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SUMMARY

We study semilinear elliptic systems in two di>erent directions. In the %rst one we give a simple
constructive proof of existence of solutions for a class of sublinear systems. Our main results are in
the second direction, where we use bifurcation theory to study global solution curves. Crucial to our
analysis is proving positivity properties of the corresponding linearized systems. Copyright ? 2002 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

We study semilinear elliptic systems in two di>erent directions. The %rst one involves a class
of sublinear systems, for which we give an example next. On a bounded smooth set C⊂Rn

we consider a system

Du + vp =0 on C; u=0 on 9C
Dv + uq =0 on C; v=0 on 9C (1)

We assume that the system is sublinear, i.e. the positive constants p and q satisfy pq¡1.
It turns out that just by scaling alone one can get an a priori estimate for (1), which usually
provides a crucial step in proving existence of solutions. Indeed, we make a change of vari-
ables u= 	U; v=�V , with constant 	 and �. We choose � to equalize the coeJcients in front
of the nonlinear terms of the resulting system, i.e. �p=	= 	q=�. So that we set �= 	(q+1)=(p+1).
System (1) transforms as

DU + 	�Vp =0 on C; U =0 on 9C
DV + 	�Uq =0 on C; V =0 on 9C (2)
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4 P. KORMAN

with �=(pq− 1)=(p+1). Observe that sublinearity assumption implies that �¡0. We claim
that there is a positive constant c, depending on p and q so that any solution of (1) satis%es
an a priori estimate

|u|L∞ ; |v|L∞¡c (3)

Indeed, set 	= |u|L∞ , so that

|U |L∞ =1 (4)

If 	 were to be large, then using (4), we would conclude from the second equation in (2) that
V is small, and then from the %rst equation in (2) U would have to be small, contradicting (4).

By a similar argument we prove convergence of monotone iterations for a class of sublinear
systems, obtaining both existence of solutions and a constructive way to approximate the
solution. After completing this work, we became aware that a similar existence result was
proved by Dalmasso [1]. He used the Leray–Schauder degree. Our proof appears to be a little
simpler, it is constructive, and it provides an extra piece of information: the existence of a
minimal solution.

Our main results are in another direction. In recent years Y. Li, T. Ouyang, J. Shi and the
present author have used bifurcation analysis to study global curves of positive solutions for
the two-point Dirichlet problem (� is a positive parameter)

u′′(x) + �f(u(x))=0 x∈ (−1; 1); u(−1)= u(1)=0 (5)

see e.g. References [2–4]. The emphasis was for every � to obtain the exact number of
positive solutions, and to draw the global bifurcation diagrams. Let us brieNy recall the steps
of that analysis. It revolved around the properties of the linearized problem

w′′(x) + �f′(u(x))w(x)=0 x∈ (−1; 1); w(−1)=w(1)=0 (6)

The %rst two properties are very easy to prove, and they hold for any f(u)∈C1(R+). Namely,
if the problem (6) admits non-trivial solutions, then the solution space is one-dimensional
(since it can be parameterized by w′(1)), and w(x) does not change sign, so that we may
choose w(x)¿0 on (−1; 1) (just observe that u′(x) also satis%es the equation in (6), and that
x=0 is the only root of u′(x)). The main work is then in studying the direction of bifurcation
at the turning points.

In the present paper we extend this analysis to systems of equations. It turns out that for
the system case even the %rst two properties of the linearized system (mentioned above)
cannot be taken for granted. We show by an example that a linear system may have a two-
dimensional solution set, even in case of constant coeJcients. Proving positivity of non-trivial
solutions of the linearized system turned out to be a non-trivial task, and it required us to
place some considerable restrictions on the nonlinearities. We were able to handle several
classes of systems. One of them is

u′′(x) + �f(v(x))=0 x∈ (0; 1); u(0)= u(1)=0

v′′(x) + �g(u(x))=0 x∈ (0; 1); v(0)= v(1)=0
(7)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20



SEMILINEAR SYSTEMS 5

with positive and increasing f(t) and g(t). After proving that the null-space of the linearized
problem (at a degenerate solution) is one-dimensional, with both components positive, we
were able to conclude several properties of the solution curves of (7). We show that the
solution curves are global, i.e. they can be always continued. We also give conditions under
which curves do not turn, and when there is only one curve. Our work culminates in Section 5,
where we give an exact multiplicity result for (7), which to the best of our knowledge is the
only such result for an elliptic system.

To continue the solutions, our main tool is the Crandall–Rabinowitz bifurcation theorem, [5],
which we recall next.

Theorem 1.1 (Reference [5]). Let X and Y be Banach spaces. Let ( O�; Ox)∈R×X and let
F be a continuously di>erentiable mapping of an open neighbourhood of ( O�; Ox) into Y .
Let the null-space N (Fx( O�; Ox))= span {x0} be one-dimensional and codimR(Fx( O�; Ox))=1. Let
F�( O�; Ox) =∈R(Fx( O�; Ox)). If Z is a complement of span {x0} in X , then the solutions of F(�; x)=
F( O�; Ox) near ( O�; Ox) form a curve (�(s); x(s))= ( O� + �(s); Ox + sx0 + z(s)), where s→ (�(s);
z(s))∈R×Z is a continuously di>erentiable function near s=0 and �(0)= �′(0)=0; z(0)=
z′(0)=0.

