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Abstract

We consider positive solutions of the Dirichlet problem

Δu + λ(u + sinu) = 0, x ∈ B, u = 0 for x ∈ ∂B,

where B is unit ball in Rn, λ is a positive parameter. Let λ1 denote the principal eigenvalue of the Laplacian
on B with zero boundary conditions. We show that for 1 � n � 5 the problem has infinitely many positive
solutions at λ = λ1, while for n � 6 the problem has at most finitely many solutions at any λ.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

It has been observed that complexity of the solution curve for the one-dimensional boundary
value problem

* Corresponding author.
E-mail address: kormanp@math.uc.edu (P. Korman).

1 Present address: Department of Mathematics, University of Texas-Pan American, 1201 W. University Drive Edinburg,
TX 78541-2999, USA.

2 Supported in part by the Xiao-Xiang Grant at the Hunan Normal University and by the Natural Science Foundation
of China (10471052).
0022-247X/$ – see front matter © 2005 Elsevier Inc. All rights reserved.
doi:10.1016/j.jmaa.2005.08.074



A. Galstian et al. / J. Math. Anal. Appl. 321 (2006) 576–588 577
u′′ + λf (u) = 0 for 0 < x < L, u(0) = u(L) = 0 (1)

seems to mirror that of the nonlinearity f (u). For example, if f (u) is convex, f (u) can have at
most one critical point, and correspondingly the solution curve of (1) admits at most one turn,
see, e.g., P. Korman et al. [9]. Similarly, for some functions with one inflection points one can
show that the solution curve admits either exactly one, or exactly two turns, see [9] and also
P. Korman and Y. Li [7]. In the case when f (u) changes concavity infinitely many times the
solution curve may have infinitely many turns. This case was considered in a number of papers,
see, e.g., R. Schaaf and K. Schmitt [13], D. Costa et al. [2], H. Kielhoffer and S. Maier [6],
Y. Cheng [1], S.-H. Wang [15], P. Korman and Y. Li [8].

Namely, in D. Costa et al. [2] the following resonant boundary value problem was considered:{
Lu + λ1u + g(u) = h(x) in Ω,

u = 0 on ∂Ω,
(2)

where Ω ⊂ R
n, n � 2, L is a second order self-adjoint uniformly elliptic operator, and λ1 is the

principal eigenvalue of −L on Ω with zero boundary conditions. For certain types of bounded
domains Ω it was shown that the problem has infinitely many positive solutions, bifurcating from
infinity. The condition imposed on the domain Ω turned out to be somewhat restrictive, since for
the important special case, on a unit ball,{

Δu + λ1u + sinu = 0 in |x| < 1,

u = 0 on |x| = 1,
(3)

the result applies only if n = 1,2. In case n > 2 the paper [2] reports on some numerical com-
putations, which suggest a different behavior of solutions. However, these computations were
somewhat inconclusive, since their conclusions changed with the number of mesh points. It will
follow from our results that the problem (3) has infinitely many positive solutions for 1 � n � 5,
but not for n � 6.

We consider first a little different problem{
Δu + λ(u + a sinu) = 0 in B,

u > 0 in B,

u = 0 on ∂B,

(4)

where B is unit ball in Rn, n � 1, and a is a positive constant. The advantage of working with
the problem (4) is that we get more detailed results, by using the bifurcation theory, as explained
in, e.g., [10]. In particular, all positive solutions lie on a unique smooth curve of solutions, whose
one end bifurcates from zero, and the other one from infinity. (For the problem (3) a continuum of
solutions bifurcating from infinity was considered in [2].) The question is: how many times does
this curve cross the line λ = λ1? We will show that for 1 � n � 5 the problem (4) has infinitely
many positive solutions at λ = λ1, while at any other value of λ the number of positive solutions
is at most finite. If n � 6 the problem (4) has at most finitely many positive solutions for all λ. In
case a = 1

λ1
, we see that the problem (3) has infinitely many positive solutions, when 1 � n � 5,

and finitely many when n � 6.
It is clear that our approach can handle more general oscillating nonlinearities, but for simplic-

ity we restricted to the model problem (4). Notice that by elliptic regularity any solution of the
problem (4) u ∈ C∞(B), since sinx is a C∞ function, i.e., throughout the paper we are dealing
with the classical solutions. We state our main result next.
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Theorem 1.

