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Abstract. We give a complete description of the set of positive solutions for two classes of
boundary value problems, involving both convex and non-convex nonlinearities.

1. Introduction. We consider Dirichlet problem of the type
u” + Af(z,u) =0 on (a,b), u(a)=1u(b)=0 (1.1)

for two classes of nonlinearities depending on a parameter A, and prove existence
and exact multiplicity results for positive solutions. Our main tool is a bifurcation
theorem of M.G. Crandall and P.H. Rabinowitz [3]. In both cases we obtain a
complete description of the set of positive solutions for all values of .

We begin by considering convex in u nonlinearities. We assume that f(z,u)
is even in z relative to the midpoint ﬁgﬁ of the interval (a,b). This allows us to
get rather detailed information about the solution u(z) of (1.1), as well as on the
solution of the corresponding linearized problem, which makes it possible to apply
the Crandall-Rabinowitz bifurcation theorem. We outline our arguments next. The
problem is easily solvable for small A. Since we assume f(z,u) to be positive on
[~1,1] and grow superlinearly in u, there are no positive solutions for large A. We
show that the curve of solutions “bends back” at a critical A9, and then study the
curve after the bend, obtaining rather detailed description of the solution curve. We
show then that there are no other positive solutions by excluding all other possible
situations. ’

Our second class involves non-convex nonlinearities of the type studied by T.
Ouyang [7]. Using the results of those papers, we can apply a similar analysis to
obtain a complete description of the set of positive solutions.

Our approach appears to be quite general. We have some multiplicity results for
polynomial in u nonlinearities, which we defer to future publications. Our results
can be used to describe the structure of global attractors for the corresponding
parabolic problems, see e.g., J. Hale [5].

Next, we list some background results. Recall that a function ¢(z) € C?(a,b) N
C®a, b} is called a supersolution of (1.1) if
¢+ Af(z,0) <0 on(a,b), ¢(a) 20, ¢b)>0. (1.2)

A subsolution t(z) is defined by reversing the inequalities in (1.2). The following
result is standard.
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Lemma 0. Let p(zx) and v(z) be, respectively, super- and subsolutions of (1.1),
and ¢(z) 2 Y(z) on (a,b) with ¢(z) # Y(z), then p(z) > Y(z) on (a,b).

We shall often use this lemma with either ¢(z) or Y(z) or both being a solution
of (1.1).

Next we state a bifurcation theorem of Crandall-Rabinowitz [3].

Theorem 0. (3] Let X and Y be Banach spaces. Let (M Z) ER x X and let F be
a continuously differentiable mapping of an open neighborhood of (X, F) into Y. Let
the null-space N(F:(), Z)) = span{z} be one dimensional and codim R(F (), 7))
=1. Let FA\()\,Z) ¢ R(F:(\%)). If Z is a complement of span{zg} in X, then the
solutions of F(\,z) = F(),z) near (), Z) form a curve (A(s),z(s))= (A+7(s),Z +
82+ 2(s)), where s — (7(s),2(s)) ERx Z isa continuously differentiable function
near 8 =0 and 7(0) = 7/(0) = 2(0) = 2’(0) = 0.

Throughout the paper we consider only the classical solutions. Also, we assume
without loss of generality, that (a,b) = (-1, 1).

2. A class of convex nonlinearities. On the interval [~1,1] we consider the
following boundary-value problem

v+ Af(z,u) =0, -1 <2 < 1, u(-1) = u(l) = 0. (2.1)

We assume that f(z,u) € C%([~1,1] x R,) and satisfies the following conditions:

f(-z,u) = f(z,u) forze(-1,1) and u> 0; (2.2)
zfz(z,u) <0 forz € (-1,1)\ {0} and u > O; (2.3)
fuu(z,u) >0 for z € (~1,1) and u > 0; (2.4)
flu) 2 awP+e; forz e (-1,1), u>0, (2.5)

with constants c1, c; > 0 and p > 1. A good example is f(z,u) = h(z)e* with even
and positive i(z), such that h'(z) < 0 forz > 0, a nonlinearity of a type that arises
in combustion theory [2]. We shall denote the solution of (2.1) by u(z, A), and by
F(A, u) we denote the left hand side of (2.1). .

Lemma 1. Assume that f(z,u) satisfies (2.2) and (2.3). Then any positive solution
of (2.1) is an even function, such that v’ (z) <0 for z € (0,1].

