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Abstract

We extend some earlier results on existence of homoclinic solutions
for a class of Hamiltonian systems. We also study heteroclinic solu-
tions. We use variational approach.

1 Introduction

Recently variational techniques have been used in a number of papers to
obtain existence of homoclinic and heteroclinic orbits of the Hamiltonian

∗Supported in part by the National Science Foundation.
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systems
u′′ − L(t)u + Vu(t, u) = 0,(1.1)

see e.g. A. Ambrosetti and M.L. Bertotti [1], P.H. Rabinowitz [7], W. Omana
and M. Willem [5], and P. Korman and A.C. Lazer [3]. Here L(t) is a
given positive definite n × n matrix, the potential V (t, u) is assumed to be
superquadratic in u, and the solution is sought in the class H1(R,Rn), which
implies that it is homoclinic at zero, i.e. limt→±∞ u(t) = 0. The approach
used in [1], [5] and [3], was to restrict the problem (1.1) to a bounded
interval (−T, T ) with Dirichlet boundary conditions u(−T ) = u(T ) = 0,
show existence of solutions using the mountain-pass lemma, and then let
T → ∞. The crucial observation made in [1], and independently in [3], is
that in addition to existence of solutions, the mountain-pass lemma allows
one to obtain uniform in T estimate of H1 norm of the solution. It is
then straightforward, via the usual diagonal process, to show existence of
a homoclinic solution of (1.1). The problem is to show that this solution
is nontrivial. P.H. Rabinowitz and K. Tanaka proved existence of solution
under condition that the smallest eigenvalue of L(t) tends to ∞ as |t| →
∞, see [8], and also [5], where an alternative proof is given. The above
condition does not seem to be natural, and in fact in [3], P. Korman and
A.C. Lazer showed that it can be dropped if L(t) and V (t, u) are even
functions in t. In the present paper we prove a similar result for a broad
class of problems without assuming evenness. In case of one equation, we
prove sharper results, and moreover obtain positive homoclinics.

In Section 3 we use a similar approach and elementary techniques to
show existence and uniqueness of an odd heteroclinic solution for a class of
equations.

2 Positive homoclinics for a class of equations

In this section we shall prove existence of positive homoclinics for a model
equation with a polynomial nonlinearity. Namely, we are looking for a pos-
itive solution of

u′′ − a(x)u + b(x)up = 0, −∞ < x < ∞, 1 < p < ∞,(2.1)

u(−∞) = u′(−∞) = u(∞) = u′(∞) = 0.(2.2)

We assume that the functions a(x), b(x) ∈ C1(−∞,∞) are strictly positive
on (−∞,∞), i.e. a(x) ≥ a0 > 0 and b(x) ≥ b0 > 0.
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As in [3], we shall obtain solution (2.1-2.2) as the limit when T → ∞ of
the solutions of

u′′ − a(x)u + b(x)up = 0 for x ∈ (−T, T ), u(−T ) = u(T ) = 0.(2.3)

Let uT denote solution of (2.3). To show that a subsequence of {uT } con-
verges to a positive solution of (2.1-2.2) as T → ∞, we need to exclude the
possibility of this subsequence converging to zero. Let x0 be the point of
global maximum of u(x). From (2.3), since u′′(x0) ≤ 0, it follows that

u(x0) ≥
(

a(x0)

b(x0)

)

1

p−1

,(2.4)

and hence if we can show that x0 stays in a bounded interval as T → ∞,
it will exclude the possibility of {uTk

} → 0. We shall give two sets of
conditions, which constrain x0 to a bounded interval. But first we recall
the existence result from [3]. Since we intend to send T to infinity, we shall
restrict to T ≥ 1 in (2.3).