(i) If 1 � n � 5 then the problem (4) has infinitely many positive solutions at λ = λ1, while at
any other value λ the number of positive solutions is at most finite. Moreover, all solutions
lie on a unique smooth curve, whose one end bifurcates from zero at λ = λ1/2, and the other
one from infinity at λ = λ1.

(ii) If n � 6 then the problem (4) has only finitely many positive solutions for all λ. All solutions
lie on a unique smooth curve, whose one end bifurcates from zero at λ = λ1/2, and the other
one from infinity at λ = λ1.

For the proof we extend the approach of [8], where the one-dimensional version of this prob-
lem was considered. By the classical theorem of B. Gidas et al. [5] any solution of the problem
(4) is radially symmetric. By the theory of bifurcation from infinity, see, e.g., [16], large solutions
approach a constant multiple of ϕ1(r), the principal eigenfunction of Δ on B , with zero bound-
ary condition. This allows us to express λ − λ1 as a certain integral, see formula (14) below. We
study the oscillations of this integral about zero, by using some tools from complex analysis, see
[14], which we review in the next section.

Finally, we mention that the study of resonant problems has been initiated by the classical
paper of E.M. Landesman and A.C. Lazer [11].

2. Asymptotics of the oscillatory integrals

The following two lemmas are taken from [14]. We present their short proofs for complete-
ness.

Lemma 1. Let f (x) ∈ C2[0, a] and α �= 0. Then if μ → ∞,

Φ(μ) ≡
a∫

0

f (x)e(i/2)αμx2
dx = 1

2

√
2π

|α|μei(π/4)δ(α)f (0) + O

(
1

μ

)
, (5)

where δ(α) = sgnα.

Proof. We take α > 0 for definiteness, and we assume first that f (x) ≡ 1. After a change of
variable

√
αμx = t , we obtain

a∫
0

e(i/2)αμx2
dx = 1√

αμ

[ ∞∫
0

eit2/2 dt −
∞∫

a
√

αμ

eit2/2 dt

]
.

The first integral is a Fresnel’s integral and it is equal to 1
2eiπ/4

√
2π .

In the second integral, we denote y = a
√

αμ and integrate by parts

∞∫
eit2/2 dt =

∞∫
1

2it
d
(
eit2) = −eiy2

2yi
+ 1

2i

∞∫
eit2/2

t2
dt.
y y y
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Both terms on the right are O(1/y) = O(1/
√

μ), and so we obtain

a∫
0

e(i/2)αμx2
dx = 1

2
eiπ/4

√
2π

αμ
+ O

(
1

μ

)
. (6)

In case α < 0, we make a change of variables −√|α|μx = t , use the Fresnel’s integral∫ ∞
0 e−it2/2 dt = (1/2)e−iπ/4

√
2π , and arrive at a formula similar to (6), with a minus in the

exponent. Combining, we have for any α

a∫
0

e(i/2)αμx2
dx = 1

2
ei π

4 δ(α)

√
2π

αμ
+ O

(
1

μ

)
.

For an arbitrary function f (x), we write

f (x) = f (0) + [
f (x) − f (0)

] = f (0) + xh(x),

where h(x) = f (x)−f (0)
x

∈ C1[0, a]. Then

Φ(μ) = 1

2
f (0)

√
2π

αμ
ei π

4 δ(α) +
a∫

0

e(i/2)αμx2
xh(x)dx + O

(
1

μ

)
. (7)

Integrating by parts, similarly to the above, it is easy to see that
a∫

0

e(i/2)αμx2
xh(x)dx = O

(
1

μ

)
(μ → +∞). (8)

(Here is an intuitive derivation of (8). We have fast oscillations in the integral, except for a small
interval near x = 0. The length of this interval is O(1/

√
μ), and the same asymptotic formula

holds for xh(x).) Combining (8) with (7), we obtain (5). �
Lemma 2. Assume that the C2[0,1] functions f (x) and g(x) > 0 satisfy

g′(x) < 0 for all x ∈ (0,1] and g′(0) = 0, g′′(0) < 0.

