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1. INTRODUCTION 

IN THIS paper we apply monotone techniques to equations other than second order elliptic or 
parabolic, in particular to wave and biharmonic equations. One of these techniques-the 
monotone iteration scheme, see [2, 9, 111, is extended in the theorem 1 below. This theorem, 
which was essentially proved in [7], shows that the monotone scheme can be applied to systems 
of equations with some gain of derivatives (compactness) for the corresponding linear problem, 
and with inverse-positivity. Inverse-positivity is a property more general than a weak maximum 
principle, and it states roughly that nonnegative data and the right-hand side of equation imply 
nonnegativity of the solution, see e.g. [12] or [8] for a discussion. 

Theorem 1 requires that (a/auJfi 2 0 for all i and j, i.e. nonlinearities to be increasing in all 
variables. The case (J/C+uJf, c 0 is covered by the theorem 2. In a forthcoming paper with 
Leung we treat all possible cases of -‘mixed” monotonicity. In the theorem 3 vve extend the 
Serrin’s sweeping principle [ll] to the case of inverse-positive problems, which allows us to 
prove some general nonexistence results. 

We apply our general results to fourth order ODE, to the Dirichlet problem for biharmonic 
equations, and to wave equations in space dimensions one. two and three (there is no inverse- 
positivity in dimensions greater than three). In [7] we applied the theorem 1 to a model 
noncoercive elliptic problem related to water waves. 

Next we discuss the notation. By 11 .Ilrn we denote the norm in the mth Sobolev space 
H” = W$“, m = integer 3 0. We write c for all irrelevant positive constants. If we wish to 
distinguish a positive constant, we denote it cO, cl, etc. Independent variable is usually x = 
(x,, . . . , x,). The unknown function U(X) is either scalar or vector-valued. In the vector case 

u = (u,, . . . , u,), we define ~Iu]],,, = k$i I]u~]~,,,. If u = (u,, . . . , vl), we shall write u 5 u iff ui 2 vi 

for all i; if c is a scalar, u 2 c implies ui 2 c for all i. Other order relations are defined similarly. 
If f(u) : Rk+ Rk, then fU 2 0 will imply (a/auJf; b 0 for all i and j. We shall use standard 
concepts of a cone and of order intervals in Banach spaces, see, e.g., [2]. We consider vector- 
valued partial differential operators of order m,, Lu = (Lb*, . . . , L’uJ. Here L’ is a scalar 
PDO of order mi, and m. = m,ax m,. We shall say that domain of L is H”, when referring to 

H” x H” x . . . x H”. Similarly with the boundary operators, B,u = (B,,u,, . . , B,,u,), mji 

denotes the order of B,,, and we call mj = max mji the order of Bj, j = 1, . . . , k. 
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2.GENERALRESULTS 

THEOREM 1. Consider the boundary value problem 

Lu = f(x. u) in 9 

B,u=g,(x) ondS,j=1,2 ,..., k. (1) 

Here L and B, are vector-valued partial differential operators of orders mo > 0 and m, 3 0 
respectively; 9 is a domain in R”, dQ is part (or the whole) of its boundary; U(X) = (u 1, . . 
ul) is the unknown function. 

We make no explicit assumptions on L, Bj and 9. Instead, we require the problem (1) to 
satisfy the following conditions. 

(i) Znuerse-posiriviry. Conditions 

Lu~Oiin9,Bjrt~Oon&3 

imply u 3 0 in 3. 

