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MULTIPLICITY RESULTS FOR TWO CLASSES OF
BOUNDARY-VALUE PROBLEMS*

PHILIP KORMAN AND TIANCHENG OUYANG:

Abstract. Multiplicity results are provided for two classes of boundary-value problems with
cubic nonlinearities, depending on a parameter A. In particular, it is proved that for sufficiently large
A, there are exactly two solutions, and that all solutions lie on a single smooth solution curve. The
last fact allows one to use continuation techniques to compute all solutions.
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1. Introduction. We consider a Dirichlet problem of the type

(1) u" + Af(x, u) 0 on (a, b), u(a) u(b) 0

for two classes of cubic nonlinearities depending on a parameter A, and we prove
existence and multiplicity results. We also study in detail the solution branches as- oc. For both types of nonlinearities we show existence of a critical A1, such that for
0 < A < A1, (1) has no nontrivial solution; it has at least one solution at 1; and it
has at least two solutions for A > A1, with precisely two solutions for A sufficiently large
(nontrivial solutions that we find are positive by the maximum principle). Moreover,
all solutions lie on a single curve of solutions. The last assertion is important for
computational purposes, since it allows one to use efficient continuation techniques to
compute all solutions of (1).

Exact multiplicity results are usually difficult to establish; see, e.g., Lions [5]. Our
main tools are a bifurcation theorem of Crandall and Rabinowitz [2], and a variational
argument due to Ambrosetti and Rabinowitz; see [7]. For both problems it is relatively
easy to show that there are no solutions for sufficiently small > 0. We then show
that for sufficiently large the functional corresponding to (1) has at least two critical
points: a minimum point (corresponding to the stable maximal solution of (1)), and
a saddle point (corresponding to the unstable minimum solution). To show that there
are exactly two solutions for sufficiently large , we show that all solutions must lie
on certain curves in the (A, u) "plane." We then study the properties of these curves
and exclude the possibility of more than two solutions.

The equations that we study have attracted considerable attention. For constant
a(x) and b(x), problems (3) and (21) were studied by Smoller and WasHerman [10] (see
also [11] and [12]), who obtained exact multiplicity results by a very nontrivial phase
plane analysis. The Neumann problem for (3) was studied in detail by Angenent,
Mallet-earet, and Peletier [1] and Rocha [8]; see also Hale [3]. For f independent of
x, both Neumann and Dirichlet problems were studied extensively by Schaaf [9].

Our approach appears to be quite general. We intend to consider other equations
where exact multiplicity might be three or more for some values of . We are also
working to extend our results to partial differential equations.
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MULTIPLICITY RESULTS FOR TWO BOUNDARY-VALUE PROBLEMS 181

Next we list some background results. Recall that a function (x) E C2(a, b)N
C[a, b] is called a supersolution of (1) if

(2) "+Af(x,)<_O on(a,b), (a)>_0, (b)>_0.

A subsolution (x) is defined by reversing the inequalities in (2). The following result
is standard.

LEMMA 1. Let (x) antiC(x) be, respectively, super- and subsolutions of (1), and
(x) >_ (x) on (a, b) with (x) (x); then (x) > (x) on (a, b).

We shall often use this lemma with either (x) or (x) or both being the solution
of (1). The following lemma is a consequence of the first.

LEMMA 2. Let u(x) be a nontrivial solution of (1) with f(x, O) =_ O. If u(x) >_ 0
on (a, b) then u > 0 on (a, b).

We proved the following proposition in [4].
PROPOSITION 1. Consider the problem (1) and assume that f(x, u) C1([-1, 1]

R+ satisfies
(i) f(-x, u) f(x, u) for all x e (-1, 1) and u > 0;
(ii) xfx(x, u) < 0 for all x e (-1, 1)\{0} and u > O.

Then any positive solution of (1) is an even function with u’(x) < 0 on (0, 1]. More-
over, any two positive solutions of (1) do not intersect.

Remark. Except for the last statement, this proposition is included in the Gidas-
Ni-Nirenberg theorem.

Next we state a bifurcation theorem of Crandall and Rabinowitz [2].
THEOREM 1 [2]. Let X and Y be Banach spaces. Let (, 2) R X and let F be

a continuously differentiable mapping of an open neighborhood of (, 2) into Y. Let the
null-space N(Fx(A,2)) span{x0} be one-dimensional and codimR(Fx(/k, 2)) 1.
Let F(A, 2) R(F(A, 2)). If Z is a complement ofspan{xo} in X, then the solutions
ofF(A,x) F(, 2) near (,2) form a curve (A(s),x(s))= ( + T(s),2 + sxo+ z(s)),
where s -- (T(S),Z(S)) e R Z is a continuously differentiable function near s 0
and T(O) T’(O) z(O) z’(O) O.

