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Synopsis

We consider weakly-coupled elliptic systems of the type
Au;+filuy, .o, u,)=0

with each f] being either an increasing or a decreasing function of each u;. Assuming the existence of
coupled super- and subsolutions, we prove the existence of solutions, and provide a constructive
iteration scheme to approximate the solutions. We then apply our results to study the steady-states of
two-species interaction in the Volterra-Lotka model with diffusion.

1. Introduction
In this paper, we consider the Dirichlet problem for the elliptic system

Au+filx, uy, ..., u,) =0, x=(Xy,...,x,)€D
] (1.1
u;=g; in 69,

fori=1,...,m Here A=Y}_, 8*/0x} and 9 is a bounded domain in R” with
smooth boundary (more specific conditions will be given in Section 2). We shall
assume that each of the functions f; depends monotonically on the variables
u=(uy,...,UuU,), i.e. 3f/0u;Z0 or Of/0u; =0, for u varying in some order
interval. In Section 2, under rather general conditions we prove existence
theorems for (1.1) and provide an alternating sequence of approximations. In
[16], Sattinger considered the problem when m =2, with Of;/du; having the same
sign for all #, j, i#j. The sequences constructed in [16] are purely monotone
(non-alternating). In [9], [10] Leung considered the cases when m = 2 and 3, with
8f;/0u; having different signs for various i, j; the sequences constructed are all
alternating. The present idea, of constructing a scheme so that each component
forms an alternating sequence as in [16], is initiated by Leung. Here, the method
for utilising previous iterates for off-diagonal components agrees with that in [18]
when m = 3. The diagonal components in [16] are used “implicitly”, while in the
present paper they are delayed one or two steps. Our present result is
substantially more general. Moreover the functions f’s do not have to satisfy
LG wy, oo i, 0, uieg, oo, w,,) =0

The schemes can be applied to study more general systems of partial
differential equations. Examining Section 2, we see that it applies as long as the
problem has “inverse-positivity” property and the solution operator is compact
(see Korman [5], [6] for background and discussions).
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TueoreM 1. Let u™" and u® be two given vector functions with each component

in C*(@); and define u', u?, ... according to the rules described above. Assume
that

WEwsu'sut in @ - (2.2)

Then problem (1.1) has a solution u with each component in C***(9),

u’Su=u"; moreover, the iteration procedure (2.1) produces two monotone

iteration sequences (alternating) satisfying, for each integer r,
Wsuwrs. . Sur. . SusS. L SuPTis L SWisutin 9. (2.3)
Proof. The proof is by induction.
(A) First, suppose k is odd and we assume that
[H%k] WswPs. . sdFlsukts L sSulsy?

is true. (Here the superscript 0 in H® designates oddness, and note that (2.2) is
same as [H"3].) We now show that

uFTrt=suk sk (2.4)

The proof of (2.4) is by induction on rows.
(i) First we show that

uf tsutsul (2.5)
Indeed, we have
—Auy=fi(x, uf 40,
_Aullc—l =f;L(x: M;C»H—el(i)); (2 6)
—AufE = fi(x, uf0),

If 8f/8u; 20, then k + £,(j) = k — 2 and hence, by [H%k],

uf A0 =y a0 g y ko260 each j21. 2.7
If 8fi/0u; =0, then k + €,(j) =k — 1 and hence, by [Hk],
uf a0 s kel g yk-iral) each jz1. (2.8)

Applying the maximum principle to the differences of the equations in (2.6), we
obtain (2.5).

(i) Assuming that (2.4) holds for all components up to i — 1, we show that
uf?Psufsult (2.9)
Indeed, we have
—Auf = fi(x, uf 40y,
—Auf Tt = fi(x, uf a0y, (2.10)
—Auf % = fi(x, uf ~2+40),

It is sufficient to consider the case when i >j, since for i =j (on and above the
diagonal) considerations are the same as in case (i) above. If 3f;/du; =0, then
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k+4¢,()=k and (2.7) holds with €,(j) replaced by £(j), for each j<i. If
9f/ou; =0, then k + £,(j) =k — 1 and (2.8) holds with ¢,(j) replaced by £,(j), for
each j <i. By the maximum principle again, (2.9) follows from (2.10).