2. EXISTENCE AND UNIQUENESS OF POSITIVE SOLUTIONS FOR
A CLASS OF SUBLINEAR SYSTEMS

On a bounded smooth domain C⊂Rn we consider a system

Du + f(v)=0 on C u=0 on 9C

Dv + g(u)=0 on C v=0 on 9C
(8)

We assume that the functions f(v) and g(v) are H7older continuous on R+, and satisfy:

c1vp6f(v)6c2 + c3vp

c4uq6g(u)6c5 + c6uq
(9)

for some positive constants c1; c3; c4 and c6, and non-negative constants c2 and c5; we assume
that p and q are positive constants with

pq¡1 (10)

Theorem 2.1. In addition to conditions (9) and (10); assume that the functions f(v) and
g(u) are strictly increasing on R+. Then the problem (8) admits a positive solution.

Proof. We assume %rst that p¡1¡q and (10) holds. We shall construct a monotone
sequence converging to the solution from below. We search for a subsolution of (8) in the
form ( Ou; Ov)= (!"1(x); !(q+1)=(p+1)"q

1(x)), where "1(x)¿0 is the principal eigenvalue of −D on
C, corresponding to the principal eigenvalue �1, and a constant !¿0 is to be chosen. With

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20



6 P. KORMAN

�=(pq − 1)=(p + 1)¡0 as before, we compute using our conditions (9) and (10)

D Ou + f( Ov)¿!(−�1"1 + !�c1"
pq
1 )¿0 for all x∈C (11)

provided !¿0 is suJciently small. Similarly, using that q¿1,

D Ov + g( Ou)¿!(q+1)=(p+1)(q(q − 1)"q−2
1 |∇"1|2 − q�1"

q
1 + !�c4"

q
1)¿0 (12)

for all x∈C, if ! small enough. It follows that ( Ou; Ov) is a subsolution of (8) for ! small.
We now construct a monotone increasing sequence of iterates (u0; v0)¡(u1; v1)¡ · · ·¡

(un; vn)¡: : : ; by setting (u0; v0)= ( Ou; Ov) and solving inductively the system

Dun+1 + f(vn)=0 on C; un+1 =0 on 9C

Dvn+1 + g(un)=0 on C; vn+1 =0 on 9C
(13)

The fact that (un; vn) is an increasing sequence (componentwise, i.e. un+1¿un and vn+1¿vn)
follows easily by the maximum principle, see e.g. Reference [6]. We claim that (un; vn) are
uniformly bounded, i.e. there is a constant c¿0 so that un; vn6c for all n and all x∈C. Then
the limit of this sequence will give us a classical solution of (2:1), see e.g. [6]. Assume on
the contrary that 	n ≡ |un|L∞ →∞. Denote �n = 	(q+1)=(p+1)

n . Then both sequences {	n} and
{�n} are monotone increasing. We now make a change of variables un = 	nUn and vn =�nVn.
Notice that

|Un|L∞ =1 for all n (14)

After the change of variables (13) becomes

−DUn+1 =
1

	n+1
f(�nVn) on C; Un+1 =0 on 9C

−DVn+1 =
1

�n+1
g(	nUn) on C; Vn+1 =0 on 9C

(15)

Using our conditions (9) and monotonicity of the sequences {	n} and {�n},

1
	n+1

f(�nVn)6
c2

	n+1
+

c3	
p(q+1)=(p+1)
n

	n+1
Vp
n

6
c2
	n

+ c3
	p(q+1)=(p+1)
n

	n
Vp
n =

c2
	n

+ c3	�
nV

p
n (16)

Similarly,

1
�n+1

g(	nUn)6
c5
�n

+
c6	

q
n

�n
Up

n =
c5
�n

+ c6	�
nU

p
n (17)

Since �¡0, using (14), we see that the right hand side of (17) tends to zero with n. Us-
ing maximum principle, we see from the second equation in (15) that |Vn|L∞ tends to zero.
Using (16), we see from the %rst equation in (15) that |Un|L∞ → 0, which contradicts (14).

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20
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We proved that un are uniformly bounded, but then from the second equation in (13) the
same is true for vn.

In the case p; q¡1 we verify that (!"1; !"1) is a subsolution of (8) for ! small, and proceed
as before.

Remark. An uniqueness result under a slight additional condition is available in
Dalmasso [1].

3. POSITIVITY FOR LINEAR SYSTEMS

We consider classical solutions for a class of linear systems on the interval (−1; 1)

w′′ + b(x)z =0 on (−1; 1); w(−1)=w(1)=0

z′′ + c(x)w =0 on (−1; 1); z(−1)= z(1)=0 (18)

Lemma 3.1. Assume that the coeJcient functions b(x) and c(x) are continuous on [−1; 1].
Then for any non-trivial solution of (18) at any x∈ [−1; 1] at least one of the quantities
w(x); z(x); w′(x) and z′(x) must be non-zero.

Proof. Follows from the uniqueness for the initial value problems in case of systems.

Lemma 3.2. Assume that the coeJcient functions b(x) and c(x) are positive and con-
tinuous on [−1; 1]. Then if the null space of (18) is non-trivial, it is one-dimensional.
Moreover, if the functions b(x) and c(x) are even on (−1; 1), then w(x) and z(x) are also
even.

