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Using techniques of bifurcation theory we present two exact multiplicity results for boundary
value problems of the type

w4+ Af(x,u)y=0 for —L<x<L, u(—L)=u(l)=0.

The first result concerns the case when the nonlinearity is independent of x and behaves like a
cubic in u. The second one deals with a class of nonlinearities with explicit x dependence.

—_—

1. Introduction

We present exact multiplicity results for boundary value problems of the type
w4+ Af(x,u)=0 for —L<x<L, u(—L)y=u(l)=0, (1.1)

with the nonlinearity f behaving like a cubic polynomial in u. Here A is a positive
parameter, and we may assume without loss of generality that L= 1. Our first result
concerns the case when f= f(u), ie. f does not depend explicitly on x, and f(u)
has three simple and distinct positive roots O<a<b<e¢, with f(u)>0 for
ue(—oo,a)u(b,c), and f(u) <0 for u e (a, b)u(c, co). Our prototype is the problem

W4+ AMu—a)u—>b)c—uy=0 for —1<x<1,
u(—1)=u(1)=0. (1.2)

Assuming that the area under f(u) from b to ¢ (the positive hump) is greater that
the area under f(u) from a to b (the negative hump), and a technical assumption,
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which restricts a from being large, we show existence of a critical value of the
parameter 4= A, so that for 0 < 1 < 4, the problem (1.1) has exactly one solution,
for A=A, it has exactly two solutions, and exactly three solutions for A > 4, (all
solutions are positive by the maximum principle, and throughout the paper we
consider only the classical solutions). For the special case of (1.2) a similar result
was proved in the papers of J. Smoller and A. Wasserman [10] and S.-H. Wang
[117. These authors used rather involved phase-plane analysis. We can treat more
general nonlinearities by using more flexible techniques of bifurcation theory. Our
approach is applicable in many other situations, and in fact it was used by two of
the present authors in [4—6] to derive multiplicity results (some of which were exact
multiplicity results) for a number of problems of the type (1.1) in case f is even in x.

Our second result is on exact multiplicity of solutions for a cubic in u nonlinearity
with explicit dependence on x. Namely, we consider a model problem

w4+ t(b(x)~uy=0o0n(—1,1), u(—1)=u(1)=0. (1.3)

Under certain conditions on b(x), we prove existence of a critical 1, > 0, so that the
problem (1.3) has no nontrivial solutions for 0 < 4 < 4o, exactly one (positive) solu-
tion for A = Ay and exactly two (positive) solutions for A > A,. This appears to be the
first such result. The phase-plane analysis is, of course, not applicable here. In [5]
it was proved that all solutions of (1.3) lie on a single smooth solution curve, and
that for A large there are exactly two solutions.

A word on notation. We shall denote derivatives of u(x) by either #/(x) or u, and
mix both notations to make our proofs more transparent (1, will denote the second
derivative of u(x), when convenient).

Next we list some background results. Recall that a function y(x) e C*(—L, L)n
C°[—L, L] is called a supersolution of (1.1) if

Y'+Af(x,y)£00n (=L, L), »(=L)z0, »L)=0. (1.4)

A subsolution y(x) is defined by reversing the inequalities in (1.4). The following
result is standard:

Levma 1.1. Let y(x) and y(x) be respectively super- and subsolutions of (1.1), and
y(x) 2 Y (x) on (— L, L) with y(x) # /(x); then y(x)>y(x) on (=L, L).

We shall often use this lemma with either y(x) or ¥/(x) or both being solutions of
(1.1). The following lemma is a consequence of the first.

LemMA 1.2. Let u(x) be a nontrivial solution of (1.1) with f(x,0)=0. If u(x)=0 on
(—L, L) then u>0 on (—L, L).

Next we state a bifurcation theorem of Crandall and Rabinowitz [1].

TuEOREM 1.3 [1]. Let X and Y be Banach spaces. Let (1, X)e R x X and let F be a
continuously differentiable mapping of an open neighbourhood of (A, X) into Y. Let the
null-space N(F.(2, X)) = span {x,} be one-dimensional and codim R(F,(1, X)) = 1. Let
F,(2, %) ¢ R(F.(A, X)). If Z is a complement of span {x,} in X, then the solutions of
F(l, x)=F(, %) near (A, %) form a curve (A(s), x(s)) = (A + ©(s), X + sxq + 2(5)), where
s—(t(s), z(s)) e R x Z is a continuously differentiable function near s =0 and 7(0)=
7'(0) =0, z(0) = z/(0) = 0.
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2. Exact multiplicity results for a class of nonlinearities generalising cubic

We study the exact multiplicity of nontrivial solutions of the problem (u = u(x))
u+Af(w)=0 forxe(—1,1), u(—1)=u(l)=0. (2.1)
A corresponding linearised problem will often be used (w = w(x)):
W'+ A (ww=0 forxe(—1,1), w—=1)=w(l)=0. (2.2)

It is known that the positive solutions of (2.1) and (2.2) are even functions, and
moreover ¥’ <0 for xe (0, 1], see e.g. [4]. Since u/(x) also satisfies the equation in
(2.2), by using the Sturm Comparison Theorem we easily conclude that any nontrivial
solution of (2.2) can be chosen to be positive. If the equation (2.2) has a nontrivial
solution, we shall refer to (4, u(x)) as a critical solution (or critical point) of (2.1).
Before stating our assumptions on f(u), we prove an important lemma relating

solutions of the problems (2.1) and (2.2), which essentially does not require any
assumptions.