(B) Next, suppose k is even and we assume that

[Hk) WEWws. . sufise sl =9

IIA

ut

(Note that [H*4] follows from [H3] and (2.4) with k = 3; e designates evenness.)
We now show that

urPsufsukl (2.11)

The proof of (2.11) is by induction on rows.
(i) First we show that

k=2 kg kot 2.12)

These iterates are again determined by (2.6). If 8f;/8y; =0, then k +¢,(j) =
k ~2, and hence, by [Hk],

uTIO0 S a0 < k1400 each jZ 1. (2.13)
If 6f,/0u; =0, then k + €,(j) = k — 1, and hence, by [H'K],
u]g—1+el(;') = u}{c+€1(j) = u}{c—2+€1(j)’ each jé 1. (2414)

In both cases (2.12) follows from (2.6).
(i1) Assume that (2.11) holds for all components up to i — 1. We show that

ufrsufsul, (2.15)

These iterates are determined by (2.10) and again we may assume i>j. If
0fi/u; 20, then k + £,(j) = k and hence (2.13) holds with €,(j) replaced by £(j),
for each j<i. If 9f;/0u; =0, then k +€;(j) =k —1 and hence (2.14) holds with
£,(j) replaced by €,(j), for each j <i. In both cases (2.15) follows from (2.10).

Successive applications of parts (A) and (B) lead to the validity of [H% + 2]
and [H°k + 2], and the ordering of the iterates in (2.3) follows.

The existence of a solution to (1.1) follows by the application of Schauder’s
fixed point theorem to the order interval [u°, u™'] in C¥(D) X ... X C¥(D). (By
standard elliptic theory the operator defined by (2.1) is compact. Hence we may
use Schauder’s fixed point theorem as stated in e.g. [1, p. 660].) The ordering of u
in (2.3) is proved in the same way as above. This completes the proof of Theorem 1.

O

Note. To show that u* fits right into the sequences displayed in [H%] or [H*k],
we use the property that (k say even) uy_ 4 =ty =ty = Uy _3, i.e. the previous
four iterates of the sequence. Hence the induction step proved in Theorem 1 has
to be supplemented with hypothesis (2.2).

In the next theorem, we will see that (2.2) follows from the existence of upper
(i.e. super-) and lower (i.e. sub-) solutions defined as follows. For convenience,
we will write u Sv if y;Sv, foreachi=1,..., m.

DerINITION. Two vector functions & = (éy, ..., 4,) and u={yy, ..., 4,) Iin
C*D)x ... x C¥D) are called a pair of upper (or super-) and lower (or sub-)
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solutions to (1.1), if they satisfy

(1) —Aﬁlifl(x, ﬁl, uz,...,um), _]§UJ§Z_1], ]+1, xe@,
~ Al Z (X, Usy o oy Ut B)y, W SW S, jFm, x€9, (2.16)
B(x)Zg(x), xedD, i=1,...,m

() —Au=F0G U, Uy ooy Uy), KSEW SR, jFm, x€9,

_A_um = m(xJ Uy, ooy U1, L"m): & j 7 ]%mJ X € @; <2 17)
u=gx), xed9, i=1,...,m

(iif) usi, for xed.

Note. In the next theorem, the monotonicity of the functions f’s is only
assumed between the pair u and & Moreover, no monotonicity is assumed for the

dependence of f; on the component u;. The scheme for constructing the sequence
of functions is slightly modified.

THEOREM 2. Assume that problem (1.1) has a pair of upper (i.e. super-) and
lower (i.e. sub-) solutions, and 3f,/0u; Z0 or 8f/0u; =0 forx e @, uSu =i, all
ijwithi#j Letu™=ia, u"=yand u*, k=1,2,..., be defined recursively as
solutions of

—AUF+ QuuE = Quuk T2+ fi(x, TR ukTO®, ukralmy
—Auk + Qoubk = Quub 2+ flx, ut O us, L ukretmy,

: (2.18)
— AU+ Qi = QuukT? 4 f(x, wh T, WS @ ut),

ub=g, on 89, i=1,...,m,

where @, =sup {|6f;/3u;]: x € D, ue[u’, u™1}, and £,()), i F], satisfy the same
rules (1) and (1), following (2.1). Then (1.1) has a C** solution u with
u=u=a, and we have the order approximations (2.3).

