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Abstract

For a class of Dirichlet problems in two dimensions, generalizing
the model case

∆u + λu(u − b)(c − u) = 0 in |x| < R,u = 0 on |x| = R,
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we show existence of a critical λ0 > 0, so that there are exactly 0,
1 or 2 nontrivial solutions (in fact, positive), depending on whether
λ < λ0, λ = λ0 or λ > λ0. We show that all solutions lie on a
single smooth solution curve, and study some properties of this curve.
We use bifurcation approach. The crucial thing is to show that any
nontrivial solution of the corresponding linearized problem is of one
sign.
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1 Introduction

We study a class of semilinear Dirichlet problems

∆u+ λf(u) = 0 in |x| < R, u = 0 on |x| = R,(1.1)

on a ball in two dimensions (i.e. x = (x1, x2)). Here λ is a positive parameter,

the nonlinearity f(u) is assumed to generalize a model case, f(u) = u(u −
b)(c− u), with positive constants b and c, and c > 2b. (The last condition is

necessary for existence of nontrivial solutions.) The one-dimensional version

of this problem was studied previously in a number of papers, see [10] and the

references given there. We prove existence of a critical λ0 > 0, such that the

problem (1.1) has exactly 0, 1 or 2 nontrivial solutions, depending whether

λ < λ0, λ = λ0 or λ > λ0 (all nontrivial solutions are, in fact, positive by the

maximum principle.) Moreover, we show that all solutions of (1.1) lie on a

single smooth parabola-like curve of solutions, and study how both branches

of this curve behave as λ → ∞. This appears to be the first exact multiplicity

result for a polynomial nonlinearity (compare with [1], [2]).

We use techniques from bifurcation theory, particularly a theorem of M.G.

Crandall and P.H. Rabinowitz [3], which we recall below. The crucial thing



is to prove that any nontrivial solution of the linearized equation

∆w + λf ′(u)w = 0 in |x| < R,w = 0 on |x| = R,(1.2)

is of one sign, i.e. we can assume that w(x) > 0 for |x| < R. This is done in

Section 2. This result appears to be also of independent interest. In Section

3 we begin by showing that the Crandall-Rabinowitz theorem applies at any

critical point (λ, u) of (1.1) (i.e. when (1.2) admits a nontrivial solution),

and that a “turn to the right” occurs in (λ, u) “plane”. We then combine

this information with a study of stability of both branches to show that there

is a single solution curve.

Without loss of generality we shall assume R = 1.

Next we state a bifurcation theorem of Crandall-Rabinowitz [3].

Theorem 1.1 [3] Let X and Y be Banach spaces. Let (λ, x) ∈ R×X and let

F be a continuously differentiable mapping of an open neighborhood of (λ, x)

into Y . Let the null-space N(Fx(λ, x)) = span {x0} be one-dimensional and
codim R(Fx(λ, x)) = 1. Let Fλ(λ, x) 
∈ R(Fx(λ, x)). If Z is a complement of

span {x0} in X, then the solutions of F (λ, x) = F (λ, x) near (λ, x) form a

curve (λ(s), x(s)) = (λ+τ(s), x+sx0+z(s)), where s → (τ(s), z(s)) ∈ R×Z

is a continuously differentiable function near s = 0 and τ(0) = τ ′(0) = 0,

z(0) = z′(0) = 0.

Our condition (2.2) implies that f(u) > 0 for u < 0 and hence u would

have been superharmonic if u were to be negative and it would have con-

tradicted with the maximum principle. Therefore all solutions of (1.1) are

positive, hence by a well-known result of B. Gidas, W.-M. Ni and L. Niren-

berg [6] they are radially symmetric. By a theorem of C.S. Lin and W.-M.

Ni [13] all solutions of (1.2) are also radially symmetric. Accordingly, we

shall study the ODE versions of these equations. For a class of nonlinearities

generalizing f(u) = u(u − b)(c − u) (see (2.1)-(2.7) and (2.21)) our results

can be roughly summarized as follows.



Theorem 1.2 Any nontrivial solution of (1.2) can be assumed to be positive.

Positivity of the solution of linearized equation is crucial to our analy-

sis. It is here that the restriction on space dimension comes in. All other

arguments in this paper will apply (with slight modifications) in all dimen-

sions. In this direction Wei [14] proves an exact multiplicity result in balls

for f(u) = u(u− b)(c− u) for large λ.

Theorem 1.3 For the problem (1.1) there is a critical λ0 > 0 such that

the problem (1.1) has exactly 0, 1 or 2 nontrivial solutions, depending on

whether λ < λ0, λ = λ0 or λ > λ0. Moreover, all solutions lie on a sin-

gle smooth solution curve, which for λ > λ0 has two branches denoted by

0 < u−(r, λ) < u+(r, λ), with u+(r, λ) strictly monotone increasing in λ and

limλ→∞ u+(r, λ) = c for r ∈ [0, 1). For the lower branch limλ→∞ u−(r, λ) = 0

for r 
= 0, while u−(0, λ) > b for all λ > λ0.

A word on notation. We shall denote derivatives of u(r) by either u′(r)

or ur, and mix both notations when it helps to make our proofs more trans-

parent. We denote by B(0, 1) the unit ball around the origin in R2.

