf ′(u)z = 0 for x ∈ Bn, u = 0 for x ∈ ∂Bn,(1.2)

has a nontrivial solution z. A bifurcation theorem of M.G. Crandall and
P.H. Rabinowitz [2] can be applied to (1.1) near a turning point, providing
a bifurcation theory approach to the exact multiplicity results, that was de-
veloped and refined in [11], [12], [9], [18], and [19]. The key to the bifurcation
theory approach is

1. Prove for any turning point (λ, u), z can be chosen to be positive;

2. Prove that if z is positive, then there is at most one turning point.

The second part involves an estimate of the integral
∫

Bn f ′′(u)z3dx, so both
the positivity of z and the convexity properties of f are relevant. (See
Lemma 3.) The first part usually involves comparison arguments of Sturm’s
type, and the choice of suitable comparison functions is critical and delicate.
In this paper, we mainly use a comparison function v(r) = rur(r)+ (n−

2)u(r) + µ for some unspecified constant µ, and it results in a condition on
the nonlinearity f(u):

2[f ′(u)]2 − nf(u)f ′′(u) ≥ 0 for all u > 0 (or c > u > 0).(1.3)
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Under (1.3) and some other conditions on f , we are able to show the posi-
tivity of z, and consequently we obtain some new exact multiplicity results
for (1.1). The test function v and the condition (1.3) also appeared in [10],
where the problem (1.1) with a nonlinearity f satisfying f(0) < 0 was stud-
ied. We will consider the nonlinearities f satisfying A) f(0) ≥ 0, and f is
asymptotically superlinear; B) there is a constant c > 0, such that f(u) > 0
for u ∈ (0, c) and f(c) = 0; and C) there exists c > b > 0, such that f(u) < 0
for u ∈ (0, b), f(u) > 0 for u ∈ (b, c) and f(0) = f(b) = f(c). In all of these
cases we assume f(u) to satisfy (1.3).
In Section 3, we apply the exact multiplicity results to Holling-Tanner

population model:

∆u+ λ

(

mu− u2 − ku

1 + u

)

= 0 for x ∈ Bn, u = 0 for x ∈ Bn,(1.4)

with constants k,m > 0. The solutions of (1.4) are the steady state solutions
of the corresponding reaction-diffusion equation:

ut = ∆u+ λ

(

mu− u2 − ku

1 + u

)

for x ∈ Bn,(1.5)

u(x, t) = 0 for x ∈ ∂Bn,

u(x, 0) = u0(x) for x ∈ Bn.

When k = 0, f0(u) = mu − u2, and (1.4) is the well-known diffusive logis-
tic equation, which has wide applications in population biology modeling.
When k > 0, the term −ku/(1 + u) is one example of a predation term.
Here u is considered to be a population of prey, whose growth rate is de-
creased because of the existence of some predators. The predation term
−ku/(1 + u) was introduced by Holling and Tanner, see e.g. [7]. We prove
that condition (1.3) is satisfied for nonlinearity here when 1 ≤ n ≤ 4, and
we completely classify the bifurcation diagrams for all parameters k > 0,
m > 0 and 1 ≤ n ≤ 4. Our results allow us to characterize the attractor of
(1.5) for any possible combination of parameters.

We mention that Y. Du and Y. Lou [3] have studied the bifurcation
curve of solutions of an elliptic system with Holling-Tanner type interaction
of two species, and, for some parameters, they obtained an exact S-shaped
solution curve. The test function v(r) = rur(r) + (n − 2)u(r) + µ was also
used in Korman [10]. But the special case of v(r) = rur(r) + (n − 2)u(r)
was well-known, see [17], [13], [19], and on the other hand, when n = 2,
Y. Du and Y. Lou [4] used a test function v(r) = rur(r) + µ in studying a
problem from combustion theory. When n = 1, R. Schaaf [20] also obtained
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some exact multiplicity results with f satisfying similar properties as (1.3).
More previous results on using test functions to obtain the exact multiplicity
results for (1.1) can be found in [14], [11], [12], [9], [18], [19].

Throughout the paper λ1 is the principal eigenvalue of the Laplacian on
Bn, and φ(x) > 0 the corresponding eigenfunction. And throughout the
paper, a solution of (1.1) is always meant a positive solution of (1.1).