Proof. With the additional terms Q.u; on the right hand side of (2.18), the
dependence of the expression on the right hand side of the ith equation on u; is
nondecreasing. Comparing with (2.1) and Theorem 1, we find that it suffices to

prove (2.2) is valid in the present case. The rest of the proof is the same as in
Theorem 1.

(A) We start by showing that
WEusut (2.19)

The proof is by induction on rows.
(1) First, we show that

=y, Sulsi =uh (2.20)
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We have

~Aui+ Quui= Qi +fi(x, iy, ;49 in @, ul=g, ondD; (2.21)
—Auy+ Qui EQuus +filx, uy, w00 in @, u, =g, on 6D; (2.22)
—Aﬁl + Qlﬁl = Qllftl +f1(x, L_{l, u}+e}(i)) in @, L-ll = 81 Onv 69. (2.23)

Note. The right hand side of (2.21) is the same as that of (2.23), and is greater
than or equal to that of (2.22). Inequalities (2.20) follow from the maximum
principle applied to the differences of pairs of (2.21) to (2.23).

(ii) Assume (2.19) holds for all rows j =i —1. We now show that

? uit. (2.24)

u; =y

uj

IIA
fIA

i
We have

—Aul+ Qul = Qi + fi(x, @, ui T4y in P, ul=g ondP; (2.25)
—Au+ QU S Quu +fi(x, w, u YY)y in @, w=g ondD;  (2.26)
A+ QL Z Qi+ fi(x, &, ul D) in D, @Zg ondD.  (2.27)

Note. The terms u} %% in (2.26) and (2.27) are substituted in the same way as
in (2.25). For j <i, u; "% can possibly be u;; however (2.26) and (2.27) are still
valid because (2.19) is assumed valid for j =i — 1. Asin (i), we now conclude that
(2.24) holds.

(B) It remains to show that

wsuwrsul. (2.28)
Again we use induction on rows.
(1) We first show that
Wsuisul. (2.29)
We have
—Aul+Qul= Qi + £(;, u;T09D) in @, uj=g, ondD; (2.30)
—Aud+ Qui=Qu + fi(uy, uHD) in @, ui=g, ondD; (2.31)
—Auy+ Qus = Quuy + fille, w0y in P, y =g, ondD. (2.32)

If 3f,/8u; 20, then 1+ €,(j) = —1 and w740 =+ 40,
If 8f,/8u; =0, then 1+ €,(j) =0 and u; *9P = w740, by (A). In both cases (2.29)
follows.
(ii) Assume that (2.28) holds for all rows j =i — 1. We show that
ulSu?Su. (2.33)
We have
—Aul + Qui = Qi + fi(l, ui T4 in D, ui=g, ondéD; (2.34)
AU+ Qui = Qu + filu, T4y in D, ui=g, ondéD; (2.35)

—‘A_ul + Qf_l:{,‘ é Q,»y,- +f;(y,” uJZTe'O)) in @, L'{'i é qi on 6@‘ (236)
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Note. The terms u?*“") in (2.36) can be substituted in the same way as in
(2.35). For j<i, u7*%®) can possibly be u?; however, (2.36) is still valid by the
assumption that (2.28) is valid for j =i — 1. Following part (B)(i) above, it suffices
to consider i>j. If 8f/6u;Z0, then 2+ ¢€,()=2 and u/ D=y }*40 py
induction on (2.28), jSi—1. If 8fi/3u;=0, then 2+ {(j)=1, and u} 40 =

ut%0) by (A). As in (i), we now conclude that (2.33) holds. This completes the
j P
proof of Theorem 2. [

Remark. Consider the problem (1.1) in the case of one equation (i =1)
—~Au=f(x,u) in9,
u=g(x) on 99.
Assume that a subsolution ¢ and a supersolution ¢ are known. Without loss of

generality, we may assume that £, =0 for x in @, P Su=¢. Letting u"'=¢,
u® =, we define (with u/ = g on 89 for any j) according to rule (2.1)

—Aul=f(9), —Aw=f(y).
—Aw =), —Aut=f(),

and so on. We see that these are the usual two sequences of monotone iterates

renumbered. Also, the concept of a pair of super- and subsolutions degenerates
for one equation.

