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1. INTRODUCTION

IN THIS paper we consider two types of singular perturbation problems. In the first part we con-
sider boundary value problems of the type

Au = gf(x, u, Du, D*u, D’u) 0<x, <1, u(x',0) = u(x', 1) = 0. (1.1

Here u = u(x), x = (x', x,,), x’' € T 0= x, < 1, where 7" ! is the n — 1 dimensional torus
(say T"! = [0, 2n]"™ "), Du, D*u, Du denote all derivatives of # of orders one, two and three.
Our work was motivated by the papers of Rabinowitz [5, 6] and Kato [1], who considered the
equation (1.1) on the torus 7" (no boundary conditions), and established existence of solutions
for sufficiently small £. Rabinowitz used the Nash-Moser technique, while Kato was using
his abstract results on coercive mappings. Both approaches made use of @ priori estimates in
high order Sobolev spaces for either (1.1) or its linearized version. Such estimates involve
differentiation of the equation, after which the boundary conditions are in general lost, and
hence the results of [1, 5, 6] were restricted to the torus. We show that for the strip-like domains
some a priori estimates and existence results are possible. Naturally, our conditions on the non-
linear term f are far more restrictive than those of Rabinowitz [5], in particular we allow only
those third order terms which are either of the type u,,,.,, OF U, With 1 <i,j, k<n - 1.

In the second part we consider equations on the torus. In [1], to prove existence, Kato was
deriving a priori estimates for fully nonlinear equations, which are rather involved. In Section
5 we show that in order to apply the abstract result of Kato it essentially suffices to derive
a priori estimates for the linearized equation, which is easier. As an application we extend a
well-known result of Moser [4].

Next we discuss the notation and state some preliminary results.

We consider functions on the domain ¥ = T"7! x [0, 1]. We shall abbreviate {f = {,f,
and in Section 5, § f = {7»f. We assume that the Roman letters i, j, k, ..., run from 1 ton — 1,
while the Greek o, 8, y, ..., from 1 to n and denote u; = (3u/3x;), Ujjo = (83u/3x,»axjaxa), etc.
Summation on repeated indices (as in (2.1)) is implied. By |- ||,, we denote the mth Sobolev
norm in V. We shall also need the norms (in V or T")

|flw= Y [D*fl=, m = integer = 0.
la|l =m

We shall denote
bm = max |bijalm'

i,

467



468 P. KORMAN

We denote u® = DPu; a; ; = (3a;/9x), etc. We adopt the convention

D*uv) = D + D 'uv' + D 2uv? + --- + u D%, (1.2

where we denote u* *v*¥ = ¥ ¢, D*uD" with y < « and c, the coefficients from the

vl =k
Leibnitz rule. By ¢ we denote various positive constants independent of the unknown functions.

Sometimes we wish to distinguish positive constants by denoting them ¢, ¢,, 7, etc. Define
G, = {u € H™(V)|uy, € H™%(V)} with the norm ullgm = lulm + ltjallm-2-

m

LemMa 1.1. For any i, j, « and any m = 2, the space G, is a Banach space.

Proof. We need only to check the completeness. Assume that [u? — u"llcgzx =0 as

p,q — . Then u” > uin H™ and uf, = vin H™2, We claim that u;, = v, so that u € G},

and ||lu? - uHG,% -+ 0. Indeed, for any ¢ € Co(V),
SU¢ = lim §u5‘a¢ = — lim gup(bija = - §u¢ija,
] p—tao p—*w R

i.e. u;;, = v in the weak sense.

ja
The following lemma will be used repeatedly.
LeEmMMA 1.2. Let b(x) € C*(V), then

jbmw.-,-aw < clbllwl?.