Then as μ → ∞,

1∫
0

f (x)eiμg(x) dx = ei(μg(0)−π/4)

√
π

μ|g′′(0)|f (0) + O

(
1

μ

)
.

Proof. On the [0,1] we change the variables x → t , x = ψ(t), so that

g(x) − g(0) = −t2. (9)

Since g(x) is a decreasing function, g−1 exists. Thus

ψ(t) = g−1(g(0) − t2).
Note, that

if x = 0, then t = 0; if x = 1, then t = √
g(0) − g(1) = b > 0.
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Therefore, after the change of variables we obtain

I =
1∫

0

f (x)eiμg(x) dx = eiμg(0)

b∫
0

f
(
ψ(t)

)
ψ ′(t)e−iμt2

dt.

To apply Lemma 1, we need to calculate ψ ′(0). Differentiating (9), we have

g′(ψ(t)
)
ψ ′(t) = −2t.

We cannot calculate ψ ′(0) from here, since g′(0) = 0. So we differentiate this formula again and
set t = 0, obtaining

ψ ′(0) =
√

− 2

g′′(0)
.

Applying Lemma 1 to the integral I , we conclude the proof. �
Corollary 1. Under the conditions of the Lemma 2, as μ → ∞ we have

1∫
0

f (x)eiμg(x) dx = O

(
1√
μ

)
.

3. Reduction to the oscillatory integrals

Without restriction of generality we assume that a = 1 in (4), for the rest of the paper. Our first
lemma shows that positive solutions of (4) lie in a bounded in λ strip. A similar result for n = 1
case was proved in [8]. Recall, that we denote by λ1 the principal eigenfunction of −Δ on the
unit ball B , with zero boundary conditions, and by ϕ1 = ϕ1(r) the corresponding eigenfunction,
normalized so that ϕ1(0) = 1.

Lemma 3. If the problem (4) has a positive solution, then

λ1

2
< λ <

π

π − 1
λ1. (10)

Proof. Multiplying both sides of the equation in (4) by u and integrating, we obtain∫
B

uΔudx + λ

∫
B

(
u2 + u sinu

)
dx = 0.

Since u2 + u sinu � 2u2, then after integration by parts and using the Poincaré inequality, we
have

2λ

∫
B

u2 dx > λ

∫
B

(
u2 + u sinu

)
dx =

∫
B

|∇u|2 dx � λ1

∫
B

u2 dx,

from which the left-hand side of the inequality (10) follows.
Multiplying the equation in (4) by ϕ1 and integrating, we obtain∫ [

λ(u + sinu) − λ1u
]
ϕ1 dx = 0. (11)
B
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Denote g(u) = λ−λ1
λ

u+ sinu. The second part of the inequality (10) we will prove by contra-
diction. Assume on the contrary that at some solution

λ � π

π − 1
λ1 > λ1. (12)

From (12) we obtain immediately that g(u) > 0 on (0,π). Note that g(π) = λ−λ1
λ

π . It is clear,
that if g(π) � 1, then g(u) is positive for all u > 0. But from (12) we have

λ(π − 1) � πλ1 �⇒ π(λ − λ1) � λ �⇒ π(λ − λ1)

λ
� 1.

Thus g(u) is positive. Since ϕ1 > 0, we obtain contradiction in (11). Thus λ < π
π−1λ1. �

It is well known that there is a curve of positive solutions of (4) bifurcating off the trivial one
(to the right) at λ1/2, see [3]. Similarly, there is a curve of positive solutions bifurcating from
infinity at λ = λ1, see, e.g., in E. Zeidler [16, p. 673]. Let us consider the branch bifurcating
from infinity. This branch extends globally, since at each point the implicit function theorem or a
bifurcation theorem of M.G. Crandall and P.H. Rabinowitz [4] applies, see [9,12] for details. By
Lemma 3 this branch is constrained to a strip λ1

2 < λ < π
π−1λ1, so it has to go to zero at λ1/2. By

the uniqueness of the solution, bifurcating from zero, this branch has to link up with the lower
one. We thus obtain a solution curve connecting (λ1/2,0) to (λ1,∞). It is known that this curve
exhausts the set of all possible solutions of (4), and it may have only finitely many turns, while
u(0) belongs to a bounded set, see [9,12] for details. It follows that the number of solutions at
any λ �= λ1 is at most finite.