2 Positivity of Solutions of the Linearized Equa-

tion

We begin by listing our assumptions on the nonlinearity f(u). We assume

that f(u) ∈ C2(R) has the following properties

f(0) = f(b) = f(c) = 0 for some constants 0 < b < c,(2.1)

f(u) < 0 for u ∈ (0, b) ∪ (c,∞),(2.2)

f(u) > 0 for u ∈ (−∞, 0) ∪ (b, c),



f ′(0) < 0,(2.3) ∫ c

0
f(u)du > 0,(2.4)

There exists α ∈ (0, c), such that(2.5)

f ′′(u) > 0 for u ∈ (0, α) and f ′′(u) < 0 for u ∈ (α, c).

It is clear from the above assumptions that there is exactly one point in (b, c)

where a ray out of the origin touches the graph of f(u). We denote this point

by β, i.e. β is the unique solution of

f ′(β) =
f(β)

β
.(2.6)

We shall place the following assumption on f(u).

The function gµ(s), defined in (2.14) below,(2.7)

can have at most one sign change when s ∈ (0, c),

for any value of the parameter µ ∈ (0,∞).

We shall show that this assumption follows for example from the following

two more explicit assumptions: f(u) ∈ C4(R) satisfies

f ′′′(u) ≤ 0 and f (4)(u) ≤ 0 with(2.8)

f ′′′(u) + f (4)(u) < 0, for u ∈ (0, β),

2f ′(u) > µuf ′′(u) for any µ ∈ (0, 1] and u ∈ (b, α).(2.9)

For example, a function f(u) = u(u − b)(c − u) with c > 2b satisfies all

of the above conditions. By the maximum principle all solutions of (1.1)

are positive, hence by the well-known result of B. Gidas, W.-M. Ni and L.

Nirenberg [6] they are radially symmetric. Therefore in this section we will

consider the following ODE version of (1.1) for R = 1 in two dimensions

u′′(r) +
1

r
u′(r) + λf(u) = 0 r ∈ (0, 1), u′(0) = u(1) = 0,(2.10)



and its linearization

w′′(r) +
1

r
w′(r) + λf ′(u)w = 0 r ∈ (0, 1), w′(0) = w(1) = 0.(2.11)

The goal of this section is to show that if (2.11) admits a nontrivial solution,

then we have w(r) > 0.

We shall use v(x) = rur + µu, with a constant µ to be specified, as a test

function. The same test function was used by many authors for very different

problems, see e.g., V. Komornik [8, p. 35] for applications in control theory

and many references. One easily checks that v satisfies the equation

v′′ +
1

r
v′ + λf ′(u)v = λ[µf ′(u)u− (µ+ 2)f(u)] ≡ λgµ(u).(2.12)

We recall that (λ, u) is called a critical point of (2.10) if (2.11) has non-

trivial solutions. Let us assume u = u(r) is such a point, we are interested in

the sign properties of gµ(u(r)). But first we notice that by our assumptions

f ′(u) >
f(u)

u
for 0 < u < β.(2.13)

Indeed, denote p(u) = uf ′(u) − f(u). Then p(0) = p(β) = 0, and p′(u) =

uf ′′(u). It follows that p′(u) > 0 near u = 0, and p′(u) < 0 near u = β. Since

p(u) has no roots on (0, β), it follows that p(u) > 0 on (0, β), establishing

(2.13). The same argument shows that for u > β the inequality sign in (2.13)

is reversed.

We now show that (2.7) can be derived from (2.8) and (2.9). More pre-

cisely

Lemma 2.1 Conditions (2.2), (2.3), (2.5), (2.8) and (2.9) imply (2.7), that

is, for any µ ∈ (0,∞) the function gµ(u(r)) can have at most one sign change

when r ∈ (0, 1).

Proof. We write (with p(u) as above)

gµ(u) = µ(f ′(u)u− f(u))− 2f(u) = µp(u)− 2f(u).(2.14)



When u ∈ (0, b) both functions p(u) and−f(u) are positive, while if u ∈ (β, c)

both of the above functions are negative. It follows that the roots of gµ(u)

may occur only when u ∈ (b, β). Compute

g′µ(u) = −2f ′(u) + µf ′′(u)u,(2.15)

g′′µ(u) = (µ− 2)f ′′(u) + µf ′′′(u)u,(2.16)

g′′′µ (u) = (2µ− 2)f ′′′(u) + µf (4)(u)u.(2.17)

Case (i) 0 < µ ≤ 1. Then by (2.9) we see that

g′µ(u) < 0 for u ∈ (b, β),

and the lemma follows. (Notice that (2.9) holds when u ∈ [α, β), as follows

from (2.5).)

Case (ii) µ > 1. Then gµ(0) = 0 and by (2.3)

g′µ(0) > 0,(2.18)

while by (2.8)

g′′′µ (u) < 0 for u ∈ (0, β).(2.19)

Assume that 0 < u1 < u2 are the smallest two roots of gµ(u), and u1 is a

simple root (the other case is similar). Then by (2.18) gµ(u) is negative on

(u1, u2), and hence g′′µ is positive somewhere on (u1, u2). By (2.19), g′′µ(u)

would have to be positive on (0, u1), which combined with (2.18) makes it

impossible for gµ(u) to vanish at u = u1. Hence gµ(u) cannot have more than

one root, concluding the proof of the lemma.

