
Mathematical Research Letters 12, 933–944 (2005)

COMPUTING THE LOCATION AND THE DIRECTION OF
BIFURCATION

Philip Korman, Yi Li, and Tiancheng Ouyang

Dedicated to Louis Nirenberg on his 80th birthday

Abstract. We consider positive solutions of the Dirichlet problem

u′′(x) + λf(u(x)) = 0 on (−1, 1), u(−1) = u(1) = 0.

depending on a positive parameter λ. Each solution u(x) is an even function, and
hence it is uniquely identified by α = u(0). We present a formula, which allows
to compute all α’s where a turn may occur, and then we give another formula,
which allows to compute the direction of the turn. As an application, we present a
computer assisted proof of the exact bifurcation diagram in case f(u) is any cubic
with real and distinct roots. Another application is a computer assisted proof of
a conjecture by S.-H. Wang [10], related to gas combustion.

1. Introduction

We study exact bifurcation diagrams and exact multiplicity of the positive
solutions to the Dirichlet problem

u′′(x) + λf(u(x)) = 0 on (−1, 1),(1.1)
u(−1) = u(1) = 0,

depending on a positive parameter λ. We recall that solutions of ( 1.1) are even
functions, with u′(x) < 0 for x > 0, and hence any solution is uniquely identified
by α = u(0), see [6]. Actually, even more is true: the value of u(0) = α uniquely
identifies both λ and u(x), as follows easily by scaling λ out of ( 1.1), and using
uniqueness for initial value problems, see E. N. Dancer [4]. Hence the solution
curves of (1.1) can be faithfully depicted by two-dimensional curves on (λ, α)
plane. It is customary to refer to these curves as bifurcation diagrams. The
Figure 1 below gives such a bifurcation diagram for a general cubic. The shape
of any bifurcation diagram is determined by the turning points. We provide a
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necessary and sufficient conditon on α for the solution to be singular and thus
a necessary condition for the turning point to occur:

G(α) ≡ F (α)1/2

∫ α

0

f(α)− f(τ)

[F (α)− F (τ)]3/2
dτ − 2 = 0,(1.2)

with F (u) =
∫ u

0
f(t) dt. This formula can be used to compute numerically all

turning points. At the turning points we are interested in the turning direction.
We show that the curve tuns to the right in (λ, α) plane if

D(α) ≡
∫ α

0

f ′′(u)
(∫ α

u

f(s) ds
) (∫ u

0

ds(∫ α

s
f(t) dt

)3/2

)3

du < 0,(1.3)

and the turn is to the left if the opposite inequality is true.

For an application of the above formulas, we turn to the long standing open
problem of exact multiplicity in case of a cubic f(u). We consider positive
solutions in case f(u) = (u− a)(u− b)(c− u), i.e. it is a cubic whose roots are
three distinct positive constants a < b < c

u′′(x) + λ(u(x)− a)(u(x)− b)(c− u(x)) = 0 on (−1, 1),(1.4)
u(−1) = u(1) = 0,

and λ is a positive parameter. We wish to understand exactly how many solutions
this problem has, and how these solutions are connected if one varies λ.

This problem was studied by J. Smoller and A. Wasserman [8], who attempted
to solve the problem in general, and succeeded in solving it for a = 0. Later S.-H.
Wang [9] solved the problem under some restriction on a. Both papers used the
phase-plane analysis. (We will see later on that the approach in [8] could not
possibly cover the general case.) Then P. Korman, Y. Li and T. Ouyang [6],
[7] used bifurcation theory to attack the problem, but again some restrictions
were necessary (all of the above mentioned papers covered more general f(u),
behaving like cubic). We shall now recall the results of [7], and describe what is
the desired optimal result.

By letting u = cv, we may assume that c = 1, so that our nonlinearity is
f(u) = (u− a)(u− b)(1− u), with new a and b, i.e. we consider

u′′(x) + λ(u(x)− a)(u(x)− b)(1− u(x)) = 0 on (−1, 1),(1.5)
u(−1) = u(1) = 0.