Proof. We show first that u(z) has only one (global) maximum on (-1,1). As-
suming the contrary, the function u(z) would have points of local minimum, and
assuming some of those are nonnegative (negative are treated similarly) let zo > 0
be the largest point of local minimum. Let To < 1 < 1 be such that u(z;) = u(zo),
and let Z be the point of local maximum on (zo,z1). On (zg,%) we can represent
the curve u = u(z) by z = z;(u), and on (Z,21) by = = z(u), with z;(u) < zo(u)

for all u € (u(zo),u(Z)). Multiply the equation (2.1) by v’ and integrate from zg,
to z;,

%uﬂ(ml) + z\/xx f(z,u)u’dz =0. (2.6)
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But

/: flz,u)u' dz = /: fz, u)u’d:z:-i»/ﬁIl fz, u)o dz

u(z) u(z)
- / (@1 (u), u) du — / F(@2(w),u) du > 0.
u(zo)

(zo u(zo)
This leads to a contradiction by (2.6).

We show next that any positive solution of (2.1) is even. Assume on the contr
some solution u(z) has its maximum at 7 > 0, and let & = u(Z). Then by (2.2),

v(z) = u(—z) is also a solution of (2.1), with the same maximal value %, and
9(0) = u(0) = ug, v'(0) = —u’(0). We claim that

()] > ['(1)). (2.7)

Indeed, if (2.7) is violated then (1] < '(1)] (f w'(1) = v’(1) the solutions
coincide). We can find £, z < € <1, such that u(¢) = v(€) = uy, and v/(£)| < [u(&)|
(if there was no such ¢, v(z) would have a.larger maximum value than u(r)).

Multiply the equation (2.1) by o/, integrate from € tol, and denote by z = z; (u)
the inverse function of u(z). Obtain

0
2¢°() - 2u(©) + 2 / (), w)du=0.

Similarly, .
. %vﬂ(l) - %vri’(o + ,\/‘u1 f(z2(v),v)dv =0,

with Z3(u) > z1(u) for all u € (0, u1). Subtracting

3070 = W)+ 2029 - ) + 2 | et - fas ) wjen —o.
. Jo

Since the first term on the left is negative, and the others are non-positive, we
obtain a contradiction, which establishes (2.7).

Let us now denot by 7 > 7 the point where u(n) = u(0) = ug. Let us denote
by 1(u) and z3(u) the inverse functions of u(z) on (0,Z) and (Z,7) respectively.
Multiply (2.1) by v’ and integrate from 0 to n. As above,

%(u’z(n) —u(0)) + A / u[f(z1(U), u) = f(za(u), w)]du = 0,
from which it follo_ws that

()] = [/ (0)] > [u'(m)] (2.8)

Let now z3(v) denote the inverse of v9z) on (0, 1), and z4(u) the inverse of u(z) on
(n,1). Multiply (2.1) by ' and integrate from nto 1,

é(uﬂ(l) —u?(n) + A 0 f(za(uw),u)du = 0.
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Multiply the equation (2.1) for v(z) by v/, and integrate from 0 to 1,

0
S(2(1) - v(0)) + » /uo f(z3(v), v)dv = 0.

Subtracting,

360 =07 (1) + 1020) = ey 4.2 [ 17, - seajan <o

By (2.7) and (2.8) all three terms on the left are positive. The resulting contradiction
proves that any solution is even.

Since u(z) is even, positive and unimodular, it follows that u'(z) < 0 for €
(0,1), w(0) = 0, 4'(1) < 0. To show that v(z)<O0forze (0,1), we differentiate
the equation (2.1) on (0,1) .

u:,v:’ + ’\fuuz ==Afy > 0, (29)

and apply the Lemma 0 to uz on (0,1).
If u(z) is a solution of (2.1), then the corresponding linearized problem ig

W+ Afy (2, u)w = 0, w(~1)=w(1) =0, (2.10)

Lemma 2. Jf (2.10) has a nontrivigl solution, then w(z) does not change sign on
(=1,1); i.e., we can choose it so that w(z) > 0.

