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INTRODUCTION
We study the steady states and the long term behavior for the
following system describing interaction of two species in the

Lotka-Volterra model with diffusion,
u = Au + u(a - bu + cv) in Q, u = 0 on 8Q

(1.1)

Ve

i}
]

Av + v(d + eu - fv) in Q, v = 0 on 8Q.

Here a,d,b and f are positive constants; the constants c and e can be
of either sign, and those signs determine the type of interaction.
Throughout the paper Q denotes a smooth domain in Rn, and we are
looking for the classical solutions u(x,t) and v(x,t), x € Q and t >
0. Also, we shall always assume that b = f = 1, which can be achieved
by rescaling. The problem (1.1), particularly its steady states, have
been studied in a number of papers, see e.g., [3,4,7,8,11] and the
references therein. Local existence and uniqueness for (1.1) follow
from [1].

Systems of the type (1.1) arise in mathematical ecology and
describe the evolution of population densities of two interacting
species inhabiting the region Q, and undergoing diffusion to avoid
crowding. The boundary conditions in (1.1) can be interpreted as

emigration of species. This interpretation suggests that the growth
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rates a and d must be sufficiently large to sustain the populations,
as turns out to be the case below.

Two things determine the global behavior of solutions of (1.1).
One is existence or non-existence of steady states for (1.1). For
example, in the cooperating species case (i.e. ¢ > 0, e > 0), we show
that condition ec > 1 implies blow up in finite time of any nontrivial
non-negative solution of (1.1). This is because the corresponding
steady state problem has no positive solution, as was shown in [81.
The other thing determining the global behavior is stability or
instability of trivial solutions of the steady state problem for
(1.1), i.e. of (0,0), (ua,o) and (O,ud). Here and throughout we

denote by ua the positive in Q solution of
Au + u(a-u) =0 in Q, u = 0 on aQ,

which exists for a > hl, where Al and wl(x) > 0 denote the principal
eigenpair of -A on Q.
The importance of the steady states for global behavior can be

seen even in the scalar case. Consider, for example

u, = Au + u3 in Q, u =0 on &Q. (1.2)

If we define the "energy" J(u) = J[%}Vu[z - %u
Q

for any nontrivial steady state u(x), J(U) > 0. Also it is easy to

4]dx, we easily see that

check that J(u(x,t)) = J(u(x,0)). Assume now that
J(u(x,0)) = 0. (1.3)

If the solution u(x,t) was bounded, then by H. Matano [10] its w-limit
set in Cl(Q) would be non-empty and consist of steady-state solutions.
This would contradict the above considerations, so that u(x,t) must
become unbounded, and it is natural to expect that this would happen
in finite time. Here is a rigorous proof that (1.3) implies

non-existence of a global solution (see also [9]). Multiply (1.2) by

u, and denote F = uzdx. Then
Q
1., _ _ 11 4 2
EF = -2J(u) + Iy dx =z ch for some ¢y > 0.

Q

Some remarks on notation. By u(x,t;u vo) and v(x, t;u.v_ ) we

0’ 00
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denote the solution of (1.1) depending on the data u(x,0) = uO(x),
v(x,0) = vo(x). For scalar equations (like (1.2)) the corresponding
notation is u(x,t;uo). We abbreviate Ju = ju(x)dx. By A

Q
denote the principal eigenvalue of the operator A + a(x).

1(A+a(x)) we

DYNAMICS OF A LOGISTIC EQUATION WITH DIFFUSION

Before considering interactions of several species, we study dynamics

of a single species with population density u(x,t) satisfying
U = Au + u(a(x)-u) in @, u = 0 on &Q. (2.1)

u(x,0) = uo(x) (uo(x) € CZ(Q) and u. = 0 on 89).