(ii) Solvability of the linear problem and compactness. For any F(X) E Cm{), G,(x) E Cm, the 

problem 

Lli = 5(x) in 9 

BjU = G,(X) on a9, j = 1,2,. . . , k 

is uniquely classically solvable and (for any m 2 0) 

II4 m+l<C (II% + x II%). I 
(2) 

(iii) There exists a supersolution @(.r) = (@i(x), . . . , Q,(x)), such that 

L@ 3 f(x. f$) in 9 

B;$sgj(x) ondEb,j= I,2,.. .,k, 

and a subsolution v(x) = (I,, . . . , yr(x)), defined by reversing the above inequalities. 
(iv) I&Y) s Q(x) and fJx, u) 2 0 for x E ‘9, 7~ s u s @. 
Denote m = max(mO, mj) + [n/2] + 1, ,U = max mj, and assume finally that v, @E 

Cmo(9) II Cp(X3),’ f E C”‘(9), g E C”(Z3). Then the problem (1) has a classical solution 
u(x) with v S u c @ in 9. (More precisely, the problem (1) has minimal and maxima1 SOIU- 
tions obtained by monotone iteration scheme.) 

This theorem was proved in [7] in a more general setting for the case of one equation. 
Generalization to the system case is immediate. Also, 
estimate weaker than (2) suffices: 

examining the proof, we see-that an 

II4 m+l =G ~<llf’lm + XIIGjIIm 

THEOREM 2. For the problem (1) assume conditions (i) 
assume the following. 

and (ii) of the theorem 1. In addition 
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(iii)’ Starting with some Q(X) define inductively 

(3) 
LU nil =f(x, un), n = 0,1,2,. . 

BjKZ7 I =gj(x),j=l ,..., k, 

and assume that u. s ul, u. s ~1~. 

(iv)‘f,(x,u)sOforxEQ anduocuuuu,. 
Finally, with m as in the theorem 1 assume thatf, u. E C”‘(9), g E P(&). Then (1) has a 

classical solution u(x), and moreover 

uo c ll2 s llq s . . . s us.. . sug dUj su1. 

(Convergence of {u,} to u requires additional assumptions.) 

(4) 

Proof. Rewrite (3) as 

U n+, = L-‘f(x, u,) = Mu,, 

and notice that M is a decreasing operator with respect to positive cone in H”. Then (4) easily 
follows by induction (see [14]). Since H maps the order interval [uo, UJ into itself, existence 
of solutions follows from Schauder’s fixed point theorem as stated in [2, p. 6601. (Since the 
order interval [u,, u,] is not bounded in H”, we need this sharper version of Schauder’s 
theorem). The smoothness of solution follows by Sobolev imbedding. 

Remark. Differentiability conditions in the theorems 1 and 2 usually can be considerably 
reduced. In particular, if the problem admits a weak formulation, one can first produce a weak 
solution, and then use “boot-strap” arguments to show that it is classical. Or, if the problem 
has a bounded Green’s function, one can recast it in equivalent integral form and pass to the 
limit by dominated convergence theorem. 

The following theorem is an extension of Serrin’s sweeping principle [ll]. 

THEOREM 3. Assume the following. 
~ (i) The problem (1) is strongly inverse-positive, i.e. Lu 3 0, LU f 0, BjU > 0 imply u > 0 in 

(ii) f( X, c4 is s ric ) ’ t ’ tl y increasing in u for x E 9. 
(iii) Let (~3, A 5 A, be an increasing and continuous in k family of subsolutions, none of 

which is a solution, and u > uAO in 9, u 2 Us on 89 for all A 2 A,. 

Then u > Us in 9 for any A 2 Ao. 

Proof. We shall get a contradiction at the first i > A,,, where u;r(x) touches U(X), i.e. u~x~) = 
u(xo) for some x0 E 9 and U&K) s U(X), Q(X) + u(x). Let w = u - UT. Then 

LW = f(u) -f(ul) 3 0, LW + 0 in 9; BjW 3 0 on 89. 

Hence w > 0 in 9, w(xo) > 0 a contradiction. 
This theorem provides a tool for proving nonexistence results for (l), and the strategy is as 

follows. Assume one can find a family of subsolutions as described above {uJ, E., c A < 2, so 
that uAO < u in 9, and for any M > 0 there is A’ > &,, such that sip uA, > M. Then by theorem 

3 the problem (1) cannot have a bounded solution (solution is “sweeped out” to infinity). 