Lemma 2.1 [3] The problem (2.3) has under our conditions a positive solu-
tion for any T ≥ 1, which is obtained by a variational technique. Moreover,
for this (variational) solution we have an estimate

∫ T

−T
(u′2(x) + a(x)u2)dx ≤ c uniformly in T ≥ 1.(2.5)

We recall that in the process of proving this lemma it was shown that

cT =

∫ T

−T

[

u′2
T

2
+ a(x)

u2
T

2
− b(x)

u
p+1
T

p + 1

]

dx

is non-increasing in T , which implies that cT ≤ c1 for all T > 1. Multiplying
the equation (2.3) by u and integrating, we easily express

∫ T

−T

(

u′2
T

2
+ a(x)

u2
T

2

)

dx =
(p + 1)

p − 1
cT .(2.6)

Lemma 2.2 Assume that

xa′(x) ≥ 0 and xb′(x) ≤ 0 for all x.(2.7)
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Let u(x) be a positive solution of (2.1-2.2), x0 its point of maximum. Assume
that the following two conditions hold

lim
x→±∞

(

√

a(0) +
√

a(x)
)

2

[

(p + 1)a(x)

b(x)

]

2

p−1

> lim
T→∞

(p + 1)

p − 1
cT .(2.8)

Then x0 belongs to a bounded interval uniformly in T > 1.

Proof. We recall that it was proved in Korman-Ouyang [4] that u(x)
has only one point of local maximum, which is the point of global maximum,
which we denote by x0, and we assume without loss of generality that x0 ≥ 0.
Multiplying the equation (2.1) by u′ and integrating over (x0, T ) gives (using
that a(x) and −b(x) take their minimum at x0)

u(x0) ≥
[

(p + 1)a(x0)

2b(x0)

]

1

p−1

(2.9)

(which is stronger than the estimate (2.4) obtained by maximum principle).
For any T > 1 we have by (2.6)

∫ T

−T

√

a(x)|uu′|dx ≤
∫ T

−T

(

1

2
au2 +

1

2
u′2
)

dx =
(p + 1)

p − 1
cT .(2.10)

On the other hand, using (2.9),

(p + 1)

p − 1
cT >

∫ T

−T

√

a(x)|uu′| dx

=

∫ x0

−T

√

a(x)

(

u2

2

)′
dx −

∫ T

x0

√

a(x)

(

u2

2

)′
dx

≥
√

a(0)
u2(x0)

2
+
√

a(x0)
u2(x0)

2

≥ (
√

a(0) +
√

a(x0)))

2

[

(p + 1)a(x0)

2b(x0)

]

2

p−1

.

By (2.8) it then follows that x0 belongs to a bounded interval.

Remark 1 Condition (2.8) is satisfied if, for example, lim|x|→∞ a(x) = ∞
and b(x) is bounded.

Remark 2 Instead of (2.7) we could allow a more general condition: (x −
c)a′(x) ≥ 0 and (x − c)b′(x) ≤ 0 for some c ∈ R and all x.
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A similar result can be given without any symmetry assumptions on
a(x) and b(x). Recall that the total variation of the function f(x) on [a, b]
is
∫ b
a |f ′(x)| dx.

Lemma 2.3 Assume that

lim inf
|x|→∞

√
a0

(

a(x)

b(x)

)

1

p−1

> lim
T→∞

(p + 1)

p − 1
cT .(2.11)

Then x0 belongs to a bounded interval.

Proof. Proceeding as in the proof of the previous lemma, we have, using
(2.4),

(p + 1)

p − 1
cT >

∫ T

−T

√

a(x)

∣

∣

∣

∣

∣

(

u2

2

)′∣
∣

∣

∣

∣

dx

≥ min
[−T,x0]

√

a(x)

∫ x0

−T

∣

∣

∣

∣

∣

(

u2

2

)′∣
∣

∣

∣

∣

dx

+ min
[x0,T ]

√

a(x)

∫ T

x0

∣

∣

∣

∣

∣

(

u2

2

)′∣
∣

∣

∣

∣

dx

≥ √
a0u

2(x0) ≥
√

a0

(

a(x0)

b(x0)

)

1

p−1

.

In view of (2.11) the lemma follows.

Theorem 2.1 Assume that a(x) and b(x) satisfy either conditions of lemma
2.2 or of lemma 2.3. Then the problem (2.1-2.2) has a positive solution.

Proof. Take a sequence {Tn} → ∞, and denote by un the corresponding
positive variational solution of the problem (2.3), which exists by lemma 2.1.
Using the estimate (2.5), which implies a uniform bound in H1, one shows
exactly in the same way as in [3] that a subsequence of {un(x)} converges
uniformly on bounded intervals to a function u(x) ∈ C2(−∞,∞), which is
a solution of the equation (2.1) for all x ∈ (−∞,∞). Clearly, u(x) ≥ 0 for
all x.