0
Here Q is a smooth domain in Rn, a(x) € c*(@) for some 0<ac< 1.
The lemma 2.1 and the theorem 2.1 below are basically known,
however we could not find any references for their present versions.
Notice that in the theorem 2.1 convergence is proved in Cl(ﬁ) rather

than in‘Co(ﬁ), and for any non-negative data.
Lemma 2.1. Assume that u(x) > 0 in Q is a solution of
Au + u(a(x) -~ u) =0inQ, u =0 on aQ, (2.2)

with a(x) = 0 and a(x) 2 0 in Q. Then u(x} is the only nontrivial
non-negative solution of (2.2).
Proof. Since ¢ = max a(x) is a supersolution, and Y =0 a

Q
subsolution, it follows that (2.2) has a maximal solution. It has to

be u(x), since (2.2) cannot have more than one positive solution (the

proof is standard). Let v(x) be another nontrivial solution with 0 =

v(x) = u(x). Since
Juv(u—v)dx = 0,
Q
ulx) = v(x) except possibly when v(x) = 0. Let X € Q be such that

v(X) = 0 but v(xn) > 0 for a sequence {xn} » x. Then by the

continuity of u and v

u(x) = lim u(x_) = lim v(x ) = v(X) = o,
n n
nN-co N-x

which contradicts u > 0.




194 PHILIP KORMAN

The following lemma is standard.
Lemma 2.2. The problem (2.2) has a positive solution if and only if

X = Al(A + a(x)) > 0. (2.3)

We denote by u the positive solution of (2.2). By u(x,t;u.) we

0
denote the solution of (2.1).

Theorem 2.1. Assume that (2.3) holds and g z 0 in Q, uo # 0. Then
1

lim u(x,t;u.) = u_ in C (Q). (2.5)
[¢] a
£t

If the condition (2.3) fails then lim u(x,t;uo) = 0.
tow

Proof. Suppose (2.3) holds, and assume first that ewl(x) = uO(x) for

all x € Q, if € is small enough. By the maximum principle
u(x,t;ewl] = u(x,t;uo) = ulx, t;M). (2.6)

By [12] it follows that u(x,t;swl) and u(x, t;M) tend respectively the
the minimal and maximal solutions of (2.2). In view of lemma 2.1 they
both tend to u and the theorem follows by (2.6).

For the general u, the theorem 2.8 in Matano [10] implies that

0
the w-limit set of u. in Cl(ﬁ) is non-empty, and consists of

non-negative solutiogs of (2.2), which by lemma 2.1 are zero and uy
If u € w(uo) then at some T, u(x,T) > €¢1(x) for some small &£, and
then taking T as a new initial time we conclude (2.5).

It remains to exclude the possibility that w(uo) = {0} in Cl(ﬁ),
If that was the case then u(x,t) » 0 uniformly in x, i.e. u(x,t) < ¢
for t = T. Setting H = Ju(x,t)ﬁ(x)dx (U as defined by (2.4)) we

Q
obtain from (2.1) for t = T

H” =z AH - €H = cH (for some ¢ > 0)

with H(T) > 0. This shows that H(t) cannot tend to zero as t » », a
contradiction. (H(t) cannot become zero at a finite time T, for
otherwise step back a little, and repeat the above argument).

If (2.3) fails, then in view of lemma 2.2, u(x, t;M) must tend to
zero, and so does u(x,t;uo), which finishes the proof.

Assuming (2.3), denote by U ter € > 0, the positive solution of

Au + ul(a(x)+e - u) =0 in Q, u = 0 on &Q. (2.7)
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Then u > u_ in Q (notice that u_ is a subsolution of (2.7), and
a+e a a

then the inequality follows as in [11]).
We shall need the following lemmas.