Notice that strong inverse positivity of the problem (1) and the estimates (2) imply that the 
solution operator L-r of (1) extends to a strongly positive and compact operator in C(Q). 
Then by the Krein-Rutman theorem it has a positive in 9 eigenfunction q?+(s). i.e. for some 
iL) > 0 

Lq,, = ;lOpO in 9. B,qo = 0. j = 1.. ., k on &. (5) 

THEOREM 4. Consider the problem 

Lu = Af(x, u) in 9 

B,U=gj(x) on aQ,i= 1,2,. . ..k. 
(6) 

Assume conditions (i), (ii) of the theorem 1, and moreover that the problem is strongly inverse- 
positive. Let f, gj be as smooth as in the theorem 1, and (co, cl > 0) 

(iii)’ f(x, u) 2 co, f(x, u) a cIu, fU 2 0 for x E ED and u 3 0. 
(iv)’ gj(X) 5 0, i = 1,. . . , k, x E Z3; one of Bi is an identity operator. 

Then there is a critical number J., > 0, such that for 0 < A < &the problem (6) has a positive 
solution, while for A > AC there is no positive solution. 

Proof. The argument is divided into three parts. First we show that (6) has a positive solution 
for A sufficiently small. Then we show that if (6) has a positive solution for i. then it has a 
positive solution for all 0 < k < i. Finally, we show that for i. sufficiently large (6) has no 
positive solution. 

(i) For small A we construct super- and subsolutions, and apply the theorem 1. Define $I by 
solving Lr$ = 1 in 9, B,@ = gj(X) on a9. Then @ is a supersolution for A sufficiently small. For 
a subsolution we take I/J > 0, defined by LY, = ho/2 in 9, B,IJJ = gj(X) on Et. 

(ii) Assume that LU = Af(x, U), Bjti = gj(X). Then obviously ti is a supersolution of (6) for 
A < 1. Taking subsolution ~JJ as in (i), we conclude that (6) has a positive solution for 0 < J. < i. 

(iii) We use Serrin’s sweeping principle (theorem 3), and take u,~ = ,~&,(q~ as defined by 
(j)), ,U > 0. For ,U sufficiently small and fixed J. > 0 

L(u - ~$0) = Af(X, U) - PJ-OGO > 0, B, (u - U~O) = gj 2 0, 

i.e. u > pQo in 9. On the other hand, fix A > A,/c,, then for any p> 0 

i.e. uP is a family of subsolutions as in the theorem 3. Hence (6) has no positive solution for 
,4 > Ao/c,, completing the proof. 

Remark. In the conditions of the preceding theorem consider the problem 

Lu=uP+,! in 9,p>l 

Bju =gj(X) on 39. 
(7) 
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By an argument similar to the above, it follows that for 

(P - 1) (8) 

the problem (7) has no positive solution. 
tiext we consider some applications of our results. 

3. STATIC DEFLECTION OF A BEAM 

Consider the problem (one-dimensional) 

If the constants cr, p, y, 
load f(x, u). 

u”” = f(x, u), 0 < x < 1 

u(0) = (Y, u’(0) = p, u(1) = y, --u’(l) = 6. 
(9) 

6 are all zero, it describes deflection of a clamped beam under the 

THEOREM 5. Assume the following for 0 < x < 1. 
(i) There exists a supersolution G(x) E C’, i.e. 

V af(x, @), HO) 2 Ly, q’(O) 2 p, $(I) 2 y, -@‘(I) 2 6, 

and a subsolution I/J defined by reversing the above inequalities. Moreover v s @. 
(ii) f is continuous, increasing in u for iQ s u < 4. Then the problem (9) has a C’ solution 

u(x), and ~JJ~US @. 