Proof. First, we observe that the null-space of (18) is at most two-dimensional, since its
elements are determined by the vector (p; q), where p=w′(1) and q= z′(1). The null-space
will be one-dimensional if all possible vectors (p; q) lie on one line, and two-dimensional
if (p; q) span the R2. Assuming the null-space to be two-dimensional, consider its element
(w; z) with p=w′(1)=1 and q= z′(1)=−1. Then near x=1 we have z(x)¿0 and w(x)¡0,
and consequently w′′ =−bz¡0 and z′′ =−cw¿0. As we go left from x=1, we see that
w(x) is an increasing function, so long as z¿0, while z(x) is decreasing so long as w¡0.
Clearly, this situation persists for all x¡1, contradicting the boundary conditions at the left
end x=−1.

If either w(x) or z(x) failed to be even in the case of even coeJcients, the pair (w(−x);
z(−x)) would give us another solution of (18), which is not a multiple of (w(x); z(x)),
contradicting to the fact that the null space is one-dimensional.

Remark. In general the null-space may fail to be one-dimensional even for a system with
constant coeJcients, as the following example shows:

w′′ + �1w + bz =0 on (−1; 1); w(−1)=w(1)=0

z′′ + �2z =0 on (−1; 1); z(−1)= z(1)=0 (19)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20



8 P. KORMAN

where �1 =%2=4 is the principal eigenvalue of −w′′ on (−1; 1), with the corresponding eigen-
function "1(x)= cos%=2x, and �2 =%2 is the second eigenvalue of the same operator, corre-
sponding to "2(x)= sin % x. Then solution set of (19) includes ("1; 0) and (�; "2), where �(x)
is a non-trivial solution of

�′′ + �1� + b"2 = 0 on (−1; 1); �(−1)= �(1)=0

which exists by the Fredholm alternative.

Lemma 3.3. In addition to the conditions of Lemma 3.2 assume that b(x) and c(x) are
even functions on (−1; 1). If w(x)¿0 (or z(x)¿0) on (0; 1) then w(x)¿0 and z(x)¿0 on
the full interval (−1; 1).

Proof. By our conditions and the previous lemma the functions w(x) and z(x) are even,
and hence w(x)¿0 on (−1; 1) (since we do not know the value of w(0), we cannot assert a
strict inequality). But applying the strong maximum principle to the second equation in (18),
and then to the %rst one, we conclude the lemma.

The following lemma provides a Sturm comparison type result for systems.

Lemma 3.4. Consider the system

U ′′ + B(x)V =0 on (−1; 1); U (−1)=U (1)=0

V ′′ + C(x)U =0 on (−1; 1); V (−1)=V (1)=0
(20)

Assume that

B(x)¿b(x) and C(x)¿c(x) for all x∈ (−1; 1) (21)

with at least one of the inequalities being strict on a set of positive measure. If the prob-
lem (18) admits a positive solution (i.e. both components are positive), then the problem (20)
cannot have a positive solution.

Proof. Assume on the contrary that the problem (20) has a positive solution. From the
%rst equations in (21) and (18) we obtain

−
∫ 1

−1
U ′v′ dx +

∫ 1

−1
u′V ′ dx +

∫ 1

−1
(B − b)Vv dx=0

Similarly from the second equations we have

−
∫ 1

−1
u′V ′ dx +

∫ 1

−1
U ′v′ dx +

∫ 1

−1
(C − c)Uu dx=0

Adding, we have ∫ 1

−1
(B − b)Vv dx +

∫ 1

−1
(C − c)Uu dx=0

which is a contradiction, since both terms on the left are non-negative, with at least one
strictly positive.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20



SEMILINEAR SYSTEMS 9

We will be studying positive solutions for non-linear systems of the form

u′′ + f(v) = 0 on (−1; 1); u(−1)= u(1)=0

v′′ + g(u) = 0 on (−1; 1); v(−1)= v(1)=0
(22)

The linearized problem for (22) is

w′′ + b(x)z = 0 on (−1; 1); w(−1)=w(1)=0

z′′ + c(x)w = 0 on (−1; 1); z(−1)= z(1)=0
(23)

with b(x)=f′(v) and c(x)= g′(u).

Theorem 3.1. Let (u; v) be a positive solution of (22). Assume that the functions f; g∈
C1( OR+) satisfy

f(v)¿0; f′(v)¿0; g(u)¿0; g′(u)¿0 for all u; v¿0 (24)

Then any non-trivial solution of the linearized problem (23) can be chosen to be positive on
(−1; 1).

Proof. Since our system is of cooperative type, by the result of W. Troy [7], both u and
v are even functions, with u′(x)¡0 and v′(x)¡0 on (0; 1). Denoting p= u′(x) and q= v′(x),
we obtain

p′′ + b(x)q = 0 on (−1; 1)

q′′ + c(x)p = 0 on (−1; 1)
(25)

with b(x)=f′(v) and c(x)= g′(u), i.e. (p; q) is also a solution of the linearized problem. Since
p′ = u′′ =−f(v)¡0, and similarly q′¡0, we see that the functions p and q are negative and
strictly decreasing on (0; 1).