This substitution allows us to “compactify” the parameter set, since now 0 <
a < b < 1. It is well-known that for existence of positive solutions it is necessary
that

∫ 1

a
f(t) dt > 0, i.e. 1

12 (a− 1)3(1 + a− 2b) < 0, or

0 < a < b <
1 + a

2
.(1.6)
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We define the functions F (u) =
∫ u

0
f(t) dt and I(u) = f2(u) − 2F (u)f ′(u), and

the constants β = 1+b
2 (the point where a straight line through the point (a, 0)

touches the graph of y = f(u) for u > a, i.e. f ′(β) = f(β)
β−a ), and

γ =
1
3

(
1 + a+ b+

√
1− a+ a2 − b− ab+ b2

)
(the larger root of f ′(u) = 0). Then the Theorem 3.1 in P. Korman, Y. Li and
T. Ouyang [7] implies the following.

Theorem 1.1. Assume that either∫ γ

a

f(t) dt ≤ 0,(1.7)

or

I(β) ≥ 0.(1.8)

Then there exists a critical λ0, such that the problem (1.5) has exactly one pos-
itive solution for 0 < λ < λ0, exactly two positive solutions at λ = λ0, and
exactly three positive solutions for λ0 < λ < ∞. Moreover, all solutions lie on
two smooth solution curves. One of the curves, referred to as the lower curve,
starts at (λ = 0, u = 0), it is increasing in λ, and limλ→∞ u(x, λ) = a for
x ∈ (−1, 1). The upper curve is a parabola-like curve with exactly one turn to
the right. (See Figure 1 below for the bifurcation diagram.)

In Figure 1 we use u(0), i.e. the L∞ norm, to identify the solution.

✲

✻

λ

u(0)

λ0

a

Figure 1
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What proportion of all possible a and b in the above conjecture is covered by
our Theorem 1.1? In the (a, b) plane the condition (1.6) defines a triangle ∆ :
0 < a < 1, a < b < 1+a

2 , whose area is 1/4. Using Mathematica, we compute
I(β) = 1

384 (1− b)2
[
24a2(b− 1)2 − 8a(1 + b)3 + (1 + b)4

]
. So that the condition

(1.8) holds if g(a, b) ≡ 24a2(b − 1)2 − 8a(1 + b)3 + (1 + b)4 ≥ 0. Similarly, the
condition (1.7) holds if h(a, b) ≡ ∫ γ

a
f(t) dt ≤ 0 (the function h(a, b) is rather

long). UsingMathematica, we now compute the area of the part of the triangle ∆,
call it ∆1, that satisfies either the inequality g(a, b) ≥ 0 or h(a, b) ≤ 0. Actually,
we compute first the area of ∆ \ ∆1 ≡ ∆2. Namely, after loading a package
(<< Calculus‘Integration‘), we give a command: Integrate[Boole[a < b <
1/2 + 1/2 a ∧ h[a, b] > 0 ∧ g[a, b] < 0], {a, 0, 1}, {b, 0, 1}] //N. Mathematica
returns 0.146302. The area of ∆1 is then 0.103698. I.e. the Theorem 1.1 covers
around 41.5 of all possibilities.
We now turn to the remaining 58.5. If (a, b) ∈ ∆2 = ∆ ∩ {g(a, b) < 0} ∩

{h(a, b) > 0} the problem is open, but the results of P. Korman, Y. Li and T.
Ouyang [6] still help. Indeed to justify the picture as in Figure 1, one needs to
prove that only turns to the right are possible on the upper curve, and hence there
is only one turn (the properties of the lower curve follow easily, since f ′(u) < 0
for 0 < u < a). Turns can only occur at singular u(x), and it was proved in [6]
and [7], that u(0) > β at any singular solution, and only the turns to the right
are possible if u(0) > γ. This means there is a “danger” of a wrong turn only
when u(0) = α ∈ (β, γ). The interval (β, γ) tends to be small compared with
(β, 1). We see that in the full (a, b, α) parameter space the results of [6] and [7]
actually cover the bulk of possibilities.

Recall that only the turns to the right are possible if the integral D, defined
in (1.3), is negative. Hence, we would have a proof of the Theorem 1.2 be-
low, if we could show that the “Calculus” integral D is negative for α ∈ (β, γ).
Unfortunately, this integral appears to be outside of the scope of Computer Al-
gebra systems, like Mathematica or Maple. Numerical evaluation, and computer
assisted proofs turn out to be quite feasible.

We provide a computer assisted proof, which shows that the conditions (1.7)
and (1.8) are not necessary, thus giving a complete solution to the problem. The
following is our main result.