The condition guaranteeing that gµ(u(r)) vanishes exactly once is

u(0) > β.(2.20)

After we prove positivity of the solution of linearized equation, we will be

able to show that the condition (2.20) holds at any turning point. At the



moment we consider this condition as one of two possibilities (the other one

is u(0) ≤ β).

We now impose the final condition on the function f(u):

N ≡ f ′2u− f ′f − ff ′′u > 0 for b < u < β.(2.21)

In case f(u) = u(u− b)(c− u) one computes

N = u2[(b+ c)u2 − 4bcu+ bc(b+ c)] > 0 for all u > 0.

Define 0 < ρ1 < ρ0 by u(ρ0) = b and u(ρ1) = β respectively.

Lemma 2.2 Under the conditions (2.20) and (2.21) the equation

gµ(u(r)) = 0(2.22)

defines for ρ1 < r < ρ0 a smooth curve µ = µ(r), with the properties

µ(ρ0) = 0(2.23)

lim
r→ρ1+

µ(r) = ∞(2.24)

µ′(r) < 0 for r ∈ (ρ1, ρ0).(2.25)

If instead of (2.20) we have

u(0) ≤ β,(2.26)

then the curve µ = µ(r) is defined for 0 < r < ρ0, and (2.24) is replaced by

lim
r→0+

µ(r) =

{ ∞, if u(0) = β
2f(u(0))

f ′(u(0))u(0)−f(u(0))
, if u(0) < β.

(2.27)

Proof. Solving (2.22),

µ = 2
f(u)

f ′(u)u− f(u)
.

By (2.21)

µr = 2
f ′2u− f ′f − ff ′′u

[f ′u− f ]2
ur < 0,



and the proof follows.

The sign of our test function v = rur + µu is governed by the function

h(r) = rur

u
.

Lemma 2.3 For all r ∈ (0, 1), we have

h′(r) < 0.(2.28)

Proof. Assume first that 0 < r < ρ0. Then

h′(r) =
(rurr + ur)u− ru2

r

u2
=

−λrf(u)u− ru2
r

u2
< 0,(2.29)

Since f(u) > 0 when b = u(ρ0) < u < u(0).

Turning to the general case, notice that h(r) → −∞ as r → 1. Hence

if (2.28) was violated somewhere on (ρ0, 1), we would have on this interval

at least one point of local maximum, call it r (and also at least one point of

local minimum). At r, h′(r) = 0, which in view of (2.29) implies

u2
r(r) + λf(u(r))u(r) = 0,(2.30)

and h′′(r) ≤ 0. On the other hand, using (2.29), (2.30) and (2.13), we

compute

h′′(r) = −(ru
2
r + λf(u)u)′(r)

u2(r)

= −rur(2urr + λf ′(u)u)
u2

= −
rur

(
−2

r
ur + λf ′(u)u− λf(u)

)
u2

> 0,

a contradiction.

Notice that −h(0) = 0 and −h(ρ0) > 0. It follows by Lemmas 2.2 and 2.3

that the curves µ = µ(r) and µ = −h(r) intersect exactly once on (ρ1, ρ0).

Let r0 ∈ (ρ1, ρ0) denote the point of intersection, and µ0 = µ(r0). We now

fix our test function v = rur + µ0u.



Lemma 2.4 With µ0 as fixed above, we have

v(r) > 0 and gµ0(u(r)) < 0 for 0 < r < r0,(2.31)

v(r) < 0 and gµ0(u(r)) > 0 for r0 < r < 1.

Proof.

Case (i) u(0) ≥ β. Using (2.3) we see that gµ0(0) = 0, g′µ0
(0) > 0, which

implies that the function gµ(u(r)) is positive near r = 1, and we also have

gµ0(u(0)) < 0. Since by Lemma 2.1 gµ0(u(r)) can have at most one sign

change, it follows that it has exactly one sign change at r = r0. When r < r0

we have

−h(r) < µ0,

i.e. v = rur + µ0u > 0. Similarly −h(r) > µ0 for r0 < r < 1, implying that

v < 0 there.

Case (ii) u(0) < β. We still have gµ0(0) = 0 and g′µ0
(0) > 0. Also

gµ0(u(r0)) = 0. We claim that at u(r0), gµ0(u) must change sign (from

positive to negative for increasing u). One observes that

g′µ0
(u(r0)) = −2N(u(r0))

p(u(r0))
< 0,(2.32)

using the fact that gµ0(u(r0)) = 0 and (2.21). It follows that gµ0(u(r)) has

exactly one sign change at r = r0, and the rest follows as in Case (i).

Theorem 2.1 Assume f(u) satisfies the assumption (2.7) and the condi-

tions (2.1-2.5) and (2.21). Let w(r) be a nontrivial solution of (2.11). Then

we can choose it such that

w(r) > 0 for all r ∈ [0, 1).(2.33)



(By a theorem of C.S. Lin and W.-M. Ni [13] this result classifies not only

radial, but all solutions of the linearized problem (1.2).)