We claim that

u(x) > 0 for all x ∈ (−∞,∞).(2.12)
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Indeed, denoting x0n the point of maximum of un(x) we have by lemmas
2.2 and 2.3 that {x0n} belong to a bounded interval, call it I. Along a

subsequence xonk
→ y ∈ I and by (2.4) u(y) ≥ minI

(

a(x)
b(x)

)
1

p−1

> 0. Since

u(x) is nonnegative and nontrivial, it is positive by the maximum principle.
The rest of the proof is exactly the same as in [3].

Example. Consider (a is a constant)

u′′ − a2u + 2u3 = 0, −∞ < x < ∞, u(±∞) = u′(±∞) = 0.(2.13)

Multiplying (2.13) by u′ and integrating, we obtain a homoclinic solution
u(x) = a

cosh ax . In fact, there is an infinite family of homoclinics u(x) =
a

cosh a(x−γ) for any constant γ.

3 Odd heteroclinic solutions

We begin with a simple problem

u′′ + u − u3 = 0 for x ∈ (−∞,∞), u(±∞) = ±1, u′(±∞) = 0.(3.1)

Multiplying (3.1) by u′ and integrating, we easily compute an odd hetero-
clinic solution u = tanh x√

2
.

Our goal is to obtain a similar result for the problem

u′′ + a(x)(u − |u|p−1u) = 0 for x ∈ (−∞,∞),(3.2)

u(±∞) = ±1, u′(±∞) = 0.

We assume that p > 1 is a real number and the function a(x) is even of class
C1(−∞,∞), with

a′(x) < 0 for almost all x > 0,(3.3)

a(∞) > 0.(3.4)

We shall obtain the solution of (3.1) as a limit when T → ∞ of solutions of

u′′ + a(x)(u − |u|p−1u) = 0 for x ∈ (−T, T ), u(±T ) = ±1.(3.5)

Solution of (3.5) will in turn depend on the problem

u′′ + a(x)(u − |u|p−1u) = 0 on (0, T ), u(0) = 0, u(T ) = 1.(3.6)
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Lemma 3.1 The problem (3.6) has for each T > 0 a unique positive solu-
tion, which is an increasing function.

Proof. The function u ≡ 1 is a supersolution of (3.6), while u = αx

is a subsolution, when the constant α is sufficiently small. It follows that
(3.6) has a positive solution (0 < u < 1 on (0, T )). By the maximum
principle any solution of (3.6) satisfies 0 < u < 1 on (0, T ). Turning to the
uniqueness, recall that the method of super-subsolutions implies existence
of a maximal solution u(x), i.e. u(x) ≥ v(x) for all x ∈ (0, T ), if v(x) is any
other solution of (3.6). Multiplying (3.6) by v, and the same equation for v

by u, subtracting and integrating,

∫ T

0
a(x)uv(vp−1 − up−1) dx + u′(T ) − v′(T ) = 0,

which implies that v ≡ u.
Finally, assume that u(x) is not monotone. Then it has a point x of local

minimum on (0, T ), at which u′′(x) ≥ 0 and u(x)−up(x) > 0, which implies
a contradiction in (3.6).

Lemma 3.2 The problem (3.5) has under our conditions a unique solution,
which is an odd and increasing function.

Proof. Let u(x) be the solution of (3.6) for x ∈ [0, T ], obtained in the
previous lemma. We extend it to [−T, 0] as −u(−x). The resulting function
is an odd and increasing solution of (3.5). Uniqueness follows as above (−1
and +1 are respectively sub- and supersolution).

Theorem 3.1 The problem (3.2) has, under the conditions (3.3) and (3.4),
a unique solution, which is an odd and strictly increasing function.

Proof. Take a sequence Tn → ∞, and consider the problem (3.5) on the
interval (−Tn, Tn), i.e. consider

u′′ + a(x)(u − |u|p−1u) = 0 on (−Tn, Tn),(3.7)

u(−Tn) = −1, u(Tn) = 1.