Throughout this paper we consider only the classical solutions (which is not a
serious restriction in the one-dimensional case). We also assume, without loss of
generality, that (a, b) (-1, 1).

2. A class of cubic nonlinearities with double root. On the interval [-1, 1]
we consider the following boundary-value problem:

(3) u"+Aa(x)u2(1-b(x)u)=O, -l<x< 1, u(-1)-u(1)=0.

We assume throughout this section that a(x) and b(x) are even functions a(x)
C1(-1, 1) F C[-1, 1], b(x) e C2(-1, 1) F C[-1, 1], satisfying the following con-
ditions:

(4) a(x),b(x) > 0 for 1 <_ x _< 1;

xb’(x) > 0 and xa’(x) < 0 for x e (-1, 1)\{0};
b"(x)b(x)- 2b’2(x) > 0 for 1 < x < 1.

For example, b(x) x2 --O/ with a > 3 satisfies the above conditions. Notice that
condition (6) implies that lib(x) is a supersolution of (3). To prove our multiplicity
result we need the following lemmas. Recall that by maximum principle any solution
of (3) is positive on (-1, 1).
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182 PHILIP KORMAN AND TIANCHENG OUYANG

LEMMA 3. Every solution of (3) is strictly concave, i.e., u" < 0 (or 1-b(x)u > O)
for all x E (- 1, 1).

Proof. Denote w(x) b(x)u(x). Then one computes

Aa(x) w2(1 w) 2b’u’ + b"u.+

If x0 is a maximum point of w(x), then

0 w’(xo) b’(xo)u(xo) + b(xo)u’(xo),

Using this in (7), we obtain

(s) + ka(xo) w:(xo)(1 w(xo)) u(xo) (b"(xo)b(xo) 2b’(x0)).b(xo) b(zo)

By our assumptions, the right-hand side of (8) is positive, while w"(xo)

_
O. Hence

w(xo) < 1, i.e., 1 b(x)u(x) > 0 for all x E (-1, 1), and the proof follows.
LEMMA 4. Every solution of (3) is an even function with u’(x) < 0 for x (0, 1].
Proof. Using Lemma 3 one sees that Proposition 1 applies, giving the conclusions

of the lemma.
LEMMA 5. Let ua (x) be a continuous-in-A branch of solutions of (3). Then either

lima_ ua(x) 0 or lim__, ua(x) lib(x) for all x (-1, 1).
Proof. Rewrite (3) in the form

(9) u(x) G(x,)al)u()(1 b()u()) d,

where G(x, ) is the corresponding Green’s function, which is easily seen to be strictly
positive and bounded on (-1, 1) x (-1, 1). By Lemma 3, u(x) is bounded as A --, c

(by lib(x)), and the integral on the right in (9) is positive. It follows that for each
(-1, 1) either lim_ ua() 0 or lima_ u({) l/b({). Finally, since by

Lemma 4 u({) < 0 for { (0, 1), it follows that only one of the above possibilities
holds for all {.

If u(x) is a solution of (3), then the corresponding linearized problem will be used
in the sequel

(10) w" + Aa(x)(2u- 3b(x)u2)w 0, w(-1) w(1) 0.

LEMMA 6. If (11) has a nontrivial solution, then w(x) does not change sign on

(-1, 1), i.e., we can choose it so that w(x) > 0 on (-1, 1).
Proof. Assume that w(x) changes sign in (-1, 1). Assume that w(x) has a zero on

[0, 1), and the other case is similar. Without loss of generality (taking -w if necessary),
we may assume that w(x) < 0 on (Xl,X2), 0

_
Xl < x2

_
1, W(Xl) W(X2) 0, and

w(x) > 0 for x < Xl and close to xl, and for x > x2 and close to x2 (unless x2 1).
Differentiating (3), we obtain

(11) (u’)" + Aa(x)(2u 3b(x)uU)u -a’u2(1 bu) + Aab’u3.
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MULTIPLICITY RESULTS FOR TWO BOUNDARY-VALUE PROBLEMS 183

Multiply (10) by u’, (11) by w, and subtract and integrate both sides. Obtain

(12) [a’u2(1 bu) ab’u3]w dx.