Proof. By a result of Holzmann and Kielhöfer [7, p. 227], w(0) 
= 0, so that

we may assume w(0) > 0. With µ0 as fixed above, we multiply the equation

(2.12) by rw and subtract from this the equation (2.11) multiplied by rv,

obtaining
d

dr
[r(wv′ − vw′)] = λgµ0(u(r))w(r)r.(2.34)

Assuming the contrary to (2.33) let r1 ∈ (0, 1) be the first (smallest) zero

point of w(r). Let r0 be as defined in Lemma 2.4.

Case (i) r1 < r0. Integrate (2.34) over (0, r1),

−r1v(r1)w
′(r1) = λ

∫ r1

0
gµ0(u(r))w(r)r dr.(2.35)

Using (2.31) we see that the left hand side of (2.35) is non-negative, while

the right hand side is negative, a contradiction.

Case (ii) r1 ≥ r0. The function w(r) has to change sign at r = r1 (since

otherwise we would have w′(r1) = 0 and hence w ≡ 0, a contradiction). Let

r2 ≤ 1 be the next root of w(r), with w(r) < 0 on (r1, r2). Integrate (2.34)

over (r1, r2)

−r2v(r2)w
′(r2) + r1v(r1)w

′(r1) = λ
∫ r2

r1

gµ0(u(r))w(r)r dr.(2.36)

Using (2.31), we see that the quantity on the left in (2.36) is non-negative,

while the one on the right is negative, a contradiction, concluding the proof

of the theorem.

We recall that (λ, u) is called a critical point of (2.10) if (2.11) has non-

trivial solutions.

Lemma 2.5 Let (λ, u(r)) be a critical point of (2.10). Then

u(0) > β.



Proof. We will show that if u(0) ≤ β, then the only solution of (2.11) is

w ≡ 0. We recall that

f ′(u) >
f(u)

u
for 0 < u < β.(2.37)

If u(r) is a nontrivial solution of (2.10), it follows that the principal eigenvalue

of

∆z + λ
f(u)

u
z = µz for r ∈ (0, 1), z|r=1 = 0

is µ = 0 (and z = u is the corresponding principal eigenfunction). By (2.37),

the principal eigenvalue of

∆z + λf ′(u)z = µz for r ∈ (0, 1), z|r=1 = 0(2.38)

must be positive. On the other hand, using Theorem 2.1, we see that w(r) >

0 is an eigenfunction of (2.38), corresponding to an eigenvalue µ = 0, a

contradiction.

3 The global solution curve

In this section we shall prove an exact multiplicity result for our problem

u′′(r) +
1

r
u′(r) + λf(u) = 0 r ∈ (0, 1), u′(0) = u(1) = 0.(3.1)

We recall the linearized equation

w′′ +
1

r
w′ + λf ′(u)w = 0 r ∈ (0, 1), w′(0) = w(1) = 0.(3.2)

We separate this section into several subsections.

3.1 Some preliminaries

The following lemma was proved in [9]. We repeat its proof for completeness.



Lemma 3.1 Let f(u) ∈ C2(R+) satisfy f(0) ≥ 0. Assume (3.2) admits a

nontrivial solution. Then ∫ 1

0
f(u)wrdr > 0.(3.3)

Proof. Notice that condition f(0) ≥ 0 and the Hopf’s boundary Lemma

imply that (see e.g. [4, p. 484])

u′(1) < 0.(3.4)

We may also assume w′(1) < 0. Differentiate (3.1)

u′′′ +
(
1

r
u′

)′
+ λf ′(u)u′ = 0.(3.5)

Multiply (3.2) by r2u′, subtract (3.5) multiplied by r2w, then integrate over

(0, 1). Obtain

∫ 1

0

[
r2u′w′′ − r2u′′′w + ru′w′ − r2

(
1

r
u′

)′
w

]
dx = 0.(3.6)

Integrate by parts in the first, second and fourth terms:

r2u′w′|10 +
∫ 1

0
[−2ru′w′ − r2u′′w′ + 2ru′′w + r2u′′w′

+ru′w′ + 2u′w + ru′w′]dr = 0.

After cancellations:

u′(1)w′(1) + 2
∫ 1

0
r

(
u′′ +

1

r
u′

)
w dr = 0.

Finally, using the equation (3.1)

∫ 1

0
f(u)wr dr =

1

2λ
u′(1)w′(1) > 0.

Lemma 3.2 In the conditions of the previous lemma, with f(0) = 0, we

have ∫ 1

0
f ′′(u)u2

rwr dr = 0.(3.7)



Proof. Rewrite (3.5)

u′′
r +

1

r
u′

r + λf ′(u)ur − 1

r2
ur = 0.(3.8)

Differentiate (3.2)

w′′
r +

1

r
w′

r + λf ′(u)wr − 1

r2
wr + λf ′′(u)urw = 0.(3.9)

Multiply (3.8) by rwr, (3.9) by rur and subtract. Denoting p(r) = u′′w′ −
u′w′′, we express

d

dr
[rp] = λrf ′′(u)u2

rw.(3.10)

Integrate (3.10) over (0, 1)

λ
∫ 1

0
f ′′(u)u2

rwr dr = p(1) = u′′(1)w′(1)− u′(1)w′′(1).(3.11)

¿From the corresponding equations we express

u′′(1) = −u′(1),

w′′(1) = −w′(1).