Theorem 1.2. Assume that the necessary condition (1.6) holds. Then all
conclusions of the Theorem 1.1 are true.

Our proof of this theorem is based on three independent numerical computa-
tions, each of which would constitute a “traditional” proof if their results could
be analytically justified. Our first computation shows that in the “dangerous”
region ((a, b) ∈ ∆2 and α ∈ (β, γ)) the integral D, defined by (1.3) is negative.
This implies that only turns to the right are possible on the upper curve, which
justifies the Theorem 1.2. Our second computation shows that the function G(α)
defined by (1.2) is positive over ∆2 × (β, γ). This means that no turns at all
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are possible in that region, which again implies that only turns to the right are
possible on the upper curve. Our final computation uses a formula from phase
plane analysis, and it shows that the curve travells to the left (in the (λ, α)
plane) over ∆2 × (β, γ), which leads to the same conclusion.

2. Computing the direction of bifurcation

We consider positive solutions of the Dirichlet problem

u′′(x) + f(u(x)) = 0 on (−1, 1), u(−1) = u(1) = 0.(2.1)

It is well known that any solution u(x) is an even function, with a unique point
of maximum at x = 0, and u′(x) < 0 on (0, 1). We assume that u(x) is a singular
solution of (2.1), i.e. the corresponding linearized problem

w′′(x) + f ′(u(x))w = 0 on (−1, 1), w(−1) = w(1) = 0(2.2)

admits a non-zero solution w(x). It is also well known that w(x) may be assumed
to be positive, and it is an even function on (−1, 1), see [6]. For the singular
solutions the following integral is important

J ≡ −
∫ 1

−1

f ′′(u(x))w3(x) dx = −2
∫ 1

0

f ′′(u(x))w3(x) dx.(2.3)

If J 
= 0 the critical point is non-degenerate, i.e. it persists under small pertur-
bations of the equation in (2.1), see [4]. For the problem (1.1) depending on the
parameter λ, the sign of J determines the direction of bifurcation at the critical
point in the (λ, u(0)) plane. If J > 0 the curve turns to the right, and if J < 0
to the left. We derive here a formula for J , which does not require a detailed
knowledge of u(x), and any knowledge of w(x). It depends only on the maximal
value of the critical solution u(0) ≡ α.

Theorem 2.1. At any critical solution u(x), with u(0) = α,

J = −c
∫ α

0

f ′′(u)
(∫ α

u

f(s) ds
) (∫ u

0

ds(∫ α

s
f(t) dt

)3/2

)3

du,(2.4)

= −cD(α),
where c = 1

4
√

2
u′3(1)w′3(1) > 0.

Proof: Differentiate the equation (1)

u′′′(x) + f ′(u(x))u′(x) = 0 on (−1, 1).(2.5)

Using this equation and (2.2), we conclude that the function

u′′(x)w(x)− u′(x)w′(x)

is constant, and hence

u′′(x)w(x)− u′(x)w′(x) = −C, where C = u′(1)w′(1) > 0.(2.6)
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We rewrite this as (w
u′

)′
=

C

u′2
,

and then integrate, concluding that

w(x) = −Cu′(x)
∫ 1

x

1
u′2(t)

dt.(2.7)

This formula will allow us to exclude w(x) in J . (Observe that
∫ 1

x
1

u′2(t) dt tends
to infinity as x → 0, while u′(x) tends to zero. Hence both terms ought to be
kept together in numerical computations.) Using (2.7) in ( 2.3)

J = 2C3

∫ 1

0

f ′′(u(x))u′3(x)
(∫ 1

x

1
u′2(t)

dt

)3

dx.(2.8)

We now wish to exclude u′(x) from (2.8). Since the energy u′2
2 (x) + F (u(x))

is constant,

u′2

2
(x) + F (u(x)) = F (u(0)) = F (α).(2.9)

On the interval (0, 1) we express

u′(x) = −
√
2
√
F (α)− F (u(x)).(2.10)

We use this formula in the integral
∫ 1

x
1

u′(t)2 dt, and then we make a change of
variables t → s, by letting s = u(t). We have∫ 1

x

1
u′2(t)

dt = − 1
23/2

∫ 1

x

u′(t) dt

[F (α)− F (u(t))]3/2

= − 1
23/2

∫ 0

u(x)

1

[F (α)− F (s)]3/2
ds.