Since we are interested in the behavior of solution u(x) at infinity in L∞, it is appropriate to
use the scaling

u = μv, so that |v|L∞ ≡ 1, while μ → ∞.

Then (4) becomes

Δv + λv + λ

μ
sin(μv) = 0 in B, v = 0 on ∂B. (13)

Multiplying (13) by ϕ1 and integrating by parts, we obtain

λ − λ1 = − λ

μ

∫
B

sin(μv)ϕ1 dx∫
B

vϕ1 dx
. (14)

By the classical theorem of B. Gidas et al. [5] any solution of the problem (4) is radially
symmetric. Therefore, the problem (13) becomes:

v′′ + n − 1

r
v′ + λv + λ

μ
sin(μv) = 0, 0 < r < 1, v′(0) = v(1) = 0. (15)

By the theory of bifurcation from infinity, v → ϕ1 in the norm C2, as μ → ∞, see, e.g., [16], or
Lemma 4 below. Hence, the integral

∫
B

vϕ1 dx is positive for large μ. So, the issue is whether
the integral

∫
B

sin(μv)ϕ1 dx changes sign infinitely many or finitely many times, as μ → ∞.
Correspondingly, the solution curve will cross the line λ = λ1 either infinitely many or finitely
many times, as follows from (14).

We have∫
sin(μv)ϕ1 dx = ωn

1∫
ϕ1(r) sin

(
μv(r)

)
rn−1 dr = ωn Im

1∫
ϕ1(r)r

n−1eiμv(r) dr,
B 0 0
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where ωn is the area of the unit sphere in R
n. We shall study the integral

I ≡ Im

1∫
0

ϕ1(r)r
n−1eiμv(r) dr. (16)

Depending on the dimension, we will need up to three integrations by parts in (16). With

f1(r) ≡ ϕ1(r)r
n−1

v′(r) , we have

1∫
0

ϕ1(r)r
n−1eiμv(r) dr = 1

iμ

1∫
0

ϕ1(r)r
n−1

v′ d
(
eiμv(r)

)

= 1

iμ

1∫
0

f1(r) d
(
eiμv(r)

)

= 1

iμ
f1(r)e

iμv(r)

∣∣∣∣
1

0
− 1

iμ

1∫
0

f ′
1(r)e

iμv(r) dr. (17)

Writing eiμv(r) dr = 1
iμv′(r) d(eiμv(r)) again and denoting f2 = f ′

1/v
′, we have

1∫
0

ϕ1(r)r
n−1eiμv(r) dr = 1

iμ
f1(r)e

iμv(r)

∣∣∣∣
1

0
+ 1

μ2
f2(r)e

iμv(r)

∣∣∣∣
1

0

− 1

μ2

1∫
0

f ′
2(r)e

iμv(r) dr. (18)

With f3 = f ′
2/v

′ we integrate by parts again, obtaining

1∫
0

ϕ1(r)r
n−1eiμv(r) dr = 1

iμ
f1(r)e

iμv(r)

∣∣∣∣
1

0
+ 1

μ2
f2(r)e

iμv(r)

∣∣∣∣
1

0

− 1

iμ3
f3(r)e

iμv(r)

∣∣∣∣
1

0
+ 1

iμ3

1∫
0

f ′
3(r)e

iμv(r) dr. (19)

Lemma 4. Let v(r) be a positive solution of the problem (13). Then as μ → ∞, v(r) → ϕ1(r)

in C2[0,1].

Proof. If we write v(r) = αϕ1(r) + w(r), then as μ → ∞ we have α → 1 and w(r) → 0,
uniformly in B . We have

−Δw = λw + (λ − λ1)αϕ1 + λ

μ
sin(μαϕ1 + μw) in B, w = 0 on ∂B.