LemmA 2.1. Let u(x)e C3(—1,1)nC°[—1,1] and w(x)e C*(—1,1)nC°[—1,1] be
solutions of (2.1) and (2.2) respectively, and f e C(R). Then

! 1
j J@w dx = 5 w(0)f w(0)). (23)

0
Proof. Differentiate the equation (2.1)
uy + Af,u,, = 0. (2.4)
From (2.4) and (2.2) we get
wu" —u'w)y =0 forall xe[0,1).

Hence, the quantity wu” — u'w’ is constant, and so

w(x)u"(x) — ' ()w'(x) = — Aw(0) £ (u(0)). (2.5)
Integrating (2.5),

J“ (wit" — u'w) dx = — Aw(0) £ u(0)). (2.6)

0

On the other hand,

1 1 1
j (W' — u'w) dx = f wu” dx — [Wu’lé - f wu” dx}
o] 0 0

=2 j‘* wiu” dx = —24 J’l fwyw dx. (2.7)

0

From (2.6) and (2.7) the lemma follows. [

We begin with a special case when f(0) = 0. Namely, we assume that the function
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f(u) e C*(R) has the following properties:

f(0)=f(®)=f(c)=0 for some constants O<b<e, (2.8)
f(x)>0 for xe(—o0,0)u(b,c), 29)
f(x)<0 for x e (0, byulc, o), 2
Jc fu)du>0, (2.10)
f"(u) changes sign exactly once when u>0, and f”(u) has (2.11)

exactly one positive root (the root assumption can be relaxed).

Our canonical example is f(u) = u(u — b)(c — u) with constants u <b <c, such that
b <1c. Using the maximum principle and Lemma 1.1, we see that any nontrivial
solution of (2.1) satisfies

O<u(x)<c forall xe(—1,1). (2.12)
Similarly,

b<u(0)<c. (2.13)

By our assumptions the function f(u) is concave up near u = 0 and concave down
for u>uy >0, where f"(uo) =0. It is clear that there is exactly one point where a
ray out of the origin touches the graph of f(u). We denote this point by B, ie. f is
the unique solution of

A
fp)==— (214)
i
We recall from the analysis in 6] that turning (or critical) points of (2.1) can occur
only when (2.2) has a nontrivial solution w(x), and also that in such a case we can
choose w(x) to be strictly positive on (-1, 1).

LemMA 2.2. Let u(x) be any critical point of (2.1). Then
u(0)> p. (2.15)

Proof. We will show that if u(0) < f, then the only solution of (2.2) is w = 0. First,
we claim that

J®)
u
Indeed, denote p(u) = uf (1) — f(u). Then p(0) = p(p) =0, and p'(u) = uf "(u). It follows
that p'(u)> 0 near u=0, and p'(u) <0 near u= B. Since p(u) has no roots in (0, §)

(since the solution of (2.14) is unique) it follows that p(u)>0 on (0, f), establishing
(2.16). We now rewrite (2.1) in the form

u"+lf—1(lzi)u=0.

[y > for 0<u<B. (2.16)

Using the Sturm Comparison Theorem and (2.16), we conclude that (2.2) cannot
have a positive solution w(x). (By (2.16) any solution of (2.2) would have to vanish
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‘on (—1, 1).) Since any nontrivial solution of (2.2) has to be positive, we conclude
the lemma. O '

THBOREM 2.3. Under the conditions (2.8)—~(2.11) there is a critical Ay, >0 such that for
A < Ao the problem (2.1) has no nontrivial solutions, it has exactly one nontrivial solution
for A=Ay, and exactly two nontrivial solutions for A > Ay. Moreover, all solutions
lie on a single solution curve, which for A> A, has two branches denoted by
u”(x, A)<ut(x, A), with u™(x, A) strictly monotone increasing in A, u™(0, 1) strictly
monotone decreasing in A, and lim,, ut(x,A)=c, lim, . u"(x,)=0 for
x e (—1, IN{0}, while u™(0, X) > b for all 2> A,.

Proof. We begin by noticing that for sufficiently small 4 >0 the problem (2.1) has
no positive solutions. Indeed under our assumptions there is a constant y > 0, such
that f(u) <yu for all u>0. Then

1 1 1 7.[:2 1
Ay j wrdx =z j f(u)udu= J‘ u’zdxg——f u? dx,
-1 -1 -1 4 )
and the claim follows. Next we show that positive solutions exist for large 1. We
outline the argument, which is due to A. Ambrosetti and P. H. Rabinowitz [8, p. 12].
Solutions of (2.1) are critical points on Hj(—1, 1) of the functional

1 U
J(u) = J [% w?— /lF(u)} dx, Fu)= J‘ f(z) dz.
—1 0

Clearly J(0)=0, and by Poincaré€’s inequality J(u) is positive in a sufficiently small
neighbourhood of zero in Hi(—1, 1). Let u,(x) € Hi(—1, 1) be such that 0 <u,(x)=Z ¢
for all xe(—1,1) and u,(x) is different from ¢ only on a set of measure & Then
f1~1 F(u,(x)) dx > 0 for ¢ small enough. Then J(u,) <0 for sufficiently large 1. By the
Mountain Pass Theorem, see [8], it follows that J(u) has a nontrivial critical point
at some A=A, where J(u)>0. (Actually, with a little more care one can show
existence of a second critical point where J(u) < 0.) We denote by u(x, 4,) the maximal
solution of (2.1) (which can be obtained by monotone iterations, starting with a
supersolution u = c).

