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1 , on obtient :

n (f) b *” f(*l t), 1) + 57 [E(£1;£1,0) + £(t1,0,x1)]

+ 57 £(0,0,0) ;
on retrouve la formule produit de SIMPSON c¢f,.[111 .

Remarque 4 : Les formules de quadrature de la proposition 4 et
5 sont & nombre minimal de noeuds, donc 4 coefflecients stricte-

"ment positifs c¢f£.061 .
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Abstract

Using the theory of quasimonctone 1hcreasing systems developed
by P. J. McKenna and W. Halter, we give a rather detailed ana-
lysis of the steady stats solutions for the Volterra-iotka
model of two cooperating species, and prove some new non-
existence results for the competing species case. We indicate
generalizations to the case of n > Z species.
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1. INTRODUCTION.

We study interaction of two or more species in the Volterra-Lotka
ecological model with diffusion. For two species the model is
described as follows., Let u(x,t), vi(x,t) be positive solutions of
the system )

u, = Au + u{a=butcy)

t
{1.1)
Vi * aAv + vidteu-fv)- in @,
with ulx,t) = v{x,t) = 0 on an.
Here x € @, @ a smooth domain in R" with boundary 89. The

functions u{x,t}, vi{x,t) describe populations of two species at
position x and time t. CLonstant coefficients a and d represent
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the {intrinsic) growth Eates. Positive constants b and f
describe self-lmitation of each species, Conétants € and e
descripe interactions between the species and can pe of ¢fther

We will pe interested in the case ¢ ¢ 0, € <0, which

descripes competing populations, and ¢ » 0, e > 0, which fescribes

coopera
The

ting species (or symbiosis),
First step in analysing (1,1) s usually to 100k for the

$teady state solutions, 1.e., the Positive solutions of

(1.2)

Au + ula=utcy) = 0

dv + vid+eusy) = g e, ueyap on 3a ,

Noticg that we can always assume b = f=1 (hy stretching the
variables u apd v). Once existence of a positive Steady state s
established, one studies {ts region of attraction,

We study existence, uniqueness ang stability of positive
steady states, and derive various bounds for them, The case of
Competing species has attracted considerable recent attention,

assuming

value of
question

a~A' d-A'
[ 4
g e« —3» where Al is the principal efgen~

=4 on Q (see also P. Korman-a, Leung [5]). Stability
for positive solution was Studied in [8], Uniqueness

Proved to be a harg problem, and only partial results were known
See A. Leung [6], c, Cosner-A, Lazer [31. A major advance was '
made recently by p, 4, McKenna~N, Halter [91, who transformed the
problem to a quasimonotone increasing form (see Section 2), and
then appiied the general theory they developed for such sy;tems.

similar to those of a single elliptic equation, 1p barticular the

Serrin's

sweeping principie holds, which they use to prove un{i-
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dueness under rather general conditions. They also {mprove the
existence result (see Section 4).

We use the results and techniques of [97] to study the case of
cooperating species. It turns out that a simple condition ce < 1
is necessary and sufficient for existence., We then derive rather
tight two~sided bounds for the solution, which are used to give

conditions for uniqueness and stability,
For competing species we concentrate on non-extstence results,

As in [9] we transform the problem to a quasimonotone increasing
form, and then use the Serrin's sweeping principie to "sweep” one
of the components of solutfon to zero. This gives us useful non=
existence results, different from those obtained by integration by
parts (see Section 4 and [2]).

In the last section we consider n » 2 specifes, and describe
811 systems which can be converted to a quasimonotone increasing
form by involutien of variables. Then, using resulits 1in
Rorman-Leung [5], we fndicate how one can der{ve existence results
for such systems. Such results should be useful in view of recent
Interest in large systems of biological interactions [4,10].