We then have

J = c

∫ 1

0

f ′′(u(x))u′(x) [F (α)− F (u(x))]

(∫ u(x)

0

1

[F (α)− F (s)]3/2
ds

)3

dx,

with c = 1
4
√

2
C3. Finally, replacing F (α)−F (u) by

∫ α

u
f(s) ds, making a change

of variables u = u(x), and writing α for u(0), we obtain (2.4).

3. Computing the bifurcation points

In the previous section we computed the direction of turn, assuming that
bifurcation occurs at u(0) = α. We now provide a way to determine all possible
α’s at which bifurcation may occur, i.e. the corresponding solution of (2.1) is
singular.
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Theorem 3.1. A solution of the problem (2.1) with the maximal value α = u(0)
is singular if and only if

G(α) ≡ F (α)1/2

∫ α

0

f(α)− f(τ)

[F (α)− F (τ)]3/2
dτ − 2 = 0.(3.1)

Proof: We need to show that the problem (2.2) has a non-trivial so-
lution. As follows by (2.7) (or by direct verification) the function w(x) =

−u′(x)
∫ 1

x

1
u′2(t)

dt satisfies the equation in (2.2). Also w(1) = 0. If we also

have

w′(0) = 0(3.2)

then since u(x) is an even function, the same is true for w(x) (by uniqueness for
initial value problems), and hence w(−1) = 0, which gives us a non-trivial solu-
tion of (2.2). Conversely, every non-trivial solution of (2.2) is an even function,
and hence (3.2) is satisfied.

Using the equation in (2.1), we compute

w′(x) = f(u(x))
∫ 1

x

1
u′2(t)

dt+
1

u′(x)
.

Using the formula (2.10) from the previous section and the one right below it,
we express

23/2w′(x) =
∫ u(x)

0
f(u(x))

[F (α)−F (τ)]3/2 dτ −(3.3)
2

[F (α)−F (u(x))]1/2 .

If we try to set here x = 0, then both terms on the right are infinite. Instead,
we observe that

− 2
[F (α)−F (u)]1/2 = − ∫ u

0
d
dτ

2
[F (α)−F (τ)]1/2 dτ − 2

F (α)1/2(3.4)

= − ∫ u

0
f(τ)

[F (α)−F (τ)]3/2 dτ − 2
F (α)1/2 .

Using (3.4) in (3.3), we obtain

23/2w′(x) =
∫ u(x)

0

f(u(x))− f(τ)

[F (α)− F (τ)]3/2
dτ − 2

F (α)1/2
.(3.5)

The integral on the right is now non-singular as we let x → 0. At x = 0 we see
that (3.2) is equivalent to (3.1).
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4. A computer assisted proof

We parameterize the solutions of (1.1) by their maximum value α = u(0).
(Recall that the value of α uniquely determines the solution (λ, u(x)).) By
rescaling x we can transform the problem (1.1) into

u′′(x) + f(u(x)) = 0 on (−1, 1),(4.1)
u(−T ) = u(T ) = 0,

with T =
√
λ. Observe that dλ

dα and dT
dα have the same signs. To prove the

theorem it then suffices to show that dT
dα changes sign exactly once on the upper

curve, i.e. T (α) has exactly one critical point.

We now recall the phase-plane approach taken by J. Smoller and A. Wasser-
man [8], and S.-H. Wang [9]. With S(α) =

√
2T (α), one easily has (see (2.10))

S(α) =
∫ α

0

[F (α)− F (u)]−1/2
du

and then

S′(α) =
1
2α

∫ α

0

θ(α)− θ(u)

[F (α)− F (u)]3/2
du,(4.2)

where θ(u) = 2F (u)− uf(u). It was proved in [8] that

S′′(α) +
2
α
S′(α) >

1
2α2

∫ α

0

φ(α)− φ(u)

[F (α)− F (u)]3/2
du,(4.3)

with φ(u) = uθ′(u)− θ(u). (This formula is numbered (2.6) in both [8] and [9].)
If one could show that the integral on the right in (4.3) is positive for all α, then
clearly S(α) can have only one critical point, a point of minimum. This was the
strategy pursued in [8]. However, our numerical computations show that this
integral is sometimes negative. For example, this integral is negative if a = 0.77,
b = 0.87 and α = 0.94 sh4.nb (recall that c = 1). Hence, a proof along these
lines is impossible.