2 Exact Multiplicity Results

We consider the positive solutions of the Dirichlet problem

∆u+ λf(u) = 0 for x ∈ Bn, u = 0 for x ∈ ∂Bn,(2.1)

on the unit ball Bn in Rn, n ≥ 2. By the well-known result of B. Gidas,
W.-M. Ni and L. Nirenberg [6] any positive solution of (2.1) is radially
symmetric, and hence it satisfies

u′′ +
n− 1
r

u′ + λf(u) = 0 for 0 < r < 1, u′(0) = u(1) = 0,(2.2)

where r = |x|. The corresponding linearized problem is

∆z + λf ′(u)z = 0 for x ∈ Bn, z = 0 for x ∈ ∂Bn,(2.3)

and if u is a positive radially symmetric solution of (2.1) , then it was shown
by C.S. Lin and W.-M. Ni [15] that any solution of (2.3) is also radially
symmetric, and thus it satisfies

L[z] ≡ z′′ +
n− 1
r

z′ + λf ′(u)z = 0 for r < 1, z′(0) = z(1) = 0.(2.4)

Recall that a solution u of (2.2) is called unstable if the principle eigenvalue
µ1 of L[z]+µz = 0, z

′(0) = z(1) = 0 is negative, otherwise we say it is stable.
When µ1 < 0, the number of negative eigenvalues is called the Morse index
of u. When µ1 = 0, the solution is degenerate, that is (2.4) has a nontrivial
solution, and the corresponding eigenfunction z is of one sign, and it can
be chosen to be positive. For determining the precise bifurcation diagram
of (2.2), it has been shown (see [9], [11], [12], [18], [19]) the importance of
proving µ1 = 0 at a degenerate solution (instead of µk = 0 for k > 1). That
is equivalent to excluding the possibility of higher Morse index solution of
(2.2).

The main tool of proving z > 0 is a comparison lemma:
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Lemma 1 Suppose L[z](t) = 0, z 6≡ 0. If there exists v ∈ C2[a, b] such that
L[v](t) · v(t) ≤ (6≡)0, then z has at most one zero in [a, b]. In addition if
z′(a) = 0, then z does not have any zero in [a, b].

For the proof, we refer to [18], [10]. Our first result in proving µ1 = 0 (or
z > 0) is

Lemma 2 Assume that the function f(u) ∈ C2[0,∞) satisfies f(0) ≥ 0,
the condition (1.3) for all u > 0, and

f ′(u) > 0 for all u > 0.(2.5)

Then any non-trivial solution z of the linearized problem (2.4) is of one sign,
i.e. we may assume that z(r) > 0 for all r ∈ [0, 1).
Proof: We consider a test function v = ru′(r) + (n − 2)u(r) + α with
a constant α to be specified. Recall that we denote the left side of the
linearized equation for (2.4) by L[z]. Compute

L[v] = λ[(n− 2)uf ′(u)− nf(u) + αf ′(u)] ≡ λgα(u(r)).(2.6)

The sign of the test function v(r) is governed by the function α = h(r) ≡
−ru′(r)− (n− 2)u(r). Indeed, v > 0 (< 0) when h(r) < α (> α). Similarly,

the sign of gα(u) is governed by α = j(r) ≡ nf(u(r))− (n− 2)uf ′(u(r))
f ′(u(r))

.

This time, in view of (2.5), gα(u) > 0 (< 0) provided α > j(r) (α < j(r)).
Notice that h(0) = −(n− 2)u(0) ≤ 0, h(1) = −u′(1) > 0 and

h′(r) = −ru′′ − (n− 1)u′ = λrf(u) > 0,(2.7)

since by our conditions f(u) is positive. Also j(1) ≥ 0 and

j′(r) ≤ 0,(2.8)

in view of the condition (1.3). It follows that only two cases are possible.

Case 1: The functions h(r) and j(r) intersect exactly once on [0, 1), say at
r = r0. We select α = h(r0) = j(r0). Then on the interval [0, r0) we have
v > 0 and L[v] < 0, while on the interval (r0, 1) the opposite inequalities
hold. Lemma 1 implies that z(r) cannot have any roots, and hence is of one
sign on [0, 1).

Case 2: j(r) ≥ h(r) for all r ∈ [0, 1). This time we select α = h(1) =
maxr∈[0,1] h(r) to obtain v > 0 and L[v] < 0 on the entire interval [0, 1). We

again conclude that z(r) is of one sign.

Remarks.
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1. In several previous works on the exact multiplicity results for (2.2), the

function Kf (u) =
uf ′(u)

f(u)
also played an important role when proving

results of Lemma 2 type. Kf (u) can be thought of as an indicator
of the growth rate of f(u), for example, Kf (u) = p if f(u) = up. It
was shown in [19] that if f(u) > 0 for u > 0, Kf (u) is decreasing or

Kf (u) ≤
n

n− 2, then any nontrivial solution z(r) of (2.4) is of one sign.
We point out that the condition (1.3) is also related to Kf . In fact,

(1.3) is equivalent to that the function A(u) =
nf(u)− (n− 2)uf ′(u)

f ′(u)
is increasing, and since A(u) = u[nK−1

f (u)− (n− 2)], we have

A′(u) =
n− 2
Kf (u)

[

n

n− 2 −Kf (u)

]

−
nuK ′

f (u)

K2
f (u)

.

So (1.3) holds if Kf (u) is decreasing and Kf (u) ≤
n

n− 2. Also if (1.3)

holds, then for any u > 0, eitherKf (u) is decreasing orKf (u) ≤
n

n− 2.
This observation will be useful in the proof of Lemma 5 later.