Using these expressions in (3.11), we conclude that p(1) = 0, and the lemma

follows.

We now state our main result whose proof will occupy the rest of the

paper.

Theorem 3.1 Assume that f(u) satisfies assumption (2.7) and the the con-

ditions (2.1-2.5) and (2.21). Then there is a critical λ0 > 0, such that for

λ < λ0 the problem (3.1) has no nontrivial solutions, it has exactly one non-

trivial solution for λ = λ0, and exactly two nontrivial solutions for λ > λ0.

Moreover, all solutions lie on a single smooth solution curve, which for λ > λ0

has two branches denoted by 0 < u−(r, λ) < u+(r, λ), with u+(r, λ) strictly

monotone increasing in λ and limλ→∞ u+(r, λ) = c for r ∈ [0, 1). For the



lower branch, limλ→∞ u−(r, λ) = 0 for r 
= 0, while u−(0, λ) > γ for all

λ > λ0 , where γ is the unique number ∈ (b, c) such that
∫ γ
0 f(u)du = 0.

(Recall that any nontrivial solution is positive by the maximum principle.)

Proof of the existence part. We begin by noticing that for sufficiently

small λ the problem (3.1) has no positive solutions. Indeed, under our as-

sumptions there is a constant γ > 0, such that f(u) ≤ γu for all u > 0.

Multiplying the PDE version of (3.1) by u, and integrating over the unit ball

λγ
∫

r<1
u2dx ≥ λ

∫
r<1

f(u)u dx =
∫

r<1
|∇u|2dx ≥ λ1

∫
r<1

u2 dx,

where λ1 is the principal eigenvalue of the Laplacian, and the claim follows.

Existence of positive solutions for large λ is a known fact, see e.g. [5].

3.2 Bifurcations of solution curves

Notice that when a nontrivial solution of (3.1) exists, there is a maximal so-

lution, call it u(r, λ) (which can be obtained by monotone iterations, starting

with a supersolution u = c). We now continue u(r, λ) for decreasing λ. If the

corresponding linearized equation (3.2) at some (λ1, u1) has only the trivial

solution w = 0, then by the implicit function theorem we can solve (3.1) for

λ < λ1 and λ close to λ1, obtaining a smooth in λ curve of solutions. This

process of decreasing λ cannot be continued indefinitely, since for sufficiently

small λ > 0 the problem (3.1) has no solutions. Let λ0 be the infimum of

λ’s for which we can continue the curve of solutions to the left. It is easy to

show (see [11], [12] for a similar argument) that there is a solution on this

curve at λ0, call it u(r, λ0) ≡ u0(r). Clearly the linearized equation (3.2) at

λ = λ0 and u = u0 must have a nontrivial solution, and by Theorem 2.1,

w(r) > 0 for all r in [0, 1). We shall finish the rest of the proof of Theorem

3.1 in a few lemmas.

Lemma 3.3 Let (λ0, u0) be a critical point of (3.1), i.e. (3.2) has a nontrival

solution. Then (λ0, u0) is a bifurcation point, near which the solutions of (3.1)



form a curve (λ0+τ(s), u0+sw+z(s)) with s near s = 0, and τ(0) = τ ′(0) =

0, z(0) = z′(0) = 0.

Furthermore

τ ′′(0) > 0.(3.12)

Proof. We shall first show that at the critical point (λ0, u0) the Crandall-

Rabinowitz theorem applies. Define B = B(0, 1) to be a unit ball in R2, X =

{u ∈ C2,α(B)|u = 0 on ∂B} and Y = Cα(B). Let F : R+ ×X → Y be given

by F (λ, u) = ∆u+ λf(u). We also rewrite (3.2) as

∆w + λf ′(u)w = 0 in B,w = 0 on ∂B.(3.13)

That the null-space of Fu(λ0, u0) is one-dimensional is seen from (3.2) (it

can be parametrized by w′(1)). Since Fu(λ0, u0) is a Fredholm operator of

index zero, it follows that codim R(Fu(λ0, u0)) = 1. Finally, if the condition

Fλ(λ0, u0) 
∈ R(Fu(λ0, u0)) was violated, one could find z ∈ X satisfying

∆z + λ0f
′(u0)z = f(u) in B, z = 0 on ∂B.(3.14)

¿From the equation (3.13), written at (λ0, u0), and from (3.14) we have

0 =
∫

B
f(u0)w dx = 2π

∫ 1

0
f(u0)wr dr,

contradicting Lemma 3.1.

Applying the Crandall-Rabinowitz theorem, we conclude that (λ0, u0)

is a bifurcation point, near which the solutions of (3.1) form a curve (λ0 +

τ(s), u0+sw+z(s)) with s near s = 0, and τ(0) = τ ′(0) = 0, z(0) = z′(0) = 0.