2. PRELIMINARY RESULTS. ,
Let 0 be a smooth domain {n R". By Al we denote the principal
¢lgenvalue of -4 on 0, and by 4 2 0 the corresponding eigenfunc~

t'on. i.e. »

{2.1) 89 +X4; = 0 1n g, ¢y = O on2a .
Define u, to be the positive solution of (a{x)eC®)
{2.2) fu + u(a{xj-u) = 0 ina, u=0onoq,

A. Leung proved in [6] that for a{x) > Ay the positive solution
exists, 1s unique and increasing in a. For constant a » d > Al e
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shall denote u" = Ugs Ve uy. In [9] McKenna and Walter proved
that '

v 5
. ‘Zta) u ?’aV ]

They obtained the estimate from the following useful Tummn'(which
15 a generalization of the comparison lemma in [6]),
Lewms 2.1 [9). If ¥ > 0 and ¢ > O are correspondingly sub- and
supersolution of {2.2) then ¥ € u < §,

1t would be very interesting to have some pointwise estimate
of u' in terms of v‘, {n particular several results of the present
work could be improved (see the theorems 3.3 and 4,2), We conjec-.

ture that

a-kl
‘2.4’ U. < W—i V* .
We present here a weak version of (2.4),
Lemma 2.2,  Normalize ¢, by [nef » i, Then

* L3} *
{2.5) Jqu'#; < l:x o oty T fqv ¢ -

Proof. Multiply {2.1) by u, (2.2) by * integrate both eguations
over 0, and subtract the results. After integration by parts we

get
(a=h)) fou'ey = Jou*%e,
Since
2 -
Inutz‘l » ('fﬂu*‘l) Uﬂ’l, ! »
we get (an interesting estimate by 1tself)

(2.6) fn“*‘l < (a-) ]atl .
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d=x,

One easily checks that EEI”%I ¢ 1s a subsolution of (2.2) with d
in place of a, 9
By lemme 2.1,
d=A
(2.7) v m~; 4

fi
sid the proof follows.
In the cne dimensfonal case one can glve a pointwise bound of
u* in terms of v*. lLet a9 = (0.%), #; = sin x. By (9], u* < a/a
sinx. Then 1n view of (2.7),

dv/ﬂ "

(2.8) u* < = v
1
Recall that the system
{2.9) Au + fls,u) =0 1inf , u=0o0nan,

where u = ("1""'“m) and f = ‘fl""'fm)' is called quasimonotone
increasing if fy(x,u) is increasing 1n uy for all j # 4. The
foliowing lemma 1s a special case of the theorem 4 in
McKenna-walter [9].

Leama 2.3. Let w, {a<A<B) be a family of supersolutions of (2.9)
such that

{2.10) AW, +i{x,w; ) €0 inf, w =« 0onan,

Assume that LA is continuous and increasing in A, and u < Wy - Also
oW,
assume that T changes continuously in A on 28, and w, does not
satisfy (2.9) for any i. Then u < inf W, .
Let vy be a family of subsolutions (a<i<f), increasing in A
and satisfying (2.10) with the inequality reversed., Assume also
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v,
U2 v, v, does not satisfy (2.9) for any 1, and that §ﬁi changes

continuously in A on 38, Then u > sup v,.

3, EXISTENCE, UNIQUENESS AND STABILITY FOR COOPERATING SPECIES,
- After stretching the variables u and v the system can be put into
the form (with ¢ > 0, e > 0)

Au + u{a-u+cv) = 0

(3.1)
Av + v(dveu-v) = 0 inQ, u=v =0 onan.

Throughout this section we assume a > d > A;, and look for a posi~
tive solution u > 0, v > 0, Hotice that u > u*, v » v*, see e.g.
{8]. ‘

Theorem 3.1. For existence of a positive solution of (3.1) 1t is
necessary and sufficient that ce < 1.

Proof.  Sufficiency was proved in [6]. To prove necessity we
assume that ce » 1 and consider a family of subsolutions v, =
(x¢y,2v¢)), with any 1 > 0 and y > 0 to be specified. For v, to
be a subsolution, we need

3‘31"161 + CAve; 2 0, d‘ll"ekil “Méy >0,

which can be achieved by taking e.g., v = e. Also notice that u>»
u* > Aoty for An-sufficiently small, and the same is true for v.
By Lemma 2.3, u » My, V2 Aed for any A > Aos which proves non=
existence.