2. Condition (1.3) also implies some asymptotic growth restriction on f .
In fact, (1.3) is equivalent to

(

f

f ′

)′

− n− 2
n

≥ 0,(2.9)

and by integration, we obtain

f(u) ≤ aebu, (n = 2); and f(u) ≤ a(u+ b)n/(n−2), (n ≥ 3),(2.10)

for all u ≥ 0 and some a, b > 0.

If the solution z of the linearized equation (2.4) is shown to be of one
sign, there is a well established theory on the set of positive solutions of
(2.2), which we briefly review here. The details (and also the proof of all
quoted facts) can be found in [9], [11], [12], [18], [19].

From the uniqueness of ordinary differential equation, for any s > 0,
there is at most one λ(s) > 0 such that (2.2) has a positive solution u(·, s)
with λ = λ(s) and u(0) = s. So the set of positive solutions of (2.2) can
be globally parameterized by s = u(0), thus the solution set is a curve of
the form {(λ(s), s)}, where s > 0 belongs to a certain admissible set. If
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λ′(s) 6= 0, then the corresponding solution u(·, s) is nondegenerate, while if
λ′(s) = 0, then the solution is degenerate. At a degenerate solution, we can
show that

λ′′(s) =
−λ(s)

∫ 1
0 r

n−1f ′′(u(r))z3(r)dr
∫ 1
0 r

n−1f(u(r))z(r)dr
,(2.11)

where z is a nontrivial solution of (2.4). Here we assume that z(r) > 0 for
r ∈ [0, 1). For the denominator in (2.11), we can show (see [18] or [9])

∫ 1

0
rn−1f(u(r))z(r)dr =

1

2λ(s)
u′(1)z′(1) > 0,(2.12)

if u′(1) < 0 and z′(1) < 0, which are both true if f(0) ≥ 0. So, the direction
of the turn of the bifurcation curve is mainly determined by the integral
∫ 1
0 r

n−1f ′′(u(r))z3(r)dr. Here we recall the following results from [19]:

Lemma 3 Suppose that (λ(s), u(s)) is a degenerate solution of (2.2), and
z is the corresponding solution of linearized equation (2.4), and z(r) > 0 for
r ∈ [0, 1).

1. If f ′′(u) > 0 for u > 0, then λ′′(s) < 0;

2. If f ′′(u) < 0 for u > 0, then λ′′(s) > 0;

3. If f(0) ≥ 0, and there exists β > 0 such that f ′′(u) < 0 for u in (0, β),
and f ′′(u) > 0 for u in (β,∞), and u(0) > β, then λ′′(s) > 0;

4. If f(0) ≤ 0, there exists β > 0 such that f ′′(u) > 0 for u in (0, β), and
f ′′(u) < 0 for u in (β,∞), and u(0) > β, then λ′′(s) < 0.

Combining Lemmas 2 and 3, we have the following exact multiplicity
result:

Theorem 1 Assume f(u) > 0 for u ≥ 0, f ′′(u) ≥ 0, limu→∞ f(u)/u = ∞
and f satisfies (1.3) and (2.5). Then there exists a constant λ0 > 0, so
that the problem (2.2) has no solution for λ > λ0, exactly two solutions for
λ < λ0, and exactly one solution for λ = λ0. Moreover, all solutions lie on
a unique smooth solution curve. (See Figure 1.)

Proof: Since f(0) > 0, then u = 0 is a nondegenerate solution of (2.2)
when λ = 0, and by implicit function theorem, for any small λ > 0, there is
a unique solution u(λ, ·) of (2.2) near u = 0. And u(λ, ·) is positive by the
maximum principle. From the remarks before Lemma 3, u(λ, ·) can also be
parameterized by u(λ, 0). So a solution curve Σ = (λ(s), u(s)) emerges from
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(λ, u) = (0, 0) and moves to the right as s increases. On the other hand,
(1.1) has no positive solution for λ > 0 large. In fact, if we multiply (1.1)
by φ, the principal eigenfunction of ∆φ + λφ = 0, φ(x) = 0 for x ∈ ∂Bn,
then we have

λ1

∫

Bn

uφdx = λ

∫

Bn

f(u)φdx ≥ λa

∫

Bn

uφdx,(2.13)

where a = minu≥0 f(u)/u > 0. Thus (1.1) has a positive solution only if
λ ≤ λ1a

−1. Thus the solution curve cannot continue to λ = ∞. Let λ∗ =
sup{λ > 0 : (2.2) has a positive solution with this λ}. Then 0 < λ∗ ≤ λ1a

−1.