We now continue u(x, A) for decreasing A. If the corresponding linearised equation
(2.2) has only the trivial solution w =0, then by the Implicit Function Theorem we
can solve (2.1) for A< A, and A close to 1, obtaining a continuous in A curve of
solutions u(x, A). This process of decreasing A cannot be continued indefinitely, since
for sufficiently small A > 0 the problem (2.1) has no solution. Let A, be the infimum
of 1 for which we can continue the curve of solutions to the left. It is easy to show
(see [4, 5] for a similar argument) that there is a solution u(x, 4q) = uy(x). Clearly
the linearised equation at A=A, and u = u, must have a nontrivial solution, and by
the result of [5] we have w(x) >0 for all x e (—1, 1).

We rewrite the equation (2.1) in the operator form

F,u)=u"+ Af () =0, (2.17)

where F:R x C3[—1,1]— C[—1, 1]. Notice that F,(A, wyw is given by the left-hand
side of (2.2). We show next that at the critical point (%, 1) the Crandali-Rabinowitz
Theorem applies. Indeed, N(F,(Ao, 4o)) =span {w(x)} is one-dimensional, and
codim R(F,(Ag, 4p)) =1 by the Fredholm alternative. It remains to check that
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F (o, to) € R(F,(Ag, 4p)). Assuming the contrary would imply existence of v(x) 0,
such that

v+ Ao f (o) =fuy) for xe(—1,1), v(—1)=0(1)=0. (2.18)
Multiply (2.18) by w, integrate and use Lemma 2.1, and (2.13)

1
0= J;l f(uo)w dx = w(0)f (uo(0)) >0,

a contradiction.

Applying the Crandall-Rabinowitz Theorem, we conclude that (A, ug) is a bifur-
cation point, near which the solutions of (2.1) form a curve (A + 1(s), ug + sw + z(s))
with s near s =0, and 7(0) = t/(0) =0, z(0) = z'(0) = 0. We claim that

(0) >0, (2.19)
ie. only ‘turns to the right’ in (4, u) ‘plane’ are possible. We use the formula (uy(x) =
U(X, A‘O))

1 1
J‘ f(ug)w? dx J Fug)w® dx
-1 0

= Ay (2.20)
J S uo)w dx J Sflugyw dx

-1 0

T(0) = — o

For completeness, we present next the derivation of (2.20). Differentiate (2.1) in s
twice

s+ AfuE 4 Af g + 27 fug + T f (u) = 0.
Setting here s =0, and using that '(0) =0 and u|,-o = w(x), we obtain
Ul + Ao f W2+ dof 'ug +17(0) £ = 0. (2.21)

Multiplying (2.21) by w, (2.2) by u,,, integrating and subtracting, we obtain (2.20).
By Lemma 2.1 the denominator in (2.20) is positive, so we only need to show that

1
f Fug)w® dx < 0. (2.22)
0
Differentiating the equations (2.1) and (2.2) respectively, we obtain (at u = u,),
wly + Af '(wu, =0, (2.23)
w4+ Af Ww, + Af"(wu,w = 0. (2.24)

Multiply (2.24) by u,, (2.23) by w,, integrate and subtract,
1
(U W) — Wt ) s + A J FruZw dx = 0. (2.25)
0

Notice that w(1) = —f,w(1)=0, and «"(1) = —Af(u(1))=0, so that from (2.25) at

u=u0,

1
f frwuzw dx = 0. (2.26)

0
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We will show that

1 1
Jﬂ F(ug)w? dx < J [ (uo)up w dx, (2.27)
0 0

from which (2.22) and (2.19) will follow. We claim that f"(uy(x)) changes sign exactly
once on (0, 1). Indeed, f"(u) is positive for small u, and hence f"(uy(x))> 0 for x
close to 1. By Lemma 2.2, u,(0) > f and it is clear that f"(u) <O for u> . Hence
f"(up(0)) < 0. Since uy(x) is decreasing on (0, 1), the claim follows. (It is interesting
to illustrate the last point for the special case of f = u(u — b)(c — u). Indeed, f"(uy) =
—6ug + 2(b + ¢), so clearly f"(uo(1)) > 0. One easily computes the number f defined
in (2.14) to be B=(b+c)2. By Lemma 22, f"(uy(0)< —68+2(b+c)=
—(b+ ¢) < 0. Since uy(x) is decreasing on (0, 1), it follows that f"(ug(x)) changes sign
exactly once.) Let X be such that f”(uy(X)) = 0. We claim next that the functions u'(x)
and —w(x) intersect exactly once on (0,1). Since u'(0)=0 and u/(1)<0, while
—w(0) <0 and —w(1) =0, the functions u'(x) and —w(x) intersect at least once. To
see that v/(x) and —w(x) cannot intersect more than once, notice that these functions
are solutions of the same linear equation (2.23), and hence cannot intersect twice in
the region where they are both negative (or positive). Indeed, if say u/(x) > —w(x)
on some interval (x;, x,)=(—1,1) then we can find a constant 4, 0 <A< 1, such
that —Aw(x) = u/(x) on (x;, x,), and for some X e (x;, x,) we have —Iw(x)=u'(%)
and — AW/(X) = u"(x). Since Aw(x) is also a sclution of (2.23), we have two solutions
satisfying the same initial conditions at X, a contradiction. It follows that —w(x) and
u'(x) intersect exactly once on (0, 1). By considering Aw(x) with a proper constant 4,
we may assume that —w(x) and u/'(x) intersect at X, the point where f"(u(x)) changes
sign. Returning to (2.27), we see that on the interval (0, X), where f"(uy) <0, we
have w?>uj_, while on the interval (%, 1), where f"(uo) >0, we have w* <ug_. So
that the integrand on the right in (2.27) is larger than the one on the left for all
x € (—1, I\{x}, which proves (2.27) and (2.19).

