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1 Introduction

Let v(x, t) be a complex-valued solution of a nonlinear Schroedinger’s equa-
tion (x ∈ Rn, t > 0)

ivt + ∆v + v|v|p−1 = 0 .

Here p > 1 is a constant, and |v| denotes the modulus of v. Looking for the

standing waves, one substitutes v(x, t) = eimtu(x), with a real valued u(x),
and a constant m > 0. Then u(x) satisfies

∆u − mu + u|u|p−1 = 0 .

For a more general equation, where v(x, t) is a complex-valued solution of

ivt + ∆v + f(v) = 0

a similar reduction works for any complex valued function f(v), satisfying

f(eimtu) = eimtf(u) , for any real m and u ,

and it leads to the equation

∆u − mu + f(u) = 0 .

We shall study the radially symmetric solutions of this equation, with r =

|x|, satisfying

u′′ +
n − 1

r
u′ − mu + f(u) = 0 .(1.1)

Of particular interest will be sign-changing ground state solutions, with
arbitrary many roots. These are solutions satisfying limr→∞ u(r) = 0.

Let us discuss the solutions of the initial value problem

u′′ +
n − 1

r
u′ + f(u) = 0 , r > 0 , u(0) = a, u′(0) = 0 ,(1.2)

modeled on f(u) = −u + u|u|p−1, for all initial values a > 1 (for which

f(a) > 0), and all r > 0, with a sub-critical p, 1 < p < n+2
n−2 . Since u′′(0) =

− 1
n
f(a) < 0, the solution u(r) goes down for small r > 0. (In the model

case, u′′(0) = 1
n
(a−ap) < 0.) Define the “energy” E(r) = 1

2u′2(r)+F (u(r)),

where F (u) =
∫ u
0 f(t) dt. We have

d

dr
E(r) = −n − 1

r
u′2 < 0 ,(1.3)
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and so the energy is decreasing. The initial energy at r = 0 is equal to

F (a). The energy at any root r0 is equal to 1
2u′2(r0) > 0. Since energy is

decreasing along solutions, it follows that the initial energy F (a) must be

positive and high enough, in order for the solution to have roots, and higher
energy is needed to have more roots. After the initial energy is dissipated,

the solutions gets captured by either one of the stable roots of f(u), tending
to either 1 or −1 as r → ∞. Ground states are the exceptional unstable

solutions tending to 0 as r → ∞, and separating different stable behaviors.

When the initial energy is low, solutions turn around while staying posi-

tive, and then tend to 1 as r → ∞. At the next higher energy level solutions
have enough energy to develop one root, and then they tend to −1 as r → ∞.

Computations suggest that there is a unique positive ground state solution,
separating the above two regimes. Uniqueness of positive ground state so-

lution was proved for a class of f(u) for which uf ′(u)
f(u) is decreasing, see M.K.

Kwong [6]. This class includes the model case f(u) = −u + u|u|p−1, but

not other similar equations, like f(u) = −2u + u3 + u4. Other results for
both the Dirichlet and the ground state problems, under the condition that

the function uf ′(u)
f(u) is decreasing, can be found in M.K. Kwong [6], L. Zhang

[12], M.K. Kwong and Y. Li [7], P. Korman, Y. Li, and T. Ouyang [5], T.

Ouyang and J. Shi [9]). Radial sign-changing solutions were studied for a
related equation in E. Yanagida and S. Yotsutani [11].

At the next higher energy level solutions have two roots, and then they
tend to 1 as r → ∞. This level is separated from the preceding one by

a ground state solution with one root. Proving its uniqueness appears to
be out of the question at present. The latter energy level is separated by

the ground state solution with two roots from the next level, involving the
solutions with 3 roots, tending to −1, and so on.