We claim that there is a turning point (degenerate solution) on the so-
lution curve Σ. Suppose there is no turning points, then λ′(s) > 0 for all
s > 0 and lims→∞ λ(s) = λ∗. Since s = u(0) is a global parameter for all
positive solutions, it follows that there is no positive solutions other than
those on Σ. In particular (2.2) has a unique positive solution for λ ∈ (0, λ∗)
and no positive solution for λ ≥ λ∗. However, since f satisfies the growth
condition (2.10) and f(0) > 0, by a result of Lions([16] Theorem 2.1 and
Remark 1.1), in case n > 2 the problem (1.1) has at least two positive so-
lutions for 0 < λ < λ∗, which is a contradiction. In case n = 2 we use the
Theorem 2.3 in [5] to conclude the existence of at least two positive solutions
for 0 < λ < λ∗. (Since in [5] it was assumed that f(0) = 0, the following
modification is needed: to prove existence of the second solution, we apply
the mountain pass lemma, using the solution bifurcating from zero (rather
than the trivial solution) as a minimizer.) Thus there is a turning point on
Σ.

At any turning point, by Lemma 2, z can be chosen as positive, and
hence by Lemma 3, λ′′(s) < 0, so the curve turns to the left, and after
passing the turning point, the curve travels to the left. There is no any
other turning points, since at any turning point, the solution curve turns
to the left, but when Σ moves to the left, it has to approach a possible
turning point from the right. Therefore, Σ is monotone (λ′(s) < 0) above
the turning point. Let λ = lims→∞ λ(s). Then λ ≥ 0. Since from the result
of [16], (2.2) has at least two solutions for all 0 < λ < λ∗, then λ = 0.

Examples. As a very particular case we recover the well-known result of
D. Joseph and T. Lundgren [8] in case f(u) = eu and n = 2 (actually, we
get some extra information even in this case).
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We have another application of Lemma 2. In [1] Adimurthi gives an
ingenious proof that the problem

∆u+ λueu = 0 for B2, u = 0 for x ∈ ∂B2(2.14)

on a ball B2 in R2 has at most one positive solution. We have a more
detailed result. Let λ1 denote the principal eigenvalue of the Laplacian on
the unit ball in R2.

Theorem 2 The set of positive solutions of (2.14) consists of a smooth so-
lution curve, which bifurcates (to the left) at λ = λ1 from the trivial solution
u = 0, and continues for all 0 < λ < λ1, tending to infinity as λ→ 0. (See
Figure 2.)

Proof: It is well-known that the bifurcation at λ = λ1 occurs. First we
claim that the bifurcation is subcritical. In fact, we can compute λ′(0) and

λ′(0) =
−λ0f

′′(0)
∫ 1
0 r

n−1φ3(r) dr

2f ′(0)
∫ 1
0 φ

2(r) dr
,(2.15)

so λ′(0) < 0 as f ′′(0) > 0, f ′(0) > 0 and φ > 0. Thus Σ travels to the left
initially near λ = λ1. Since the nonlinearity is convex, while by Lemma 2
any non-trivial solution of the linearized problem is of one sign, it follows by
Lemma 3 that the solution curve continues to the left without any turning
point (degenerate solution). It follows from the Theorem 2.3 of D.G. De
Figueiredo, P.L. Lions and R.D. Nussbaum [5] that the solution curve cannot
go to infinity at a positive λ, while for λ = 0 infinity is the only place the
curve can go. (The result in [5] implies that for any sufficiently small λ the
problem (2.14) has a positive solution. If the solution curve were to go to
infinity at some positive λ0, then all possible values of u(0, λ) would have
been taken, and hence no positive solutions could exist for 0 < λ < λ0,
which is a contradiction.)

λ

u(0)

Figure 1: Theorem 1

λ

u(0)

Figure 2: Theorem 2

9



As our last example for Lemma 2, we point out that for f(u) = e−1/(u+ε)

and ε > 0, (1.3) is satisfied for n = 2. In fact, Du and Lou [4] used the test
function v(r) = rur(r) + α to prove z > 0 for that special example.

Next, we turn to the results for f not always increasing. Lemma 2 can
be modified as follows:

Lemma 4 Assume that the function f(u) ∈ C2[0,∞) satisfies f(0) ≥ 0,
f(u) > 0 for 0 < u < c and there exists b ∈ (0, c) such that

f ′(u) > 0 for 0 < u < b, f ′(u) < 0 for b < u < c,(2.16)

and f satisfies (1.3). Then any non-trivial solution z of the linearized prob-
lem (2.4) is of one sign, i.e. we may assume that z(r) > 0 for all r ∈ [0, 1).

Proof: Let u be a degenerate solution of (2.2). If 0 < u(0) < b, then
f ′(u(r)) > 0 for r ∈ (0, 1), and we can just use the proof of Lemma 2. So
we assume that u(0) > b, and so there exists r0 ∈ (0, 1) such that u(r0) = b.
Then as in Lemma 2, h(0) ≤ 0, h(1) > 0 and h′(r) > 0. On the other hand,
for r ∈ [0, r0), L[v(r)] = λgα(u(r)) < 0 for any α > 0 since f ′(u) < 0 for
u ∈ (b, c). For r ∈ (r0, 1), from (1.3), we still have j ′(r) ≤ 0 and j(1) ≥ 0.
Observe also that j(r)→ +∞ as r ↓ r0. So only the following two cases are
possible:

Case 1: The functions h(r) and j(r) intersect exactly once on (r0, 1), say
at r = r1. We select α = h(r1) = j(r1) > 0. Then on the interval [0, r1)
we have v > 0 and L[v] < 0, while on the interval (r0, 1) the opposite
inequalities hold. So we can proceed as in Lemma 2.