Proof. Assume that w(z) changes sign on (~1,1). Assume that w(z) has a zero
on [0,1), the other case being similar. Without loss of generality (taking —w if
necessary), we may assume that w(z) < 0 on (z1,72), 0 < T1<z2 < 1, w(z,) =
w(zy) = 0, and w(z) > 0 for 2 < 71 and close to z,, and for g > z2 and close to
Z2 (unless z, = 1). Multiply the equation (2.10) by u’, the equation (2.9) by w,
subtract and integrate on both sides. Obtain

w'(z2)u'(z;) — W' (21 )u'(z),

which is negative by Lemma, 1. This contradiction proves the lemma.

Theorem 1. Consider the problem (2.1) under the assumptions (2.2-2.5). There
€zists a critical Ay > 0, such that for X > Xy, the problem has no solution, for
A = ) it has ezactly one solution, and ezactly two strictly ordered solutions for
0<A< ). Moreover, for0 < A< A, the solutions lie on two continuous A\ curves
u™(z, ) and ut(z, A), with u=(z, A) < ut(z,)) for all £ € (-1,1). The lower
branch u—(z, A) is strictly monotone increasing in \ and limy o+ ™ (z,)) =0 for
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all z € (~1,1). For the upper branch lim) o+ max; ut(z, \) = co. (See Figure 1
for a diagram of the solution set.)

Proof. It is well known that under condition (2.5), the problem (2.1) has no pos-
itive solutions for A sufficiently large, see e.g., Amann [1]. When A = 0 there is a
trivial solution u = 0. It follows by the implicit function theorem that for A > 0
small there is a continuous ) curve of solutions passing through (0, 0).

We show next that for any ¢ > 0, one can find X > 0, such that for 0 < X\ < X
the problem (2.1) has at most one positive solution satisfying max, u(z) < c. This
will imply both local uniqueness of the branch passing through A =0, u = 0, and
that solutions on any other branch tend to infinity as \ — 0+, Indeed, if u and v
are two solutions of (2.1), and w = y — v, then for some 0 < § < 1,

w” + Afu(z,0u+ (1 - Ov)w =0, w(~1)= w(l) =0,

so that w =0 for \ sufficiently small.

Let us return now to the branch of solutions passing through A = 0, u = 0. If
the corresponding linearized equation (2.10) has only a trivial solution w=0, at
A=A and u = 1y (z) on that branch, then by the implicit function theorem we
can solve (2.1) for A > A; and A close to A1. We cannot continue this process of
increasing A indefinitely, since we know that for A > 0 sufficiently large (2.1) has
no solution. Let A\g be the Supremum of A for which we can continue the branch to
the right. We claim that as )\ — Ao the solution u(z, A) of (2.1) i

bounded. We sketch the argument, which is almost identical to that Lemma 4.5 in
[3]. Define for ¢ > 0

I(c) = {z € (-1,1): u(z) > ¢} = (=a(c), a(c)).

Assume I(c) is non-empty for A close to Ay (otherwise there is nothing to prove).
Rewrite the equation (2.1) in the form v’ "+ Ape(z)u = 0 on I,, where pc(z) = ﬂ{—ﬂ
By (2.5), pe(z) > c1¢P~ on I.. Since u(z) has no zeros on I, it follows by the Sturm
comparison theorem that (for A close to Ao)

2a(c) < T < T

= .
VAcicP /%chcp—l

Choose ¢y so large that a(c) < 3 for all ¢ > Co- This meansthat as \ — Ao, the
function u(z) is bounded by co on (a(co), 1). Since u(z) is also a concave function,
this means that it cannot become unbounded.

It follows that u(z) is bounded in C3(=1,1) as A — X, Passing to the limit in
the integral form of (2.1) we see that at \ — Ao the problem (2.1) has a solution
ux(7) € CE(-1,1).

By the definition of \g it follows that Fy, (X, uy,) is singular, i.e., the problem
(2.10) has a nontrivial solution, which is positive by Lemma 2. Using Lemma 2
it follows that N(F, (Ao, U),)) = span {w(z)} is one dimensional (by simplicity of
the principal eigenvalue), and then codim R(Fy(Ao,uy,) is a Fredholm operator of
index zero. To apply the Crandall-Rabinowitz Theorem 0, it remains to check that

Fa(Xo,uy,) ¢ R(Fy(Xo, up,)). Assuming the contrary would imply existence of
v(z) # 0, such that

V" + Xofulz, ur, v = f(@,ua,) >0, v(-1) = v(1) = 0.
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By the Fredholm alternative

/ ' Fly e )u(e) dz = 0,
-1 .

which is a contradiction. It follows that the Crandall-Rabinowitz Theorem 0 applies
at (’\0) UAO)'

Next we compute the direction of bifurcation. Near (Ao, ux,), Tepresent \ =
A(s), u = u(s), with Ay = X(0), uy, = u(0). Notice that A(0) = 0, since the
branch of solutions does not extend beyond Ag. Also u, (0) = w, a solution of (2.1).
Differentiating the equation (2.1) twice in s, we obtain

Ugy + Afullss + Afunti + 2N fuu, + Nf=0, uge(-1) = Uss(1) = 0.