3. Application to two-species reaction-diffusion systems
(I) Cooperating (mutualistic) species

Comnsider the boundary value problem

Au+u(a—au+bv)=0
Av+v(f+cu—dv)=0 in3, (3.1)
u=v=0 ond%.

Here o, f3, a, b, ¢, d are nonnegative constants, and we are looking for positive
(in &) solutions u(x), v(x).

This system describes the steady state interaction of two cooperating species in
the Volterra-Lotka ecological model. We shall prove existence by exhibiting a
pair of positive super- and subsolutions and applying Theorem 2 (notice that here
ofi/8v >0 and 3f/0u >0 for u, v >0). In addition to existence, Theorem 2 will
provide approximations to the solution. By 4> 0 and w(x)>0 we shall denote
the principal eigenvalue and eigenfunction of the problem

Au+Aiu=0 in%, wu=0 ond9P.

THEOREM 3. Assume that o, B> Ay, a,d>0, b, c=0, and ad>bc. Then
problem (3.1) has a positive solution.

Proof. Let u=Mw, v=»Aw, i=M, U =N, where A,, A,, M, N are positive
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constants. Then it is clear that
—Au = Aho =Moo —akw + bu),
—~ AU = Ao E Ly (B + cu — dA,w),
and
—~AM =0>M(«a —aM + bv),
—AN=0>N(f + cu —- dN),
and also A;0 <M, Ao <N, for all u,v satisfying Ao Su=M, Lw=v=N,
provided the constants A;, A, are chosen sufficiently small, and M, N sufficiently

large in a suitable manner. Here we make use of the following lemma, whose
proof is clear.

Lemma. With the conditions of Theorem 3, we can choose M, N positive and
arbitrarily large so that

o —aM + bN <0,
B +cM—dN<O.

(IT) Predator—prey interaction.
In the following model u(x) denotes population of the prey, v(x) that of the
predator.

THEOREM 4. Consider the problem
Au+tu(e—au—bv)=0 ;, g.
Av+vu(f+cu—dv)=0 (3.2)
u=v=0 ondd.

Here «, B, a, b, ¢, d are nonnegative constants such that

®) a,d >0, ad>bc;
) ad(k0+g )
% >W, B> A

Then problem (3.2) has a positive solution.

Proof. We show that y= A0, v=Aw, and & =M, 0 =N form a pair of
super- and subsolutions, provided A, and A, are chosen small enough, and M, N
are chosen suitably. Indeed, we need to satisfy the following conditions;

~AM =0ZM(a - aM — bv), (3.3)
~AN=0ZN(B + cu—dN), (3.4)
—Au= Ao = ho(a - ako — bv), (3.5)
—AU = Aohy0 E Ao (f + cu — dA,w), (3.6)

and also A, =M, A,w =N, for all u,v such that A, Su=M, Lo Sv=N.
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To satisfy (3.3), the best choice is M = a/a (since v is small near 3%). This
leads to the choice of N = 1/d(f + ca/a) to satisfy (3.4). It is easy to check that
(3.5) and (3.6) are also satisfied under our conditions.

(III) Competing populations
THEOREM 5. Consider the problem
Autu(o—au—-bv)=0 ;, P
Av+v(f—cu—dv)=0
u=v=0 ondJ.

Here «, B, a, b, c, d are nornnegative constants such that

) a,d>0, ad>bc;
(i) . Ao(ab + ad)

ad — bc
(iii) d d

c .
-l;oz——g)to>ﬂ>;a/+ko, if >0,

B> atio i b=0.
Then problem (3.7) has a positive solution.

Proof. Again we look for a pair of super- and subsolutions in the form i = M,
=N, u= Ao, v=»~w. By a similar argument as for Theorem 4, we see that
ii=«/a and ¥ = B/d are the best choices. Then we need

—Au = Ahyow = ho(a —arko —bv),
—Av=Aoho = Ao (f — cu — dAw),

for all u,v, such that A0 Su = a/a, Ao =v = B/d. Conditions (3.8) will hold for
A1, A, sufficiently small, provided that

(3.8)

w_b§>)uo,

3 (3.9)
ﬁ "‘C_>k0.

a

Condition (i) of Theorem 5 makes the system (3.9) compatible. The allowable

region for o and B is then described by (ii) and (iil), which completes the
proof. O

Remarks. (i) Although some existence and stability results concerning positive
solutions in this section are known (as indicated in Section 1, see e.g. [8], [9],
[11], [12], [13]), they are dispersed throughout other material. In the present
paper, they are collected in condensed and simple form.