Since the right-hand side tends to zero in Lp for any p > 1, as μ → ∞, we conclude that w → 0
in W 2,p(B), and hence in C1,β(B̄) for any β ∈ (0,1). Hence v(r) → ϕ1(r) in C1[0,1]. We then
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see from the corresponding equations that v′′(r) → ϕ′′
1 (r). This is straightforward for r ∈ (0,1],

while at r = 0 the corresponding equations become

nv′′(0) + λv(0) + λ

μ
sin

(
μv(0)

) = 0,

and

nϕ′′
1 (0) + λ1ϕ1(0) = 0.

Since λ → λ1 and v(0) = ϕ1(0) = 1, we conclude that v′′(0) → ϕ′′
1 (0), as μ → ∞. �

Lemma 5. Assume μ is large.

(i) For n � 2 the function f1(r) is a C∞ function.
(ii) For n � 4 the function f2(r) is a C∞ function.

(iii) For n � 6 the function f3(r) is a C∞ function.

Proof. We express from (15)

(n − 1)
v′

r
= −v′′ − λv − λ

μ
sin(μv).

Since v ∈ C∞, then v′/r is a C∞ function. This function is negative for r �= 0, while at r = 0 we
have

lim
r→0

v′

r
= v′′(0) � ϕ′′

1 (0) < 0.

Hence, v′/r is in C∞ and it never vanishes. Now it is easy to prove the lemma. We have

f1(r) = rn−1ϕ1(r)

v′(r)
= rn−2ϕ1(r)

v′(r)/r
. (20)

For n � 2 the function f1(r) is a quotient of two C∞ functions, and the function in the denomi-
nator is never equal to zero. Thus f1(r) is a C∞ function.

Observe that from (20), we can write f1(r) = rn−2f̃1(r), where f̃1(r) ∈ C∞. Therefore,

f2(r) = f ′
1(r)

v′(r)
= (rn−2f̃1(r))

′

v′(r)
= (n − 2)rn−4f̃1(r) + rn−3f̃ ′

1(r)

v′(r)/r
. (21)

Thus for n � 4, f2(r) is a C∞ function.
From (21), f2(r) = rn−4f̃2(r), where f̃2(r) ∈ C∞. We then have

f3(r) = f ′
2(r)

v′(r)
= (rn−4f̃2(r))

′

v′(r)
= (n − 4)rn−6f̃2(r) + rn−5f̃ ′

2(r)

v′(r)/r
.

Thus for n � 6, f3(r) is a C∞ function. �
4. Proof of Theorem 1

Using Eq. (15) to express v′′(r) through the lower order terms, we express

f2(r) = rn−1f (v(r))ϕ1(r) + 2(n − 1)rn−2ϕ1(r)v
′(r) + rn−1v′(r)ϕ′

1(r)

ϕ′3(r)
, (22)
1
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where we denote f (v(r)) = λv(r) + λ
μ

sin(μv(r)). Similarly, expressing v′′(r) from (15), and
ϕ′′(r) from the corresponding equation

f ′
2(r) = 3rn−1f 2(v(r))ϕ1(r) + 8(n − 1)rn−2f (v(r))v′(r)ϕ1(r)

v′4(r)

+ rn−3(8 − 14n + 6n2 − r2λ1 + r2f ′(v(r)))ϕ1(r)v
′2(r) + 4(n − 1)rn−2ϕ′

1(r)v
′2(r)

v′4(r)
.

(23)

The case of n = 1 has already been covered in [8], so we start with n = 2.

(i) n = 2. We use (17). Here f1(r) = rϕ1(r)
v′(r) . Observe that f1(1) = 0, f1(0) = ϕ1(0)

v′′(0)
� ϕ1(0)

ϕ′′
1 (0)

< 0

for large μ. By Lemma 5, f1 ∈ C∞, and then using Corollary 1 of Lemma 2 we obtain

I = Im
1

iμ

[
−f1(0)eiμv(0) −

1∫
0

f ′
1(r)e

iμv(r) dr

]

= f1(0)

μ
cosμv(0) + O

(
1

μ3/2

)
as μ → ∞.