Assume contrary to what we want to prove that w vanishes on (0; 1). By Lemma 3.3 z
also vanishes on (0; 1). Let ' denote the largest root of w on (0; 1) and let 	 be largest root
of z on (0; 1). Assume %rst that 	¡'. We may assume that z¿0 on (	; 1). From the %rst
equation in (23) we then see that w is concave on (	; 1). Since w(')=0, this implies that the
function w(x) is positive on ('; 1), and it is negative and increasing on (	; '). In particular
we have (see Figure 1)

w(	)¡0 and w′(	)¿0 (26)

We now multiply the %rst equation in (23) by q, and subtract from it the %rst equation in
(25) multiplied by z. We then integrate over (	; 1), obtaining

(w′q − p′z)|1	 −
∫ 1

	
w′q′ dx +

∫ 1

	
z′p′ dx=0 (27)

Similarly from the second equations in (23) and (25) we obtain

(z′p− q′w)|1	 −
∫ 1

	
z′p′ dx +

∫ 1

	
w′q′ dx=0 (28)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20



10 P. KORMAN

Figure 1.

Adding (27) and (28), we have

(w′q − p′z + z′p− q′w)|1	 =0

which is

w′(1)q(1) + z′(1)p(1)− w′(	)q(	)− z′(	)p(	) + q′(	)w(	)=0 (29)

Using (26) and the fact that p;p′ and q; q′ are negative, we see that all %ve terms on the
left in (29) are non-negative and by Lemma 3.1 either the %rst or the second one is strictly
positive, a contradiction. The case 	¿' is similar, and in case 	= ' the %fth term in (29) is
zero, while the other four terms are still positive, resulting in the same contradiction.

We need the following elementary lemmas.

Lemma 3.5. Assume w(x)∈C1[0; (] satis%es w(0)=0. Then
∫ (

0
w′2 dx¿

%2

4(2

∫ (

0
w2 dx

Proof. Minimizing
∫ (
0 w′2 dx subject to

∫ (
0 w2 dx=1, and the value w(() being free, we

obtain an extremal w= sin(%=2()x, and the lemma follows.

Lemma 3.6. Let w(x)∈C2[	; '] for some 0¡	¡'¡1 satisfy the inequalities

w′′ + a(x)w¡0 and w¡0 on (	; ') (30)

Assume also that a(x)6%2=4 for all x∈ [0; 1], and w(')=0. Then

w′(	)¿0 (31)

Proof. Multiply (30) by w¡0 and integrate over (	; ')

−w(	)w′(	)−
∫ '

	
w′2 dx +

%2

4

∫ '

	
w2 dx¿0 (32)

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20



SEMILINEAR SYSTEMS 11

If we assume (31) to be violated, we obtain a contradiction in (32), since the %rst term is
non-positive, while the second term dominates the third one by the Lemma 3.5.

We shall now consider non-linear systems of the form

u′′ + f(u) + bv = 0 on (−1; 1); u(−1)= u(1)=0

v′′ + cu + g(v) = 0 on (−1; 1); v(−1)= v(1)=0
(33)

with positive constants b and c, and the corresponding linearized system

w′′ + a(x)w + bz = 0 on (−1; 1); w(−1)=w(1)=0

z′′ + cw + d(x)z = 0 on (−1; 1); z(−1)= z(1)=0
(34)

where we have denoted a(x)=f′(u(x)) and d(x)= g′(v(x)).

Lemma 3.7. Assume that the coeJcient functions a(x) and d(x) are continuous, and a(x)¡
%2=4, d(x)¡%2=4 on (−1; 1), while b and c are positive constants. Then if the solution space
of (34) is non-trivial, it is one-dimensional. Moreover, if the functions a(x) and d(x) are even
on (−1; 1), then w(x) and z(x) are also even. In such a case, if w(x)¿0 (or z(x)¿0) on
(0; 1) then w(x)¿0 and z(x)¿0.

Proof. We proceed as in proof of Lemma 3.2. Assuming the null-space to be two-
dimensional, consider its element (w; z) with p=w′(1)=1 and q= z′(1)=−1. Then near
x=1 w(x) is negative, while z(x) is positive. Both functions vanish at x=−1. Let −16	¡1
be the largest root of w(x)z(x). Assume for de%niteness that w(	)=0, while z(x)¿0 on (	; 1).
From the %rst equation in (34)

w′′ + a(x)w=−bz¡0 on (	; 1)

Since a(x) is less than the principal eigenvalue of Laplacian on (−1; 1) (and hence on the
smaller interval (	; 1)), it follows by the well-known negativity of the Green’s function that
w(x) is positive on (	; 1), which is a contradiction. This proves that the solution space of
(34) is one-dimensional, and the rest of the proof is similar to that of Lemma 3.2.

Theorem 3.2. Let (u; v) be a positive solution of (33). Assume that the functions f; g∈C1

( OR+) satisfy

f(t)¿0; f′(t)¡
%2

4
; g(t)¿0; g′(t)¡

%2

4
for all t¿0 (35)

Then any non-trivial solution for the linearized problem (34) can be chosen to be positive on
(−1; 1).