We claim that (3.12) holds, which implies that only “turns to the right” in

(λ, u) “plane” are possible. We use the formula

τ ′′(0) = −λ0

∫ 1
0 f

′′(u0)w
3r dr∫ 1

0 f(u0)wr dr
.(3.15)



To derive (3.15), we differentiate the PDE version of (3.1) twice in s,

∆uss + λf ′(u)uss + 2λ′f ′(u)us + λf ′′(u)u2
s + λ′′f(u) = 0.(3.16)

Setting here s = 0, and using that τ ′(0) = 0 and us|s=0 = w(x), we obtain

∆uss + λ0f
′(u)uss + λ0f

′′(u)w2 + τ ′′(0)f(u) = 0.(3.17)

Multiplying (3.17) by w, and the equation (3.13) by uss, subtracting and

integrating, we obtain (3.15).

By Lemma 3.1 the denominator in (3.15) is positive, so we only need to

show that ∫ 1

0
f ′′(u0)w

3r dr < 0.(3.18)

We shall establish (3.18) by comparing this integral with the one in Lemma

3.2. We claim that f ′′(u0(r)) changes sign exactly once on (0, 1). Indeed,

f ′′(u) is positive for small u, and hence f ′′(u0(r)) > 0 for r close to 1. By

Lemma 2.5, u0(0) > β, and hence f ′′(u0(0)) < 0. The claim follows by our

conditions on f(u). We claim next that the functions −ur and w intersect

exactly once on (0, 1). Differentiating (3.1),

u′′
r +

1

r
u′

r + λf ′(u)ur =
1

r2
ur < 0 for r ∈ (0, 1),

which implies that ur is a supersolution of the same equation (3.2) that

w satisfies. If −ur and w intersected more than once, then, considering

their values at r = 0, 1, we would find an interval (r1, r2) ⊂ (0, 1), so that

w(r) < −ur on (r1, r2). Then we can find a constant 1 < µ, such that

−ur ≤ µw for all r ∈ (r1, r2) and −ur(r0) = µw(r0) for some r0 ∈ (r1, r2).

Since −ur and µw are respectively a subsolution and solution of the same

equation (3.2), we obtain a contradiction, proving that −ur and w intersect

exactly once on (0, 1).

We will show that∫ 1

0
f ′′(u0)w

3r dr <
∫ 1

0
f ′′(u0)u

2
0r
wr dr.(3.19)



Let r be the point where f ′′(u0(r)) changes sign on (0, 1). By considering

µw(r) with a proper constant µ, we may assume that −ur and w(r) intersect

at the same point r. Returning to (3.19), we see that on the interval (0, r),

where f ′′(u0) < 0, we have w2 > u2
0r
, while on the interval (r, 1), where

f ′′(u0) > 0, we have w2 < u2
0r
. So that the integrand on the right in (3.19)

is larger than the one on the left for all r 
= r, which proves (3.19). In view

of Lemma 3.2, both inequality (3.18) and our claim (3.12) follow.

It follows that at the critical point (λ0, u0) the curve of solutions turns

to the “right” in (λ, u) plane. We denote by u+(x, λ) and u−(x, λ) its upper

and lower branches respectively. It is clear from Lemma 3.3 that

u+
λ =

1 + o(1)√
2τ ′′(0)(λ− λ0)

w for λ > λ0 and close to λ0,(3.20)

and

u−
λ = − 1 + o(1)√

2τ ′′(0)(λ− λ0)
w for λ > λ0 and close to λ0.(3.21)

After the turn we can continue this curve of solutions for increasing λ,

using the implicit function theorem, so long as (λ, u) is a nonsingular point

of F (λ, u). However, there can be no critical points on either upper or lower

branches, since we know precisely the structure of solutions at any critical

point, namely a turn to the right must always occur, which is impossible.

It remains to show that there is only one such curve, and to establish the

behavior of its branches as λ → ∞.

3.3 Uniqueness of solution curve

Lemma 3.4 The upper branch u+ is increasing in λ for all λ > λ0.

Proof. Let u be a solution on an upper branch. For λ close to λ0 the Lemma

follows from (3.20) and Theorem 2.1, since uλ is then positive. Our goal is



to show that uλ remains positive for all λ > λ0. For that we shall show that

uλ cannot develop a zero in the interior of the interval (0, 1), or zero slope

at r = 1. But first we establish a preliminary inequality. We show next that

for any solution of (3.1) ∫ 1

0
f(u)u′r dr < 0.(3.22)

Indeed, write (3.1) in the form

(ru′)′ + λrf(u) = 0.(3.23)

Multiply (3.23) by ru′ and integrate over (0, 1)

∫ 1

0
f(u)u′r2dr = − 1

2λ
u′2(1) < 0.(3.24)

The function f(u(r))u′(r) is negative near r = 0 and positive near r = 1,

and it changes sign once, say at r = r0. It follows that

∫ 1

0
f(u)u′r2dr > r0

∫ r0

0
f(u)u′r dr + r0

∫ 1

r0

f(u)u′r dr

= r0

∫ 1

0
f(u)u′r dr.