Proof. Denoting I = {b(x)w;;, w, and integrating by parts, / = —I + ..., where the terms not
shown have b(x) differentiated once. This allows us to estimate /.
2. A PRIORI ESTIMATES FOR THE LINEAR PROBLEM
LemMa 2.1. For the problem
Au — ebyo (M, = flx)  0<x,<1,x eT", e
u(x',0) = u(x’, 1) = 0,

assume that b,, b,,,_, < ¢ (m-nonnegative integer, ¢ is real). Then for ¢ sufficiently small the
following estimates hold

IA

clSfllom-r  m=2,

C"f"o-

llaell
2.2)

A

llall,

Proof. Step (1). Multiply (2.1) by u and integrate. Using lemma 1.2 we easily obtain

‘quIZSC‘fZ,
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provided b, = ¢, which proves (2.2) for m = 1. Next, we multiply (2.1) by u,, and integrate.
Similarly,

k=1

oy jwukfz < c§f2. @.3)

To finish the estimation of |Jul|3 we need a bound on [u2,. When expressed from (2.1), u,,
depends on the third order terms, not yet estimated. This leads us to differentiate (2.1) in the
tangential directions.

Aupy — b tijars — EDijo kUijar = EDijo,iUijur — EDjjo kilijo = St 2.4)

Multiply (2.4) by u,, and integrate. Since by lemma 1.2 (integrating by parts in x;, x; and x,)

n-1
<ch, Y jlwk,lz, 2.5

k=1

Sbija Uikt Ukt

we obtain (for sufficiently small &)

n-1

) } | Vil < Cgszl- (2.6)

k,i=1

Expressing now u,, from the equation (2.1), and using (2.6) we estimate

n-1
ju,,,, < c< Yo+ j +f2> < sl

i=1

which together with (2.6) gives us the estimate (2.2) for m = 2.

Step (2). To get higher order estimates we differentiate the equation and proceed similarly. Let
multi-index 8 = (8, 0) with |8] = m — 1, and denote u® = DPu. Differentiate the equation
(2.1) (and use the notation described previously), and then multiply by #° and integrate,

2 1 ,,8-1 B B
jlvu‘i‘ - Sjbuauuau ‘buu ua ﬁ Sbuauucxu jf

Using lemma 1.2 on the second term on the left, and summing on all B with 8, = 0, we easily
obtain

> jl vul> < ¢|fl3-,,  assuming b,_; < c. 2.7
B

Next we need to estimate the derivatives of order m, where more than one derivative in x, is
allowed. Let now 8 = (f, 0) with |8| = m — k. We shall prove that

j(DL‘u")2 < ol flZiko2,  assuming bn.u. < ¢, (2.8)

using induction on k& = 2. Let k = 2, |#| = m — 2. Express u,, from the equation (2.1) and
differentiate,

n-1
8 _ 8 8 1 8=1 8 8
Upn = = L ufj + ebyqufj, + ebjjqufy' + - + &by + 7.
i=1
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Applying (2.7) (with |8| + 2 = m, y, = 0),

(g =c(Irl,+ § |1val) <clsB,  provided b, < c.
J \ vl=mJ /

Assuming (2.8) to be true for k we now prove it for k + 1 (with |8l =m — k — 1).

Differentiating the equation (2.1),

n—1
DI,:+1H'B = — E Dﬁ—luﬁ + 6b,’jaD:_]“'B' toee
i=1
where ... denotes the lower order terms. The second term on the right involves a derivative of
u of order m + 1, which includes up to k differentiations in x,. Applying (2.8), we obtain

"

j(Dﬁ“aB)z < c|f2e,,  assuming b,e_; < c.

(By (2.8) when estimating {(«”)* all that matters is |y| and y,.) From the estimates (2.8) the
lemma follows.

This lemma can be used to give existence and uniqueness results for the problem (2.1). We
start with the simplest one.

THEOREM 2.1. Assume that all b, are constants, and || f ||, = ¢ for m = 1. Then for ¢ suffi-
ciently small the problem (2.1) has a unique solution of class H™.

Proof. Look for the solution in the form u(x) = T, u/(x,)e" ¥, with / = (/;, ..., [,_;). Then
from (2.1), writing, f = ¥,/ (e’ ¥,
ui — Illzuz — &by iilcu — Ebijnlilj“f = fi(x,) 2.9)
1 (0) = w(1) = 0.