Case 2: j(r) ≥ h(r) for all r ∈ (r0, 1). Again we select α = h(1) =
maxr∈[0,1] h(r) > 0 to obtain v > 0 and L[v] < 0 on the entire interval [0, 1).

Thus z 6= 0 for r ∈ [0, 1).
Applying Lemma 4, we obtain two exact multiplicity results as follows:

Theorem 3 Assume f(0) = 0, f ′(0) > 0 and f(u) > 0 for u ∈ (0, c), where
0 ≤ c ≤ ∞. Assume f satisfies (1.3), and for some c > β > 0 we have

f ′′(u) > 0 for 0 ≤ u < β, f ′′(u) < 0 for β < u < c.(2.17)

If c =∞, we also assume limu→∞ f(u)/u = 0. Define λ0 = λ1/f
′(0). Then

there exists a constant λ∗ < λ0, so that the problem (2.2) has no solution for
λ < λ∗, exactly two solutions for λ0 > λ > λ∗, and exactly one solution for
λ = λ∗ and λ ≥ λ0. Moreover, all solutions lie on a unique smooth solution
curve. (See Figure 3.)

10



Proof: It is well-known that if f(0) = 0 and f ′(0) > 0, then λ0 = λ1/f
′(0)

is a bifurcation point for (1.1), and there is a solution curve bifurcating from
(λ, u) = (λ0, 0). Similar to Theorem 1, the solution curve Σ = (λ(s), u(s))
has a global parameter s = u(0). And similar to Theorem 2, λ′(0) < 0 and
Σ travels to the left initially near λ = λ0.

Next we prove that (1.1) has no positive solution for small λ > 0. In
fact, from the conditions on f , there exists a > 0 such that f(u) ≤ au for
all u > 0. We multiply (1.1) by u and integrate, then

λ1

∫

Bn

u2 dx ≤
∫

Bn

|∇u|2 dx = λ

∫

Bn

f(u)u dx ≤ λa

∫

Bn

u2 dx,(2.18)

so λ ≥ λ1a
−1. Hence Σ cannot continue left to λ = 0, it cannot blow up to

s =∞ either, since s = u(0) < c, as follows from the maximum principle in
case c < ∞, and by an easy a priori estimate in case c = ∞. So it has to
bend back at some turning point.

By the assumptions, f satisfies either (2.5) or (2.16), so z > 0 by Lemma
2 or Lemma 4. Similar to Theorem 1, there is a unique turning point on Σ
from Lemma 3 (the fourth case), and at the turning point, the curve bends
to the right. Above the turning point, λ′(s) > 0 and so Σ moves to the
right monotonously. By an argument in [11] (see also [19]), we can show
that there is no other branches, and for the solutions on Σ, when λ → ∞,
the solution uniformly converges to c for any compact subset of (0, 1).

Example An example for Theorem 3 is f(u) = −u(u − 2)(u + 1) and
n = 2, 3. It is easy to check that f satisfies (2.16) and (2.17) for u > 0 with
b = (1 +

√
7)/3, c = 2 and β = 1/3. For (1.3), we obtain

[f ′]2 − nff ′′ ≡ B(u)(2.19)

= 2[(9− 3n)u4 + (4n− 12)u3 + (10n− 8)u2 + (8− 2n)u+ 4].

When n = 3, we have B(u) = 22u2 + 2u + 4 > 0 for all u > 0, and when
n = 2, we have B(u) = 6u4 − 8u3 + 24u2 + 8u+ 4 > 0 for all u > 0.

Theorem 4 Assume f(0) = 0, f ′(0) = 0 and f(u) > 0 for u ∈ (0, c), where
c ≤ ∞. Assume f satisfies (1.3) and (2.17). If c = ∞, we also assume
limu→∞ f(u)/u = 0. Then there exists a constant λ∗ > 0, so that the
problem (2.2) has no solution for λ < λ∗, exactly two solutions for λ > λ∗,
and exactly one solution for λ = λ∗. Moreover, all solutions lie on a unique
smooth solution curve. (See Figure 4.)
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The proof of this result is same as that of Theorem 1.3 of [18], except here
we use a different way to prove the positivity of z as in Lemma 4. So we
refer the reader to [18] and omit the proof here.

λ

u(0)

Figure 3: Theorem 3

λ

u(0)

Figure 4: Theorem 4

Finally we consider a problem with sign-changing f .

Lemma 5 Assume that the function f(u) ∈ C2[0,∞) satisfies f(0) = 0,
there exists b ∈ (0, c) such that

f(u) < 0 for 0 < u < b, f(u) > 0 for b < u < c,(2.20)

∫ c
0 f(u)du > 0, and f satisfies (1.3) and (2.17). In addition we assume that
n ≥ 3. Then any non-trivial solution z of the linearized problem (2.4) is of
one sign, i.e. we may assume that z(r) > 0 for all r ∈ [0, 1).