In view of (3.24), the inequality (3.22) follows. If r1 is any point in (0, 1),

then we also have

∫ r1

0
f(u)u′r dr <

∫ 1

0
f(u)u′r dr < 0.(3.25)

Let now λ1 be the supremum of λ > λ0 where the inequality u+
λ (r, λ) > 0

(for all r ∈ (0, 1)) holds. Several cases are possible.

Case (i) u+
λ (r, λ1) ≥ 0 for all r ∈ (0, 1), and u+

λ (r1, λ1) = 0 for some r1 ∈
(0, 1). For the rest of the argument we shall write u for u+ and uλ for u

+
λ .

Notice that uλ satisfies

u′′
λ +

1

r
u′

λ + λf ′(u)uλ + f(u) = 0 r ∈ (0, 1), u′
λ(0) = uλ(1) = 0.(3.26)



Since r1 is a point of minimum for uλ(r, λ1), it follows that u
′
λ(r1, λ1) = 0

and u′′
λ(r1, λ1) ≥ 0. From (3.26) we then see that f(u(r1, λ1)) ≤ 0, and hence

0 < u(r1, λ1) ≤ b.(3.27)

¿From the equations (3.8) and (3.26) we obtain as before

(u′
λu

′ − uλu
′′)′ +

1

r
(u′

λu
′ − uλu

′′) +
1

r2
uλu

′ + f(u)u′ = 0.(3.28)

Letting p = u′
λu

′ − uλu
′′, we express from (3.28)

(rp)′ = −1
r
uλu

′ − f(u)u′r.(3.29)

Integrate (3.29) over (0, r1), and use (3.25)

r1p(r1) ≥ −
∫ r1

0
f(u)u′r dr > 0.(3.30)

But p(r1) = 0, a contradiction.

Case (ii) u′
λ(1, λ1) = 0. Integrating (3.29) over (0, 1) we obtain the same

contradiction.

Case (iii) uλ(0, λ1) = 0. Again from (3.26) we see that f(u(0, λ1)) ≤ 0, a

contradiction. Hence the upper branch is increasing for all λ > λ0.

Since the upper branch is increasing and bounded above by c, it tends to

a limit at any r ∈ (0, 1) as λ → ∞. This limit cannot be different from either

b or c over any subinterval of (0, 1), since otherwise from the equation (3.1),

(ru′)′ would have to be large over that subinterval, which is impossible. (The

function ru′ would have a large change over that subinterval, which would

imply a large change in u, contradicting to the total variation of u being less

than c). Since u′′(r) > 0 below u = b, the upper branch cannot tend to b over

any subinterval of (0, 1). It follows that the upper branch u+(x, λ) tends to

c over [0, 1) as λ → ∞.



Before taking a look at the asymptotic behavior of lower branch we will

prove the following result about the eigenvalue estimates of the linearized

equation of (3.1) at regular points.

w′′ +
1

r
w′ + λf ′(u)w = µw r ∈ (0, 1), w′(0) = w(1) = 0.(3.31)

Lemma 3.5 Everywhere on lower branch the principal eigenvalue of (3.31)

is positive and everywhere on upper branch the principal eigenvalue of (3.31)

is negative.

Proof. Let u be a solution on a lower branch, and w be a solution of the cor-

responding equation (3.31). ¿From the PDE versions of the equations (3.26)

and (3.31) we obtain, multiplying the equations by w and uλ respectively,

subtracting and integrating over the region r < 1,

µ = −
∫ 1
0 f(u)wr dr∫ 1
0 uλwr dr

.(3.32)

For λ near λ0 (the turning point) we know that uλ < 0 by (3.21), and hence

the denominator is negative. We show next that the numerator in (3.32) is

positive. Differentiate (3.1)

u′′′ +
1

r
u′′ + λf ′(u)u′ − 1

r2
u′ = 0.(3.33)

¿From (3.33) and (3.31)

(u′′w − u′w′)′ +
1

r
(u′′w − u′w′)− 1

r2
u′w = −µu′w.

Setting p(r) = u′′w − u′w′, we express

(rp)′ =
(
1

r
− µr

)
u′w.(3.34)

The function q(r) = rp(r) satisfies q(0) = 0, q(1) = −u′(1)w′(1) < 0, and

from (3.34) q′ < 0 near r = 0. Also from (3.34) we see that q(r) can have at



most one critical point on (0, 1), no matter what µ is. It follows that q(r) < 0

on (0, 1). Hence

0 >
∫ 1

0
rp(r)dr =

∫ 1

0
r(u′′w − u′w′)dr =

=
∫ 1

0
2ru′′wdr +

∫ 1

0
u′wdr > 2

∫ 1

0
r(u′′ +

1

r
u′)wdr.

Using (3.1) we conclude
∫ 1
0 f(u)wr dr > 0, i.e. the numerator in (3.32) is

positive.

So µ > 0 near λ = λ0 on the lower branch. However, the same is true

for the entire lower branch. Indeed, assuming otherwise, since µ changes

continuously, we would have a point on the lower branch where µ = 0. This

is a singular point, where a turn to “the right” must occur, impossible. So

µ > 0 on the entire lower branch. The same argument shows that µ < 0 on

the entire upper branch.