We claim that (2.9) is uniquely solvable for all multi-indices /. Then the proof will follow, since
lemma 1.2 will imply convergence of the series Yu,(x,)e’ " and the regularity. To prove the
claim, write u,(x) = v(x) + iw(x) with real v and w. Then for the adjoint equation to (2.9)

v" — |I1%v + eby, iV + ebylililw = Re fi(x,)
w” — [II*w + eby,liL;w' — eby bl v = Im fi(x,) (2.10)
v(0) = v(1) = w(0) = w(l) = 0.
Assume for the moment that f;(x,) = 0. Then multiplying the first equation in (2.10) by v, the

second one by w, adding and integrating by parts,

1
@2+ [1170* + w? + |I’w? dx, = 0,
JO

i.e. v(x,) = w(x,) = 0. Applying the Fredholm alternative we get the solvability of (2.9).
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3. FURTHER LINEAR THEORY

The estimate (2.2) has the advantage of being rather general, in the sense that any combina-
tion (and any number) of the derivatives of the type u;, are allowed. However, stronger
estimates are needed to prove solvability of (2.1) with variable coefficients and of noniinear
problems. This is done in the present section under additionai conditions on the structure of the
terms present in (2.1).

In Sections 3 and 4 we assume both Roman and Greek indices to run from 1 to n — 1, i.e.
admit only tangential derivatives in the singular perturbation terms.

Definition. Two derivatives of the third order u;;, and u,,; are called conjugate if among the
indices i/, j, a, k, I, B there are three pairs of equal ones (different pairs may contain equal
elements). For example, u,,; and w455, Or u,,5 and u,3; are conjugate. It is clear that conjugacy
is an equivalence relation, and that after an even number of integrations by parts

n n

uijcx ukIB = (upq'y)z (p7 g,y arc among iv jy «, ks [s B)- (3'1)

u Y

LemMa 3.1. Consider the problem (0 < x, < 1)
Au—¢ Y bijo 5 = fX), ux',0) = ux', 1) =0. 3.2)

Assume that any two derivatives of the third order present in (3.2) (i.e. b;j, # 0) are mutually
conjugate; b, < ¢, and that one of the two sets of inequalities hold: either bijo = ¢y > 0 or
bio = —co < 0 for all i, j, a present in (3.2) and all x.

Then for & sufficiently small

lul, + & ¥ ”uijcxHO = cllfllo (c = c(e)). (3.3)

Here and later on ), denotes summation on all J, j, « that are present in (3.2).

Proof. Multiply (3.2) by a derivative u,,;, integrate and use lemma 1.2,

i3

—¢& \ bkls(uklﬁ)z - & Z/ \bijauijaule =\ fupg, (3.4)

e

where ¥’ is summation on (/,/, @) present in (3.2), which are different from (k,/, B).
Integrating by parts (see 3.1),

— 2
bija uija Ui = \ bija(upq-y) + -

where all the terms not shown on the right have b, differentiated exactly once, so that they can
be estimated by b, |u|3, using lemma 1.2. Then from (3.4)

" g

Jupg

iA

ech,|lull3 + ¢

2 2
& | (Upig)

v [y

a

IA

echyllull3 + ee, \up + cley) gfz,

u

u
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so that by choosing &, small, we estimate

) \u,?j[x < cellul3 + c(s)\fz. (3.5)
J J
Next, we multiply (3.2) by vy, integ}ate by parts using lemma 1.2, and sum
n—1 7
) j | Vael® < cellulls + c(e)[fz. 3.6)
k=1 J

Expressing u,, from the equation (3.2), and using (3.5)-(3.6),
r n-1 [ N r
su,zm = c( Y b+ Y ful, + c(s)5f2>
i=1 .

< celull3 + ce) [fz. 3.7

v

Adding (3.5-3.7) we conclude the lemma.