Proof. If f = f(x), then (unique) solution of (9) can be written as 

u(x) = CY 1 
3 2 - - x2 + - x3 

P P 
+p~(f-x)2+~~(3j-2*)+d~(I-x) 

+ ‘G(x, E)f(E) d;, 1 

(IO) 

JO 

where G(x, g) is the Green’s function of (9) with (Y = 0 = y = 6 = 0, and is given by (see [3]) 

1 
G(x, 0 = ax2(g - 1)2(3f5 - 2gx - Ix) for x < j, G(x, g) = G(E, x). 

It is easy to check that G > 0 for 0 <x, 5 < 1, so that our problem (9) is strongly inverse 
positive (i.e. f 2 0 implies u > 0). In the usual way one obtains an increasing and a decreasing 
sequences of iterates. To pass to the limit it suffices to rewrite (9) in the equivalent integral 
form (see (lo)), and use the monotone convergence theorem. 

Similarly, we prove the following theorem. 

THEOREM 6. For the problem (9) define a sequence of iterations as in the theorem 2, and again 
assume that u. < ur, u. c u2, and that f(x, u) is a continuous function, decreasing in u for 
0 s x s 1, ug =Z u < ur. 

Then (9) has a C’ solution and (4) holds. It is also easy to interpret theorem 3 for the 
problem (9). Next we give some simple examples. 
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Example 1. u”” = u3 + 1, u(0) = u’(0) = I = u’(l) = 0. Seek super- and subsolutions in the 
form ~9 = cu.r’(l - x)‘, v = @‘(1 - x)‘. Simple computations show that we can take /3 = l/24, 
and (Y the smaller root of (P/256) cr’ - 24~ - 1 = 0. For I = 1, cy agrees with 1124 to six 
decimal places, and we conclude existence of solutions with the estimates 

ix*(l -x)’ s U(X) s 
i ) &+& x’(l-x)‘,&<10-6. 

For 1 large there is no solution, as can be seen by scaling x = lg and applying the theorem 4. 

Example 2. ~4”” = eeU, u(0) = u’(0) = u(l) = u’(i) = 0. Taking u. = 0, we compute 

x2(/- x)? 
u, = 

24 ’ 

Since u 1 2 0, the theorem 6 applies, giving existence of solutions with 

It is easy to see that the solution is unique. 

0 G u(x) c 
x2(/ - x)* 

24 . 

Notice that in both previous examples one can easily compute further monotone iterates. 

Example 3. u”” = uz + A, U(O) = u’(0) = [c(f) = u’(l) = 0. By(S), the problem has no solution, 
provided A > k,j/4, where A0 is the principal eigenvalue of the corresponding linear problem 
(A, = 500 if 1 = 1, see [3]). 

Remark. All considerations of this paragraph depended on positivity of the Green’s function, 
and hence carry over to other important boundary conditions, e.g. u(0) = u”(0) = u(f) = 
u”(l) = 0 and u(0) = u’(0) = u(l) = u”(l). It is easy to check that the Green’s functions for 
these problems are positive (see [3]). 

4. BIHARMONIC EQUATION 

Consider the problem 

A’u =f(x, u) in 9 

au 
u = - = 0 on a9 

a 

an 
--normal derivative 
an 

(11) 

9 is a bounded domain in R”. We assume that its smoothness and shape are such that 
(i) Green’s function exists and is positive; 
(ii) for any F(x) E C” the problem A2u = F(x) in 9, 

has (unique) solution and Schauder’s and L, estimates hold (see [l, theorems 7.3, 12.7, 
15.21). 
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THEOREM 7. In addition to the above conditions on 9, assume the following. 
(i) There exists a supersolution 4(x) E C’, defined by 

and a subsolution q(x), defined by reversing the above inequalities, and y s @ in 9. 
(ii) f~ C” and increasing in u for x E 9, v s u < $J. Then the problem (11) has a C4 

solution, and q 6 u 6 $. 

