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Abstract

For two point problems, and for balls in R2, we show how stability

or instability of solutions can often be determined, when one knows

just the maximum value of solution. As an application, we obtain

various multiplicity results.
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1 Introduction

We consider the question of stability of positive solutions for the problem

u′′ + λf(u) = 0, −1 < x < 1, u(−1) = u(1) = 0,(1.1)

and for a corresponding elliptic problem on balls in R2. Here λ is a positive

parameter. For convenience we set this problem over the interval (−1, 1) (we
could consider any other interval as well, since the problem is autonomous).

It is well known that positive solutions of (1.1) are even functions, with
u′(x) < 0 for x > 0. Hence u(0) is the maximum value of solution. It turns

out that α = u(0) uniquely identifies the solution pair (λ, u(x)), see E.N.
Dancer [3], or P. Korman [8]. Hence the solution set of (1.1) can be faithfully
depicted by planar curves in (λ, α) plane. It is natural to ask: which way

the solution curve travels through a given point (λ, α)? An answer, using
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time maps, has been known for a while, see K. Brown et al [2]. Namely,

denoting F (u) =
∫ u
0 f(t) dt, and h(u) = 2F (u) − uf(u), one has

d

dα
λ(α)1/2 =

1√
2

∫ 1

0

h(α) − h(αv)

[F (α) − F (αv)]3/2
dv.

We see that dλ
dα < 0 (> 0) and the curve travels to the left (right) in (λ, α)

plane, provided that h(α) < h(u) (h(α) > h(u)) for all u ∈ (0, α). Time
maps work only for autonomous ODE’s. It is desirable to find a more flexible

approach, which could be applied to other situations. One way to do so was
given by P. Korman and J. Shi [11]. In the present paper we give another

approach, which is both simpler, and it gives more general results. Both
[11] and the present paper connect direction of the curves to the question of
stability, which is reviewed below. It is known that the solution curve travels

northeast in the (λ, α) plane iff the solution is stable, and northwest iff it
is unstable (we provide a self-contained proof of this fact below). Hence,

a change of stability implies a turn of the solution curve, and vice versa.
In particular, we can prove either exact S-shapedness or uniqueness for the

original equations of combustion theory (see R. Aris [1]), depending on the
values of its parameters.

Our instability result holds also for balls in R2. As an application, we
can easily recover the main result of S. Parter [14].

In the final section, we develop stability and instability results for a
class of symmetric non-autonomous problems, extending and simplifying

the results of P. Korman and J. Shi [11].

2 The ODE case

We consider positive solutions of

u′′ + f(u) = 0, −1 < x < 1, u(−1) = u(1) = 0,(2.1)

with f(u) ∈ C1(R̄+). The eigenvalue problem for the corresponding lin-
earized equation is

w′′ + f ′(u)w + µw = 0, −1 < x < 1, w(−1) = w(1) = 0.(2.2)

We will be particularly interested in the principal (the smallest) eigenvalue,

which we will call µ1. The corresponding eigenfunction can be assumed
to satisfy w(x) > 0 for x ∈ (−1, 1). Recall that any positive solution of
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(2.1) satisfies u′(x) < 0 (u′(x) > 0) for x > 0 (x < 0), see [7]. It follows

that α = u(0) is its maximum value. Observe that w(x) is also an even
function. Indeed, assuming otherwise, w(−x) would give us another solution

to the problem (2.2), contradicting the simplicity of the principal eigenvalue.
Recall that the solution u(x) of (2.1) is called stable (unstable) if µ1 > 0

(µ1 < 0). (In case µ1 = 0, u(x) is sometimes called neutrally stable.) Define
h(u) = 2F (u) − uf(u), where as usual F (u) =

∫ u
0 f(t) dt.

Theorem 2.1 Assume that

h(α) < h(u), for all u < α.(2.3)

Then the positive solution of (2.1), with u(0) = α, is unstable.