Lemma 2.3. 1lim "ua+s—ua”Lw(§) = Q.
-0

Proof. Let € = 1. By the maximum principle
"ua+e"Lw(§) = m%x alx) + 1.
By the usual boot-strap (for any 0 < a < 1)

hu Il 2+o s c independent of £ = 1.

a+e C (Q)
Let {sk) be an arbitrary sequence such that gy > 5 > ... > 0. Then
u > u > ... >u >0 in Q.
a+te ate a
1 2
. 2+a . . 2
Since C (Q) imbeds compactly into C™(R), a subsequence u

arey
> J
converges in C7(Q) to some w(x) > 0, which is then a solution of
(2.2). By uniqueness w = U, and by monotonicity the entire sequence

{u } converges to u_.
a+e a

k
Lemma 2.4. For the problem

vy = Av + a(x,t)v in Q, v = 0 on &Q,

assume that v(x,0) =2 0, v(x,0) # 0, and [a(x,t)} < ¢ uniformly in x €

Qand t > 0. Then v(x,t) cannot go to zero in finite time.

Proof. Set H = jv(x,t)wl(x)dx. Then H(0) > 0 and H(t) =

(a0t @

H(O)e 1

STEADY STATES AND BLOW-UP FOR COOPERATING SPECIES

We consider a system (Q a smooth domain in R")

]
i

Uy Au + ula - u +cv) inQ, u 0 on 8Q

v, = Av + v(d + eu - v) in Q, v 0 on &Q (3.1)
u(x,0) = uo(x), v(x,0) = vo(x),

describing cooperative interaction of two species with population

densities u(x,t) and v(x,t). We assume that a,c,d,e are positive
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constants, although we can admit for a and d to be functions of x.

Corresponding steady state system

Au + u{a —u+cv) =0 inQ, u=0 on 8Q

(3.2)

Av + v({d + eu -~ v)

0 in Q, v =0 on 38Q,

was analyzed in Korman-Leung [8], where the following theorem was

proved.

Theorem 3.1. Assume that a > Al,d > Al. Then (3.2) has a positive
solution (i.e. u > 0 and v > 0 in Q) if and only if ec < 1.

If ec > 1 then it is easy to see that both u(x,t) and v(x,t)

become unbounded as t increases, if

u, = R vy = 0 with Uy z 0, o z 0 in Q. (3.3)

The following theorem shows more.

Theorem 3.2. Assume that a > Al,d > Al and the initial data satisfies
(3.3). If ec > 1, then solution of (3.1) blows up in finite time. If

ec = 1 then solution of (3.1) exists for all time, and as t » +o,
ﬂu(x,t)HLw(Q) 5> o, HV(X,t)HLm(Q) > . (3.4)

If ec < 1 then solution exists for all time and is bounded in L%(Q).
We prove this theorem at the end of this section after presenting
some results on which it depends, which are also of independent

interest. We start with a corresponding ODE.

Theorem 3.3. Let u(t) and v(t) be solutions of

u=ula -u+ cv), ul0)

il
(=}
\%
o

(3.5)
v =vid + eu - v), v(0)

1]
<
\%
(@}

Here a,c,d,e are positive constants. .

(i). If ec < 1 then

lim u(t) a+cd1 lim v(t) = ae+d.
l-ec 1-ec

t-o0 t-w

(ii). If ec = 1 then solution exists for all t > 0, and lim u(t)
to+w

+eo,

lim v(t) +0o,
t>+ew
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(iii).If ec > 1 then both u(t) and v(t) go to +w in finite time.

Proof. The claim (i) is standard. The limits in (i) are coordinates
of the point of intersection of the lines 21: a -u+cv =20 and

22: d + eu - v =0 in the (u,v) plane. In cases (ii) and (iii) the
lines 21 and EZ do not intersect and hence all solutions must tend to
o. This is because all trajectories eventually enter and stay in the

region A = {(u,v) € R3|O < v < d+eu for 0 < u = a,

%u - %a < v < d+eu for u > a}. Next we prove (iii), assuming for
definiteness that a =z d. Let Xy be such that u, > X1 Vg > ISP with

p specified below. Compare (3.5) with the system

x = x(d - x + cy), x(0)

X

§ y(d + ex - y), vy(0) = X,

Then clearly u(t) = x(t), v(t) = y(t) for all t = 0. Solution of the

last system can be explicitly found in the form y = px with p = %;%,
and it blows up in finite time. Turning to the final case (ii), set
ul(t) = e-at, pz(t) = e_dt. Rewrite (3.5) as (e = %)
d -
a€(u1u) = ulu( u + cv)
(3.6)

d 1
af(”zv) = “2V(Eu - v).