Proof: Since
∫ c
0 f(u)du > 0, there exists a unique θ ∈ (b, c) such that

F (θ) =
∫ θ
0 f(u)du = 0. For any solution u of (2.2), we have u(0) > θ. In

fact, multiplying (2.2) by u′ and integrating over (0, 1), we obtain

1

2
[u′(1)]2 + (n− 1)

∫ 1

0

[u′(r)]2

r
dr − λF (u(0)) = 0,(2.21)

where F (u) =
∫ u
0 f(t)dt. Thus F (u(0)) > 0 and so there exists r1 ∈ (0, 1)

such that u(r1) = θ. From the result of [14] (see also Lemma 4.9 of [19]),
z(r) 6= 0 for r ∈ [r1, 1). Next we show that z has at most one zero on (0, r1].
For r ∈ (0, r1), f(u(r)) > 0, so the proof of Lemma 4 can be carried over
to here without changes. But we can only conclude that z has at most one
zero in (0, r1], since in the case of Lemma 4 we obtain z has at most one
zero in (0, 1], while z(1) = 0.

Suppose that z has exactly one zero at some r = r2. We exclude this
possibility by several steps. Let u(r2) = u2. First we prove u2 < β. If this
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is not true, then u(r2) ≥ β, and there exists r3 ≥ r2 such that u(r3) = β.
Consider the comparison function v1(r) = f(u(r)). It is easy to verify that
L[v1] = f ′′(u(r))u2

r(r). So in [0, r3], v1(r) > 0 and L[v1](r) ≤ 0, and by
Lemma 1 z has no zero in [0, r3], which contradicts with r2 ∈ [0, r3].
Next we prove that Kf (u2) > n/(n− 2). Suppose this is not true, then

Kf (u2) ≤ n/(n− 2). We claim that Kf (u) ≤ n/(n− 2) for all u ∈ [u2, u(0)].
In fact, from the remark after the proof of Lemma 2, since f satisfies (1.3),
then for any u ∈ (0, c), either Kf (u) ≤ n/(n − 2) or K ′

f (u) ≤ 0. So if
there exists u3 ∈ [u2, u(0)] such that Kf (u3) > n/(n − 2), then for some
u4 ∈ (u2, u3), Kf (u4) > n/(n − 2) and K ′

f (u4) > 0, which contradicts
with (1.3). Thus Kf (u) ≤ n/(n − 2) for all u ∈ [u2, u(0)]. Define v2(r) =
rur(r) + (n− 2)u(r), and v3(r) = r−1v2(r). We calculate that

L[v2] = λ[(n− 2)uf ′(u)− nf(u)] = λf(u)(n− 2)
[

K(u)− n

n− 2

]

,

L[v3] = λ

[

n− 2
r

(

uf ′(u)− f(u)
)

− (n− 3)v2

r3

]

.

Since v′2(r) = ru′′(r)+(n−1)u′(r) = −λrf(u) < 0, and v2(0) > 0, v2(1) < 0,
there exists r4 ∈ (0, 1) such that v2(r) > 0 in (0, r4) and v2(r) < 0 in (r4, 1).
There are two cases to consider:

Case 1: r4 ≥ r2. On [0, r2], v2(r) ≥ 0, and L[v2](r) ≤ 0 since Kf (u) ≤
n/(n − 2) for all u ∈ [u2, u(0)]. But that implies z has no zero in [0, r2],
which contradicts with z(r2) = 0.

Case 2: r4 < r2. On [r2, 1), v3(r) < 0, and L[v3](r) ≥ 0, since u2 = u(r2) <
β, then f ′′(u(r)) ≥ 0 which implies uf ′(u) − f(u) ≥ 0 for r ∈ [r2, 1). That
implies z has at most one zero in [r2, 1], which contradicts with z(r2) =
z(1) = 0.

Therefore Kf (u2) > n/(n − 2), and then K ′
f (u2) ≤ 0 by (1.3). Let

γ = Kf (u2). Then for any u > u2, Kf (u) < γ, otherwise Kf (u) would have
to be increasing somewhere above the γ level, and hence there is u4 > u2

such that Kf (u4) > n/(n−2) and K ′
f (u4) > 0, which contradicts with (1.3).