It follows that at critical point (4o, 4g) the curve of solutions turns to the ‘right’
in (4, u) plane. After the turn we can continue this curve of solutions for increasing
A, using the Implicit Function Theorem, so long as (4, u) is a nonsingular point of
F (4, u). However, there can be no critical points on the lower branch, since we know
precisely the structure of solutions at any critical point, namely a turn to the right
always occurs, which is impossible at the lower branch. Hence the lower branch can
be continued for all 1> A,. The same is true for the upper branch, and we obtain a
parabola-like curve of solutions. It remains to show that there is only one such
curve, and to prove the monotonicity properties of its branches.

We claim that the upper branch is increasing for all 4> A,. For 4 close to A, this
follows from the Crandall-Rabinowitz Theorem (u,(x, A)~w(x)>0 for all x).
Assuming the claim to be false, denote by A, the first A where the condition u,; >0
is violated, i.e. u;(x, 4;) = 0 for all x e (— 1, 1), and u,(x,, 4;) = 0 for some x; € (0, 1).
(The possibility that (1, 4;) =0 is easily excluded multiplying (2.4) by u,, sub-
tracting from it the equation (2.29) multiplied by «/, and then integrating from 0 to
1.) Since x; is a point of minimum, «),(x, 4;) = 0 and u;(x,, A1) = 0. It follows from
the equation (2.29) below that

0 <u(x;)<b. (2.28)
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Differentiate (2.1) in 4,

U+ Ay + Fu)=0. (2.29)

Multiply the equation (2.29) by u,, the equation (2.23) u,, integrate over (0, x;) and
subtract,

u(xl)
(Wyu, — uhuy) |5 + J fw)du=0. (2.30)
u(0)
The first term in (2.30) is equal to u"(0)u,(0) < 0. We claim that the second term in
(2.30) is negative, which will lead to a contradiction. Multiply (2.1) by 4’ and integrate
from O to 1,

u(0) 1
Aj f(u)du=§u’2(1)>0.

0

Using (2.28) and our conditions (2.8)—(2.10) on f(u),

u(0) u(0)
J fu) du> J f(w) du> 0.

u(xq) 0

So we have a contradiction in (2.30), and the monotonicity of the upper branch
is proved.

Since the upper branch is increasing (and is bounded by c) it tends to a limit at
any x e€(—1,1) as A— oco. Over any subinterval of (—1,1) this limit may only be
equal to either b or ¢, since otherwise from the equation (2.1) u"(x) would have to
be large over a subinterval, which is impossible. Since u(x) is convex below u=b,
the upper branch cannot tend to b over any subinterval of (—1, 1). It follows that
the upper branch tends to ¢ over (—1,1).

We now rule out the possibility of another curve of solution. By the above analysis
such a curve would have an upper branch tending to ¢ as A— co. We show next that
any solution of (2.1) tending to ¢ is stable. Then uniqueness of such solution follows
by a degree argument exactly as in [2, p. 68].

Indeed if u = u(x, A) were not stable, we could find a constant u =0 and w(x) >0,
so that

W+ Afww=puw forxe(—1,1), w(—=1)=w(1)=0. (2.31)

We may assume that | é w? dx = 1. Multiplying (2.1) by «’ and integrating over (0, x),
we conclude that

()] 2 con % (2.32)

for some ¢, > 0 when A is large, for all x € (y, 1], where u(n) = o and o is the larger
root of f'(u). Since u(x, A)— ¢, we can find a constant 4 independent of 4 and {=
E(A) near x =0 (say in (0, 1/4)), such that |u"({)| S A. As in Lemma 2.1, we derive

1
—u' (Dw' (1) + v EW'(E) —w(Eu (&) + 1 f wx)u'(x) dx = 0. (2.33)

¢
From (2.31) w"(x) >0 on (0, 1), except near x = 1. It follows that w'(¢) >0 and w(¢)
is bounded (because f(l) w? dx = 1). It follows that the third term in (2.33) is bounded,
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while the second and the fourth are negative. The first term in (2.33) is negative, and
“we show next that it is large in absolute value (as A — c0), which leads to a contradic-
tion. Indeed, assuming otherwise would imply by (2.32) that

M=ol
lw'(1)] 0<\/§>'

Also by (2.32) we conclude that when moving from x = 1 leftwards, u(x) must reach
u() = o, (@) =0 (o the larger root of f'(u)) over the interval (, 1) of length

1-n=o<—\%>.

Since w(x) is convex on (0, 1) (f*(u) <0 there), it must take its maximum, on (7, 1).
The maximum value must be at least 1, since jéwz dx=1.0n(y, ) wesett=1—x,
and estimate from (2.31)

1 cy
w' <ciw, w(0)=0, w(0)=0 (—\/:>, O<t<—=,
f Ja

with positive constants ¢ and ¢; (it can be easily seen that u < cA for some ¢> 0).
Integrating

t

w(t) = ch J

[¢]

t
(t — $)w(s) ds +w(0)t ¢, (JE j w(s) ds + %)
o .
Applying Gronwall’s inequality, we conclude that w(t) = O(1/4) on (i, 1). This is a
contradiction, which in turn implies a contradiction in (2.33), proving uniqueness of
the solution curve.