Proof: Assume on the contrary that µ1 ≥ 0. We claim that

u′(x)w′(x) − u′′(x)w(x) > 0, for all x ∈ (−1, 1).(2.4)

Indeed, denoting p(x) = u′(x)w′(x)− u′′(x)w(x), we see that

p(0) = −w(0)u′′(0) > 0, and

p′(x) = −µ1w(x)u′(x).(2.5)

Since p(x) is increasing (decreasing) for x > 0 (x < 0), the claim follows.

From the equations (2.1) and (2.2) we have

∫ 1

−1
h′(u(x))w(x) dx =

∫ 1

−1

(

f(u)− uf ′(u)
)

w dx = µ1

∫ 1

−1
uw dx ≥ 0.(2.6)

On the other hand, in view of (2.3) and (2.4),

∫ 1
−1 h′(u(x))w(x) dx =

∫ 1
−1

d
dx [h(u) − h(α)] w

u′ dx(2.7)

= − ∫ 1
−1 [h(u) − h(α)] u′(x)w′(x)−u′′(x)w(x)

u′2 dx < 0,

which is a contradiction. Observe that the last integral in (2.7) is proper,
since h(u(x)) − h(α) is quadratic in x near x = 0, and the same is true for

the denominator, u′2(x). ♦
The trick of introducing the h(u)−h(α) term was inspired by R. Schaaf

and K. Schmitt [16]. Similarly we prove a stability result.

Theorem 2.2 Assume that

h(α) > h(u), for all u < α.(2.8)

Then the positive solution of (2.1), with u(0) = α, is stable.
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Proof: Assume on the contrary that µ1 ≤ 0. Again, we claim that

p(x) = u′(x)w′(x) − u′′(x)w(x) is positive on (−1, 1). Indeed, p(±1) =
u′(±1)w′(±1) > 0, while (2.5) implies that p(x) is decreasing (increasing)

for x > 0 (x < 0), and the claim follows. The rest of the proof is the
same as in the Theorem 2.1. The inequality signs are now reversed in both

inequalities (2.6) and (2.7), and again we reach a contradiction. ♦
For the problem

u′′ + λf(u) = 0, −1 < x < 1, u(−1) = u(1) = 0,(2.9)

depending on a positive parameter λ, it is known that the solution curve

travels northeast in the (λ, α) plane iff the solution is stable, and northwest
iff it is unstable. This can be deduced, for example, from the Proposition

4.1.3 in R. Schaaf [15]. We give a self-contained proof, although we use some
ideas from [15]. We shall need the following version of Sturm comparison
theorem, whose straightforward proof we omit.

Lemma 2.1 Assume that the functions v(x) and w(x) of class C2 satisfy

v′′ + a(x)v ≥ 0, v′(0) = 0, v(0) > 0,

w′′ + a(x)w ≤ 0, w′(0) = 0, w(0) > 0,

on some interval (0, γ), with a continuous a(x). Then w(x) oscillates faster
than v(x). Namely, if w(x) > 0 on (0, γ), then v(x) > 0 on (0, γ). If, on
the other hand, v(γ) = 0, then w(x) must vanish inside (0, γ).

As we mentioned above, the maximal value of positive solution of (2.9)
α = u(0) uniquely identifies the pair (λ, u(x)). I.e. we can write u = u(x, α),

λ = λ(α). It is natural to assume that ux(1, α) < 0, since in case ux(1, α) = 0
we have symmetry breaking, see [8].

Proposition 1 Let u(x, α) be a positive solution of (2.9), with u(0, α) = α.

Assume that ux(1, α) < 0. Then µ1 < 0 (µ1 > 0) if and only if λ′(α) < 0
(λ′(α) > 0).