Letting s = 0,
Uys + M0 futkes + Ao fuu? + XN"(0)f = 0, uge(—1) = uus(1) = 0. (2.12)

Multiplying the equation (2.12) by w, (2.10) by u,, integrating and subtracting, we
express

A .fil fuuw? dz
I fwds

This means that at (Ao, uy,), as well as at any other bifurcation point, the curve of
solutions will bend leftwards in (A, u) “plane”.

Applying the Crandall-Rabinowitz theorem, we conclude that near the bifurca-
tion point (Ao, ua,) the solutions of (2.1) form a curve (Ao + 7(s), ux, + sw + 2(s))
for s near s = 0, with 7(s) < 0 and 7(0) = 7/(0) = 0, 2(0) = 2/(0) = 0. It follows
that for A close to Ag and A < Ay we have two solutions u— (z, ) and ut(z, )), with
u~(z, ) strictly increasing in ), while u*+ (z, A) is strictly decreasing. We show next
that the lower branch u=(z, ) is strictly increasing for all 0 < A < A (and the
same is true for the lower branch at any other bifurcation point). i

We know by above that uJ(z,A) > 0 for A close to )y and all z € (-1,1).
Let A; be the largest A where this inequality is violated, i.e., uy (z,A;) > 0 and
uy (o, A1) = O for some zg € (—1,1). Differentiating (2.1) in A

A” (0) S

u')f + A1 fuun = —f <0, uy(-1) = ux(—-1) =0.

By the strong maximum principle uy (z, A1) > 0, a contradiction. .

From the above discussion we know that the curve of solutions passing through
A = 0, u = 0 increases monotonically in A until it reaches a critical g, where
it bends to the left. After the turn F,(), u) is never singular, for otherwise at a
point (, ) where F,, is singular we must have a bifurcation with a turn to the left,
which is clearly impossible. So that after the turn the curve can be continued for
a.110<)\<)\o,issmgl&valuedinAandtendstoinﬁnityas/\——>0.

Finally, we claim that there are no other positive solutions, not lying on the curve
just described. Indeed, let (), @) be another solution. If F,(\a)is nonsingular, we
can continue it for increasing A until we reach a bifurcation point where Fy (), &) is
singular. According to the Crandall-Rabinowitz theorem, at the bifurcation point
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we have a lower branch, which is strictly increasing
place to go as A — 0+, Indeed, it cannot go to A
there, and it cannot g0 to either A or u axes,

equivalent integral form. Hence, all positive
theorem is proved.

in A. This lower branch has no
=0, u = 0 by local uniqueness
as can be seen by writing (2.1) in an
solutions lie on a single curve, and the

3. A class of non-convex nonlinearities. Consider the problem
v M+ h(z)uP =0, -1<g <1, u(-1)=u(l)=0 (3.1)

with p > 1 and A real parameter. Using the techniques of the Previous section, we
shall obtain an exact multiplicity result for (3.1). We assume that

h(z) € C(-1,1) NC°-1,1] and h(-z) = h(z) for all z; (3.2)
h(0) > 0 and A'(z) < 0 for all z € (0,1); (3.3)
/ 1 h(z)e8* (z) dz < 0, (3.4)

-1

Where ¢; = sin Z(z + 1) is the principal eigenfunction of — D2

on (—1,1) corre-
sponding to the principal eigenvalue \; = "T’.

Lemma 3. Under the aboye assumptions

; any positive solution of (3.1) is an even
function, such that v’ (z) <0 forz e (0,1

Proof. Follows from Lemma 1.