TueoreM 3.1. In the conditions of lemma 3.1, with b;;,, € L7(V) for all i, j, «, the problem
(3.2) is solvable for sufficiently small ¢, i.e. for every fe I*(V) there is a unique
ueMjoGh(V) = G solving (3.2).

Proof. Assume for definiteness that b, = ¢, for all /, j, « and all x. Consider an auxiliary
problem
Au — € Y, couyje = f), u(x',0) = u(x', 1) = 0. (3.8)
As in the theorem 2.1, we can write a Fourier series solution for (3.8), which by the estimate
(3.3) converges and belongs to G. Next, for 0 < r < 1 we consider a family of problems

Au =& Y [co(l = 1) + thjluye = f(X), u(x',0) = u(x’, 1) = 0. (3.9

Denote S = { € {0, 1] (3.9) has a solution of class G}. Clearly, 0 € S. We shall show that S is
both open and closed in [0, 1].
(i) Openness. Assume f, € S. Define a map 7, v = T, by solving

Au — ¢ ) [co(l —19) + Lobije ttyjq = f
— &Y [—coltg = 1) + (tg = 1)byj (e

with u(x’,0) = u(x', 1) = 0. The estimate 3.3 implies that T takes G into itself, and is a
contraction for |t — t,} small.

(ii) Closedness. Assume there is a sequence {7,}, such that ¢, € Sand t, = fas n — . Let
u" be solution of (3.9) corresponding to 7,. By (3.3), it follows that [[u"|l,, lufi.llo = ¢ for all
i, j, a, so that without loss of generality we may assume that u” = & in H*(v), u], = vin L*(V).
We claim that v = @1, so that u € G}, . Indeed, letting ¢ € C3(V),
\vcb = lim

n—o |

Y

I

Ui, = — lim

n—c
o

U, = — §ﬁ¢ija = Eaijad)'

Passing to the limit in (3.9), we obtain that € S. (Multiplying (3.9) by a test function ¢, we can
first pass to the limit in the integral form, and then conclude (3.9), since ¢ is arbitrary.)
In the next result the singular perturbation terms need not be small.
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LemMa 3.2. Consider the problem (0 < x,, < 1)

n-1

Au + Z blmulmn =—‘f(X), H(X/, 0) = H(X’, l) = Oa (310)

fm=1

with constant coefficients £,,,. Then

n-1

lul, + X |lllij,,|io = clifl;. (3.11)

i, j=1
Moreover, for f € H'(V) the problem (3.10) has a solution of class (] 71 G2,

ijx'

Proof. Look for the solution in the form u(x) = ¥ u;(x,)e” ", where j = (jy, ..., Jn-1) €

Z"~'. From (3.10) we obtain (writing f = ¥ fie” ™)

J

1

uf = |jPuj = X bimjiimt) = f;, u;(0) = u;(1) = 0. (3.12)

fm=1
We shall obtain the estimates (3.11) by deriving corresponding estimates for the problem (3.12)
without solving it explicitly. Assume first j # 0. Conjugating (3.12),

n-1

njlj - |j!2aj - Z blmjljm __; :f;’ L-lj(O) = ﬂf(l) = 0. (313)

Im=1
Multiply (3.12) by &;, (3.13) by u,, integrate both equations and add,
"1 1 1
-2| lglay, - 20| = | s whds,.
o S0 J0
Since [} |u;l? dx, = cf§ lujl* dx,, we estimate

1 "

1
(ujl* + jPlu P dx, = e} £ dx,. (3.14)
J0

|
i
Jo

Multiply (3.12) by j*a;, (3.13) by j*u;, integrate and add

1 "1 '
20| g, 201 gl ax, = U] e, + S an,
JO0 J0 J0
from which it easily follows
Vil

m»
s

1 1
lu|* dx, < cW‘ | f12 dx,. (3.15)
4] 0

N
. o

1
[uf]? dx, + |1°
0

Expressing 4} from the equation (3.12) and using (3.15),

a o

1 1
luy|? dx, < c|j|2\ | fil? dx, . (3.16)
0

JO R

In case j =0, fJ|ug|*dx, < cfb | fol* dx,, which together with the estimates (3.14)-(3.16)
establishes the lemma.
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Remark 3.1. We discuss here the third order terms, which were not present in the lemmas 2.1
and 3.1. It appears that the term u,,, cannot be allowed as the following simple example shows.
The problem