We approach the initial value problem (1.2) by studying the solution
curves of the parameter dependent boundary value problems

u′′ +
n − 1

r
u′ + λf(u) = 0 , r > 0, u′(0) = 0 ,(1.4)

with either the Dirichlet

u(1) = 0 ,(1.5)

or the Neumann
u′(1) = 0(1.6)

boundary condition. Any solution of the problem (1.2) with the first root at
some ξ corresponds to a positive solution of the Dirichlet problem (1.4), (1.5)
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at λ = ξ2, after rescaling. As λ varies, we have a curve of positive solutions

of the Dirichlet problem, denoted by D0. Any solution of the problem (1.2)
with the first point of zero slope at some η corresponds to a solution of the

Neumann problem (1.4), (1.6) at λ = η2, after rescaling. We denote by N0

the curve of positive solutions of the Neumann problem (1.4), (1.6).

We also performed computations for f(u) = −2u + u3 + u4, and n = 3,

which is a problem considered in [7]. It differs from our model case, since
f(u) has only one positive root but no negative ones. The model for that

case is f(u) = −u + |u|p. For small values of the energy the solutions in
both cases oscillate around 1. On the other when the solution has developed

a root then the solution in the second case will tend to minus infinity since
f(u(r)) < 0 for u < 0. In Figure 1 we draw D0 (the higher curve) and N0

for the model case f(u) = −u + u2. Since the picture remains the same
for related functions, it provides strong evidence of the uniqueness of the
positive ground state, which occurs at the value of u(0) where D0 and N0

come together.

When it comes to sign-changing ground state solutions, no uniqueness

or multiplicity results are proved even for the model case f(u) = −u +
u|u|p−1, which we will consider from now on. We compute similarly Dk’s,
the Dirichlet curves with k interior roots on (0, 1), and the properly defined

Neumann curves Nk. Figure 2 shows that each Neumann curve tends to two
adjacent Dirichlet curves, and it provides strong numerical evidence of the

uniqueness of nodal ground states, where Dk and Nk come together. Notice
the very sharp turns to the right that each Neumann curves makes, which

presented considerable computational challenge.

2 Sign changing ground state solutions

We assume that f(u) has three roots f(b1) = f(0) = f(b2) = 0, with

b1 < 0 < b2, and

f(u) > 0 on (b1, 0)∪ (b2,∞) , f(u) < 0 on (−∞, b1) ∪ (0, b2) ,(2.1)

f(u) = g(u) + u|u|p−1 , with lim
u→∞

g(u)

u|u|p−1
= 0 , and 1 < p < n+2

n−2 .(2.2)

The following lemma is well-known, see e.g., J. Shi [10].

Lemma 2.1 Assume that a solution of (1.2) satisfies limr→∞ u(r) = c.
Then f(c) = 0.
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Figure 1: The curves of positive solutions for the Dirichlet and Neumann
problems for f(u) = −u + u2, and n = 3

Proof: Writing (1.2) in the form
(

rn−1u′)′ = −f(u)rn−1 ≈ −f(c)rn−1,

and integrating twice, we see that for large r, u(r) is asymptotic to c−f(c) r2

2n ,
so that f(c) = 0. ♦

In case f(u) = −u + u|u|p−1 the possible values of c are 0 and ±1.

Lemma 2.2 Assume that a solution of (1.2) has a point of local minimum
at some r1 > 0. Then u(r) > u(r1), for r > r1. If r2 > 0 is a point of local

maximum, then u(r) < u(r2), for r > r2.

Proof: Follows immediately from energy being decreasing. ♦

Corollary 1 Let r1 be a point of local minimum, and u(r1) > 0. Then
limr→∞ u(r) = b2. If r2 be a point of local maximum, and u(r2) < 0, then
limr→∞ u(r) = b1.

Lemma 2.3 Assume that a solution of (1.2) satisfies limr→∞ u(r) = 0.
Then this solution is eventually monotone, and limr→∞ E(r) = 0.

Proof: When |u(r)| is small, u(r) cannot have points of local minimum
where it is negative, and points of local maximum where it is positive. It

follows that u(r) is eventually monotone, and then u′(r) → 0 as r → ∞. ♦
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We now make more precise the global picture outlined in the Introduc-

tion. Our assumptions imply the existence of u0 > b2 such that F (u) < 0 on
(0, u0), and F (u) > 0 on (u0,∞) (For the model case f(u) = −u + u|u|p−1,

u0 =
(

p+1
2

)
1

p−1 .) If b2 < a < u0, then the initial energy E(a) = F (a) < 0,

and the solution cannot have any roots (at which the energy is positive).