Lemma 4. Consider the linearized problem for (3.1),

" + Aw + ph(z)uP~ly = 0, -1<z<«1, w(~-1)=w(1) =0. (3.5)
If the problem (3.5) has a nontrivial solution,
(=1,1), i.e., we can choose it so that w(z) > 0

Proof. The proof is similar to that of Lemma 2. As there, we
on (:L‘l,xz), 0<z < z2 <1, w(:cl) = w(mz) =

then w(z) does not change signs on

assume that w(zr) < 0
0, etc. Differentiate (3.1),

Uz + Aug + ph(z)uP~ly, + b/ (z)u? =0. (3.6)

Multiply the equation (3.6) by w, (8.5) by u, subtract and integrate. Obtain

T2
(wug — u,w') [:: +/ h'uPwdz = 0. 3.7
T3
The integral term in (8.7) is positive. The other term is equal to

—u'(z2)w' (20) + u'(z1)w'(z,),

which is also positive, a contradiction.
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Theorem 2. Consider the problem (3.1) under the assumptions (3.2), (3.3) and
(8.4). Then there erists a critical Ao > A1, such that for —co < A < A1, the
problem (3.1) has a unique positive solution, for \y < A < Ay there are ezactly two
positive solutions, ezactly one for A = Ao, and no positive solutions for A > Ao-
Moreover, solutions lie on a continuous in \ curve, which bifurcates from \ = A1,
and max; u(z) — 00 as A — —oo. (See Figure 2).

Proof. It follows from the results of T. Ouyang [7] that there is a curve of solutions
starting at A = A;, u = 0 which is increasing in A, and it continues until (Ao, U, )y
Ao > Ay, where F(u,A) = u” + du+ hu? (with u(-1) = u(1) = 0) is singular, i.e.,
(3.5) has a nontrivial solution. Further, it was proved in [7] that at any bifurcation
point the curve of solutions bends leftward, and that (3.1) has no positive solutions
for A > Ag.

We claim next that after the turn, the curve of solutions can be continued for
all —0o < A < Ag, and it is single-valued in A. Indeed, if F(A,u) was singular at
(A, @), then as in the proof of the Theorem 1, the Crandall-Rabinowitz theorem
would apply, giving us bifurcation at (}, @) with the curve bending leftwards, which
is impossible.

We claim that the solution curve cannot become unbounded at a finite A after the
turn. For A\; < A < Ag, we know from Ouyang [7] that there are at least two positive
solutions of (3.1). We show next that our curve of solutions, call it T, continues

smoothly for all A; < A < A after the turn. Since bifurcation is impossible, it
remains to rule out the possibility of

maxu(z,A) — 00, asA |}, for some A; < X < Ap. (3.8)

Assume (3.8) holds, and let @(z) be a positive solution at X, which is not on the
lower branch of I'. We claim that for A > A sufficiently close to A

u(z, A) > 4(z) forall ze (-1,1). (3.9)

Indeed, it follows from the proof of Lemma 1 that two different solutions of (3.1)
cannot intersect. Since u(0, A) > @(0) for A close to X, (3.9) follows.

If F(z,u) is invertible at 4(z), we can apply the implicit function theorem; if
it is not, then the Crandall-Rabinowitz Theorem 0. In either case, we would have
another curve of solutions v(z, A), call it T, passing through #@(z). In case F,(z, @)
is invertible by continuing I'; for increasing A we would have to reach a bifurcation
point, since there are no solutions for \ > Ao, and solutions on I'; cannot become
unbounded, since then we would be able to find a A2, A < A2 < Xp such that
u(z, A2) 2 v(z, A7), u(z, A2) # v(z, A2) and u(z1,A2) = v(z1,)2) at some z; €
(-=1,1), which leads to a contradiction by the maximum principle. (The possibility
that u(z, A2) = v(z, A2) is ruled out by the Crandall-Rabinowitz Theorem 0, since
otherwise we would have an inadmissible bifurcation at A;). Once I'; reaches a
bifurcation point, we would have, by the Crandall-Rabinowitz Theorem 0, a lower
branch, which is monotone increasing in A, and this branch would have nowhere to
go for decreasing ), as we show later on in the proof.