The quantity on the right side in (12) is positive by our assumptions. The one on the
left is equal to

which is negative by Lemma 4. The contradiction proves the lemma.
LEMMA 7. Let u(x), the solution of (3), be such that max[_l,1] b(x)u(x) <_ .

Then the only solution of (10) is w =_ O.
Proof. Since u(x) > 0 solves (3), it is the principal eigenfunction of

z" + Aa(x)(u- b(x)u2)z #z, z(-1) z(1) 0,

corresponding to the principal eigenvalue # 0. The principal eigenvalue of

(13) w" + Aa(x)(2u- 3b(x)u2)w #w, w(-1) w(1) 0

must be positive, since 2u 3bu2

_
u bu2 for all x E (-1, 1), with inequality being

strict near x =t=1, by our assumption. If w(x) is a nontrivial solution of (10), it is
a nonprincipal eigenfunction of (13) (corresponding to # 0), and so it must change
sign on [-1, 1]. But this contradicts the previous lemma.

THEOREM 2. There exists a critical , such that for 0 < A < the prob-
lem (3) has no solution; it has at least one solution at A ; and it has at least
two solutions for > . All solutions lie on a single curve of solutions, which is
smooth in . For each > there are finitely many solutions, and different so-
lutions are strictly ordered on (-1,1). Moreover, there exists 2 >_ A, so that for
> 2 the problem (3) has exactly two solutions denoted by u-(x, A) < u+(x, A), with

u+(x, ) strictly monotone increasing in , u-(O, ) strictly monotone decreasing in ,
and lim_. u+(x, A) 1/b(x),lim_ u-(x, A) 0 for all x e (-1, 1). (Recall that
all solutions of (3) are positive by maximum principle.)

Proof. Multiply (3) by u and integrate

(14) u’2dx A a(x)u2u(1 b(x)u) dx.

By the Poincar inequality,

u’2dx >---- u2dx.

On the other hand,

a(0) J_a(x)u2u(1 b(x)u) dx <_
4b(0)

u2 dx.

Thus (3) has no solution for A < 2b(O)/a(O).
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184 PHILIP KORMAN AND TIANCHENG OUYANG

Existence of at least two solutions for sufficiently large , follows similarly to the
proof of a theorem of Ambrosetti and Rabinowitz; see [7, p. 12]. We outline the
argument. Solutions of (3) are critical points on H(-1, 1) of the functional

1___.( l
,,a(x)

u3 U4
g(u) u’2 - + ,Xa(x)b(x)-- dx.

It is easy to show that J(u) is bounded from below, so that it must have a global
minimum. By the Poincare5 inequality, J(u) is positive in a small neighborhood of
zero in H(-1,1). If we now can exhibit a function for which J(u) < 0, then in
addition to a global minimum, where J(u) < 0, the functional J(u) will have another
critical point, where J(u) > 0, in view of the well-known mountain pass theorem; see

[7]. It is easy to check that

J cos x < 0

for sufficiently large ,. (Alternatively, we could consider the evolution equation corre-
sponding to (3) with the initial data

1 71-
0) cos

It is easy to show that 0 < u(x, t) <_ c for some c > 0, and so by well-known re-
sults, u(x, t) would have to converge as t -, oc to the set of solutions of (3). Since
J(u(x, 0)) < 0 for sufficiently large ,, and J(u(x, t)) is nonincreasing in t, it follows
that u(x, t) cannot converge to zero. This would provide us with at least one positive
solution of (3), which is sufficient for the arguments that follow.)

It is clear that the problem (3) has a maximal solution for A large. We now study
the curve of maximal solutions for decreasing ,k. Rewrite (3) as

(5) F(A, u) u" + Aa(x)u2(1 b(x)u) 0,

where F: R C[-1, 1] --, C[-1, 1]. Notice that F,(), u)w is given by the left-hand
side of (10).

Now let (,1, u(x)) be a solution of (15). If the corresponding linearized equation
(10) has only a trivial solution w 0, then by the implicit function theorem we
can solve (15) for ) < ,1 and , close to ,k, obtaining a continuous-in-/k branch of
solutions. We cannot continue this process of decreasing A indefinitely, since we know
that for A > 0 sufficiently small, (15) has no solution. Let A0 be the infimum of A for
which we can continue the branch to the left. We claim there is a sequence {A} and
uo e C(-1, 1), a solution of (15) at A A0, so that as An $ A0,u uo. Indeed,
using Lemma 3, we conclude that there is a number M > 0, such that for any solution

It follows that a subsequence of {u } converges uniformly on [-1, 1]. Passing to the
limit in the integral version of (15) (see (9)), we establish the claim.