That implies uf ′(u) − γf(u) ≤ 0 for u > u2. Similarly, uf
′(u)− γf(u) ≥ 0

for u ∈ [b, u2]. And for u ∈ [0, b], we also have uf ′(u) − γf(u) ≥ 0 since
γ > 1 and uf ′(u)− γf(u) ≥ uf ′(u)− f(u) ≥ 0. (The latter inequality holds
since f ′′(u) > 0, in case β > b. In case β ≤ b the lemma follows easily by
the remarks in the second paragraph of the present proof.) Hence we obtain
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that

u(r)f ′(u(r))− γf(u(r)) ≤ 0, for r ∈ [0, r2],(2.22)

u(r)f ′(u(r))− γf(u(r)) ≥ 0, for r ∈ [r2, 1],(2.23)

and z(r) > 0 in [0, r2), z(r) < 0 in (r2, 1). Combining, we obtain

∫ 1

0
rn−1[u(r)f ′(u(r))− γf(u(r))]z(r)dr < 0.(2.24)

However, on the other hand, from a calculation in [18] Lemma 2.3, we have

∫ 1

0
rn−1[u(r)f ′(u(r))− γf(u(r))]z(r)dr =

1

2λ
(1− γ)u′(1)z′(1) > 0,(2.25)

since u′(1) < 0, z′(1) > 0 and 1 − γ < 0. That is a contradiction, and z
cannot have exactly one zero in [0, 1). Therefore z must be of one sign in
[0, 1).

Theorem 5 Suppose that f satisfies the conditions of Lemma 5. If c =∞,
we also assume limu→∞ f(u)/u = 0. Then there exists a constant λ∗ > 0,
so that the problem (2.2) has no solution for λ < λ∗, exactly two solutions
for λ > λ∗, and exactly one solution for λ = λ∗. Moreover, all solutions lie
on a unique smooth solution curve. (See Figure 5.)

The proof of Theorem 5 is same as the results in [11], [12] and [18] except
that now we use Lemma 5 to prove z > 0. So we omit the proof. Some
arguments in the proof of Lemma 5 are similar to the proof in [14] and [18].

λ

u(0)

Figure 5: Theorem 5

λ

u(0)

Figure 6: Theorem 6 (1)
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3 Applications to A Population Growth Model

We now apply our exact multiplicity results to the Holling-Tanner popula-
tion model (1.4). The lines m = k and k = 1 divide the parameter plane
(m > 0, k > 0) into four regions. For three of these regions and a part of the
fourth we are able to give exact multiplicity results for 1 ≤ n ≤ 4. Notice
that the roots of f(u) are 0 and

(m−1)±
√

(m−1)2+4(m−k)

2 , so that the line
m = k separates the regions where f(u) has one or two positive roots. As
an application of Theorems 3, 4 and 5, our result for the population model
(1.4) is

Theorem 6 Suppose that m > 0, k > 0 and 1 ≤ n ≤ 4, and define λ0
1 =

λ1/(m− k) in case m− k > 0.

1. If m > k > 0 and 1 ≥ k, then (1.4) has a unique solution for λ > λ0
1

and has no solution for λ0
1 ≥ λ > 0; (See Figure 6)

2. If m > k > 1, then there exists λ∗ ∈ (0, λ0
1) such that (1.4) has exactly

two solutions for λ0
1 > λ > λ∗, has exactly one solution for λ = λ∗

and λ ≥ λ0
1, and has no solution for λ∗ > λ > 0; (See Figure 3)

3. If n 6= 2, k ≥ m > 0, (1/4)(m+ 1)2 > k > 1 and

for u+ =
(m− 1) +

√

(m+ 1)2 − 4k
2

, F (u+) > 0,(3.1)

where F (u) =
∫ u
0 f(t)dt = (m/2)u2 − (1/3)u3 − ku+ k ln(1 + u), then

(1.4) has exactly two solutions for λ > λ∗, has exactly one solution for
λ = λ∗, and has no solution for 0 < λ < λ∗; (See Figures 4 and 5)

4. If (k,m) ∈ R+×R+ but not in the regions described above, then (1.4)
has no solution for λ > 0.
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k

m

1

(1)

(2)

(3)

(4)

Figure 7: The parameters in Theorem 6

We begin with a lemma.

Lemma 6 Assume that 1 ≤ n ≤ 4, (1/4)(m + 1)2 > k > 1, f(u) = mu −
u2 − ku

1 + u
. Then 2[f ′(u)]2 − nf(u)f ′′(u) ≥ 0 for 0 ≤ u ≤ u+ if u+ > 0,

where u+ is defined in (3.1).

Proof: Note that u+ is the largest zero of f(u) if (1/4)(m+ 1)
2 > k > 1,

so f(u) < 0 for u > u+. First we compute

f ′(u) = m− 2u− k

(1 + u)2
, f ′′(u) = −2 + 2k

(1 + u)3
,

f ′′′(u) = − 6k

(1 + u)4
.

If m ≥ k, then f ′(0) = m− k ≥ 0 and so f(u) > 0 for 0 < u < u+. If k ≤ 1,
then f ′′(u) ≤ 0 for all 0 < u < u+, and M(u) ≡ 2[f ′(u)]2 − nf(u)f ′′(u) ≥ 0
for all 0 < u < u+. If k > 1, f

′′(u) > 0 for 0 < u < 3
√
k − 1 and f ′′(u) < 0

for 3
√
k − 1 < u < u+, then again M(u) ≥ 0 for 3

√
k − 1 < u < u+. For

0 < u ≤ 3
√
k−1,M ′(u) = (4−n)f ′f ′′−nff ′′′ > 0 andM(0) = 2[f ′(0)]2 ≥ 0,

then M(u) > 0 for 0 < u ≤ 3
√
k − 1.