Theorem 3.2, Assume that ec < 1. leta = %{%E s B = %;%E . The
problem {3.1) has & positive solution, and
(3.2) av* < u < au* , BVv* < v ¢ gu¥ .,
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proof. (1) Estimates from below. In the spirit of [9] we derive
the estimates

N W
(3,3) U a v, v BV,
with new a and 8, on each step. Clearly, relations (3.3) hold
withog =9, 8y« 1. Assuning (3.3) holds, we derive

0 = Au + ula~uscv) » au + u(d=u+canv*) .
{.e. u s supersolutfon of 4z + z(d»zvcanv*) = 0 in R,z = 0 on 89,
while (1icﬁ“)v* is a solution of the same problem, and hence by
temma 2.1 1t follows that

*
u> (lfcan)v .

Siailarly,
0 = av + v(dteu-v) » Av + v(d+¢uuv*“v) ;

'R (lfea")v .

Hence we can take Sl " 1+cﬂn. Bn+1 =1+ e . it 1s not hard to
check that the sequences {an} and {Bn} have finite 1imits, call
them & and B respectively. Then a = l+cB, 8 = ltea and the proof

follows.
{11} Estimates from above. We introduce a family of super-

solutions (u,,v,) = (aAu*,8au™), A > 1, none of which satisfies
either equation in (3.1). Indeed, the inequalities

(3.3) bu, + ux(a*ux+cvk) <0, Av, ¢ vx(d*eulﬂvx) <0,

sre equivalent to checking that

1 -0ah +cBr <0, d=g + {ead=gA+l)u* < 0 .,

But -a+c8 = =1, ea=B = -1, and (3.3) follows. Clearly u < axu*,
v‘ﬁku* for sufficiently large . Letting A +1+, and applying
Lemma 2.3, we establish the estimates.
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Remark 1. MNotice that a, and 8 1n general are ﬁat improved at

every step. However, the estimates {3.2) are rather tight, as can
w

be seen by letting a = d. Then we conclude that (au®, su®) is the

unique solutions of (3.1). , . .

Remark 2. It 15 easy to see that (au®, Bu") and {av*, 8Y") are

respectively super=- and subsolutions of {3.1).

* "
Next we define & = inf Y5 . Notfce that 6 < d/a < 1, (Our
g v da

conjecture (2.4) would imply & > Etf%')

Theorem 3.3. Assume that & > d > 3, ec < §2, Then (3.1) ﬁas L]
unique positive solution.

Proof. Assume tﬁere {s more than one solution. Then the theorem
E-;;~t9] guarantees existence of the maximal solution (u, V), i.e.
u < i, v <V for any other solution (u,v) of (3.1). We proceed
to prove the opposite inequalities. Consider a family of super-
solutions w, = (u+iu, v¥iyv) with any 2 > D_fnd Yy > 0_}0 be spe~
cified. In view of (3.2) it is clear that u < utiu, v € vy for

A sufficiently large. In order for w, to be a family of super-
solutions 1t suffices that

~AutcAyv < O

(3.4)
elu=Ayv < 0,

or ¢ s %;, e < 1% . MNext, by (3.2) we have
: o ges bt b
So that (3.4) will be satisfied 1f
¢ < %?vd , & ¢ 1% s,
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Tiis can clearly be accomplished by choosing v, since ec < 52,
Letting A + 0, we conclude the proof, in view of Lemma 2.3,
Remark., In one dimension taking i = (0,%), we have by (2.8},

d=a, (d*kl)z
5> ——;». and hence the condition ec ¢ g will be suf-
a'a a

fictent for unigueness.

Theorem 3.4. In the conditions of the theorem 3.3, the solutien
of 3.1 1s stable 1n the following sense: 1t is the Vimft of a
sequence of supersolutions from above and a seguence of sub-
solutions from below. (This notion of stability was used by D.
Sattinger [111.)

Proof.  We showed that ((1+A)u,{l+Ay)v) 1s a supersclution for
any X > 0 and some fixed y. Similarly, one checks that

({1=2)u, (1-Ay}v) is a subsolution for 0 < A < 1 and the same Y as
above.

Next for the positive solutien (u,v) of (3.1) we estimate v in
terms of u.

- € al-ec
Theorem 3.5.  Define A, mMalyg » 3 Tag): Thenmu > AgVe

Proof, Using (3.2}, compute

~8{u=Av) + ulu-rv) = aus(c=r-rejuv = rdv + sz

w
> (a=Ad8)u" + (ceA=reduv + AvE 2 0,

provided that a-Ad8 > 0, c¢-A-Ae¢ » 0. By the maximum principle,
u—xﬂv 3 0.