Proof: By shifting and stretching of the interval, we can convert the

problem (2.9) into

u′′ + f(u) = 0, −µ < x < µ, u(−µ) = u(µ) = 0,(2.10)

with µ =
√

λ. By “shooting” with u(0) = α and u′(0) = 0, we have

µ = µ(α), and u = u(x, α). We shall calculate µ′(α), which has the same
sign as λ′(α). Differentiating the relation u(µ(α), α) = 0, we have

ux(µ(α), α)µ′(α) + uα(µ(α), α) = 0.
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Since by our assumption ux(µ(α), α) < 0, it follows that the sign of µ′(α)

is the same as that of uα(µ(α), α). To determine the latter, we differentiate
the equation (2.10) in α

u′′
α + f ′(u)uα = 0, u′

α(0, α) = 0, uα(0, α) = 1.

If µ1 > 0, then
w′′ + f ′(u)w = −µ1w < 0,

and hence by Lemma 2.1 w oscillates faster than uα, and then uα(µ(α), α) >

0. In case µ1 < 0, uα has to vanish at some θ ∈ (0, µ), since it oscillates
faster than w. We claim that uα(µ(α), α) < 0. Indeed, the function u′(x)

satisfies the same linear equation as uα, and hence their roots interlace. But
u′(x) < 0 on (0, µ), and so uα cannot have any more roots, in addition to θ.

It is well-known that µ′(α) = 0 iff µ1 = 0, see e.g. [10]. Hence, conversely,
µ′(α) > 0 (< 0) implies that µ1 > 0 (< 0). ♦
Example The solution curve (in the (λ, umax) plane, with umax = u(1/2))
for the problem

u′′ + λu(2 + sinu) = 0, 0 < x < 1, u(0) = u(1) = 0(2.11)

has infinitely many turns (see Figure 1 for the bifurcation diagram computed
using Mathematica).

Indeed, there is a curve of positive solutions bifurcating from zero. As we

follow this curve for increasing α = u(1/2), then according to the Theorems
2.1 and 2.2 there are infinitely many changes of stability, which implies

infinitely many changes in direction by the Proposition 1 above. (Here
h(u) = −u2 sinu−2u cosu+2 sinu. Clearly, there is a sequence {αn} → ∞,

so that h(u) > h(αn) for all u ∈ (0, αn), and another sequence {βn} → ∞, so
that h(u) < h(βn) for all u ∈ (0, βn). Solutions with umax = u(1/2) = αn

are unstable, and the ones with u(1/2) = βn are stable.) It is easy to show
that along the solution curve λ cannot go to either zero or infinity. (To

see that λ cannot go to zero, just multiply the equation (2.11) by u, and
integrate. If λ → ∞, then by Sturm’s comparison theorem the solution
would have to become sign-changing, a contradiction.)

Remarks

1. Using oscillating integrals as in A. Galstyan et al [6], we can show
that the solution curve intersects infinitely often the line λ = λ1, and

moreover λ → λ1, as u(0) → ∞. We will include the proof of this, and
related results, in a forthcoming paper.
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Figure 1: The bifurcation diagram for the problem (2.11)

2. A similar result in case f(u) = 2u − u sinu was obtained in a recent
paper of S.-H. Wang [18].

3 S-shaped curves of combustion theory

We consider positive solutions of the problem

u′′ + λf(u) = 0, −1 < x < 1, u(−1) = u(1) = 0,(3.1)

where λ is a positive parameter. We assume that f(u) ∈ C2[0, ū] for some

ū ≤ ∞, and it satisfies

f(u) > 0 for u ∈ [0, ū).(3.2)

The following theorem generalizes the main result in P. Korman and Y. Li
[9]. It allows f(u) to change concavity more than once.