It follows that I changes sign infinitely many times as μ → ∞. (Here, of course, v(0) = 1.)

(ii) n = 3. We use (17) again. Here f1(r) = r2ϕ1(r)
v′(r) . This time we have f1(0) = f1(1) = 0,

while by the L’Hopital rule f ′
1(0) �= 0. Hence by Lemma 2

I = Im

[
i

μ

1∫
0

f ′
1(r)e

iμv(r) dr

]
= Re

[
c1

μ3/2
f ′

1(0)ei(μv(0)−π/4)

]
+ O

(
1

μ2

)
, (24)

where c1 =
√

π
|v′′(0)| �

√
π

|ϕ′′
1 (0)| . As above, we see that I changes sign infinitely many times as

μ → ∞.

(iii) n = 4. Here f1(r) = r3ϕ1(r)
v′(r) , and By Lemma 5, f2 ∈ C∞. We have again f1(0) =

f1(1) = 0, but now f ′
1(0) = 0, and hence the principal term in (24) is zero. We have to inte-

grate by parts twice, i.e., we use (18)

I = Im

[
1

μ2
f2(r)e

iμv(r)

∣∣∣∣
1

0
− 1

μ2

1∫
0

f ′
2(r)e

iμv(r) dr

]
.

We have v′(r) ∼ c2r near r = 0 for some constant c2. (c2 = v′′(0) � ϕ′′
1 (0) = −λ1/4; here and

later on we denote by ci various non-zero constants.) Similarly, f1 ∼ c3r
2 and f ′

1(r) ∼ c4r in the

neighborhood of zero, therefore f2(0) = limr→0
f ′

1(r)

v′(r) �= 0. (Here, and later on, we use asymptotic
formulas only as a heuristic tool, while we use (22) and (23) for rigorous justifications. Indeed,
using the L’Hopital’s rule, we see from (22) that f2(0) �= 0.) Applying Corollary 1 of Lemma 2,
we obtain (since Im[(1/μ2)f2(1)] = 0)
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I = Im
1

μ2

[
f2(1) − f2(0)eiμv(0) −

1∫
0

f ′
2(r)e

iμv(r) dr

]

= − 1

μ2
f2(0) sin

(
μv(0)

) + O

(
1

μ5/2

)
as μ → ∞.

Again, I changes sign infinitely many times as μ → ∞.

(iv) n = 5. Again we use (18). Here f1(r) = r4ϕ1(r)
v′(r) , and f2(r) = f ′

1(r)

v′(r) . Then f1 ∼ c5r
3 near

zero, therefore f2(0) = 0, but f ′
2(0) �= 0. (We have used the L’Hopital’s rule in (23) together with

the observation that v′′(0) = − 1
5f (v(0)).) Thus, using Lemma 2, we obtain

I = − 1

μ2
Im

1∫
0

f ′
2(r)e

iμv(r) dr = − c6

μ5/2
f ′

2(0) sin

(
μv(0) − π

4

)
+ O

(
1

μ3

)

as μ → ∞.

Thus, for 2 � n � 5 the integral

I =
∫
B

sin(μv)ϕ1 dx

changes sign infinitely many times as μ → ∞, so does λ − λ1 as well. The first part of the
theorem is proved.

(v) n = 6. Here f1(r) = r5ϕ1(r)
v′(r) . We have f1(0) = f1(1) = 0, as before, and by (22) and (23),

f2(0) = f ′
2(0) = 0. We need to integrate by parts three times, i.e., we use (19). Since

Im

[
1

μ2
f2(1)

]
= 0,

then for sufficiently large μ we have

I = Im

[
− 1

iμ3
f3(r)e

iμv(r)

∣∣∣∣
1

0
+ 1

iμ3

1∫
0

f ′
3(r)e

iμv(r) dr

]

= 1

μ3

[
f3(1) − Im

(
if3(0)eiμv(0)

)] + O

(
1

μ7/2

)

= 1

μ3

[
f3(1) − f3(0) cos

(
μv(0)

)] + O

(
1

μ7/2

)
.