Hence, the solution turns around at some ρ1 (u′(ρ1) = 0, u(ρ1) > 0), and
then (by our lemmas) tends to u = b2, making infinitely many oscillations

around u = b2. To see that there are infinitely many oscillations, one solves
the linearized equation at u = b2, using Bessel’s functions. The point ρ1 is

the point of global minimum of u(r). The same behavior persists for a > u0,
but a close to u0.

There is a critical u1, so that when a > u1 > u0, the solution has just

enough energy to develop a root at some r1, and then it turns around at
some ρ2 (u′(ρ2) = 0, b1 < u(ρ2) < 0), and then tends to u = b1, making

infinitely many oscillations around u = b1. When a = u1, the corresponding
solution u(r, u1) is a positive ground state. When a > u2, the next critical

value, the solution has energy for two roots, after which it turns around, and
tends to u = b2, making infinitely many oscillations around u = b2. When

a = u2, the corresponding solution u(r, u2) is a ground state, with exactly
one root. For increasing a we will have more and more roots, and we expect
a unique ground state with exactly k roots for any integer k ≥ 0.

We shall consider positive and sign-changing solutions of the Dirichlet
problem

u′′ +
n − 1

r
u′ + λf(u) = 0 , 0 < r < 1 , u′(0) = u(1) = 0 .(2.3)

For positive solutions one has u′(r) < 0 for all r ∈ (0, 1), so that u(0) gives
the maximum value of u(r). Recall that the set of positive solutions of

(2.3) can be represented by curves in the (λ, u(0)) plane, see e.g., [3]. The
following result was proved in [5], [9], see also [3].

Theorem 2.1 Assume that f(u) = −u + u|u|p−1. Then all positive solu-
tions of (2.3) lie on a unique, monotone, hyperbola-like solution curve in the
(λ, u(0)) plane, with u(0) → ∞ as λ → 0, and u(0) → β as λ → ∞, where

β > 0 satisfies F (β) > 0.

Let ρ = ρ(a) denote the first root of the solution of (1.2). The last result,

after rescaling, implies that ρ(a) → ∞ as a → β, ρ(a) → 0 as a → ∞.
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By Dk we shall denote the solution set (λ, u(r)) of (2.3) with k ≥ 0

interior roots on (0, 1). In case k ≥ 1, no detailed results like the Theorem
2.1 above is available. However, we have the following result.

Theorem 2.2 For the problem (2.3), the value of u(0) uniquely identifies
the solution pair (λ, u(r)) ∈ Dk (i.e., the value of u(0) is a global parameter

on Dk). Dk consists of a single smooth solution curve. On one side of Dk,
λ → 0 and u(0) → ∞, and on the other side, λ → ∞ and u(0) → gk (the

initial conditions u(0) = gk and u′(0) = 0 produce the ground state solution
with k roots).

Proof: Assume, on the contrary, that we have two solution pairs in Dk

(λ, u(r)) and (µ, v(r)), with u(0) = v(0) = α. Clearly, λ 6= µ, since otherwise

we have a contradiction with uniqueness of initial value problems, which is
known for this type of problems, see e.g., [3]. (Recall that u′(0) = v′(0) = 0.)

The change of variables r = 1√
λ
t takes (2.3) into

u′′(t) +
n − 1

t
u′(t) + f(u) = 0, u(0) = α, u′(0) = 0 .(2.4)

The change of variables r = 1√
µ t takes the equation for v(r), at µ, also into

(2.4). By uniqueness, u(t) ≡ v(t), but that is impossible, since u(t) has its

k-th root at t =
√

λ, while the k-th root of v(t) is t =
√

µ.