By lemma 3.2 the problem (3.11) has a unique solution un(x). Since |un(x)| <

1, we conclude that

|u′′
n(x)| ≤ c for all x ∈ (−Tn, Tn) uniformly in n.(3.8)

7



Since un(x) is monotone the estimate (3.12) implies

|u′
n(x)| ≤ c for all x ∈ (−Tn, Tn) uniformly in n.(3.9)

(If u′
n(x) were to become large at some x, then by (3.8) u′

n(x) would stay
large over a long interval, which would contradict the total variation of un(x)
being equal to 2).

Arguing as in [3], we see via the usual diagonal process that there is a
function u(x) ∈ C2(−∞,∞) such that along a subsequence we have for all
x ∈ (−∞,∞)

unk
(x) → u(x) and u′

nk
(x) → u′(x)(3.10)

uniformly on bounded intervals,

and that u(x) is a solution of (3.2).
We claim that there is a constant c0 > 0 such that

u′
n(0) ≥ c0 uniformly in n.(3.11)

Indeed, introducing the “energy” function for x ≥ 0 (where un(x) ≥ 0)

E(x) =
1

2
u′2

n + a(x)

(

u2
n

2
− up+1

n

p + 1

)

,

we compute using (3.5)

E′(x) = a′(x)

(

u2
n

2
− up+1

n

p + 1

)

< 0.

Therefore

E(0) =
1

2
u′2

n (0) > E(Tn) > a(∞)
p − 1

2(p + 1)
,

and (3.11) follows. It follows that u(x) 6≡ 0.
By (3.10) u′(x) ≥ 0. Since also −1 ≤ u(x) ≤ 1, it follows that limx→±∞ u(x)

exist, and the only possibility in view of (3.4) is that limx→±∞ u(x) = ±1
(since u′′(x) must be small for x large). Since u(x) is nondecreasing it fol-
lows that limx→±∞ u′(x) = 0. Notice that u(x) is, in fact, strictly increasing,
since otherwise we would have u′(x0) = 0 at some x0 > 0, and then inte-
grating the equation (3.2) over (x0,∞), we would get a contradiction.

Turning to the uniqueness, let v(x) be another solution of (3.2). We
consider four possible cases.
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(i) u(x) and v(x) intersect at least twice on [0,∞). I.e. we can find
0 ≤ x1 < x2 < ∞, such that u(x1) = v(x1) ≡ u1, u(x2) = v(x2) ≡ u2

and say u(x) > v(x) on (x1, x2). As in lemma 3.1 we obtain

u2(u
′(x2)−v′(x2))−u1(u

′(x1)−v′(x1))+

∫ x2

x1

auv(vp−1−up−1) dx = 0,

which is impossible, since u′(x1) > v′(x1) and u′(x2) < v′(x2).

(ii) u(x) and v(x) intersect exactly once on [0,∞), say at x1 ≥ 0. Integrat-
ing over (x1, R) and letting R → ∞, we obtain the same contradiction.

(iii) u(x) and v(x) have only negative points of intersection. By considering
−u(−x) and −v(−x) (which are also solutions of (3.2)) we reduce this
case to one of the previous cases.

(iv) u(x) and v(x) never intersect. Integrating over (−R,R) and letting
R → ∞, we again obtain a contradiction.

Clearly, we have also proved the following theorem.

Theorem 3.2 Consider the problem

u′′ + a(x)(u − up) = 0 for x ∈ (0,∞)(3.12)

u(0) = 0, u(∞) = 1, u′(∞) = 0,

with a(x) ∈ C1[0,∞) satisfying the conditions (3.3) and (3.4), and p is a
real number with p ≥ 1. Then the problem (3.12) has a unique positive
solution, which is a strictly increasing function.

4 Homoclinic solutions for a class of Hamiltonian

systems

We are looking for nontrivial solutions u(t) ∈ H1(R,Rn) of the system

u′′ − L(t)u + Vu(t, u) = 0 −∞ < t < ∞,(4.1)

u(±∞) = u′(±∞) = 0.(4.2)

Here Vu is the gradient of V with respect to u variables. We assume that

L(t) = [ℓij(t)] is a positive definite matrix of class(4.3)

C1(R), and there is α(t) ∈ C(R,R) such that

α(t) ≥ α0 > 0 for all t ∈ R and (L(t)u, u) ≥ α(t)|u|2;
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V (t, u) ∈ C1(R × Rn, R), and for some constant γ > 2(4.4)

0 < γV (t, ξ) ≤ (Vξ(t, ξ), ξ) for all ξ ∈ Rn\{0} and t ∈ R.