(i) In Theorems 3, 4 and 5, in addition to existence as stated, the application
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of Theorem 2 provides approximations to the solutions. The scheme here is
different from those in [18], but the similarity is explained in Section 1.

4. Generalisations and a numerical example

Examining the proof of Theorems 1 and 2, we notice that all we required was
the “inverse-positivity” of the problem and compactness of the solution operator.
Inverse-positivity is a property more general than the weak maximum principle,
and it states loosely that Lu =0 implies u 20 (see e.g. [6]). We can easily state
results similar to Theorems 1 and 2 for systems of boundary value problems for
ordinary differential equations, biharmonic equations (under some restrictions,
see [6]), and for problems combining the above mentioned and Laplace
operators. Also we can consider more general boundary operators and nomn-
homogeneous boundary conditions for uniformly elliptic operators of the second
order.

We conclude with a simple one-dimensional example describing predator—prey
interaction.

W+u2-u—-v)=0
O<x<m
v'+vu(@+u—-6v)=0
u(0) = u(n)=v(0)=v(m) =0.
Here Ay =1, @ =sinx. As in Theorem 4, we can easily conclude the existence of
a positive solution with bounds

lIA

itsinx=u
v

1

2,
IsinxSv=2

=
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In Section 3, the results in Section 2 are applied to reaction diffusion systems in
population biology. Similar systems were considered by many authors (see e.g.
[2], [3], [8], [11] and [14]). Results in Theorems 4 and 5 agree with those given in
[8], [9] and [11]. However, our proof here is different. Moreover, using results in
Section 2, we can begin analysing systems of large numbers of interacting species.
Large systems of biological interactions are attracting recent attention (see e.g.
[4] and [15]). Finally, the schemes will also be adaptable to the study of finite
difference approximations (see e.g. [7]), and to the study of stability of associated
parabolic systems (see e.g. [10]).

2. General theorems and alternating schemes

Specific assumptions made in this paper are as follows. The domain & is
bounded and its boundary 8% is of class C**% «e(0,1). The functions

3

filx, Uy, ooy Um), i=1,.. ., mare C%inxand C'"%in u;, foreach j, x € 9, and
u in every compact set. For Theorem 1, we assume that each f; depends
monotonically on the variables (uy,...,Uu,) for all (x, u)e & XxR™, i.e.

3f/u; Z0 or ofi/du; =0, each i, . (These monotonicity assumptions will be
slightly less restrictive for Theorem 2.) The boundary functions g; will be assumed
in C*** Let u”'(x) and u°(x) be any two given vector functions with each
component in C*(%). We define inductively a sequence of functions u*(x),
k=1,2,...which will be used in Theorem 1

Auk+ filx, wa®, o, ukrao, uhraem) = 0
Ak k+Em(1) K+ € () k£, () (2.1)
Aum+fm(x’u1 " )"'3uf TN ey Uy mm)=0 xE@

ulf(x)=gix), x€é9, i=1,...,m,

where £,(j) is determined by the following rules.
Rule (I). For i =j (above and on the diagonal),

N [—2 if Ofilou=0
= {—1 if of/ouw=0
Rule (II). For i>j (below the diagonal),
. 0 if 38fi/ou;=0
{),- = { \ ' J
0 -1 if 3&f/ou;=0.

Note that each component of u* is defined by solving a scalar linear equation.

To simplify notation, an expression of the form fi(x, 64, ..., 6,) where 6,
1=j=m may depend on i and k, will be abbreviated as fi(x, 6,). An expression
of the form f(x, 64, ..., 60im1, 6 641, ..., 6,,) will be abbreviated as

fi(x, 8,, 6)). For example, the ith equation in (2.1) can be written as:
Auf + fi(x, uf* 40y =0, xe®.

Two m vectors z=(zy,...,2,) and w=(wy, ..., w,) wil be denoted as
satisfying z Sw if z;=w; foreachi=1,...,m.