Similarly to the case of positive solutions, one shows that Dk extends
globally, i.e., at each point of this solution curve either the implicit function

theorem or the Crandall-Rabinowitz bifurcation theorem [1] applies, see e.g.,
P. Korman [3]. By Lemma 2.4 below, u(0) extends to infinity along Dk. By

the a priori estimates of B. Gidas and J. Spruck [2], this may only happen
for λ → 0. Since the value of u(0) is a global parameter on Dk, u(0) is

decreasing as λ → ∞, and by continuity it tends to gk. ♦

Lemma 2.4 Assume that f(u) satisfies the conditions (2.1) and (2.2). Then
all sufficiently large values of u(0) = a belong to the Dirichlet range Dk, i.e.,

the corresponding solution of (1.2) has at least k roots.

Proof: Recall that f(u) = g(u) + u|u|p−1, with limu→∞
g(u)

u|u|p−1 = 0. In

(1.2) we set u = az, r = 1
aβ ξ, a > 0. Letting 2β = p − 1, and using primes

for the derivatives of z(ξ), we get

z′′ +
n − 1

ξ
z′ +

g(az)

ap
+ z|z|p−1 = 0, z(0) = 1, z′(0) = 0 .(2.5)
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For the problem

z′′ +
n − 1

ξ
z′ + z|z|p−1 = 0, z(0) = 1, z′(0) = 0

it is well known that the solution is changing sign infinitely many times. By

continuity, for a large, the solution of (2.5) has arbitrary many roots (the

term g(az)
ap is uniformly small). ♦

Turning to the Neumann branches, we notice that there is an abundance
of solutions of the Neumann problem (1.4), (1.6). For example, let v(r) be

a solution with no roots, tending to b2. There are infinitely many rk with
v′(rk) = 0. The scaling r → t, given by r = rkt, will provide infinitely

many solutions of the Neumann problem (1.4), (1.6). We need to select the
Neumann branches, which tend to the ground state solutions.

We define N0 to be the set of positive and decreasing solutions of the
Neumann problem (1.4), (1.6) (the lower curve in Figure 1). The upper

branch of N0 tends to the positive ground state.

We define N1 to be the set of solutions of (1.4), (1.6) with exactly one

root, exactly one monotonicity change, and ending (when r = 1) at the
second point of zero slope. These are precisely the type of solutions of the
initial value problem (1.2) which lie just below the ground state with one

root, and so the upper branch of N1 tends to this ground state. (Assume
that u(0) = g1, and u′(0) = 0, produces the ground state with one root.

Then u(0) = g1 + ε, with ε > 0 small, produces a solution with exactly
two roots, and tending to b2. As ε tends to zero, the second root tends to

infinity. The point u(0) = g1 − ε produces a solution with exactly one root,
tending to b1. As ε tends to zero, the second point of zero slope tends to

infinity, and so λ on N1 tends to infinity.) Remarkably, the lower branch of
N1 tends to the positive ground state, as our computations show.

We define N2 to be the set of solutions of (1.4) and (1.6) with exactly
two roots, exactly two monotonicity changes, and ending at the third point

of zero slope. The upper branch of N2 tends to a ground state solution with
two roots, while the lower branch of N2 tends to a ground state solution

with one root.

We define Nk, k ≥ 3, similarly, and our computations show similar

results. Our computations indicate that there are no gaps between Nk’s and
Dk’s, so that there is a unique ground state with exactly k roots.

In Figure 2 we computed the Dirichlet and Neumann curves for f(u) =
−u+u3 in the dimension n = 3. Notice the very sharp turns to the right that
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Figure 2: The Dirichlet and Neumann curves for f(u) = −u+u3, and n = 3

the Neumann curves make, which presented some computational challenges

to detect. When we changed the dimension to n = 2, the picture was similar,
except for the scales of the axis. For u(0) < 10 we encounter already 16

Dirichlet curves and the Neumann curves are shifted considerably to the
right (they only appear for large λ). In the dimensions n ≥ 4 no Dirichlet
curve is found and only the Neumann curve N0 exists, which tends to zero

as u(0) increases. This result is not surprising, since p = 3 is critical for
n = 4, and super-critical for n > 4.
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