Proof. We proceed as in the Theorem 3.1. Since our system (33) is of co-operative type,
by the result of Troy [7], both u and v are even functions, with u′(x)¡0 and v′(x)¡0 on

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20



12 P. KORMAN

(0; 1). Denoting p= u′(x) and q= v′(x), we obtain di>erentiating (33)

p′′ + a(x)p + bq = 0 on (−1; 1)

q′′ + cp + d(x)q = 0 on (−1; 1)
(36)

Assume contrary to what we want to prove that w vanishes on (0; 1). By Lemma 3.7 z also
vanishes on (0; 1). Let ' denote the largest root of w on (0; 1) and let 	 be the largest root of
z on (0; 1). We may assume as before that 	¡'. We may assume that z¿0 on (	; 1). From
the %rst equation in (34) using the well-known negativity of the Green’s function on ('; 1),
we conclude that w(x) is positive on ('; 1). By Lemma 3.6 w(x) is negative and increasing
on (	; '). In particular we have (26). From the %rst equations in (34) and (36) we obtain

(w′p− wp′)′ + b(pz − qw)=0 (37)

Similarly from the second equations:

(z′q − zq′)′ + c(wq − pz)=0 (38)

Multiplying (37) by c, (38) by b and adding

c(w′p− wp′)′ + b(z′q − zq′)′ =0 (39)

Observe that

p′(	)= u′′(	)¡0 (40)

since we assumed f(u) to be positive. We now integrate (39) over (	; 1), obtaining

c[w′(1)p(1) + w(	)p′(	)− w′(	)p(	)] + b[z′(1)q(1)− z′(	)q(	)]=0 (41)

We have a contradiction, since all %ve terms on the left in (41) are non-negative, and the
second one is strictly positive.

4. CURVES OF POSITIVE SOLUTIONS FOR A CLASS OF SYSTEMS

We consider positive solutions of the system

u′′ + �f(v) = 0 on (−1; 1); u(−1)= u(1)=0

v′′ + �g(u) = 0 on (−1; 1); v(−1)= v(1)=0
(42)

depending on a positive parameter �. Throughout this section we assume that

f(t); f′(t)¿0 and g(t); g′(t)¿0 for all t¿0 (43)

By a result of Troy [7] positive solutions of (42) are even functions, with u′(x)¡0 and
v′(x)¡0 for x¿0. We shall then use the maximal values (u(0); v(0)) to represent the solution,
obtaining curve(s) in (u; v) plane depending on the parameter �.

The following lemma extends a fact, which is well known in the case of one equation.

Copyright ? 2002 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2002; 25:3–20
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Lemma 4.1. The point (u(0); v(0)) uniquely identi%es the solution. I.e. if (U (x); V (x)) is
another positive solution of (42) corresponding to a parameter +, then += �, and (U (x); V (x))
≡ (u(x); v(x)).

Proof. Assuming that � 
=+, we observe that both (u((1=
√

�)x); v((1=
√

�)x)) and (U ((1=
√

+)
x); V ((1=

√
+)x)) satisfy the same equations in (42), with �=1, and they have the same values

at x=0. Since these solutions are di>erent (they have di>erent %rst roots), we have a con-
tradiction by the uniqueness result for initial value problems. It follows that �=+, and then
applying uniqueness result for initial value problems again, we conclude that (U (x); V (x))≡
(u(x); v(x)).

In view of the above lemma we can identify any positive solution of (42) with a point in
the %rst quadrant of the (u(0); v(0)) plane. When � varies we obtain curves in the (u(0); v(0))
plane.

Theorem 4.1. Assume conditions (43) are satis%ed. Then the solutions of (42) lie on global
continuous non-intersecting curves in the (u(0); v(0)) plane.

Proof. We show that at any solution of (42) either the implicit function theorem or the
Crandall–Rabinowitz bifurcation theorem applies, and hence we can always continue to the
neighbouring solutions (that is what we mean by ‘global curves’). Indeed, de%ne a map

F(u; v)=

(
u′′ + �f(v)
v′′ + �g(u)

)
:C2

0 (−1; 1)×C2
0 (−1; 1)→C(−1; 1)×C(−1; 1)

Clearly, our system (42) can be recast in the form F(u; v)=0, and the system (23) gives the
linearized problem. If (23) has only the trivial solution then the implicit function theorem
applies, allowing us to continue the solution to nearby �’s.

Assume now that at some ( O�; Ou; Ov) system (23) has a non-trivial solution. Then by
Lemma 3.2 the solution set is one-dimensional, and by Theorem 3.1 we may assume that
w(x)¿0 and z(x)¿0 for all x∈ (−1; 1). The range of the map F(u;v)( Ou; Ov) has codimension 1, as
can be seen by recasting (23) as a system of two integral equations, them de%ning a compact
operator on the product space C(−1; 1)×C(−1; 1), and applying the Riesz–Schauder theory.
To apply the Crandall–Rabinowitz theorem 1:1 it remains to show that F�( O�; Ox) =∈R(Fx( O�; Ox)),
with Ox=( Ou; Ov). Assuming otherwise, there exist (W (x); Z(x)) in C2(−1; 1) so that

W ′′ + b(x)Z = f(v) on (−1; 1); W (−1)=W (1)=0

Z ′′ + c(x)W = g(u) on (−1; 1); Z(−1)=Z(1)=0
(44)

with b(x)=f′(v(x)), and c(x)= g′(u(x)). Multiply the %rst equation in (44) by z, the %rst
equation in (23) by Z , subtract and integrate over (−1; 1). Similarly, multiply the second
equation in (44) by w, the second equation in (23) by W , subtract and integrate over (−1; 1).
Finally, add both results. After appropriate cancelations we have∫ 1

−1
[f(v)z + g(u)w] dx=0

This is a contradiction, since the integrand is positive.
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The following result gives conditions for the solution curves to have no turns in � (i.e. �
can then be used as a global parameter).