Denoting further U = By, V = MoV and dividing the first equation in
(3.6) by the second one,

du U
v - v
Integrating and returning to the original u and v,
1
MU = —— (c1 is a constant of integration).

This implies that v cannot go to @ in finite time, since otherwise u
would have to go to O in finite time. Since we already know that u(t)
and v(t) tend to w as t 5 «», the theorem is proved.

Lemma 3.1. For the problem (3.1) assume that u, =0, u. 20, v. = 0,

0
vO # 0 in @, and

-— < -
Auo = uo(a u

+ cv.) in Q, u, = 0 on 8Q (3.7)

0 0
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0= 0 on &Q.

Let (uo,vo) satisfy inequalities like (3.7) but with the signs

0
reversed and u

and vO = VO in

u,. = u(x, t;u

0

=z 0 and VO = 0 on 8Q. Assume moreover that uO = uO
Q. Then
v.) = uo
0’0
(3.8)
v, = vi{x,tju_ ,v.) = v0 in Q@ x R
O ’ » O’ O +’
and
ut(x,t;uo,vo) = 0, vt(x,t;uo,vo) =20 in Q x R+. (3.9)
Proof. Set w1 = u—uo, w2 = v—vO. Then
Wip T Awl = wl(a - u+ cv - uo) + cuyw,
Moy = sz > eVyW, * wz(d +eu-v + VO)

wi(x,O) =

By the maximum
inQ@QxR. To
-+

v0~v. Then

w - Aw

1t 1
wZt - sz
w, (x,0) =

i

Notice that by

0 on 8Q, w, = 0 on38Q, i =1,2.

principle for weakly coupled systems, u 2 u_and v = v

prove the other side of (3.8), define w. = u -u, W, =

v

wl(a - uo - u + cvo) + cuw,,

= evw, + wz(d + euO - v + VO)
0, i=1,2.

the previous part u = 0, v =20 in Q. Applying the

maximum principle again, we conclude (3.8).

Next, define uh =

v(x,t+h;u0,vo) - vix, t;u

\4 =

u(x, t+h;u u(x,t;uo,vo)

)

O’Vo)

h

O'VO)

h

vh(x,O) z 0, an argument similar to the one above shows that u (
0 and vh(x,t) z

(3.9).

Remark. By a similar argument one sees that u(x,t;uo,vo) and

v(x,t;uo,vo) satisfy (3.8), and ut(x,t;uo,vo) =0, v.(x,t;u,v)

in Q x R ..
+

Since by (3.8) uh(x,O) =z 0 and
h

h x,t) =
O for all x e, t > 0. Letting h + 0, we conclude

0 0
t
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Theorem 3.4. For the problem (3.1) assume existence of two pairs of
functions (uo,vo) and (uo,vo) as in lemma 3.1. Then the following

limits exist for all x € Q: lim ulx, tiu,, v ) = ulx), lim vix, t;u.,v. )
0’0 0’0
0 0 tow 0 0o -
= v(x), lim u(x,t;u ,v°) = U(x), lim v(x,t;u,v’) = V(x), where (u,v)
tw te
and (U,V) are positive solutions of (3.2). The w-1limit set of (3.1)