Theorem 3.1 In addition to (3.2) assume that the function f ′′(u) has a

root u = α1, and there is an α2, 0 < α1 < α2 < ū, with

f ′′(u) > 0 for u ∈ (0, α1) f ′′(u) < 0 for u ∈ (α1, α2).(3.3)

(No assumptions on f ′′(u) are made over (α2, ū).) Denote, as before, h(u) =
2F (u) − uf(u). Assume that

h(α1) < 0,(3.4)

h(α2) > h(u) for all u ∈ (0, α2),(3.5)

h′(u) > 0 for all u ∈ (α2, ū).(3.6)

Then the solution curve for (3.1) is exactly S-shaped.
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Proof: By P. Korman and Y. Li [9] there is a curve of solutions, starting

at (λ = 0, u = 0), and by the time it reaches the level u(0) = α1 the curve
has made exactly one turn to the left, and the solution with u(0) = α1

is unstable. By the time the solution curve reaches the level u(0) = α2,
it travels to the right, since by the Theorem 2.1, solution with u(0) = α2

is stable. Hence the solution curve has made a turn to the right, when
u(0) ∈ (α1, α2). By P. Korman and Y. Li [9], it has made exactly one turn

to the right. By the Theorem 2.1, solutions with u(0) ∈ (α2, ū) are stable,
so there are no more turns on the solution curve. ♦
Remark If ū < ∞, and f(ū) = 0, then, as in P. Korman and Y. Li [9], we
see that the curve exist for all λ > 0, and it tends to ū as λ → ∞. If ū = ∞,

then integrating the inequality h′(u) ≥ 0, we see that f(u) is below a linear
function for large u. If f(u) is asymptotically linear, then the solution curve

will go to infinity at some finite λ. If limu→∞
f(u)

u = 0, then the solution
curve continues for all λ > 0, see P. Korman and Y. Li [9].

The Theorem 3.1 is applicable to the original equations of combustion

theory (see R. Aris [1])

v′′ + µ(1 − εv)me
v

1+εv = 0, x ∈ (−1, 1), v(−1) = v(1) = 0,(3.7)

where µ, m and ε are positive parameters. (If m = 0, we have the so called
perturbed Gelfand problem.) For sufficiently small ε, S.P. Hastings and

J.B. McLeod [5] proved that the solution curve for (3.7) is exactly S-shaped.
They used a rather complicated quadrature method. In our experiments,

when ε = ε(m) was small, the Theorem 3.1 applied, giving an S-shaped
curve, while for larger ε the solution curve is monotone, which follows from

the results of P. Korman, Y. Li and T. Ouyang [10]. Before we give the
examples, it is convenient to rescale εv = u, and λ = µε, and consider

u′′ + λ(1− u)me
u

ε(1+u) = 0, x ∈ (−1, 1), u(−1) = u(1) = 0.(3.8)

We are interested in the solutions satisfying 0 < u(x) < 1 for all x ∈ (−1, 1).

These examples are also covered by the results of [19], [20] and [21], although
our approach appears to be simpler.

Example 1 Let m = 2, and ε = 0.05, i.e., we consider the problem

u′′ + λ(1− u)2e
u

0.05(1+u) = 0, x ∈ (−1, 1), u(−1) = u(1) = 0.(3.9)

Here ū = 1. With the help of Mathematica one verifies that the second
derivative f ′′(u) indeed goes plus-minus-plus on the interval (0, 1), with
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Figure 2: The bifurcation diagrams for ε = 0.05, and ε = 0.2

the roots α1 ' 0.52 and α2 ' 0.9. Also h(α1) ' −49.6 < 0. One also

sees that h(α2) > h(u), for all u ∈ (0, α2), and h′(u) > 0 for u > α2.
Hence, the Theorem 3.1 applies, and the solution curve of (3.9) is exactly

S-shaped (see Figure 2). In particular, for large λ the solution is unique,
and limλ→∞u(x, λ) = 1 for all x ∈ (−1, 1).

Example 2 Let m = 2, and ε = 0.2, i.e., we consider the problem

u′′ + λ(1− u)2e
u

0.2(1+u) = 0, x ∈ (−1, 1), u(−1) = u(1) = 0.(3.10)

This time f(u) changes concavity once, at α ' 0.7, with f ′′(u) < 0 for

u ∈ (0, α) and f ′′(u) > 0 for u ∈ (α, 1). According to [10] or T. Ouyang
and J. Shi [13], the solution curve, which starts at (λ = 0, u = 0), can make

only turns to the left. But if such a turn had occured, the solution curve
would have nowhere to go, since no more turns are possible, while solutions

are bounded by 1. Hence, the solution curve is monotone in λ. In other
words, we have existence and uniqueness of positive solution for all λ > 0

(see Figure 2).