One way we obtain a computer assisted proof is by showing that the func-
tion S′(α) ≡ Sα(α, a, b) given by (4.2) is negative for all values of a and b
not covered by the Theorem 1.1, and all β < α < γ. This means that the
solution curve travels to the left in the (λ, α) plane for these values of pa-
rameters a, b and α, while for any other admissible values of the parame-
ters only turns to right are possible on the upper curve. Our computaions
show that the maximum of S′(α) on the region ∆̄2 × [β, γ] occurs around
a0 = b0 = 0.192, α0 = 0.73, with the maximum value around −0.037. This
value is close to zero, but definitely negative, even allowing for the computa-
tional errors. This computation by itself is sufficient for the proof, but for extra
assurance we computed the integral J defined by ( 2.4). Actually we have com-

puted II ≡ −F (α)5/2
∫ α

0
f ′′(u)

(∫ α

u
f(s) ds

) (∫ u

0
ds

(
∫ α

s
f(t) dt)3/2

)3

du, where the
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extra term F (α)5/2 is introduced to make this integral scaling invariant in f .
(Other such factors can be chosen, this one is suggested by the value of u′(1).)
Our computation shows that II(a0, b0, α0) ≈ 4.97, which implies that only turns
to the right are possible near (a0, b0, α0).

We have obtained even further assurance by computing the function G(α)
from the Theorem 3.1. It turned out to be positive over the “dangerous” region
∆̄2 × [β, γ]. This means that no turns happen in that region. Not surprisingly,
the minimum value of G(α) ≈ 0.013 over that region occurs near the same
a0 = b0 ≈ 0.192, α0 ≈ 0.73 as before.

5. Validating the bifurcation diagrams

It is very easy to compute numerically bifurcation diagrams for the problem
(1.1). Indeed, one solves the equation in (4.1) with the initial data u(0) = α > 0,
u′(0) = 0, and calculates the first T so that u(T ) = 0. Then we set λ = T 2 (recall
the derivation of (4.1)). This gives us a point (λ, α) on the bifurcation diagram
for the problem (1.1). Repeating this procedure for sufficiently many relevant
α’s, we obtain a bifurcation diagram. In Mathematica this procedure requires
only one simple loop containing a NDSolve command. The tools developed in
this paper, particularly the formulas (2.3) and (3.1) will often allow one to prove
correctness of the bifurcation diagram. We describe our approach next.

If S′(α) < 0 the curve travels to the left at u(0) = α in (λ, α) plane, it travels
to the right if S′(α) > 0, and at the turning points S′(α) = 0. If S′(α) is close
to zero we may be unable to decide which way the curve travels because of the
errors and uncertainties of the computer implementation. Let ε > 0 be such
that for |S′(α)| > ε we can prove that the observed (computed) sign of S′(α)
is correct. For such α’s we know for sure which way the curve travels. The
“danger” is near the turning points, where |S′(α)| is small. How do we know
that there is only one turning point there, rather than 3, 5, etc? Let L be an
interval of α’s where |S′(α)| < ε. Assume we can prove (through a computation
supported by estimates) that the integral J , given by (2.4) is positive. Then only
turns to the right are possible over L, and hence at most one turn is possible.
If, moreover, S′(α) < 0 to the left of L and S′(α) > 0 to the right of L then
exactly one turn to the right occurs on L.

In addition, we can use the formula (3.1) to show that the problem (1.1) does
not have any turning points for some parameter regions. It appears that our
tools are sufficient to validate any bifurcation diagram, where the turning points

are all non-degenerate (i.e.
∫ 1

−1

f ′′(u)w3 dx 
= 0).

Next we turn to a prominent example involving a degenerate critical point.
The following problem, related to gas combustion,

u′′ + λe
au

a+u = 0 on (−1, 1), u(−1) = u(1) = 0(5.1)
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has been extensively studied, see S.-H. Wang, [10] and P. Korman and Y. Li
[5], where the references to some earlier work are given. We regard a > 0 as
a fixed parameter, and again draw bifurcation diagrams in (λ, α) space, where
α = u(0). It is known that for a ≤ 4, the solution curve is monotone in λ (i.e.
for every λ > 0 there exists a unique positive solution), while for a ≥ a1 ≈ 4.35
the solution curve is exactly S-shaped, see [10] and [5]. It has been conjectured
by S.-H. Wang [10] that there is a unique a0 (a0 ∈ (4, a1)), so that the solution
curve of (5.1) is S-shaped for a > a0, and the curve is monotone for a ≤ a0.
Clearly, the turning point at a0 would be a degenerate critical point, since it
continues for a > a0, but not for a < a0. We recall from [5] that for any a the
solution curve starts at (λ = 0, u = 0) and continues to (λ =∞, u =∞).
Again, we reduce the problem to a computation over a compact range of