Au — gy, =0 O<x,<1l,xeT"!

u(x',0) = u(x’', 1) = 0,

has a nontrivial solution u = e/®* — (e!’* — 1)x, — 1, so that no a priori estimate like (2.2)
or (3.3) is possible. However, the terms of the type u,,,, can be included under some conditions.
For example, let u(x, y) be solution of (¢ = const)

Ug + Uy, + AUy, = flx,y) 0<y<l1,xeT,
u(x, 0) = u(x, 1) = 0.
Using the Fourier series analysis one derives an estimate
laelly + lltgyllo = cll fllo- 3.17)

which can be used to prove existence of solution.

4. NONLINEAR BOUNDARY VALUE PROBLEMS
THEOREM 4.]1. Consider the problem
Au - € ¥ by (Duy, = 8f(x, u, Du, D’u, uy,) 0<x,<1, @
u(x',0) = u(x', 1) = 0, x' e T" L, )

Assume that the coefficients b, satisfy all conditions of the theorem 3.1, while the function f
depends only on those third order derivatives that are present on the left in (4.1), fis of class
C! and satisfies

me(is s Thals Tl § i), @

iJj iJ,o

[fuls s s 1

for all values of its arguments. Then for ¢ and ¢ sufficiently small (6 = J(¢)) the problem (4.1)
has a solution of class G (G was defined in the theorem 3.1).

=c for all i, j, @, 4.2)

Proof. Define a map T, u = Tv by solving
Au — & Y byauy, = 0f(x, v, Dv, D*v, v;,) 0<x,<1,ux,0)=ux,1) = 0.

By the theorem 3.1, for v € G the map T is well-defined, and takes G into itself. Using the mean
value theorem, one easily shows that T is a contraction.
Further nonlinear existence results can be stated, based on the estimates (3.11) and (3.17).

5. QUASILINEAR SECOND ORDER EQUATIONS ON A TORUS

We start by recalling the set-up in Kato [1], in slightly less generality.
(i) Let {Y, Y*] be a pair of real Banach spaces in metric duality, i.e. there is a nondegenerate
continuous bilinear form (,) on Y x Y*, with [{y, /> < [[yllyll flly=. (Nondegeneracy means
that condition (y, f) = 0 for all f € Y* implies y = 0.) Moreover Y is reflexive and separable.
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(i1) There is another pair {V, VV*} of Banach spaces in duality, with V' separable, such
that V' C Y and ¥* O Y* with the injections continuous and dense. Moreover, if v € V and
fe Y* (v, f) has the same value when taken in ¥ x Y*and V x V*.

(iii) There is a bounded, closed and convex subset K of Y, containing the origin as an internal
point, and a weakly sequentially continuous map 4 of K into V* (i.e. it takes weakly convergent
sequences into weakly convergent ones), such that

(v, A(V)) = 0 forall ve VNoK. (5.1)

TueoreM I (Kato [1]). Under the assumptions (i), (ii), (iii), the equation
Aw) =1 (5.2

has a solution u € K, provided || f]|y» is sufficiently small.

Remark. We have relaxed the continuity assumption on A. Examining Kato’s proof, one
verifies that the assumption in (iii) is sufficient.

LEMMa 5.1. In the above notation, let A be a map from B, = {x € Y|||x]ly =< r} to V* of class
CY(B,, V*), such that for r < r,,

(A'(O)x, xy = ¢/|Ix|3 forallxe B,NV. ' (5.3)

In addition assume that
"1
((A'(tx) — A'ONx, x>dt =T for0<t<1i, (5.4)
JO
where

Ul < e;lixlly.
Assume finally that
[A©O)]y« < €.