(with respect to data in [uo,uo] x [vo,vO] is then contained in the

order rectangle [u,U] x [v,V].
Proof. For h > 0 define um(x,t) = u(x,t+mh;u0,vo), vm(x,t) =
v(x,t+mh;uo,vo), Mm a positive integer. By lemma 3.1 both sequences

are decreasing in m and the limits lim um(x,t) = U(x,t) and lim
m->c0 te
Vm(x,t) = V(x,t) exist, and U(x,t) = V(x,t) = 0 for x € 8Q2. By the

interior Schauder’'s estimates (see e.g., [10])

lum'2+7,[61,62],K * ‘Vm]2+q,[81.621,K =

forany 0 <y <1, 8, >8 >0and K cc . Since c2*7 1¥9/2
2

[51,62]) is compactly imbedded in C ’1(K x [8

(K x
1,62]) it follows that
for a subsequence

u 5> Ulx,t), v 5> V(x,t) in C2'1(K x [8.,8.1).
mk mk 1772

By monotonicity the entire sequences {um) and {vm} converge in Cz’l(K
X [51,62]). Since (um,vm) are solutions of (3.1), we can pass to the
limit in the equations and conclude that (U(x,t),v(x,t)) is a solution
of (3.1) for x e @, t > 0.

Finally, we claim that Ut = Vt =0on QxR,. Let KccQ, and k
= integer > 1. Consider ﬁm(x,t) = u(x,t + mE;uO,vO), Vm(x,t) = vix, t
+ mg;uo,vo). The new sequences (Gm) and {Vm} have the old ones as
subsequences. Since as above u and Vp converge, their limits are

again U(x,t) and V(x,t) respectively, i.e.

- . 2,1
uo U(x, t), Vi 2 V(x,t) in C (K x [61,62]).
Set t = ;, and assume T is small (i.e. k is large). Let Xy € K, tO €
(61+T,52—T), with T so small that 32—r > 61+r. Then
o 0.0
U(xo,to+r) U(xo,to) = ii: u(xo,t0+r + mT; u,v )

- lim u(xo,t +mt) = 0.
m->®

0

X
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Since U is differentiable it follows that

h
U(XO'tO+E) - Ulxg ty) o

U (x.,t.) = lim
0 e h/k

Since XO't0'51'52 and K were arbitrary, the claim follows, and the

theorem is proved (the final statement follows easily by the maximum

principle).

Corollary 1. Assume that a > Al,d > Al, ec < 1. Then the problem
(3.2) has minimal and maximal positive solutions (u,v) and (u,v)
respectively, and the w-limit set of (3.1) with respect to data

satisfying (3.3) is contained in the order rectangle [u,ul x [v,v].

Proof: Existence of the steady states was proved in [7]. In that

work subsolutions were Uy = ewl,vo = €9, with sufficiently small e.
It remains to notice that in view of the theorem 2.1 we may assume
without loss of generality that the initial data is above ewl for ¢

small (just shift the original time if necessary).

u
Corollary 2. Assume that a=xzd> A ec < 62, where 8 = inf Gg' Then

1
Q a
(3.2) has a unique positive solution, which attracts all solutions of

(3.1), with data satisfying (3.3).

Proof. Uniqueness of the steady state was proved in [8], the rest is

as above.
For cooperating species conditions a > Al, d > Al are not
necessary for existence of positive steady states as the following

result shows.

Theorem 3.5. Assume that a > Al’ ec < 1 and Al(A +d + eua) > 0.

Then the problem (3.2) has a positive solution.
Proof. Fix constants M,N > 0 such that
a-M+cN<O d+eM-Nc< 0.

By lemma 3.1, u(x,t) = ulx, t;M,N) and v(x,t) = v(x,t;M,N) are monotone
decreasing in t, and by the argument of the theorem 3.4 they converge
to a non-negative solution (u(x),v(x)) of (3.2). Clearly u(x) = ua(x)
> 0, since u(x,t) lies above the solution u(x, t;M) of (2.1), which

tends to the u, > O from above. Since Al(A +d + eu(x,t)) = Al(A +d

+ eua) > 0, it follows by lemma 2.2 that the second equation in (3.2)
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has a positive solution, and then by lemma 2.1, v(x) is either that
positive solution or zero. It remains to exclude the latter

possibility. Indeed if v

0 then by the Vitali's theorem v(x,t) > 0
as t 5 o uniformly in x € Q. We claim that then ulx, t) » ua as t >
o uniformly in x e Q. Indeed for any € > 0 one can find T > 0, such

that cv(x,t) < e for t > T and x € Q. Hence for t > T

= =
u u(x, t) U e

and the claim follows by lemma 2. 3.