By the definition of ,0 it follows that F(,0, Uo) is singular, i.e., (10) has
a nontrivial solution, which is positive by Lemma 6. By Lemma 6 one sees that
N(F(o, UXo)) span{w(x)} is one-dimensional, and then codimR(F(0, Uo) 1,
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MULTIPLICITY RESULTS FOR TWO BOUNDARY-VALUE PROBLEMS 185

since Fu(Ao, U,o) is a Fredholm operator of index zero. To apply the Crandall-
Rabinowitz theorem (Theorem 1) it remains to check that F(A0, Uo) R(F(Ao, U),o) ).
Assuming the contrary would imply the existence of v(x) O, such that

(16) v" + A0(2au0 3abu)v au(1 buo), -1 < x < 1, v(-1) v(1) 0.

Multiplying (16) by w, (10) by v, and integrating and subtracting, we obtain

a(x)u(x)(1 b(x)uo(x))w(x) dx O,

which is a contradiction in view of Lemmas 3 and 6.
Applying Theorem 1, we conclude that (0, Uo) is a bifurcation point, near which

the solutions of (3) form a curve (0 + T(s), U + SW + z(s)) with s near s 0, and
T(0) T’ (0) 0, Z(0) Z’(0) 0. It follows that for A close to 0 and > 0 we have
two solutions u-(x, A) and u+(x, ) with u-(x, ) < u+(x, ) for all x E (-1, 1), and
that u+(x, ) is strictly increasing in A while u-(x, A) is strictly decreasing. We show
next that the upper branch u+(x, ) is increasing in A for all A > 0. Differentiate (3)
in :

(17) u + Aa(2u 3bu2)u -as2(1 bu), u(-1) u(1)-0.

We know by the above that ux(x,A) > 0 for A close to A0 and all x E (-1, 1). Let/1
be the first A where this inequality is violated, i.e., ua(x, A1) >_ 0 and u),(xo, 1) 0
for some x0 (-1, 1). Applying the strong maximum principle to (17), we conclude
that ux(x, A1) > 0 for all x (-1, 1). Thus u+(x,A) is strictly increasing in A for all
A>Ao.

After turning right the curve of solutions will decrease in A, until a possible
turn to the left occurs. If that happens, Theorem 1 applies exactly as above, and
monotonicity of the branches follows similarly, so that after the turn the curve of
solutions is increasing in A (i.e., as we follow the curve for decreasing , the solution is
decreasing). By the same reasoning as used previously, the curve will eventually have
to turn to the right and decrease in A, and so on. Denote by (i, ui(x)) the turning
points (i.e., F(,i, ui)is singular).

We claim that the set of turning points is finite. Indeed, assuming the contrary,
we first rule out a finite accumulation point , i.e., Aik -* along a subsequence.
As previously, we show that a subsequence of uik converges uniformly on [-1, 1] to a
solution (x) of (3). Clearly F(A, ) is singular (since otherwise the implicit function
theorem would imply local uniqueness of the solution near (, (x))). But then we
have a contradiction with Theorem 1, which tells us that there can be no more than
two solutions near (, (x)). Next we rule out an infinite sequence of/ - cx. Notice
that Ui+l(X) < ui(x) for all >_ 1 and all x (-1, 1). By Lemma 5, ui(x) -- 0 as
i --. c, but then we get a contradiction with Lemma 7, which tells us that there can
be no bifurcations for sufficiently small u.

We now return to the curve of maximal solutions and follow it for increasing . If
it turns to the left then Theorem 1 applies, and the curve is decreasing in A after the
turn (i.e., u(x) is increasing when A is decreasing). Since solutions of (3) are bounded,
it follows as above that over any finite interval of A’s there is only a finite number of
turns, and the final turn is to the right. Since all the while the solution is increasing,
it follows by Lemma 5 that it approaches lib(x) as --, x. We show next that
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186 PHILIP KORMAN AND TIANCHENG OUYANG

for sufficiently large A bifurcation is impossible, so that the curve of solutions keeps
moving to the right in the (, u) "plane." Indeed, let w(x) be a nontrivial solution of
the linearized equation (10) normalized so that f.1 w2 dx 1 Multiply (10) by w,
integrate by parts, and use the Poincar( inequality, obtaining

7r2

(18) a(x)(2u 3b(x)u2)w2 dx > 4"

Since the quantity on the left is negative for u close to lib(x), we have a contradiction,
which shows that (10) can have only trivial solution for A large. (That w(x) cannot
concentrate near x +1 follows similarly to Lemma 6.)