4. NON-EXISTENCE OF POSITIVE SOLUTIONS FOR COMPETING SPECIES.

We study for which parameters a,d,e,c the problem {with ¢ > 0,
e > 0)
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su + ula-u-cv) = 0

(4.1) inti, u=v = 0 on 30
by + vid=eu=v) = 0

has no positive solutions, and compare the resuits with the known
existence results of A, Leung [6] and P. J, McRenna<W. Walter [8],
Notfce that u < u% < &, v € v < d. For the most of this section
we shall assume a,d to be fixed with a 2 d > X, This allows us
to concentrate on parameters e and c, in particular to draw pic-
tures of existence and non-existence in e,c plane. If a is suf-
ficiently large, there are no positive solutions (for fixed
d,e,c). To see this, multiply the first equation In (4.1) by v,
the second one by u and subtract. Integrating over & and using

the Green's formula, we get

fta=d+(e=1)ut{l-c)v]uv = O .

No positive solutions can exist if

(4.2) Az a-d+(e-1)u+(l=c)v » 0.
Since A » pa-vd, with u = min(e,1), v = max{c,1), we get non-

existence of & > §=d.

Define a* 5 max u* < d, d* = max v* < d,
fl f

Theorem 4.1. For fixed a and d, in the -following four regions in
e,c plane there are no positive solutions to (4.1).
{1) er»l,ccl;
(i) e>l, Lecel+2%
a~d d
(111) 1»e> 1~ el csl;
{iv) a-d+(e-1)a‘*(l-c)d* >Dandec<l, c2 1.

{The last condition includes e » gc ande<l, c» 1),
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Proof. In each case one shows that A as defined by (4.2) is non-
negative (using u < u* € a*, v < y* € g*),

The follawing result provides additional information on the
region of non-existence 1n e,c plane, As in [9] we transform
(4.1) to a quasimonotone increasing form by letting U= o=y, Then
{withu <0, v » 0)

Au + ufatu-cv) = 0

(4.1)'
Av + v(d+eu-v) =0 fnf, u=v & 0 on 3q.

u*
Define v = s;p ;I s With # normalized by max 4 = 1.
1]

v ‘ d=2
Theorem 4,2. Assume that a > d > X, and e < PP
e i v 4=, -ey

Then thé probiem (4.1) has no positive solution.

Proof.  We consider & family of subsolutions for (4.1)', defined

?z_:u_:Tiwu::;A:1)>u;tn uhd&creasing from 1l to 0, A = 9A0+(1-u)

. t:ke s;p ; -01_ 1:uc that v » AG‘I and *0 < d-Al-ev. Also
. 1 . order that W, be subsolutions of (4.1)' we

need {with y > 0)

u* + u*(a-pur-ché;) < 0, bg; + ¢, (d-euur=2¢;) > 0,
or
(1-p)ur=cr¢ < 0, d=2,-enu*-a¢; > 0 .

It suffices that
(1=u)y=curg=c(1-u)(d-r;-ev) < 0, d=A; > ey + 1,

The second 1nequality holds by the definftion of XO and %, and the
first one by our condition on ¢c. The proof follows by Lemma 2.3
{the U component of solution 1s swept to zero).
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The following result is useful {f a/d is large. By letting
vV = -v, we get another gquasimonotone increasing form for (4.1)

(with uw > 0, V < 0)
Au + ula~u+cv) = 0 ,
(4.1)"
AV + V(d-eutV) = 0 inn, u=V=0o0n30.
. ‘ 1
theorem 4.3, Assume that & » d > A,. Then 1f ¢ < &8/d, € > 57

the problem (4.1} has no positive solution. |
proof. Define w = (xu*, =uv*) with decreasing from 1 to O,

Aomophg * {1-u) (1-cd/a), where 2q > 0 is such that u § xou* and
Ag ¢ 1-cd/a. 1t 15 a family of subsolutions of {a.1)" 1f

Au* + ur(a-Au¥-cuv*) > 0 , Av* ¢ v (d-elu¥=-uv*} < 0,

These will hold if
AUF + Cuvh < u* , -eAu* = (u=1)v¥ < 0.
We have by {(2.3) and our conditfons (v > 0}
aurFCuv® € (Adcd/alur < ur g