Proof. Positivity of Green’s function implies that the problem is inverse-positive, which 
allows us to define two standard sequences of monotone iterates. Passage to the limit is like 
that in [ll], using Schauder’s and L, estimates. 

It is easy to interpret theorems 2 and 4 for the problem (11). Next we give two simple 
examples (here u = u(x, y), and the Green’s function is known to be positive, see [8]). 

Example 4. 

One easily sees existence of solutions with the estimates 

& (x2 + Y 2 - R2)2 s u s 
R2 + d(R’ + 256) 

128 
(x2 + y2 - R2)2. 

Example 5. 

1 
AzU = - 

c(Ju + 1 
in x2 -I-Y’ <R’,u=$=O on x2 + y2 = R’, CO > 0. 

Taking u. = 0, we compute u1 = (l/64) (x2 + y2 - R2)2 and u2 2 0. Hence a (unique) solution 
exists, and 0 < u(x, y) 6 (l/64) (x2 + y2 - R’)‘. 

Remark. Notice that definitions of super and subsolutions are more restrictive than in one- 
dimensional case. This is because conditions A2u 2 0 in 9, u 3 0, -(au/an) 2 0 on aEb do not 
imply u 2 0 in 9 even in the two-dimensional case, see [4]. Also, we considered only one set 
of boundary conditions. There are others with inverse-positivity, see [S], however, then it 
seems possible to use results of Tsai [13], after converting the problem to a system of second 
order equations. 

5. BOUNDED STRING WITH FREE ENDS 

Consider the problem (n = 1) 

u, - UXX -pu,=f(x,t,u),O<x<I,t>O,p=const20 

u(x, 0) = g(x), u,(x, 0) = h(x), u,(O, t) = UX(f, t) = 0, 

and also the problem (12’) with f changed to f(x, t). 

(12) 
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THEOREM 8. Assume the following for 0 < x < I, 0 < r < T. 
(i) there exists a supersolution ~(x, t) E C’, defined by 

Qn - @XX - P@I af(x7 f> 0) 

$(x,0) = g(x), 4+(x, 0) 2 h(x), +,(O, r) = @,(I, r) ( @(x7 0) 2 g(x) if p = O), 

and a subsolution v(x) E C*, defined by reversing the above inequalities and v s $J. 
(ii) pT < l/2. 
(iii) g’(0) = g’(l) = h’(0) = h’(l) = 0. 
(iv) f, h E C4, g E C5; f,, 2 0 for 1~, c u s @ 

Then the problem (12) has a C* solution. 

Proof. Uniqueness for (12)’ follows from the estimate (14) below. Let fe, ge, h, denote even 
21 periodic in x extensions off, g, h. Solution of the problem (12)’ is equal to that of the 
Cauchy’s problem 

u, - UXX - PU, =fe(x, 0, dx, 0) = g,(x), u,(x, 0) = h,(x). 

It follows from [lo, p. 1991 that fe 2 0, g, = 0 (g, 3 0 if p = 0), h, 2 0 imply u 2 0. This shows 
that our problem (12)’ is inverse-positive. Hence the proof will follow from the theorem 1, 
once we establish the following lemma. 

LEMMA 1. For the problem (12)’ we have the estimate (m = integer a 0) 

Ilull m+l s 4fllm + llA7l+1 + llhllm + ll~hd> c = c(T). (13) 

Here we use Sobolev norms in X, t variables for u and f, and in x variable only for g and h. 

We need the following lemma, whose standard proof we omit. 

LEMMA 2. Jh(CSti:9: f(x, 0))’ dx S cllfjlfcs+, , c = c(T). 