Then for & and || f||y+ sufficiently small the problem (5.2) has a solution u € B,.
Proof. 1In view of Kato’s theorem 1 we only need to verify (5.1) (with K = B,). Using the

Taylor series expansion
1

(Ax), x) = (A0), x> + (A" (0)x, x> + <§ (A’ (rx) — A'(0)x dt, x>

JO

v

alldly = ellxly = elxly = e;r® >0,

for all x € dB, N V, provided r and then ¢ are chosen small enough.
The following result extends a well-known theorem of Moser.

THEOREM 5.1. Consider the equation

n

Y a;(0u; + alx, u, Du) = f(x), xeT", (5.5)
iJj=1
where T" is the n-dimensional torus. The unknown function #(x) and the given functions a;;(x)
and f(x) are real-valued on 7", a;; € C*(T"), and a = a(x, u, p,, ..., p,) is a given function on
T" x R™}. Denote a;(x) = da/dp;(x, 0, 0), a,(x) = da/du(x, 0, 0).
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Let s be an integer = [gJ +5,ae CHHT" x R"™Y). Assume that
a(x,0,0) =0, (5.6)
2 n a 1 n n R
1E1* @ — Z b;ai + 3 Z Gjiy) + 5 Y oai &8 =yl 5.7
i=1 i =1 k=1
for some y > 0 and all £ € R";
lagl, <65 — ¥ a;&&=0 forallé e R", xe T". (5.8)

i j=1

Then for & and || ||, sufficiently small the problem (5.5) has a solution u(x) € HXT").

Proof. Let A = (—A)"%. As in Kato [1] we will use the following inner product in the
Sobolev space H°,
(4, V), = (Nu, A'v)g + A*(u, v)y,

and the associated norm V (u, u),, where (,), denotes the inner product in L. Notice that this
norm is equivalent to the usual one in H®, and that formally
(u, ) = (= 1)’(u, Av)y + A2(u, v)g,
~ (v, v), is then a new norm on Y = H*(T"). However by |- ||, we shall denote the usual norm
on H(T").
We shall verify that the assumptions of the Kato’s theorem I are satisfied for the operator 4
defined by
Aw) = Y a;(®uy; + alx, u, Du).
i j=1
We introduce the Banach spaces
Y=Y*=HT", V=H"YT",V*=H"XT",
with the dualities {,) given by
(v, 8> = (v, 8 forv,geY,
(v,g) = (A’v,8),, forveV,geV*
Compute
A'Q = a;vy; + a;v; + agv (a;, a, were defined above).
According to lemma 5.1 we need to verify
(A'(O)r, vy = (A" (0, v), = c|v]? forve B, NV. (5.9
We assume s = 2/ with the other case being similar. Then denoting w = (- A)Y~'v (and using
the notation defined in (1.2)),
(A" (0w, v); = (= AYA'O), (- AYv) + 22, V)
= (a;Aw; + aq;Aw; + goAw, Aw),
+ 5< ) i Wik + Y aiwiu + L g, AW>
k=1 k=1 k=1 0
+ (apu T+ aulT + agrt T (= A)Yo),

+ o+ (v + dv; + agy, (= A)Yv)o + A, V). (5.10)
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Since for [a| = sand |8 = p < s,
(D°v, DPv), < 6lv]lZ + c@)vl} < 28]vli? + ey (®lvllg, (5.11)

we only need to estimate the terms in (5.10) with || + |8! = 2s. Integrating by parts

jaijAwijAW = - SGUAWiAWj + %iaij,gj(Aw)z;

Qi g WiiWgj + -

i n

\ai,k Wi Aw = Z

J i=1.
where the terms not shown can be estimated as in (5.11). The term (a;; x Wi, AWw), is estimated
by d|v||? using lemma 1.2. So that by choosing A sufficiently large,