-elu*={u=-1)v¥ < [-eh+(1~u)%JU*

< [-e(1-p)(1-cd/a)+(1-u)d/au* € 0,

and the conclusion follows as before.
We now compare our results with the
for (4.1) if a > d > ),. A, Leung [6] proved existence of a post-

known existence results

a4 4=}y (see also [5]).
tive solution for ¢ < —3— , & < -3
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Subsequently McKenna-Walter [9] showed that i1t suffices that

d-ry
¢ <a/d, e <minf—g, 7)
a

. On the ather hand, from the results

of Blat~Brown [1] it appears to follow that increasing either ¢
or ¢ will eventually lead us into the non-gxistence regfon. MWe
see that most of the first quadrant in e,c plane is the region of
non-existence. Also we have more detailed infaormation on where
the non-existence reglon starts 1f we increase efther ¢ or ¢ and
keep the other variable fixed and small, rather than when we
increase ¢ and & simultaneously, It will be interesting to study
how aré the existence and non-existence regions separated in e,c
plane (by a curve?), and how the picture changes with & and d.

§. ON ESSENTIALLY QUASIMONOTONE INCREASING SYSTEMS,

Our proofs of the theorems 4.2 and 4.3 depended on the trick of
converting the problem to a quasimonotone increasing form by
changing the sign of some variables. In this section we describe
all Voiterra-Lotka systems where a similar approach works. Let u
= (ul,.,..um)'. A= ‘aij) an mxm matrix with ayy = -1 for all 1,
&nd aij # 0. MWe consider systems of the form

.

{5.1) Aui+ui(a1+J§]aiJuj) «0 inQ, us=0onana, 1=1,.,.,m
Uefinition. We say that the species 1 and j cooperate if ;2 0
aJ‘ > 0; compete if aij <0, a‘ﬁ < 0; form a predator-prey pair {f
a”aj1 < 0.
Definition. A system (5.1) is called essentially quasimonctone
increasing (EQI) if by changing signs of some variables it can be
transformed into quasimonotone increasing form (in the region
ug > b, E% < 0).

The following result describes all such systems, We omit its
straightforward proof.
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Proposition. A system is EQI 1ff all species can be divided into
two groups, such that within each group a1l species cooperate, and
each species competes with 811 species of the other group, {In
particular no predator-prey pairs are sllowed).

Existence question for EQI system can be decomposed into
studying two smaller problems for cooperating species. As an
example, we present an existence result for two species competing

against two others, based on [5].
Theorem 5.1.  Consider the following problem in the domain 0

Ay + y(a—y+blz-c1u-d1v) =0

bz + z(Brapy-z-cou=dyv) = 0
(5.2) du + uly-agy=byz=utdsv) © 0

v + v(S-;4y-b4z+c4uvv) -0,
withy s z=u =y = 0 for x ¢ 32. Assume that

(1) bja, < 1, dycy < 1

(11) a > cyoguy + dlszu.' , B> cznzuv + dzszuY ,
Y > agagu +baByu, 8 > agagu, + BB,

1+b1 1+12 1+d3 1+c4
witha, = T:ﬁ;i; » By ® 1_b1a2 ) 8y " 1-6364 » By ® T:BSE; . Also
we assume for definiteness a » B, y » 6, Then (5.2) has & posi-
tive solution.
Proof. Let (¥,7) and (G,V) be positive solutions of (5.2) withy
«=y=x0andy =z = 0 respectively, whose existence 1s guaranteed
by the theorem 3.1, By the theorem 3.2 we have the estimates
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a.u, <y<a.u ,B U ¢Z<RU ;
1"8 1'a 1 ’

(5.3) 8 17a

Uyl € U € ﬁguy o Balg €V € ﬁ?"v .
He now apply the theorem 2 in [5] (see also [12]) takiang (¥,Z,U,V)
and (Eéi,e¢1,¢¢l,s¢1). with € sufficiently small, as a pair of
super- and sub-solutions. Conditions on supersolutions follow
automatically, the ones on subsolutions from (41). (Recall that
the theorem 2 in [5] provides a monotone scheme to approximate
the solution).
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