Proof of lemma 1. Multiply (12)’ by u, and integrate Jb dr by parts. Get 

Integrate this Jb dt, 0 < t c T. 

f 1’ (uf + CL;) dx - f 1’ (h* + g’2) dx - p Kfdrdt< brf I dx dt. 
0 0 

Integrating again _fb dt and using (ii), we easily get: 

( iS( 
T) 

0 

h* +g”)dr+/o’~oif?drdr), (14) 
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which is the desired estimate (13) for m = 0. Higher estimates are proved by induction. Using 
the equation (12)‘, one easily shows by induction that 

GJ~u(s, 0) = c&g + CT9 ;-lh + cJ5J;Q;f(x, 0) + . . . WI 

where k s m, r + s s m - 2, and the remaining terms are of lower order. Let 9yu = w. Then 

wn - Wx.r - w, = qf 

w(x, 0) = Ebyu(x, O), w,(x, 0) = Eby+lu(x, O), w,(O, 0 = wx(L 4 = 0. 
(16) 

Applying to (16) the estimate (13) with m = 0, using (15), lemma 1, and estimating all 
remaining derivatives from the equation (12)‘, we establish our estimate (13). 

6. CAUCHY’S PROBLEM FOR NONLINEAR WAVE EQUATION IN DIMENSIONS ONE, 
TWO AND THREE 

THEOREM 9. Consider the problem (n = 1) 

urr - UXX = f(x, r, u), 4x7 0) = g(x), 4(x, 0) = h(x). (17) 

For - x: < x < m and 0 G t G T we assume the following. 
(i) There exists a supersolution 9(x, t) E C*, i.e. $+, - r& 3 f(x, t, $), +(x. 0) 2 g(x), 

@,(x, 0) 2 h(x), and a subsolution v(x), defined by reversing the above inequalities, and v < @. 
(ii) fu 5 0 for q G u < @; f, h E C’, g E C*. Then the problem (17) has a C’ solution, and 

li, < II G @ for 0 6 t s T, 

Proof. From D’Alembert’s formula we see that the problem is inverse-positive. i.e. f, g. 
h 2 0 imply u 2 0, and also that f, h E C’ and g E C’ imply that u E C?. In the usual way we 
obtain two C2 sequences of monotone iterates. Passage to the limit is by bounded convergence 
theorem in the D’Alemberts formula. This produces a measurable solution of the corresponding 
integral equation, and then by “boot-strap” we see that it is in C2. 

In dimensions two and three solution u(x) of the linear problem is in general no smoother 
(in Ck) than h and f, and may be less smooth than g (see e.g. [6]). Hence we have to rely on 
the theorem 1 to prove the convergence. 

THEOREM 10. Consider the problem 

Ul, - Au = f(x, t, u), u(x, 0) = g(x), u,(x, 0) = h(x). (18) 

For x E R”, n = 2, 3 and 0 < t s T assume the following. 
(i) There exists a supersolution @(x, t) E C’, i.e. 

G,, - A@ af(x, t, @), $4~7 0) = g(x), @Ax, 0) 2 h(x), 

and a subsolution ~(x, t) E Cl, defined by reversing the above inequalities, and y c 4. 

(ii) fu > 0 for 1// G u < @; f, h E C4, g E d. Then the problem (18) has a C’ solution. 

Proof. First we consider the special case, when functions $, q, g, h, f are of compact support 
in x. The problem (18) is inverse-positive, i.e. f 3 0, g = 0, h 2 0 imply u 3 0 [lo]. The rest of 



872 P. KORM-\N 

the proof follows from the theorem 1 in view of the following standard lemma, whose proof 
we omit. 

LEMMA 3. In the above assumptions we have (f=f(x, t)): 

II4 m+l s c(T)Wlm + ll8llm+1 + llhllrn)7 
where we use Sobolev norm in 9 x [0, T] for u and f, and the one in 9 for g and h; 9 is any 
bounded domain in R”, containing the domain of influence of the data. 

For the general case, we notice that the domain of dependence of any compact set is another 
compact set, outside of which we can modify our functions to be of compact support in x, 
without changing the solution. 

We conclude by remarking, that there is no inverse-positivity for wave equations in space 
dimensions n > 3. This is clear from the explicit representation of solution [6, p. 2231. 
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