Finally, we prove that u(0, 1) is decteasing on the lower branch. By the Crandall-
Rabinowitz Theorem, we know that u,(x, 4) <0 for A close to 4y and all xe(~1, 1)
on the lower branch. Let A, be the first A where u,(0, 4;) =0. From (2.29) we see
that (0, 4,) <0, and so x =0 is not a point of minimum of u,(x, 4,), and then we
conclude that u,(x, 4;) is negative for x positive and close to zero. Multiply (2.29)
by u,, (2.23) by u, and integrate from 0 to 1, then subtract

0

(@t — uuy)lo + f f () du=0. (2.34)

u(0)

The integral term in (2.34) is negative, as was proved earlier. From the first term
only u,(1)u'(1) survives. Hence

uy (1, A1) <0,
and so u,(x, ;) is positive near x = 1, and then u,(x, A,;) must have at least one zero
on (0, 1). Let x, be the smallest zero, ie.
uwi(x, A) 2 0. (2.35)
Multiply (2.29) by u,, (2.23) by u,, integrate from 0 to x;, and subtract

u(xy)

(W, — ulu,) 5t + J f{u) du=0. (2.36)

u(0)




608 P. Korman et al.

The integral term in (2.36) is smaller than the one in (2.34), and so is negative. The
first term in (2.36) is equal to u/(x;)u)(x;) < 0. We have a contradiction in (2.36),
which shows that u,(0,A) <0 for all A> Ay, and this finishes the proof of the
theorem. [

We now turn to the case of three positive roots. With f(u) as described by
(2.8)-(2.10), and

foru>0, f"(u—a)changes sign exactly once and has exactly one root,
(2.11y

we consider
W+ ifu—a)=0 forxe(—1,1), u(—1)=u(l)=0, (2.37)

where a is a positive constant. Our prototype is flu—a)=
(u— af{u — a — b)(c + a— u). The corresponding linearised equation is

W+ Af'u—a)w=0 forxe(—1,1), w(—1)=w(1)=0. (2.38)
For the a >0 case, we need to assume additionally that
FB)S—2[F(p)— F(—a)] 20, (2.39)

with f as defined by (2.14).
The equation satisfied by u, is

uy+ Af (u— ayu, = 0. (2.40)
It follows by the maximum principle that any solution of (2.37) satisfies
O<ulx)<c+a forall xe(—1,1). (241)

Since all solutions of (2.37) are positive, it follows by [ 3] that they are even functions,
with u, <0 for x > 0. As u, vanishes exactly once in the interval (—1, 1) (at x=0),
and since w and u, satisfy the same equation, it follows by the Sturm Comparison
Theorem that any nontrivial solution of (2.38) does not vanish inside (—1, 1), and
so we can choose w(x) >0 on (—1, 1). The solution of (2.37) depends now on two
parameters A and a; however, we will denote it by u(x, a), or even u(x), when
dependence on the other parameters is secondary. Note that the case a =0 was
covered in the previous theorem.

LemMa 2.4. Let u(x, a) be any critical point (i.e. (2.38) has a nontrivial solution). Then
u(0, a) — a>u(0,0). (2.42)
Proof. Multiply the equation (2.37) by «' and integrate from O to x. Denoting
F,(u)= [} f(z — a) dz, we express
u'*(x)
2

+ AF,(ulx)) — F,(u(0))) = 0.

Rearranging and integrating from 0 to 1,

(0) dt
2.w(0)) = J

—_— 243
o NF(u(0)—Fy(t) 24
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Denoting F(u) = Fy(u) = {}, f(z) dz, we express

Fu)= f fle—a)dz= j

0 —a

u—a

f@)dz=F(u—a)—F(-a),

and then we rewrite (2.43) as
s dt
(s = = /24, 2.44
&) L\/F(s—a)—F(t—a) (244)

where s = u(0, a). We may assume that s > g, since f, <0 in the region where u <a,
and then (2.38) could not have a nontrivial solution w(x). Express

“ dt sTa dt
ga(s) = + ——
o VFs—a)—F(t—a) Jo ~F(s—a)—F(t)
= hy(s) + go(s — a),
where h,(s) denotes the first integral and go(s —a) was defined by (2.44). By the
Crandall-Rabinowitz Theorem, solutions of (2.37) are monotone in A near a critical
point (if a turn occurs, one branch is monotone increasing, and the other one
monotone decreasing in A). Hence, we can take s=u(0, a) =max, . u(x, a) as

the parameter used in the Crandall-Rabinowitz Theorem. Hence at a critical point
we have dA/ds =0, and then from (2.44),

2.(s)=0. (2.45)

(That the function g,(s) is differentiable is not obvious, but it can be seen by a change
of variables t —a = (s — a)t in its definition.) We can also interpret Theorem 2.3 in
terms of the function gg(s):gols) <0 for s<u(0,0), go(s)=0 for s=u(0,0), and
go(s) > 0 for s > u(0, 0). (Indeed since the maximum value is decreasing on the lower
branch, we have ds/dA <0 for s <u(0, 0).)