If m < k, then f ′(0) < 0, and we have u+ > 0 only if (1/4)(m + 1)2 >
k > 1. In such a case, there exists u1 ∈ (0, u+), such that f(u) < 0 for
0 < u < u1, and f(u) > 0 for u1 < u < u+. For u1 < u < u+, we can
proceed the same way as in the last paragraph to show that M(u) > 0.
For 0 < u ≤ u1, if f

′′(u) > 0 for all u ∈ (0, u1), then M(u) > 0. So we
assume that there exists β ∈ (0, u1) such that f

′′(u) > 0 for 0 < u < β and
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f ′′(u) < 0 for β < u < u1. For 0 < u < β, M(u) > 0 since f < 0 and
f ′′ > 0. For β < u < u1, M

′(u) = (4− n)f ′f ′′ − nff ′′′ < 0 since f ′(u) > 0,
and M(u1) = 2[f

′(u1)]
2 > 0, so M(u) > 0 for β ≤ u < u1.

Proof of Theorem 6: We first mention that the solution z of (2.4)
can always be chosen as positive if n = 1, so the corresponding results in
theorems 3, 4 and 5 (where n ≥ 2) are all true for n = 1.
We start by dividing the first quadrant of (m, k)-plane into four parts

using the lines m = k and k = 1. Define

I = {(m, k) : m > k, k > 1}, II = {(m, k) : m > k, k < 1},(3.2)

III = {(m, k) : m < k, k > 1}, IV = {(m, k) : m < k, k < 1}.

We will first discuss the exact multiplicity for (m, k) in these regions, and
then discuss the cases for the border between them.
(1) From the proof of Lemma 6, we know that f ′(0) = m− k and f ′′(0) =
2(k − 1). First, if (m, k) ∈ IV , then f ′(0) < 0 and f ′′(u) < 0 for all u > 0,
and hence f(u) < 0 for all u > 0, so that (1.4) has no positive solution. For
(m, k) ∈ III, f(u) < 0 near u = 0, and it is possible that f has one or two
zero(s) in (0,∞). In fact, the zeros of f(u) are 0 and

u± =
(m− 1)±

√

(m+ 1)2 − 4k
2

,

so that in III u± > 0 if and only if m > 1, k > m and (m+1)2− 4k > 0. So
if (m, k) ∈ III and (m+1)2− 4k ≤ 0, then f(u) ≤ 0 for all u > 0, and (1.4)
has no positive solution. Even when (m + 1)2 − 4k > 0 and (m, k) ∈ III,
(3.1) is a necessary condition for the existence of positive solution, as follows
from (2.21). Indeed, F (u+) > F (u(0)) > 0. When (m + 1)2 − 4k > 0 and
(m, k) ∈ III, f(u) < 0 for u ∈ (0, u−) and f(u) > 0 for u ∈ (u−, u+). So if
there is a solution, then u(0) ∈ (u−, u+), and F (u+) > 0.

(2) If (m, k) ∈ III, (m+1)2−4k > 0 and (3.1) is satisfied, then all conditions
in Lemma 5 and Theorem 5 are satisfied, so we can apply Theorem 5 to prove
part 3 of the theorem.

(3) For (m, k) ∈ I, f ′(0) > 0, f ′′(u) > 0 for u ∈ (0, 3
√
k − 1) and f ′′(u) < 0

for u ∈ ( 3
√
k− 1,∞). From Lemma 6, f also satisfies (1.3). So we can apply

Theorem 3.

(4) For (m, k) ∈ II, f ′(0) > 0, f ′′(u) < 0 for all u > 0. Then the result
in Theorem 6 is well-known in this case, see for example, [19] Theorem 6.2.

17



Also in this case, the bifurcation diagram is same as the one with k = 0, the
classical logistic equation.

(5) Finally we handle the border line cases. For k = 0, it is the classical
logistic equation, and the bifurcation curve is same as those for (m, k) ∈ II.
For m = 0, it is obvious that f(u) < 0 for all u > 0 and thus there is no
solution. For the border of II and IV , m = k and k < 1, then f ′(0) = 0
and f ′′(0) < 0, so f(u) < 0 for all u > 0 and no solution. For the border
of I and II, the bifurcation curve is same as those for (m, k) ∈ II except
that at (λ, u) = (λ0

1, 0), λ
′(0) = 0 but λ′′(0) > 0. (For a formula for λ′′(0),

see Lemma 3 or [21].) For the border of III and IV , it is obvious that
f(u) < 0 for all u > 0 and hence no solution. For the border of I and III,
f ′(0) = 0, f ′′(0) > 0, and the conditions of Theorem 4 are all satisfied, thus
the solution curve is exactly ⊂-shaped.
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