Theorem 4.2. Assume that conditions (43) hold, and assume also that f′(t)¿f(t)=t and
g′(t)¿g(t)=t for all t¿0. Then problem (42) has at most one positive solution on any solution
curve, for all �¿0 (i.e., any solution curve intersects at most once the line �= �0, for any
�0¿0).

Proof. Observe that the Theorem 3.1 applies here. We claim that when continued in � none
of the solution curves may turn. Indeed, if a solution curve were to turn, then near the turning
point we would have a second solution (U;V ), with U¿u and V¿v (since by the Crandall–
Rabinowitz Theorem 1.1 the di>erence of two solutions is asymptotically proportional to the
positive solution of the linearized system). We have

U ′′ + �f(V ) = 0 on (−1; 1); U (−1)=U (1)=0

V ′′ + �g(U ) = 0 on (−1; 1); V (−1)=V (1)=0
(45)

Multiply the %rst equation in (42) by V , the %rst equation in (45) by v, subtract and integrate
over (−1; 1). Similarly, multiply the second equation in (42) by U , the second equation in
(45) by u, subtract and integrate over (−1; 1). Finally, add both results. After cancelations
we have ∫ 1

−1
vV
(

f(V )
V

− f(v)
v

)
dx +

∫ 1

−1
uU
(

g(U )
U

− g(u)
u

)
dx=0

Since our conditions imply that the functions f(t)=t and g(t)=t are increasing for t¿0,
we have both integrands positive, which is a contradiction.

We can conclude uniqueness of solution if there is an a priori estimate.

Theorem 4.3. In addition to the conditions of the Theorem 4.2 assume that there are con-
stants O�¿0 and c¿0, so that for all �6 O� we have

u(x) + v(x)6c for all x∈ (−1; 1) uniformly in � (46)

Assume also that f(t) and g(t) are continuously di>erentiable for all t¿0. Then for every
0¡�6 O�, problem (42) has at most one positive solution.

Proof. The a priori estimate (46) implies that any solution curve must enter (0; 0) as �→ 0.
We claim that there is at most one solution curve. Since by the previous theorem solution
curves cannot turn, uniqueness will follow. Indeed, assume there is a second solution curve
(U (x; �); V (x; �)). Consider the equation satis%ed by U −u, use the mean-value theorem, then
multiply by U − u and integrate. Do the same for V − v, and then add the results. We have

‖U − u‖2L2 + ‖V − v‖2L26�
(
max
[0; c]

|f′(t)|+max
[0; c]

|g′(t)|
)
(‖U − u‖2L2 + ‖V − v‖2L2)

which implies a contradiction for � suJciently small.
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Remark. The a priori estimate (46) will hold, for example, if either f(t) or g(t) is a
bounded function, or in the case system (42) is sublinear.

5. EXACT MULTIPLICITY RESULTS

We now derive a complete description of the solution set for the problem

u′′ + �f(v) = 0 on (−1; 1); u(−1)= u(1)=0

v′′ + �g(u) = 0 on (−1; 1); v(−1)= v(1)=0
(47)

for a class of convex f and g.

Theorem 5.1. Assume that the functions f(t); g(t)∈C2( OR+) satisfy condition (24), and in
addition

f(0) + g(0)¿0 (48)

f′′(t)¿0; and g′′(t)¿0 for all t¿0 (49)

with at least one of the inequalities being strict on a set of positive measure,

f(t)¿	t; and g(t)¿	t for some 	¿0 and all t¿0 (50)

either lim
t→∞

f(t)
t

=∞; or lim
t→∞

g(t)
t

=∞ (51)

Then there is a critical �0¿0 such that problem (47) has exactly 2, 1 or 0 positive solutions,
depending on whether �¡�0; �= �0 or �¿�0. Moreover, all solutions lie on a single smooth
solution curve, which for �¡�0 has two branches denoted by 0¡(u; v)−(x; �)¡(u; v)+(x; �),
with (u; v)−(x; �) strictly monotone increasing (componentwise) in �. We also have lim�→0+

(u; v)−(x; �)= (0; 0) and lim�→0+(u; v)+(x; �)= (∞;∞).

Proof. We begin by proving existence of positive solutions for small �¿0. Since the
problem is quasi-monotone we can use monotone iterations as in Reference [6]. Clearly (0; 0)
is a strict subsolution. Let s(x) denote the solution of the problem

s′′ =−1 on (−1; 1); s(−1)= s(1)=0 (52)

Then for � small (s(x); s(x)) is a supersolution of (47). Existence of a minimal positive
solution then follows by Reference [6]. (Alternatively, we could use the implicit function
theorem to continue the trivial solution at �=0, and then observe that by the maximum
principle solutions are positive for small �¿0.)