As in Section 2 we approximate (4.1-4.2) by the problem (with say T > 1)

u′′ − L(t)u + Vu(t, u) = 0 for t ∈ (−T, T ), u(−T ) = u(T ) = 0.(4.5)

We recall that under our conditions the problem (4.5) has a nontrivial
solution u = uT , which is a critical point of the functional

J(u) =

∫ T

−T

[

1

2
|u′|2 +

1

2
(L(t)u, u) − V (t, u)

]

dt,

and that cT ≡ J(uT ) is non-increasing in T , see [3]. Let t0 denote (any)
point of global maximum of |uT |. Similarly to the scalar case, we wish to
constrain t0 to a bounded region. To this end we assume existence of a
function β : R → R and a constant t1 > 0, such that for |t| > t1,

(L(t)u, u) > (Vu(t, u), u) provided that |u|2 ≤ β(t).(4.6)

Remark 3 It was shown in [3] that under the condition (4.4) the function
V (t, u) is superquadratic in u near the origin. While the condition (4.6)
does not seem to follow from (4.4), it is clear that it is not a very restrictive
condition.

Theorem 4.1 For the problem (4.1-4.2) assume that conditions (4.3), (4.4)
and (4.6) hold, and in addition assume that

lim inf
t→∞

α0β(t) > lim
T→∞

2γ

γ − 2
cT .(4.7)

Then the problem (4.1-4.2) has a nontrivial solution.
(Keep in mind that cT is decreasing in T . So that (4.7) will follow, if

for example, lim inft→∞ α0β(t) > 2γ
γ−2c1.)

Proof. As in the previous section (and as in [3]) we approximate our
problem by (4.5) and let Tk → ∞. In [3] it was shown that H1 norm of
solutions uTk

is bounded uniformly in k. As before this allows us to conclude
that a subsequence of {uTk

} converges uniformly on bounded intervals to a
function u(x) ∈ C2(R,Rn), which is a solution of (4.1). It remains to show
that u(t) is nontrivial (that u(t) satisfies (4.2) follows exactly as in [3]).
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Define q(t) = |u(t)|2. Compute

q′′(t) = 2|u′|2 + 2u · u′′.(4.8)

It t0 is the point of maximum of q(t), then q′′(t0) ≤ 0, and it follows from
(4.8) that

u(t0) · u′′(t0) ≤ 0.(4.9)

We may assume that |t0| > t1, since otherwise t0 already belongs to a
bounded interval.

Multiplying the i−th equation in (4.1) by ui and summing, we obtain in
view of (4.9)

−(L(t0)u(t0), u(t0)) + (Vu(t0, u(t0)), u(t0)) ≥ 0.

Comparing this with (4.6) we conclude

|u(t0)|2 > β(t0).(4.10)

We recall that it was shown in [3] that

∫ T

−T

[

1

2
|u′

T |2 +
1

2
(L(t)uT , uT )

]

dt ≤ 2γ

γ − 2
cT ≤ 2γ

γ − 2
c1,(4.11)

where as before cT = J(uT ).
On the other hand, proceeding as in lemma 2.3, and using (4.10) and

(4.11),

2γ

γ − 2
cT ≥

∫ T

−T

n
∑

i=1

√

α(t)|uiu
′
i| dt ≥ α0

∫ T

−T

∣

∣

∣

∣

d

dt

1

2
|u|2

∣

∣

∣

∣

dt(4.12)

≥ α0|u(t0)|2 > α0β(t0).

Condition (4.7) then implies that t0 stays in a bounded interval as Tk → ∞.
As in theorem 2.1 we show existence of t such that

|u(t)|2 > lim inf
t→∞

β(t) > 0.

(For the second inequality use (4.7) and that cT > 0, since cT is the value
of J(u) at the mountain pass).

Hence u(t) is a nontrivial solution of (4.1). As in [3] one sees that it also
satisfies (4.2), completing the proof.

11



Remark 4 Condition (4.7) can be generalized to read

lim inf
t→∞

β(t) min
(−t,t)

α(s) > lim
T→∞

2γ

γ − 2
cT .