Rewrite the second equation in (3.1)
vV, = Av + v(d+eu ) - v2 + v(eu-eu ). (3.10)
t a a

Denote by v > 0 the principal eigenfunction of A+ d + eu_

corresponding to A = Al(A+d+eua). Multiply both sides of (3.10) by v
and integrate, setting H = ijdx. Then for t > T, with T large enough

Q
(using lemma 2.4)
B o= 20w > o (3.11)

But H(t) 5 0 as t » ®, which contradicts (3.11).
We need two more comparison results whose proofs easily follow

from the maximum principle for weakly coupled systems.

Lemma 3.2. Let u(t), V(t) be solutions of

U = Ula-u+cv), T(0) = max u_(x),
0
Q
v/ o= ;(d+eﬁ—7), v(0) = max v (x).
Q 0

Then for all x € Q and t > 0,

u(x,t;uo,vo) = u(t), v(x,t;uo,vo) = v(t).

Lemma 3.3. Let U(x,t) and V(x,t) be solutions of

Yy

Vi

]

AU + U(A-U+cV) in Q, U =20 on &9,

i

AV + V(D+eU-V) 1in Q, V=0 on &Q,

U(x,0) = Uo(x), Vi(x,0) = Vo(x),

With A 2z a, D = g, Uo(x) = uo(x) = 0 and Vo(x) = vo(xJ z 0 for all x e
Q. Then u(x,t) = Ulx, t), vix,t) = Vix,t) for all x e @, t > Q.
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Proof of the theorem 3.2.

(1) Case ce > 1. Assume first that d = a, and uo(x) = pvo(x), where p

= g}%. Then solution of (3.1) can be found in the form u = pv, with

1}

Vi

Av + v{a+av), (3.12)
where « = c-p > 0 (by [1] the solution is unique). Any solution of
(3.12) with data satisfying (3.3) blows up in finite time. Indeed if
H(t) = fv(x,t)wl(x)dx, then H(0) > 0 and (assuming I¢1(x)dx = 1)
Q Q

H = -AlH + aH + aHz = aHZ.
For the general case with say a = d, we can assume in view of the
theorem 2.1 that vo(x) = g(x), uo(x) = pg(x) for some g(x) > 0 in Q.
Then by lemma 3.3, the solution of (3.1) lies above the solution of
the same system with d in place of a, and pg(x) and g(x) in place of
uo(x) and VO(x] respectively. By the above this implies the blow up.

(ii) Case ce = 1. By the theorem 2.1 we may assume that uo(x) z

€0y, vo(x) z €9, for some € > 0. By taking e sufficiently small we

1}

may assume that GO = €9, and ;O €9y satisfy (3.7), and hence by

lemma 3.1,

ut(x,t;GO,VO) = 0, vt(x,t;ﬁo,Go) z0 in Q xR, (3.13)
Notice that either both u(x,t;GO,$O) and v(x,t;EO,GO) are bounded in
L®(Q) or both are unbounded in 1°(Q) (if one quantity is bounded then
an easy comparison argument for (3.1) shows that the other one is
bounded too). If both of the above quantities were bounded, then
(3.13) would imply that u(x,t;ﬁO,VO) and v(x,t;GO,V ) converge, and by
the theorem 3.4 the limiting functions would give a positive solution

of (3.2). But by the theorem 2.1 in (8], the problem (3.2) has no

positive solutions if ce = 1. Hence in view of lemma 2.3 as time

increases
Hu(x,t;uo,vO)HLw(Q) > , Hv(x,t;uo,vO)HLm(Q] > .
Finally, using the lemma 3.2 and the theorem 3.2, we conclude that
blow up cannot occur in finite time.
COMPETING SPECIES

The results of this section are similar to those of the preceding one,
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and so we omit the proofs.