4 An extension of the stability condition

Integrating by parts once more, we can generalize the stability result, the

Theorem 2.2, in case f(u) > 0. With h(u) = 2F (u) − uf(u) as before, we
define g(u) =

∫ u
0 h(t) dt.

Theorem 4.1 Assume that f(u) > 0 for all u > 0, and

g(u) > g(α) + g′(α)(u − α), for all u ∈ [0, α).(4.1)

Then any positive solution of (2.1), with u(0) = α, is stable.
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Proof: We proceed similarly to the Theorem 2.2. Assume on the contrary

that µ1 ≤ 0. We conclude as before that p(x) = u′(x)w′(x) − u′′(x)w(x) is
positive on (−1, 1), and also that

∫ 1

−1
h′(u(x))w(x) dx ≤ 0.

On the other hand, using (2.7),

∫ 1
−1 h′(u(x))w(x) dx =

∫ 1
−1 [h(α) − h(u)] p(x)

u′2(x)
dx =

∫ 1
−1

d
dx [h(α)u − g(u) + g(α)− αh(α)]

p(x)

u′3(x)
dx = 2(g(α)− αg′(α))

w′(1)

u′2(1)

+
∫ 1
−1 [g(u)− g(α)− g′(α)(u− α)]

(

p′

u′3 + 3pf(u)

u′4

)

dx > 0.

Here we used that u′(−1) = −u′(1), w′(−1) = −w′(1), and that g(α) −
αg′(α) < 0 from (4.1). Also observe that in the last integral the quantity in
the square bracket is O(x4) near x = 0, and hence the integrand is bounded.
Since p′ = −µ1wu′, the quantity in the second bracket is positive (here we

use that f(u) > 0). ♦
It is easy to see that the condition (4.1) is more general than (2.8).

Indeed, denoting G(u) = g(u)− g(α) − g′(α)(u − α), we see that G(α) = 0
and G′(u) = h(α)−h(u) < 0, provided that condition (2.8) holds. But then

G(u) > 0 for u ∈ [0, α), i.e. (4.1) holds.

5 Positive solutions on a ball in R
2

Even though our instability result holds only in two dimensions, we shall

consider the equations on balls in Rn. This does not make the exposition
any longer, but allows us to show why this approach seems to fail for n > 2.

We consider positive solutions of (x ∈ Rn)

∆u + f(u) = 0, for |x| < 1, u = 0, when |x| = 1.(5.1)

The eigenvalue problem for the corresponding linearized equation is

∆w + f ′(u)w + µw = 0, for |x| < 1, w = 0, when |x| = 1.(5.2)

By B. Gidas, W.-M. Ni and L. Nirenberg [7] any positive solution of (5.1)

is radially symmetric, i.e. u = u(r), where r = |x|, and moreover u′(r) < 0
for all r ∈ (0, 1). If µ ≤ 0, it follows from C.S. Lin and W.-M. Ni [12] that
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any solution of (5.2) is also radially symmetric, i.e. w = w(r). For radially

symmetric solutions the problems (5.1) and (5.2) become respectively

u′′ +
n − 1

r
u′ + f(u) = 0, r < 1, u′(0) = u(1) = 0,(5.3)

and

w′′ +
n − 1

r
w′ + f ′(u)w + µw = 0, r < 1, w′(0) = w(1) = 0.(5.4)

Theorem 5.1 Assume that n = 2, and

f ′(u) > 0, for all u > 0.(5.5)

Assume we have a positive solution of (5.1) (i.e. of (5.3)) with u(0) = α, for

which the condition (2.3) holds, and for which the principal eigenfunction
of (5.2) is radially symmetric. Then this solution is unstable.