Compute

H(s) = — % f f(s—a)[F(s—a)— F(t—a)] ¥ dt <0, (2.46)
4]

- since from the equation (2.37)

1
fs—a)=f®, a)—a)=—7u(0,a)>0.
We now rewrite (2.45),
0= gu(s) = ho(s) + gols — a), (247)
and conclude the proof of the lemma, since the first term on the right in (2.47) is

always negative, and assuming that s — a <u(0, 0) (s = u(0, a)) would imply that the
second term is negative as well. [

LeMMA 2.5. Let u(x) be any critical point of (2.37), and w(x)>0 the corresponding
solution of (2.38). Then

1
J f"(u— a)u,w* dx > 0. (2.48)
0
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Proof. We begin by deriving a convenient expression for the integral in (2.48).
Differentiating (2.38) yields

Wi+ Af'(u— a)yw, + Af"(u — ayu,w=0. (2.49)
Combining (2.49) and (2.38) gives
(Ww'y — wew') + Af"(u — a)u,w* =0.

Integrating, we express
1
_AJLVW—m%w%h=0wﬂ~W3%=~W%m~wmwﬁm
0

= —w2(1) + w*(0)f(u(0) — a). (2.50)
Proceeding as in the derivation of (2.5), we obtain
w(x)u(x) — ()W (x) = —Iw(0)f(u(0)—a) forall xe[—1,17.

Setting x = 1, we express

Aw(0)f (w(0) — a)

w(l)= 7(1) (2.51)
From the proof of Lemma 2.4,
w¥(x) = 2A(F (0) — a) — F (u(x) — a)).
Setting here x = 1 and using this formula in (2.51), we express
a0y W0)2(0) —a)
= 3 Fw0) — o)~ Fi—a)
Using this in (2.50), we obtain
1 WZ(O)
Mgy 2 — 2 —
L [ — aju,w* dx STFGH0) — a)— F(—a)] {/*(0)—a)
—2[F(u(0) — a) — F(=a)1f"((0) — a)}
_ w?(0)
= 2FwO —a—F—a] (232

where o« = u{0, a)— a, and

1) = f*(0) = 2[F (o) — F(— @)1 f'(&0). (2.53)

By Lemma 2.4 and (2.41), u(0, 0) <o <c, and to prove the present lemma we need
to show that I(x)> 0 for all u(0,0) <a<c. If f'(«) <O then from (2.53) we see that
I(o) > 0, since F(x) — F(—a)> F() > F(u(0, 0)) > 0, so assume that

() > 0. (2.54)
Notice that then (since o> f3)

[ <. (2.55)
Compute

I'(e) = —2[F(e) — F(—a)]f"(@)> 0. (2.56)
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Notice that condition (2.39) implies that I(8) = 0. Then by (2.54) we have for all «
satisfying u(0, 0) < a <,

I(o) > I(f) 2 O,

and the lemma follows. [

REMARK 2.6. For the case f(u) is a cubic, S.-H. Wang [117] assumes instead of (2.39)
that

rf(r) — 2F(a) > 0, (2.57)

where 7 > b is such that F(r) = 0. It is easy to see that these conditions do not imply
each other.

We are now ready to prove the main result of this section. We recall that all
nontrivial solutions of (2.37) are positive.

THEOREM 2.7. Consider the problem (2.37) with f(u) as described by (2.8)—(2.10), (2.39),
and (2.11). Then there exists a critical Ay such that for the problem (2.37) there exist
exactly one positive solution for 0 < A < Ay, exactly two positive solutions for 1= Ay,
and exactly three positive solutions for A > Ay. Moreover, all solutions lie on two smooth
in A solution curves, and all different solutions of (2.37) at the same A are strictly
ordered on (—1, 1). One of the curves, referred to as the lower curve, starts at 1.=0,
u =0, it is strictly increasing in A, and lim,_, , u(x, A) = a. The upper curve is a parabola-
like curve, consisting of two branches u™(x, A) <u™(x, A). The upper branch is monotone
increasing in A and lim,,  u*(x, )=a+c for all xe(—1,1). The lower branch
approaches a spike-layer, namely lim,_  u~(x, ) =a for all x e (—1, 1)\{0}, while
u (0, )y >a+b forall A> ;.

Proof. The proof is similar to that of Theorem 2.3 (and also [6, Theorem 3.3]), so
that we will just outline it.

Using the Implicit Function Theorem, one sees that for sufficiently small 1 there
is a curve of solutions emanating from u=0, 1=0. By Lemma 1.1 the maximum
value of these solutions stays below a. Since f'(u —a) <0 when u < g, it follows that
(2.38) has only the trivial solution, and hence by the implicit function theorem this
curve of solutions can be continued for all A> 0. By differentiating the equation
(2.37) in A, we conclude that u, > 0 for x € (— 1, 1). By writing (2.37) in the equivalent
integral form, we conclude that solutions on this curve tend to a as A — oo.

Solutions of (2.37) are critical points in H3(—1,1) of the functional

1
Jw)= j [-; u?— /IFa(u)] dx.
-1

On the lower curve, which we denote by @ = ii(x, A),

1 1

F(x,a)dx~ —2A J F.(x, a)dx,

-1

Jyz —A j

-1
for A large. By modifying u=a+c near x= +1 to obtain a function of class
Hi(—1,1), we produce a function @€ Hy(—1,1), such that J(d) < J(@). Since the
functional J(u) is bounded from below, it will have a point of minimum different
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from i(x, A). Hence for large A, say A= 1, we will have solutions, not on the lower
curve. In particular the maximal solution at A is not on the lower curve.