Whether this quantity has infinitely many zeros depends on the relative sizes of |f3(1)| and

|f3(0)|. By Lemma 5, f3 ∈ C∞, and since f3 = f ′
2

v′ , we have in our case n = 6 (in view of (23))

f3(r) = 1

ϕ′5
1

[
3r5f 2(v(r)

)
ϕ1(r) + 40r4f

(
v(r)

)
ϕ1(r)ϕ

′
1(r) + 140r3ϕ1(r)v

′2(r)

− r5λ1ϕ1(r)v
′2(r) + r5ϕ1(r)f

′(v(r)
)
v′2(r) + 3r5f

(
v(r)

)
ϕ′

1(r)v
′(r)

+ 20r4ϕ′
1(r)v

′(r)2].
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At r = 1 we have

f3(1) = 20ϕ′
1(1)

v′3(1)
∼ 20

(ϕ′
1(1))2

, as μ → ∞.

Using the L’Hopital’s rule and the relation f (v(0)) = −6v′′(0), we obtain

f3(0) = 8ϕ1(0)

(v′′(0))3
∼ 8ϕ1(0)

(ϕ′′
1 (0))3

, as μ → ∞.

Since ϕ′′
1 (0) = −λ1

6 ϕ1(0), we finally express for large μ

f3(0) ∼ − 8 · 63

λ3
1ϕ

2
1(0)

= −1728

λ3
1

.

We use the representation of the principal eigenfunction of the Laplace operator by means of the
Bessel functions, which is easily derived,

ϕ1(r) = cnr
− n−2

2 Jn−2
2

(b1r), (25)

where Jn−2
2

(x) is the Bessel function of order n−2
2 , b1 is the first zero of Jn−2

2
(x), and cn is a

suitable constant, chosen so that ϕ1(0) = 1. One evaluates (using Mathematica)

f3(1) ≈ 71.4, while f3(0) ≈ −0.09.

Hence I > 0 for large μ. The solution curve crosses the line λ = λ1 only finitely many times.

(vi) n � 7. Here f1(r) = rn−1ϕ1(r)
v′(r) . As before, f1(0) = f1(1) = f2(0) = f ′

2(0) = 0. So again

the first two terms in (19) are zero. (Observe that Im[ 1
μ2 f2(r)e

iμv|10] = 0.)
In view of (23), f3(0) = 0, while for large μ

f3(1) = 4(n − 1)ϕ′
1(1)

(v′
1(1))3

∼ 4(n − 1)

(ϕ′
1(1))2

> 0.

Hence from (19), we obtain

I ∼ 1

μ3

4(n − 1)

(ϕ′
1(1))2

> 0 for large μ.

Thus λ − λ1 does not change sign for large μ, for all n � 7, i.e., the solution curve crosses the
line λ = λ1 only finitely many times (since I > 0, the solution curve stays to the left of λ = λ1
as μ → ∞, in view of (14)). �
Remark. We have evaluated the integral I = I (μ),

I (μ) =
1∫

0

sin
(
μϕ1(r)

)
ϕ1(r)r

n−1 dr,

by using the formula (25) and Mathematica software. The results for n = 2 and n = 3 clearly
showed oscillations of I (μ), and these oscillations are evident even for relatively small μ, see
Fig. 1. Here we scaled ϕ1, so that ϕ1(0) = 1.

For n = 4 we also see oscillations around zero, but one would have to go considerably further
in μ to get a symmetric picture, as in Fig. 1. For n = 5 one has to go still further in μ for
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Fig. 1. n = 2, n = 3.

Fig. 2. n = 4, n = 5.

Fig. 3. n = 5, in case of larger μ.

oscillations to cross zero. This did not yet happen in Fig. 2. In Fig. 2 we scaled ϕ1, so that
ϕ1(0) = 2. Doubling ϕ1 is of course almost the same as multiplying μ by 2.

The reason we did not increase μ in Fig. 2 is that then we ran into highly oscillatory integrals,
which Mathematica cannot handle well. In Fig. 3 we show a typical picture for larger μ (here
again ϕ1(0) = 2).
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