Next, we show that no positive solution exists for � large. Assuming existence of solutions,
we multiply each equation in (47) by cos(%=2)x, integrate and add the results. Using the
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condition (50), we conclude

−%2

4

∫ 1

−1
(u(x) + v(x)) cos

%
2
x dx + �	

∫ 1

−1
(u(x) + v(x)) cos

%
2
x dx¡0

which results in a contradiction in case � is large.
Our next step is to show that a positive solution of (47) cannot become unbounded at any

O�¿0. The idea of the proof is that solution can become large only on a small interval, which
is inconsistent with its concavity. Assume contrary to what we want to prove that either u(x)
or v(x) becomes unbounded as �→ O�, say u(x). Since u(x) is concave, it follows that it has to
become large on any proper subinterval of (−1; 1), say on (0; 1=2). Using the condition (50)
it easily follows that v(x) must also become unbounded on (0; 1=2) (by using the Green’s
function, for example). Assume for de%niteness that the %rst condition in (51) holds. Then
for any M¿0 we have

f(v)¿Mv on (0; 1=2) (53)

provided that � is close to O�. We now multiply the %rst equation in (47) by sin 2%x, and
integrate over (0; 1=2). Using (53), we have (dropping two positive terms on the left)

−4%2
∫ 1=2

0
u(x) sin 2%x dx + �M

∫ 1=2

0
v(x) sin 2%x dx¡0 (54)

Similarly from the second equation in (47),

−4%2
∫ 1=2

0
v(x) sin 2%x dx + �	

∫ 1=2

0
u(x) sin 2%x dx¡0 (55)

Since M is large the inequalities (54) and (55) contradict each other.
We now consider the minimal positive solution of (47) at some small �. If the corresponding

linearized problem (23) has only a trivial solution w=0; z=0, then using the implicit function
theorem we can locally continue this solution for increasing �. Since for large � the problem
(47) has no positive solutions, we cannot continue the curve inde%nitely with � increasing.
Let �0 be the supremum of � for which we can continue the curve to the right. By above,
solutions on this curve remain bounded as �→ �0. Using elliptic estimates we pass to the limit,
and conclude that at �0 the problem (47) has a solution (u0; v0)∈C2[−1; 1]×C2[−1; 1]. By
the de%nition of �0 it follows that the map F(u; v), de%ned in the proof of the Theorem 4.1,
is singular at (u0; v0), i.e. the problem (23) has a non-trivial solution, (w; z). By Theorem 3.1
we have

w(x)¿0 and z(x)¿0 for all x∈ (−1; 1) (56)

As we checked in the proof of Theorem 4.1, the Crandall–Rabinowitz Theorem 1.1 applies at
(u0; v0), and hence we can continue the solution curve through this point. We now compute
the direction of bifurcation at (u0; v0) (and at any other singular point).

Near (�0; u0; v0) we represent �= �(s); (u; v)= (u(s); v(s)), with �(0)= �0 and (u(0); v(0))
= (u0; v0). Notice that �′(0)=0, since the solution curve does not extend beyond �0. Also,
by the Crandall–Rabinowitz theorem (us(0); vs(0))= (w; z). Di>erentiating the %rst equation in
(47) twice in s, and then letting s=0, we obtain

u′′ss + �0f′vss + �0f′′z2 + �′′(0)f=0; uss(−1)= uss(1)=0 (57)
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Similarly, from the second equation in (47) we obtain

v′′ss + �0g′uss + �0g′′w2 + �′′(0)g=0; vss(−1)= vss(1)=0 (58)

We now multiply (57) by z, the %rst equation in (23) by vss, subtract and integrate

−
∫ 1

−1
z′u′ss dx +

∫ 1

−1
w′v′ss dx + �0

∫ 1

−1
f′′(v0)z3 dx + �′′(0)

∫ 1

−1
f(v0)z dx=0 (59)

Similarly, using (58) and the second equation in (23), we obtain

−
∫ 1

−1
w′v′ss dx +

∫ 1

−1
z′u′ss dx + �0

∫ 1

−1
g′′(u0)w3 dx + �′′(0)

∫ 1

−1
g(u0)w dx=0 (60)

Adding (59) and (60), we have using (49) and Theorem 3.1

�′′(0)=−�0

∫ 1
−1 f

′′(v0)z3 dx +
∫ 1
−1 g

′′(u0)w3 dx∫ 1
−1 f(v0)z dx +

∫ 1
−1 g(u0)w dx

¡0 (61)

It follows from (61) that only ‘turns to the left’ are possible at any singular solution of (47).
We see that after turning to the left at (�0; u0; v0) the solution curve continues to travel to

the left (since turns to the right are impossible). Near the turning point (�0; u0; v0) solutions
on the upper branch are decreasing in � (or increasing when following the curve), as follows
by the Theorems 1.1 and 3.1. By Lemma 4.1, we see that the maximum values (u(0); v(0))
keep increasing, as we follow the curve for decreasing �. Since solutions cannot become
unbounded at �¿0, and there are no non-trivial solutions at �=0, it follows that solutions
on the curve become unbounded as �↓0.