We now continue the maximal solution at 1 for decreasing A, A < A. When the
solution is noncritical, we can use the Implicit Function Theorem. For the critical
(Ao» o), the Crandall-Rabinowitz Theorem applies, since the crucial condition
F, ¢ R(F,) is verified in exactly the same way as in Theorem 2.3. We claim that at

any critical point a turn ‘to the right’ occurs. Namely (compare with (2.20)) we need
to show that

jl I Mug(x) — ayw® dx
- >0, (2.58)
f Suo(x) — a)w dx

0

From Lemma 2.1 it follows that the denominator in (2.58) is positive. By Lemmas
2.4 and 2.2, it follows that f"(uy(x) — a) changes sign exactly once on (0, 1), say at
x> 0. By stretching w(x), as in Theorem 2.3, we can arrange for w(x) and —u, to
have their unique intersection point at x,. Then using Lemma 2.5

1 1
j Fuo(x) — a)w?w dx < j Fuo(x) — a)yw*(—uy) dx <0,
0 0

which proves (2.58).

We now return to the curve of solutions through #. We cannot continue it for
decreasing A indefinitely, since for A >0 small the problem (2.37) has only one
solution (lying on the lower curve, described earlier). Indeed, assuming two solutions,
denoting by z their difference, writing the equation for z, and observing boundedness
of f'(u) for ue [0, a+ c], we obtain a contradiction. Let Ay be the infimum of A’s for
which the upper curve can be continued in A. One easily sees the existence of a
solution of (2.37), corresponding to Ay. This solution has to be singular, and by the
previous analysis a turn to the right occurs. We then continue both branches of this
curve for increasing A, where we cannot encounter any more singular solutions, since
at such solutions a turn ‘to the right’ would have to occur, which is impossible. The
rest of the proof, including monotonicity of the upper branch of the upper curve,
limiting behaviour of the branches, and the uniqueness of the upper curve, are all
similar to the corresponding parts of Theorem 2.1. [

3. Anm exact multiplicity result for a cubic nonlinearity with x dependence

To simplify the presentation, we consider a model equation
w4+ 2(b(x)—u)y=0o0n(—1,1), u(—1)=u(1)=0, (3.1)

although our results can be easily generalised in various directions. (We could
consider f(x, ) which is even in x with negative f, fix, fxx 20d such that for each
x there is a B, such that f,, > 0 when u € (0, ) and f,,, <0 when u € (§, 1). Also f(x, v)
cannot change too much in x. We then extend the results of [12].) We assume that
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the positive function b(x) € C*[—1, 17 satisfies the following conditions

b(—x)=b(x) forall xe[—1,1], (3.2)
b(x)<0 for xe (0,17, (3.3)
b"(x)<0 for xe (0,17, (3.4)
p"(x) <0 for xe(0,1], (3.5)

b(1) = 3b(0) > 0. (3.6)

For example, b(x) = a — x* with constant a > 3, satisfies all of the above conditions.

Notice that condition (3.4) implies that b(x) is a supersolution of (3.1). Combining
this with the maximum principle and Lemma 1.1, we conclude that any nontrivial
solution of (3.1) satisfies

O <u(x)<b(x) forall xe(—1,1). (3.7)
Also, any solution of (3.1) is even, with v’ <0 for x € (0, 17, see [3] or [4].

TueoreM 3.1. Under the conditions (3.2)—(3.6) there is a critical o> 0 such that for
A < A the problem (3.1) has no nontrivial solutions, it has exactly one nontrivial solution
for A= 124, and exactly two solutions for 4> Lq,. Moreover, all solutions lie on a single
solution curve, which for A > A, has two branches denoted by u™(x, A) <u™(x, 1), with
u™(x, A) strictly monotone increasing in A, u”(x, A) strictly monotone decreasing in A,
and lim,_, o, u™(x, 2) = b(x), lim,_, , u”™(x, ) =0 for all x e (—1, 1).

Proof. All of the assertions except for the exact multiplicity have already been proved
in [5]. We briefly recall the steps in [5]. Multiplying the equation (3.1) by u and
integrating over (—1, 1), we easily conclude that (3.1) has no solutions for A >0
small. On the other hand, by a variational approach there exist solutions for 4 large.
We follow the curve of maximal solutions for decreasing A until a turning point.
Once we show that only turns to ‘the right’ are possible, the theorem will follow. At
a turning point A'(0) =0 and

i
f oW dx
W(0) = — Ay, (3.8)
[ fwdx
-1
where f = u?(b(x) —u), and w = w(x) is the solution of the linearised problem
W+ A2b(x)u—3u)w=0o0n(—1,1), w(—1)=w(1)=0. (3.9)

It was shown in [5] that at a turning point we can take w(x)>0 on (—1,1). It
follows that the denominator in (3.8) is positive. We need to show that the numerator

in (3.8) is negative. Since both u(x) and w(x) are even functions, it suffices to prove
that

1
J S dx < 0. (3.10)
0

The proof of (3.10) will be accomplished in four steps.