We consider a system (Q a smooth domain in Rn)

uy Au + u(a-u-cv) in Q, u = 0 on &Q

Vi

i

Av + v(d-eu-v) in Q, v 0 on 8Q (4.1)
u(x,0) = Go(x), v(x,0) = VO(x) (a,c,d,e - positive constants),

and the corresponding steady state system

Au + u(a-u-cv) 0 in Q, u =0 on 3Q

(4.2)

Av + v(d-eu-v) 0 in Q, v = 0 on 8Q.

Lemma 4.1. Assume there are two pairs of positive in Q functions

(uo,vo) and (uo,vo), with Uy = Vg = 0 on 8Q and uo = Q, v0 = 0 on &Q,
which satisfy
-Au. = u.(a-u -ch)
0 0 0
(4.3)
—Avo ES vD(d—eu —vo) in Q,

0

and similar inequalities for (uD,vO). Moreover, assume that uO = uo

and v, = vO in Q. Then

0
u, = u(x,t;u ,VO) = uO
6] 0
0 0 (4.4)
VO = v(x,t;uo,v ) = v in Q x R+,
and
u, (x,t;u vo) =0, v, (xt;u vo) =0 inQ xR (4.5)
t ’ ’ O’ ) t » y O! +1 -

and similar inequalities hold for u(x,t;uo,vo) and v(x,t;uo,vo).

Theorem 4.1. Assume existence of (uo,vo) and (uo,vo) as above. Then

the following limits exist for all x € Q: lim u(x,t;u vo) = u(x),
0 0 JP) 0
lim vix, t;u.,v )} = V(x), lim u(x,t;u,v.) = U(x), lim v(x,t;u’,v

0 0 0
tow tw p ]

v(x). The pairs (u(x),V(x)) and (U(x),v(x)) are positive solutions of
(4.2).

O»
):

The w-limit set of (4.2) with respect to data in [uo,uol X

[vo,vol is contained in [u,U] x {v,V].

Corollary. Assume that

Al(A+a—cud) > 0; Al(A+d-eua) > 0.
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Then the problem (4.2) has positive solutions (u(x),V(x)) and
(U(x),v(x)), and the w-limit set of (4.1) with respect to the strictly
positive data (i.e. satisfying (4.6) below) is {[u,U] x [v,V].

Proof. Let u(x) and v(x) be the principal eigenfunctions of A + a -
cuy and A + d - eu, respectively. Then we can take uO =u, voo=ug,

u. = eG,VO = gv with &£ sufficiently small. Hence we can apply the

0
preceding theorem if the data satisfies

ﬁo(x) = eu, VO(x) = gv for € sufficiently small. (4.6)
Finally we mention that in [4] E.N. Dancer proved that (4.1) can

have multiple positive solutions.

PREDATOR-PREY INTERACTION
We study the system

uy Au + u(a-u-cv) in Q, u = 0 on &Q

A Av + v(-d+eu-v) in @, v = 0 on &Q (5.1)
u(x,0) = uo(x), v(x,0) = vo(xl

Here u(x,t) denotes the population density of a prey, and v(x,t) that
of a predator; a,c,d,e, are positive constants. We assume that the
data satisfies (3.3), which implies by the maximum principle that
u({x,t) and v(x,t) are non-negative for all x and t.

Unlike the previous cases the system (5.1) has no monotonicity
properties. Its behavior is determined by stability of the trivial
solutions (0,0) and (ua,O). If the solution approaches (ua,O) then
v(x,t) tends to 0. However the lack of monotonicity does not allow us
to use the Vitali’s theorem as in the previous sections to conclude
that v(x,t) tends to zero uniformly in x. In case n = 1 we are able

to conclude the uniform convergence, by using the following global a

priori bound.
Lemma 5.1. Consider the problem (Q ¢ R n 2z 1)

u, = Au + f(x,t) in Q, u =0 on 8Q

u(x,0) = uo(x).