Proof: We need to prove that we have µ < 0, for the principal eigenvalue
µ of (5.2) (i.e of (5.4)). Assume on the contrary that µ ≥ 0. We begin by

observing that for the principal eigenfunction w(r)

w′(r) ≤ 0, for all r ∈ [0, 1).(5.6)

Indeed, assuming otherwise, w(r) would have a point of local minimum, at
which the left hand side of (5.4) is positive, a contradiction. Next, we claim

that in case n = 2

p(r) ≡ 2(n − 1)rn−1u′w + rnu′w′ + rnf(u)w > 0, for all r ∈ (0, 1).(5.7)

(It is at this point that our argument fails for n > 2.) Indeed, p(0) = 0, and
we have (expressing u′′ and w′′ from the corresponding equations)

p′(r) = rn−1 [

(2− n)f(u)w − µrwu′ + nu′w′] .

In case n = 2, in view of (5.6), p(r) is increasing, and hence positive.

The rest of the proof is similar to the one dimensional case. From the
equations (5.1) and (5.2) we have

∫

|x|<1

[

f(u)− uf ′(u)
]

w dx = µ

∫

|x|<1
uw dx ≥ 0.
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On the other hand (ωn denotes the area of unit ball in Rn)

∫

|x|<1 [f(u) − uf ′(u)]w dx = ωn
∫ 1
0

d
dr [h(u) − h(α)] rn−1w

u′ dr

= −ωn
∫ 1
0 [h(u) − h(α)] p(r)

ru′2 dr < 0,

in case n = 2. ♦
Remark One sufficient condition for the principal eigenfunction of (5.2)

to be radially symmetric is that f ′′(u) > 0 for u > 0. Indeed, denoting
g(w, r) ≡ f ′(u(r))w + µw, we see that gr(w, r) < 0, and hence the results

of B. Gidas, W.-M. Ni and L. Nirenberg [7] apply. Moreover, their result
implies that (5.6) holds (with a strict inequality), and hence the assumption

(5.5) is not needed. Hence we have the following result.

Theorem 5.2 Assume that n = 2, and

f ′′(u) > 0, for all u > 0.(5.8)

Assume we have a positive solution of (5.1) (i.e. of (5.3)) with u(0) = α,

for which the condition (2.3) holds. Then this solution is unstable.

We consider again the perturbed Gelfand problem (on a unit ball in R2)

∆u + λe
u

(1+εu) = 0, for |x| < 1, u = 0, when |x| = 1.(5.9)

Theorem 5.3 There exists an ε0, so that for ε < ε0 the curve of positive
solutions of (5.9) makes at least two turns, i.e. there is an interval (λ1, λ2),

so that for any λ ∈ (λ1, λ2) the problem (5.9) has at least three positive
solutions.

Proof: Indeed, using Mathematica, one shows that the function h(u) is
positive for small u, and then becomes negative at some u, if ε < ε0, and

our instability result applies (the value of ε0 can be numerically computed).
Hence, the solution curve, starting at (λ = 0, u = 0) makes at least one turn.

The rest of proof is just standard bifurcation theory, thanks to a result of
Y. Du and Y. Lou [4] on positivity for the linearized problem, see [4], [10]

or [13] for the details. ♦
This theorem corresponds roughly to an old result of S.V. Parter [14],

but with a much simpler proof. We remark that for ε sufficiently small, Y.