614 P. Korman et al.
Step 1. We claim that

1
J fuuwuZ dx <O. (3.11)
0
Differentiating the equation (3.1) twice (we have denoted f(x, u) = u?(b(x) — u))
uy + Afu, + Af =0, (3.12)
Uhy + Myt + Afytis + 228t + Afx = 0. (3.13)

We now multiply the equation (3.13) by w, and subtract from it the equation (3.9)
multiplied by u,.. The result is then integrated over (0, 1),

1 1

Jutw dx + 2 J (2fuxtis + fix)w dx=0.  (3.14)

s o1 /11
Wl |5 — tgx W o + A J
0

0

Notice that u”(0) =0, since u”(x) is odd, and u"(1) = —Af(1, u(1)) = —Af(1,0)=0.
Hence all the boundary terms in (3.15) vanish, and then

1 1
f 2w dx + J (2fythy + frx)W dx = 0. (3.15)
0 0

Denote by I the second integral in (3.15), I = fé(quxux + fo)w dx. To prove (3.11)
we need to show that I > 0. Computing f,, = 2b'u, and f,, = b"u?, we rewrite

. .
I= j (4b'uu,, + b"u*)w dx. (3.16)
0
Using that b’(0) =0, since b'(x) is odd, we express
1 1 1
j b'uPw dx = — j 2b"uu,w dx — J Putw' dx.
0

0 0

Using this in (3.16),

1 1
I= j b'u(Qu'w —uw')dx = J b'uJ dx, (3.17)

0
where
J=2u'w—uw'

It suffices to show that J <0 for all x € (0, 1). Differentiate J, and use (3.1) and (3.9)
to express the second derivatives,

J'=2u"w —uw” +u'w
= A(—2buPw + 2uPw + 2buPw — 3uPw) + u'w
=u'w — Judw.
Similarly,
J"=u"w + uw" — 3uPu'w — Adw

= M= buPw + W — 2bun'w + 3uPu'w — 3uPu'w — uw
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= Abu(—uw’ — 2u'w) = Abu(2u'w — uw’ — 4u'w)
= AbuJ — 4Abu'w > AbuJ.

Hence

J" = b >0, (3.18)

and also

J(0)=J(1)=0. (3.19)
Using the maximum principle, we see from (3.18) and (3.19) that J <0 over (0, 1),
ie. I >0, and the claim (3.11) follows.

Step 2. We show that f,,(x, u) changes sign exactly once on (0, 1). We denote
1

& fuu = 3b(x) — u(x) = p(x).
Compute

p" =31b" — W'Y =1b" + A(2bu — 3uP ) + Ab'ut. (3.20)
Clearly p(1)=4b(1) > 0. We claim next that the inequality b(x) > 2u(x) cannot hold
for all x € [0, 17, which will imply that p(x) cannot be non-negative on [0, 1]. Indeed,

assuming otherwise, we would have 2b(x)u — 3u®> b(x)u —u?* for all xe(—1,1).
Then writing our equation (3.1) in the form (u > 0)

w4+ Abx)u—v)u=0o0n(—1,1), u(—1)=u(l)=0,

and comparing it to (3.9), we obtain a contradiction. Hence p(x) is negative some-
where in (0, 1). We claim that

p(0)<0. (3.21)
Indeed, assuming otherwise we would have for all x € (0, 1), in view of (3.6),
u(x) <u(0) =3 b(0) = 3b(1) <3b(x),
which is impossible by the preceding argument.
Since p(x)} changes sign on (0, 1), it has at least one zero. Assume, contrary to

what we want to prove, that p(x) changes sign more than once on (0, 1). Then it has
at least three zeros on (0, 1), and we denote by x, the smallest one. We have

0 = 3p(xg) = b(%g) — 3u(e) < 2b(x) — 3u(x) (3.22)

for all x & (x,, 1) by the assumption (3.6) (the maximum of b(x) is smaller than the
minimum of 2b(x), so that once 3u(x) gets below b(x), it will stay below 2b(x)). Using
(3.20) and (3.22), we conclude that

p"(x)<0 for all xe(x,, 1), (3.23)

or (p"Y <0 so that p”(x) is decreasing and has at most one zero on (xo, 1), i.e. p(x)
has at most one inflexion point on (xo, 1). Also, p"(1)=3b"(1) < 0. If p"(x) <0 on
(x0, 1), then it is clearly impossible for the concave p(x) to have three roots on
[x0, 1), a contradiction. If p”(x,) > 0, then on (x,, 1] the function p(x) starts out to
be convex, has two roots inside (x,, 1), and ends up concave at x = 1, and yet it has
only one inflexion point, which is again a contradiction.




616 P. Korman et al.

Step 3. We show that —w(x) and u, have exactly one intersection point on (0, 1).
We know that u,(0) =0 and (u,), <0, i.e. u, is decreasing on (0, 1). Assume there is
more than one intersection point. Then —w(x) cannot be increasing between two
intersection points. Let 0 < x; < x, < 1 be the largest two points of intersection. Then
we can assume that —w(x) < u, on (x4, x,), because the other case, when —w(x) and
u, touch at x, (—w(x,) =u.(x,) and —w'(x,) =ul(x,)) and —w(x)>u, on (X, X,),
will be excluded in the subsequent discussion. We can find a constant 0 <y <1 such
that —yw(x) = u, on (x,, x;) and —yw touches u, at some X € (x;, x,) (i.e. —yw(X) =
U (X) and —yw'(X) =ul(x)). The function —yw is a solution of (3.9). From (3.12)
with f, <0, we see that u, is a subsolution of the same equation. We have a
subsolution touching a solution from below, which is impossible by Lemma 1.1.

Step 4. Let x4 be the unique point in (0, 1) where f,..(xo, #) = 0. By scaling w(x) we
can arrange for —w and u, to have their unique intersection point also at x,. We
have f,,>0 and u2>w? on (xq, 1) and the reverse inequalities on (0, x,). Using
3.11), we then have

1 1
j fuuwz'dx<j foa2w dx < 0.
0

0

This concludes the proof of (3.10), and of the theorem. [
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