Finally we prove monotonicity of the lower branch. As we have just observed, near the
turning point (�0; u0; v0) on the lower branch we have

(u�(x; �); v�(x; �))¿0 for all x∈ (−1; 1) (62)

We claim that (62) holds for all 0¡�¡�0 on the lower branch. Assuming otherwise, let
�1¿0 denote the in%mum of �’s for which the inequality (62) is true. Then (u�(x; �); v�(x; �))
is still non-negative, but either u�(x; �1) has a root inside (−1; 1) or a zero slope at either
end, x=−1 or x=1 (or the same situation holds for v�(x; �1)). But

u′′� (x; �1)=−�1f′(v)v� − f(v)¡0 for all x∈ (−1; 1)

which rules out both of the above possibilities. It follows that (62) holds for all 0¡�¡�0,
and the lower branch is increasing in �. As �↓0 the lower branch then has to enter (0; 0),
which completes the proof.

In case f(v)= v, we obtain an exact multiplicity result for the fourth-order equation, which
we state explicitly next, given its physical signi%cance (it describes deNections of a freely
supported elastic beam).

Theorem 5.2. Consider the problem

u′′′′ = �f(u) on (−1; 1); u(−1)= u(1)= u′′(−1)= u′′(1)=0 (63)
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Assume that f(t)∈C 2( OR+) satis%es condition (24), and in addition the following conditions:

f(0)¿0

f′′(t)¿0; for all t¿0

with the inequality being strict on a set of positive measure,

f(t)¿	t for some 	¿0 and all t¿0

lim
t→∞

f(t)
t

=∞

Then there is a critical �0¿0 such that the problem (63) has exactly 2; 1 or 0 positive
solutions, depending on whether �¡�0; �= �0 or �¿�0.

We shall now present a uniqueness result for another class of systems

u′′ + f(u) + bv=0 on (−1; 1); u(−1)= u(1)=0

v′′ + cu + g(v)=0 on (−1; 1); v(−1)= v(1)=0
(64)

But %rst we need an elementary lemma. We present it in the form it is used later (the second
condition in (67) below can be relaxed).

Lemma 5.1. Consider the problem

u′′ + f(u)=0 on (−1; 1); u(−1)= u(1)=0 (65)

Assume that the function f∈C( OR+) satis%es f(u)¿0 for all u¿0; and in addition

f(0)¿0 (66)

f(u)
u

is decreasing for all u¿0 and lim
u→∞

f(u)
u

=0 (67)

Then problem (65) has a unique positive solution.

Proof. By our conditions one can %nd b¿0 so that f(u)¡ 1
2u + b for all u¿0. Let s(x)

again denote the solution of (52). Then it is easy to check that Ms(x) will be a supersolution
of (65), provided we choose M suJciently large. Since zero is a subsolution of (65), we
conclude existence of a positive solution. If there were more than one solution, we would
have a maximal solution, and easily obtain a contradiction, using the %rst condition in (67).

As before, we denote by �1 =%2=4 the principal eigenvalue of −u′′ on (−1; 1), with the
corresponding eigenfunction "1(x)= cos%=2x.

Theorem 5.3. Assume that conditions (64) hold, b and c are positive constants, satisfying

bc¡�1
2 (68)

and in addition both f and g satisfy (66) and (67). Then the system (64) has a unique
positive solution. Moreover, when either b or c is varied, solutions of (64) lie on continuous
global curves.
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Proof. We imbed our problem (64) into a family of problems

u′′ + f(u) + �bv=0 on (−1; 1); u(−1)= u(1)=0

v′′ + �cu + g(v)=0 on (−1; 1); v(−1)= v(1)=0
(69)

with a parameter �∈ [0; 1]. When �=0 by Lemma 5.1 there exists a unique positive solution.
Similarly to the Theorem 4.1 we show that when � is varied solutions of (69) lie on smooth
curves, i.e. at each point either the implicit function theorem or the Crandall–Rabinowitz theo-
rem applies. By a small modi%cation of the proof of the Theorem 4.2 we conclude that these
curves do not turn. Indeed, assuming otherwise, as in the Theorem 4.2 we conclude exis-
tence of two positive solutions of (69), with (U;V )¿(u; v), and then from the corresponding
equations we obtain

1
b

∫ 1

−1

(
f(u)
u

− f(U )
U

)
uU dx +

1
c

∫ 1

−1

(
g(v)
v

− g(V )
V

)
vV dx=0

which is impossible, since both f and g satisfy (67).
To conclude the existence and uniqueness of solution at �=1 it remains to show that no

solution curve of (69) can become unbounded at some �∈ (0; 1). Assume on the contrary
that |u|L∞ and hence also |v|L∞ , as can be seen from the second equation in (69), becomes
unbounded as �→ O�. (If v were to remain bounded, the same would be true for g(v), leading
to a contradiction.) Set U (�)= u=(|u|L∞ + |v|L∞) and V (�)= v=(|u|L∞ + |v|L∞). Then using the
elliptic estimates and our condition (67), we see that along some sequence of �’s converging
to O�; (U (�); V (�)) converges to some (U;V ), which is a classical solution of

U ′′ + O�bV =0 on (−1; 1); U (−1)=U (1)=0

V ′′ + O�cU =0 on (−1; 1); V (−1)=V (1)=0
(70)

Multiplying each equation in (70) by "1(x) and integrating, we obtain a contradiction by our
condition (68).

Remark. The condition (68) cannot be removed. For example, if b= c= �1 the problem
(64) has no positive solution, as can be seen by multiplying either of the equations by "1

and integrating.
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