parameters. Let u2 = u2(a) be the larger of two roots of the equation uf ′(u) =
f(u), with f(u) = e

au
a+u , u2 = 1

2

(−(2− a)a+ a3/2
√
a− 4). The function f(u) =

e
au

a+u is convex for u < −a+ a2/2 and concave for u > −a+ a2/2. It was proved
in [5] that if we can find a β > −a+a2/2 such that f2(β)−2F (β)f ′(β) > 0, then
for any for α ≥ β a turn to the right occurs at any singular solution, i.e. the
singular solution is non-degenerate. Our first computation showed that we can
take β = 8, i.e. for all a ∈ (4, a1) we have f ′′(8) < 0 and f2(8)−2F (8)f ′(8) > 0.
Hence, it suffices to understand the bifurcation diagrams for 4 < a < a1 ≈ 4.35
and 0 < α < 8. Over this range we have computed the function G(α) given
by (3.1). It turned out to be a unimodular function which is negative for a
close to 4 and it has exactly two roots for larger a, with the transition occuring
slightly below 4.07. We have computed that over the above range of parameters,
∂
∂aG(α) > 0 while G′′(α) < 0. Hence for increasing a there is a critical a0 at
which the number of roots of G(α) goes from exactly zero for a < a0, to exactly
one at a = a0, and exactly two for a > a0.
The solution curve has to be monotone for a < a0. Indeed, in this case the

curve can have at most one turning point (for α > 8), and since the solution
curve joins (λ = 0, u = 0) to (λ = ∞, u = ∞), it can have no turns at all.
We claim that the solution curve is monotone at a = a0 too. Indeed, there
is exactly one critical point for α ∈ (0, 8), and no critical point for α > 8 (a
critical point in the α > 8 range would have to be degenerate, since it does not
continue for a < a0, which is impossible). The solution curve has to become
S-shaped immediately for a > a0. Indeed, we know that it becomes S -shaped
eventually. This transition requires a degenerate critical point, which according
to the computations described above happens only at a = a0. For the same
reason the solution curve stays S- shaped for all a > a0. Hence our computations
imply the proof of S. -H. Wang’s conjecture.

6. Proof of Theorem 1.1

In this short section we sketch and clarify the proof of the Theorem 1.1 from [6]
and [7]. The papers [6] and [7] gave two ways to reduce the proof of the Theorem
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1.1 to showing positivity of the integral K ≡ ∫ 1

0
f ′′(u(x))u′(x)w2(x) dx at any

critical solution u(x), with w(x) being a positive solution of the corresponding
linearized problem. Two representations were derived for K:

K =
1
λ
w′2(1)− w2(0)f ′(α),(6.1)

with α = u(0), and

K =
w2(0)
2F (α)

I(α),(6.2)

where as before I(u) = f2(u) − 2F (u)f ′(u). If the condition (1.7) holds, then
it is easy to see that α > γ, and hence f ′(α) < 0, which implies that K > 0
by (6.1). So assume (1.8) holds. By above, it suffices to consider α < γ. Since
it was proved in [7] that α > β at any singular solution, we may assume that
α ∈ (β, γ).
Case 1. Assume that F (β) ≥ 0. Then F (α) > F (β) for all α > β. Since
I(β) ≥ 0, and

I ′(α) = −2F (α)f ′′(α) > 0 for α > β,

it follows that I(α) > I(β) > 0, and from (6.2), K > 0.

Case 2. Assume that F (β) < 0. If F (α) < 0 for all α ∈ (β, γ), we see that
I > 0 directly from its definition, and hence K > 0. Otherwise, we can find
β̄ ∈ (β, γ), so that F (β̄) = 0 and F (α) > 0 for α > β̄. Then I > 0 on (β, β̄]
directly from the definition of I, while on the interval (β̄, γ) we repeat the proof
from the Case 1 to show that I > 0.
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