Next, we study the asymptotic behavior of lower branch.

Lemma 3.6 For any lower branch, limλ→∞ u−(r, λ) = 0 for r 
= 0, while

u−(0, λ) > γ for all λ > λ0.

Proof. Let u be a solution on a lower branch. Multiplying (3.1) by u′ and

integrating over (0,1), we obtain that

0 <
1

2
u′2(1) +

∫ 1

0

1

r
u′2dr = λ

∫ u(0)

0
f(u)du,(3.35)

which shows that u(0) > γ for any solution of (3.1). On the other hand no

subsequence of the lower branch solutions can approach to any limit bigger

than b
2
for any r ∈ (0, 1), since by Lemma 9 in [5] a solution with such

property (so-called large solutions in [5, p. 55]) has to be linearly stable,

namely the principal eigenvalue of (3.31) is negative, contradicting the result

of Lemma 3.5. Therefore we have that lim supλ→∞ u−(r, λ) ≤ b
2
. However

since the only zero of f in [0, b
2
] is 0, we conclude as in the proof of Lemma



3.4 that the set of points r ∈ (0, 1) where u−(r, λ) does not converge to zero

cannot contain any intervals. Combined with the fact that u′(r) < 0 for all

r ∈ (0, 1), we conclude that this set is empty, and hence we must have that

lim
λ→∞

u−(r, λ) = 0,(3.36)

which proves this lemma.

Lemma 3.7 Define ζ ∈ (b, c) to be the larger root of f ′(u). Then any two

solutions u(r) and v(r) of (3.1) cannot intersect in the region where they are

both greater than ζ. In particular, if λ is sufficiently large, any solution on

the lower branch cannot intersect any solution on the upper branch (because

the latter tends to c in [0, 1) as λ → ∞).

Proof. Assuming the contrary, we can find r ∈ (0, 1) such that v(r) >

u(r) ≥ ζ for r ∈ (0, r̄) but v(r̄) = u(r̄). Since f ′(u) < 0 for u in (ζ, c), it

follows that f(u(r)) > f(v(r)) for r ∈ (0, r̄). Integrating the difference of the

corresponding equations

(r(u′ − v′))′ + rλ(f(u)− f(v)) = 0

over (0, r̄), we conclude that u′(r̄) < v′(r̄) < 0. This is a contradiction, since

clearly v(r) must be “steeper” than u(r) at r̄.

Finally, we rule out the possibility of another curve of solutions. By the

above analysis any solution curve would have an upper branch tending to c

as λ → ∞. By Lemma 3.5 the principal eigenvalue of (3.31) for upper branch

is negative. Let now v(x, λ) be another curve of solutions, with the branches

v−(r, λ) < v+(r, λ), and with a turning point (λ0, u0), and say λ0 ≥ λ0. We

claim that for λ > λ0

v−(r, λ) > u−(r, λ) and v+(r, λ) < u+(r, λ) for all r ∈ [0, 1).(3.37)

Assume that the first inequality in (3.37) is violated at some λ1 > λ0. Follow

both curves v−(x, λ) and u−(x, λ) as λ decreases from λ1 to λ0. Then at each



λ ∈ [λ0, λ1) the inequality (3.37) has to be violated, since otherwise we could

find λ̂ ∈ (λ0, λ1), such that v
−(r, λ̂) ≥ u−(r, λ̂) and v−(r, λ̂) 
≡ u−(r, λ̂), but

that is impossible by the maximum principle. At λ0 we switch to v+(r, λ),

i.e. we compare v+(r, λ) with u−(x, λ) as λ increases from λ0 to infinity. By

the same analysis, the inequality v+(r, λ) > u−(r, λ) has to be violated for all

λ, but that is impossible from Lemma 3.7. The second inequality in (3.37)

is proved similarly.

Next we notice that on any finite in λ interval, one can have only finitely

many solution curves. Assuming otherwise, let (λn, un) be the turning points

of the infinite family of curves on a finite interval. Along a subsequence λnk
→

λ and unk
→ u (in C2). The point (λ, u) is singular, but the solution set near

it is not a simple curve, contradicting the Crandall-Rabinowitz theorem.

We are now ready to exclude the possibility of more than one solution

curve. We use the argument essentially of [5, p. 68]. Assume that at some

λ̂ there are several solution curves. Let v−(r, λ) be the largest of the lower

branches at λ̂. Let µ̂ > 0 and ŵ(r) > 0 be the corresponding eigenpair,

obtained by solving (3.31). It is easy to check that for small enough ε,

v ≡ v−(r, λ̂) + εŵ(r) is a strict subsolution of (3.1), which lies above all

solutions on the lower branches. Define an open set

O =
{
u ∈ C1[0, 1], u′(0) = u(1) = 0, v(r) < u(r) < c

}

Define H = max[0,c] |f ′(s)|, and the map T (u) = (∆−H)−1(−λf(u)−Hu).

As in [5] we see that T (O) ⊂ O, and hence deg(T,O, 0) = 1. But the index

of each of the solutions on the upper branches is also 1, hence there can be

only one upper branch, and hence only one solution curve.
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