Du and Y. Lou [4] have proved that the solution curve is exactly S-shaped.
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6 A class of symmetric problems

We consider positive solutions of a class of non-autonomous problems

u′′ + a(x)f(u) = 0, −1 < x < 1, u(−1) = u(1) = 0,(6.1)

with even a(x). Namely, we assume that the function a(x) ∈ C1(−1, 1) ∩
C[−1, 1] satisfies

a(x) > 0, a(−x) = a(x), a′(x) < 0 for x ∈ (0, 1),(6.2)

while f(u) ∈ C2(R̄+) satisfies

f(u) > 0 for u > 0.(6.3)

It follows from B. Gidas, W.-M. Ni and L. Nirenberg [7] that under these

conditions any positive solution of (6.1) is an even function, with u′(x) < 0
for x > 0. It is also known that in this case the problem (6.1) has prop-
erties similar to those of autonomous problems, see a recent review paper

[8]. In particular, in P. Korman and J. Shi [11] an instability result, sim-
ilar to the Theorem 2.1 above, was given, and it was used to obtain an

exact multiplicity result. In this section we add a corresponding stability
result, and simplify the proof for the instability part. We again denote by

(µ1, w(x) > 0) the principal eigenpair of the eigenvalue problem for the
corresponding linearized equation

w′′ + a(x)f ′(u)w + µw = 0, −1 < x < 1, w(−1) = w(1) = 0.(6.4)

As before, w(x) is an even function. Again, we define h(u) = 2F (u) −
uf(u), and p(x) = u′(x)w′(x)− u′′(x)w(x) = u′(x)w′(x)+ a(x)f(u(x))w(x).
Observe that p(x) is an even function.

Lemma 6.1 Assume that either

µ1 ≤ 0,(6.5)

or
µ1 > 0, and f ′(u) ≥ 0 for u > 0.(6.6)

Then
p(x) > 0, for all x ∈ (−1, 1).(6.7)
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Proof: We have p(1) = u′(1)w′(1) > 0, and in case µ1 ≤ 0

p′(x) = −µ1u
′(x)w(x) + a′(x)f(u(x))w(x) < 0, for x > 0,

and (6.7) follows. In case the condition (6.6) holds, we have as before w′(x) <

0 for all x > 0, and hence positivity of the even function p(x) follows directly
from its definition. ♦

Theorem 6.1 Assume that the conditions (6.2) and (6.3) hold.
(i) If the condition (2.8) holds, then the solution of (2.1), with u(0) = α, is

stable.
(ii) If the condition (2.3) holds, and f ′(u) ≥ 0 for u ∈ (0, α), then the

solution of (2.1), with u(0) = α, is unstable.

Proof: We proceed as before. From the equations (6.1) and (6.4) we have

I ≡
∫ 1

−1
a(x)

(

f(u) − uf ′(u)
)

w dx = µ1

∫ 1

−1
uw dx.(6.8)

We have,

I =
∫ 1
−1

d
dx [h(u) − h(α)] a(x)w(x)

u′(x) dx(6.9)

= −
∫ 1
−1 [h(u) − h(α)]

a′(x)u′(x)w(x)+a(x)p(x)

u′2 dx.

If case (i) holds, assume on the contrary that the solution is not stable,
i.e. µ1 ≤ 0. Then I ≤ 0 from (6.8), while I > 0 from (6.9), since p(x) > 0

by the above lemma.

If case (ii) holds, assume on the contrary that the solution fails to be
unstable, i.e. µ1 ≥ 0. Then I ≥ 0 from (6.8), while I < 0 from (6.9), still

resulting in a contradiction. ♦
We have seen the usefulness of stability and instability results in the

previous sections. Here is one example.

Example The solution curve (in the (λ, umax) plane, with umax = u(0))
for the problem

u′′ + λa(x)(2u + sinu) = 0, −1 < x < 1, u(−1) = u(1) = 0,

has infinitely many turns, assuming that the function a(x) satisfies the con-
ditions (6.2). Indeed, the function f(u) = 2u+sinu is positive and increasing

for u > 0, while for h(u) = 2−2 cosu−u sinu there is a sequence {αn} → ∞,
so that h(u) > h(αn) for all u ∈ (0, αn), and another sequence {βn} → ∞, so

that h(u) < h(βn) for all u ∈ (0, βn). Solutions with u(0) = αn are unstable,
and the ones with u(0) = βn are stable.
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