Next we show that the problem (3.1) has a positive solution at A = A1. To this
end, we minimize the functional

F(u) = /_11 (u'® - Mu?)dz
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on the set B = {u € H}(-1,1) : f_ll h(z)[u[P*dz = 1}. Notice that by (3.4),
constant multiples of ¢1(z) do not belong to B. This, together with the variational
characterization of \;, implies that K = ming F(u) > 0. If u(z) is a point of
minimum we can assume that u(z) > 0on (-1,1) (replacing it by |u| if Decessary).
At the point of minimum we have for any ¢ € C}(-1,1)

1 1 1
/ u'o' dr — )\1/ updr = ,u/ h(z)uPp dz.
- 1 -1

1 -—

Since for (3.1) any solution of class Hg(-1,1) also belongs to C3(-1,1), after inte-
gration by parts and rescaling, we obtain a solution of (3.1) which we denote a(z).
By the strong maximum principle %(z) > 0 on (-1, 1).

It follows that our solution curve remains bounded as A | ;. For otherwise, we
would have another curve through A = )\, u = () (using the implicit function the-
orem if Fy,(A1,4) is invertible, and the Crandall-Rabinowitz Theorem, otherwise).
But this leads to a contradiction the same way as above.

Next, we show that the solution curve cannot become unbounded at any A < ).
Differentiate (3.1) in ),

Uy + Auy + ph(z)uP~luy +u = 0,

(3.10)

—1<z <1, ur(-1) = uy(1) =0.

Multiplying (3.1) by u,, (3.10) by u, then integrating and subtracting, we express
d 1 P+ 1 1
= PH gy = £ 2 2dz. 3.11
d,\f_lh(m)u dz Py -lu (3.11)

Multiply (3.1) by v, integrate, and use the Poincaré’s inequality

1 1 1 1
A - A) _/ W ds < / u?dg — ) / ?dg = / M lds,  (3.1)
-1 -1 - Ja

-1

Denote s = A; — . Using (3.11) in (3.12),
1 1
SP_—_i _(_i_/ huP*1 4o _<_] huPtl gy,
p+1ds -1 -1

This implies that the quantity fjl huP*! dz cannot become unbounded at a finite

A < A1. Returning to (3.12), we conclude that first ﬁl u?dz and then f_ll u?ds
cannot become unbounded. By the Sobolev imbedding theorem the same is true
for max, u(z).

Next, we claim that max, u(z) — 00 as A — —oo. Indeed, assuming otherwise,
we would have a sequence {2}, An — —00, such that max, u(z, A,) < ¢, with some
positive c. Rewrite (3.1) in the form (for A > 0)

1
ua)=~ [ G onewed,
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where G(z,£) is the corresponding Green’s function

_ sinh p(z + 1) sinh p(¢ — 1)
G(x) 6) - usinh2p.

for £ < £ with p = /])], and G(¢, x) = G(z,£). 1t follows that max, u(z, A,) — 0
as n — oo, Choose n so large that u(z, An) < ¢1(z) for all z € (-1,1), and
—An 2 max; h(z) = h(0). Then, ep1(z) is a supersolution (but not a solution) of
(3.1) at A, for any 0 < & < 1. At the first 0 < e < 1, where u(z, An) and g, (z)
touch, we get a contradiction by the maximum principle.

It follows that the problem (3.1) has a curve of solutions as described in the
theorem. We claim that there are no other solutions. Indeed, any other solution
can be continued for increasing A until a bifurcation point, or until it becomes
unbounded (since it cannot be continued indefinitely). At the bifurcation point, the
Crandall-Rabinowitz Theorem 0 provides us with & lower branch which is locally
increasing in A, (i.e., solution decreases when \ decreases). As in the Theorem 1,
we show that the lower branch is increasing for all A. But then it has nowhere to go.
Indeed, by above, no solution can tend to 0 as A — —oo. If u(z,\) =0 at some A,
then A must be an eigenvalue of —D2. But in view of another bifurcation theorem of
Crandall-Rabinowitz [4], at A = A;, we have local uniqueness of bifurcating solution,
while at other eigenvalues no bifurcation of positive solutions is possible.

Finally, we rule out the possibility of another curve T’y of solutions v(z, A) which
becomes unbounded for increasing A. By above, we can find a v(z,A2) on I'; so that
v(z, A2) > u(z, Ap) for all £ € (-1,1). However, v(z, A2) is a strict supersolution,
(i-e., never a solution) for (3.1) for all —00 < A < Ay. This means that as solutions
on I go to infinity as A — —oo, they are unable by the maximum principle to cross
above v(z, A2), which is a contradiction.
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