Remark 5 If |Vu(t, u)| < c0u
1+δ for some constants c0, δ > 0 uniformly in

t ∈ R, then

(L(t)u, u) ≥ α(t)|u|2 ≥ c0|u|2+δ > (Vu(t, u), u),

provided α(t) ≥ c0|u|δ . Hence we can take β(t) =
(

α(t)
c0

)2/δ
, and if we are

given that lim|t|→∞ α(t) = ∞, then condition (4.7) holds and our theorem
applies. This corollary appears to be roughly equivalent to the theorem of
P.H. Rabinowitz and K. Tanaka (see [5, p. 1116]). Our result is considerably
more general than this corollary.

Remark 6 Our numerical calculations for the problem

u′′ − 2u + u3 = 0 on (−T, T ), u(−T ) = u(T ) = 0

suggest that limT→0 cT = ∞, while limT→∞ cT > 0.

5 A curious maximum principle for elliptic sys-

tems

Our argument in section 4 suggests a maximum principle for elliptic systems,
which is quite unlike the classical one in [6] or its recent generalizations, see
e.g. [2]. In particular we do not require the system to be of cooperative
type.

Let Ω be a bounded domain in Rd. We consider the system of m weakly
coupled equations with m unknown functions uk(x), k = 1, . . . ,m,

d
∑

i,j=1

aij(x)uk
ij +

m
∑

ℓ=1

bkℓ(x)uℓ = fk(x, u), x ∈ Ω, k = 1, . . . ,m.(5.1)

Here uij = ∂2u
∂xi∂xj

, and we assume that for some constant θ > 0

d
∑

i,j=1

aij(x)ξiξj ≥ θ|ξ|2 for all x ∈ Ω and ξ ∈ Rd.(5.2)
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We denote u = (u1, . . . , um).
We do not impose any smoothness assumptions on aij(x), bkℓ(x) and

fk(x, u), however we do assume that we have a classical solution of (5.1),
i.e., uk ∈ C2(Ω). Let B be the m × m matrix, B = [bkℓ(x)].

Theorem 5.1 Assume that 1
2

(

B + BT
)

is negative semidefinite, i.e.,

m
∑

k,ℓ=1

bkℓ(x)ukuℓ ≤ 0 for all u ∈ Rm and x ∈ Ω.(5.3)

We assume also
m
∑

k=1

fk(x, u)uk ≥ 0 for all u ∈ Rm and x ∈ Ω.(5.4)

Assume finally that at each x ∈ Ω at least one of the above two inequalities
is strict. Then |u(x)|2 =

∑m
k=1 uk2

(x) has no points of maximum inside Ω.

Proof. Denote q(x) = |u(x)|2 and let x0 ∈ Ω be its point of maximum.
Compute

qij(x) = 2
m
∑

k=1

uk
i u

k
j + 2

m
∑

k=1

ukuk
ij .(5.5)

Since
d
∑

i,j=1

aij(x0)qij(x0) ≤ 0, and

d
∑

i,j=1

aij(x0)u
k
i u

k
j ≥ θ|∇uk|2 ≥ 0,

we conclude using (5.5)

m
∑

k=1

d
∑

i,j=1

aij(x0)u
k(x0)u

k
ij(x0) ≤ 0.(5.6)

We now multiply the k−th equation in (5.1) by uk and sum. In view of
(5.3), (5.4) and (5.6) we have a contradiction at x = x0.

Corollary 1 Assume that homogeneous Dirichlet conditions are imposed

uk(x) = 0 for x ∈ ∂Ω, k = 1, . . . ,m.(5.7)

Then the trivial solution (if it exists) is the only possible solution of (5.1),
(5.7).
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Remark 7 If non-negative solutions of (5.1) are considered, i.e. uk(x) ≥ 0
for all x ∈ Ω and k = 1, . . . ,m then (5.4) will follow from the condition

fk(x, u) ≥ 0 for all u ∈ Rm
+ , k = 1, . . . ,m, and x ∈ Ω.

Remark 8 For the corresponding parabolic system one can prove the same
way that |u(x, t)|2 can have points of maximum only on the parabolic bound-
ary. In [6, p.194] there are references to some related results.
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