' 12 9 12
A' Oy, v), = <a0 -z X oat 3 ) aij,ij)(AW)2

+s5s X a;  QOW;wy; — cdllvl? + %12”0“(2)
ijk=1

. yog(Aw)z — clwl ~ esllol + 422,

where the last step follows by the assumption (5.7). (Indeed, if a,, a; ; and g;; ; were constants,
then this would follow by taking the Fourier transform. For the general case proceed as in the
Garding’s lemma, see [4, p. 311].) So that if § is sufficiently small, then by choosing A

sufficiently large
/ Yo 2 Loay
(A (O)U! v)s = _2_ ”v“s + ZA' ”U” = C(U, v)s'

Next we verify the condition (5.4) of lemma'5.1. To simplify the presentation we assume that
a = a(x, Du). Then

(A'(tu) — A'(0)u

I

Y (a,,(x, 1 Du) — a,,(x, )y,

i=1

Il

t A, p; (X, 61 Du)u;u;.

1

T 5

f

LJ
Since u € H*,
lul, < cllujl, = cr < 1 for sufficiently small r. (5.12)

Setting u* = (— A)*"?u, compute

i,

n
Y apipjpku,iuiuj,u5> + - (5.13)
i=1

0

(A'(tuy — A'(O)u, u), = ( Y Ap, p, Ui U], u’) + (
{ 0

iLi=1

In view of (5.12) both terms shown on the right after one integration by parts are estimated by
cllul?. Among the terms not shown in (5.13) some have similar structure, others are of the type

(Y D;Dj'ay,,, (D***u) - (D***y) D’u; D"u;, u'),, (5.14)
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with |g,| = -+ = lg| = 1, |lay| + -+ + |l + 18] + ly] =5, kK = 0. At this point we recall a
well-known inequality (see [1, 4]): if |8, + --- + |B8,| ='s, then
IDPif, --- D p“O I fillsl f2lo - prlo + o+ | filoeee |fp-l| ”fp” . (5.15)

Assume that in (5.14) k, |6], |y| = 1. Write D** %y = D°u®, D%y; = D iy**D, DYy, =
D2y **D where |8;| = |y;} — 1 for i K5 1Bearl = 16] = 1, |Beaal < Iyl — 1. Then
the term in (5.14) is estimated by

el DA .. Do

i

IA

cllulls (Nl fu@lo -+ fu® 2l + -2

cllullsullglualy - luly + ) =< clull.

A

If in (5.14) k, |o| = 1 but y = 0, then we estimate |u;| by cllull, and proceed as before.
Finally if & = 0, the term in (5.14) is estimated using (5.15) by

cllul ID°w; D] < cllullliulllul, < cllully.

Using the mean value theorem one easily verifies that the map A: B, —» H*"? has two
bounded and continuous Fréchet derivatives (see [2, 3] for similar arguments).

Finally to verify the weak sequential continuity of A, assume that u/ — u in H*. It follows
that ||u’|/; = ¢, and then by the Sobolev’s imbedding |u’|, < ¢. By the well-known Moser’s
lemma [4], it follows that ||A(uf)||5 , < c. The sequence {A(u”)} then has a weakly convergent
subsequence in H*"2. Since u” and u are all C3(T™) functions (by the choice of s), it follows that
A(u/) = A(u) in H*"*. Repeating this argument for any subsequence of {u/}, we see that
A’y = A(u) in H72.

Remark. It is natural to try to extend the theorem 5.1 to cover equations of the type
a(x, u, Du, D*u) = f(x), xeT". (5.16)

Under similar assumptions on the linearized operator one verifies condition (5.3) the same way
as above. However, we see no way to justify (5.4). The difficulty is that it is not clear how to
estimate the terms of the type (a,,.,,4iu;;, u%)o through cllu}. In [3] we were able to handle
problems of the type (5.16), using the Nash~-Moser method and assuming existence of con-
siderably greater number of derivatives than in the theorem 5.1.
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Note added in proof—The estimate mentioned in the above remark can be obtained, provided we additionally

assume that "
Y &l =0 forand (&, ..., &) e R".
ivj k.ol