To recapitulate, we have a smooth curve of solutions which after a possible finite
number of turns has a decreasing and single-valued-in-A lower branch tending to zero,
and a monotone increasing and single-vMued-in-A upper branch tending to lib(x). We
show next that there is only one such curve. Indeed, assuming two such curves we
would have for sufficiently large two upper branches, v v(x, ) and u u(x, ),
both tending to lib(x). Denoting w u v, we express

w"+p(x)w=O -1 <x< 1, w(-1)=w(1)=0,

where p(x) a(x)[u + v b(x)(u2 + uv + v2)] is negative for u(x) and v(x) close to
1/b(x). This leads to the same contradiction as previously, unless w _= 0.

Remark 2.1. Consider an interesting class of problems with the nonlinearity re-
sembling the logistic one,

(19) u" + Au2(b(x) u) 0, u(-1) u(1) 0.

If b(x) is an even function satisfying b(x) > 0 on [-1, 1],b’(x) < 0 for x > 0, and
b"(x) < 0 for all x E (-1, 1), then it is easy to check that Theorem 2 applies.

Remark 2.2. Lemma 7 provides a lower estimate for the maximum value of any
solution where bifurcation occurs, Um> 1/2b(0).

Remark 2.3. If Um is the maximum value of the solution on the lower branch then

Indeed, multiplying (3) by u and integrating,

u2dx <
4 -1

u’2 dx </ka(O)um/ u2 dx.

On the other hand, since all solutions are concave down, we have u(x) >_ u,lx- 1 I.
Using this in (9), we easily obtain the second inequality in (20).

Remark 2.4. Based on the numerical evidence we believe that at A A1 the
solution is unique, while for A > A1 there are exactly two solutions.

3. Cubic nonlinearities with distinct roots. In this section we consider the
problem

(21) u" + Au(u a(x))(b- u) O, -l < x < l, u(-1) u(1) O.

D
ow

nl
oa

de
d 

06
/2

5/
15

 to
 1

29
.1

37
.8

2.
69

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



MULTIPLICITY RESULTS FOR TWO BOUNDARY-VALUE PROBLEMS 187

Here b is a positive constant, and the function a(x) E C1[-1, 1] satisfies the following
conditions:

(22) a(x)>_a0>0, a’(x)>O forxe(0,1), a(-x)=a(x)
1

(23) a(x) < -b for all x e (-1, 1).

for all x (-1, 1);

From the maximum principle every solution of (21) satisfies 0 < u < b in (-1, 1).
Notice that, unlike (3), solutions of (21) are concave up near x =t=l.

LEMMA 8. The solution of (21) is an even function. Moreover, ux < 0 for x > O.
Proof. Since 0 < u(x) < b for all x (-1, 1), one easily sees that Proposition 1

applies.
LEMMA 9. Let u(x, ) be a nontrivial solution of (21) for i > io. Then there are

only three possibilities for lim_ u(x, A): 0, a(x), and b. If the solution is increasing
in then lim__. u(x, i) b for all x e (-1, 1).

Proof. The .first part follows from the integral representation of the solution as
before. From the previous lemma we know that for any/k > A0, u(0, A) > a(0). If the
solution is increasing in A this leaves us with lim_ u(0,/k) b. Indeed, the solution
cannot tend to a(x) over a subinterval, since ux < 0 while a’(x) > 0, and it cannot
tend to a(x) at a point for the same reason.

As previously, we need to consider the linearization of (21),

(24) w"+A[-3u2+2(a+b)u-ab]w=0, -l<x<l, w(-1)=w(1)=0.

LEMMA 10. If (24) has a nontrivial solution, we can choose it so that w(x) > 0
in (-1, 1).

Proof. Assume on the contrary that w(x) changes sign on (-1, 1). Assume w(x)
has a zero on (-1, 0] (the proof is similar if it has a root on (0, 1]). We may then
assume that w(x) < 0 on (Xl,X2) with -1 _< Xl < x2 _< 0, and W(Xl) w(x2)
0, w’(xl) < 0, w’(x2) > 0 (by changing if necessary to -w). Differentiate (21)"

(25) u’ + A[-3u2 + 2(a + b)u ab]u Aa’u(b- u).

Multiply (25) by w, (24) by u, and integrate and subtract"

(26) (uw uw’)l21 a’(x)u(b u)w dx.