Assume that
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(1) W2 o0 s ¢

(ii) Hu(x,t)NLZ = ¢y,

with constants Cl'CZ independent of t. Then

HuH1 = ¢, c is independent of t. (5.3)

Here II~II1 denotes the norm in the Sobolev’s space HI(Q);C depends on

cl,c2 and Huoul.

Proof. Our proof follows Babin and Vishik [2], and consists of

several steps.

Step 1. Multiply (5.2) by u and integrate over Q, and then in t from
0 to T. Obtain

T
J Ilu(x,r]il2

1dr = c(cl,c
0

T,HuOHO). (5.4)

2I
Step 2. Multiply (5.2) by Au and integrate over Q. After the usual

manipulations,

2 _ 2, 2
llu(x,t)ll1 = Iluo(x)ll1 + ClT' (5.5)

Step 3. Multiply (5.2) by tAu and integrate,

1 2 2 _ 1, .2
Dt(it"“"1) + tJ(Au] = zuuu1 tiju (5.6)

1 2 t 2 tr.2
= Ellull1 * 5 (Au)™ + 5 b

Integrating from 0 to t and using (5.4),
2 2
14

t
1 2 1 2

Zt“uﬂl = ?J Huﬂldr + c
0

Let now 0 < 8 =t = T. Then

= C.

halt, = c(

1 cl,CZ.T,5). (5.7)

Step 4. Fix say 8 = 1 and T = 10. Then for 0 < t = 1 the estimate
(5.3) follows from (5.5), while for 1 = t = 10 it follows from (5.7).
Take t = 1 as the new initial time. Then llull, is bounded by the same

1
quantity as in (5.7) for 2 =t = 11, and so on.

Lemma 5.2. Assume that lim v(x,t) = O for each x € Q ¢ Rl, and
tow

Hle = ¢, uniformly in t.
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Then v(x,t) tends to zero uniformly in x € Q.

Proof. Take an arbitrary sequence {tm) > o. Suffices to show that
um(x) = v(x,tm) tends to zero uniformly in x, as m - ». Since n = 1,
Humﬂca = cHqu =< ¢, uniformly in t, for any 0 < « < %. Since C*(Q) is
compactly imbedded in CO(Q), it follows that a subsequence of um(x)
converges to zero uniformly in x. Remove this subsequence, and repeat
the procedure until the entire sequence is exhausted.

Definition. We say that a species u(x,t) dies out, if lim u(x,t) =0,

£t
otherwise we say that u(x,t) persists.

The following result shows that if the predator can survive with
the maximal possible population of prey (i.e., the population of prey

in the absence of the predator), then it will survive.

Theorem 5.1. For the problem (5.1) assume that n = 1 and the data
satisfies (3.3). Then the conditions

(i) a > Rl

(ii) A, (A+eu_-d) > O
1 a
are necessary and sufficient for the persistence of both species.

Proof. Necessity follows by the theorem 2.1. Sufficiency. If vix,t)
5> 0 as t » », then by lemma 5.2 the convergence is uniform in X
(notice that both u and v are bounded in L®(Q)). Then as in the proof
of the theorem 3.5, u > u,  as t » o uniformly in x € Q. If we now
denote by v the principal eigenfunction of A + eu - d, and by H =

Idex, then from the second equation in (5.1) we obtain a

2ontradiction as before. If u(x,t) » 0 as t » o, then again the
convergence is uniform in x. From the second equation in (5.1) it
follows that v(x,t) » 0 as t > « uniformly in x (compare v(x,t) with
the solution of V/(t) = —%V(t), for t large). But then from the first
equation in (5.1), u(x,t) » u, a contradiction.

In [3] under conditions similar to ours, E.N. Dancer has proved

existence of positive steady state for (5.1).

Remark. After this paper was written, it came to our attention that

the theorem 6.1 can be extended to general n > 1, using global a

priori estimates in R. Redlinger, J. Diff. Eqgns., 133-153(1986).
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