The quantity on the right in (26) is positive by our assumptions, while the one on the
left is

(27) + < o

by Lemma 8.
THEOREM 3. There exists a critical , such that for 0 < ik < the problem

(21) has no solution; it has at least one solution at 1; and it has at least two
solutions for > . All solutions lie on a single smooth curve of solutions. For each
ik > there are finitely many solutions, and different solutions are strictly ordered.
Moreover, there exists ik2 >_ so that for > i2 the problem (21) has exactly two
solutions denoted byu-(x,)) < u+(x, A), andlim u+(x, A)= b for all x e (-1, 1).
Solution u-(x, )) develops a spike layer at x 0 as
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Proof. The proof is similar to that of Theorem 2, so we shall not repeat all the
details but concentrate on the points that are different. As before we show that (21)
has no solutions for sufficiently small A > 0. To show existence of at least two solutions
for sufficiently large A, we need to consider the functional

?t2 U3 it4 Iu’2 + Aab- A(a + b)- + --- dx

on H(-1, 1), and produce a function for which J(u) < 0. Consider the functional

(a + b)- + dx.

Using the condition (23) one computes J(b) < 0. The function u b does not satisfy
the boundary conditions; however, it is clear that one can now construct uo(x) E
H(-1, 1) with (uo(x)) arbitrarily close to ](b), i.e., ](u0) < 0. Then for sufficiently
large A we have J(uo) < 0, as desired.

To apply Theorem 1 it remains to verify that F(A0, Uo) R(F(A0, Uo)), where
the map F and (A0, Uo) are defined the same way as in the proof of Theorem 2.

Assuming the contrary, we have f-l u"wdx 0(u is solution of (21) w of (24)).
Notice that w(x) is an even function (for otherwise the linear problem (24) would
have another positive solution w(-x), whichis impossible). We then conclude that

u’Pw dx uPw dx uw" dx O.

Next we multiply (24) by XUx, (25) by xw, and integrate and subtract.
above formula,

’(1)w’(1) + xa’(z)w(b- ) dz O,

Using the

which is a contradiction, since both terms on the left are positive.
Proceeding as in the proof of Theorem 2, we follow the curve of maximal solutions

left until a turning point A A0. Near that point, Theorem 1 implies existence of two
solutions with u-(x,A) < u+(x, ) for all x E (-1, 1), and that u- is decreasing in
while u+ is increasing in A (for A close to A0).

By Lemma 9, as A --. cx, any solution u(x,A) of (21) can only approach 0, b,
or a(x). By Lemma 8, u(x, A) cannot approach a(x) over any interval, since ux and
a’ have opposite signs over (-1, 1)\{0}. On the other hand, u(0, A) > a(0), since
x 0 is the maximum point of u(ux(0, A) < 0). It follows that there are just two
possibilities as A -- c: either the solution approaches b for all x (-1, 1), or the
solution approaches zero for x e (-1, 1)\{0}, while u(0, A) > a(0), i.e., a spike-layer
shape. (The possibility that u-(x, A) approaches b on some proper subinterval of
(-1, 1), and zero on its complement, is easily ruled out by the argument used in the
proof of Proposition 1.)

As in Theorem 2 we show the existence of a smooth curve of solutions, which
after possibly finitely many turns, has an upper branch u+(x, ) single-valued in A,
and tending to b as A ---, c (notice that for u close to b, (24) has only the trivial
solution). The lower branch can also have only (possibly) finitely many turns, and it
cannot tend to zero at a finite A (as can be seen by converting (21) into an equivalent
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integral equation). It is easy to see that the lower branch cannot approach b as A - x(setting w u+(x,A)- u-(x, ), we obtain an equation similar to (24)). Hence the
lower branch has to approach a spike layer shape described above. We next show that
as this happens, further bifurcations (turns) are impossible. From (24) we obtain, as
previously (normalizing w),

[-3u2 + 2(a + b)u ab]w2 dx >
4

Since the quantity on the left is negative for u close to the spike layer, it follows that
(24) has only the trivial solution.

We now have a smooth curve of solutions, which after a finite number of turns
has an upper branch strictly monotone increasing and single-valued in A and tending
to b as A --, cx, and a lower branch single-valued in A and tending to the spike-
layer shape. We next show that there are no other solutions. Indeed, any other
solution would have to lie on another curve of solutions, having the same properties.
In particular, we would have another upper branch, tending to b, which was already
ruled out previously.
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