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1. INTRODUCTION 

We study existence of solutions for a fully nonlinear noncoercive elliptic 
problem 

u.v - Fun = P(X, z, u, KJ, y= 1, 

f(4 Y, z, 4 m D2u) = gb, Y, z), O<y<l, (1.1) 

u = 0, y = 0. 

Here the functionsf, g, and p are assumed to be 27~ periodic in x and z, F is 
a positive constant, and we are looking for a solution U(X, y z), which is 
also 2~ periodic in x and z. 

The boundary condition at y = 1 (with F< 0) arises in the three- 
dimensional water wave theory (see M. Shinbrot [lo]), and also in the 
engineering problem of “hydraulic fracturing” of oil wells, see J. R. Canon 
and G. H. Meyer [2,7]. Mathematically, the model problem (1) is of 
interest, since it represents one of the simplest noncoercive elliptic problems 
(i.e., the Lopatinski-Shapiro condition fails, see [4]) for which there is no 
general theory. 

The field of fully nonlinear elliptic equations has recently attracted a 
great deal of attention (see, e.g., a recent paper of G. M. Lieberman and 
N. S. Trudinger [6] and the references therein to other work of the same 
authors as well as that of L. Evans, N. Krylov, P. L. Lions, and others). It 
appears that the case of second order boundary operators is not well 
studied, particularly for noncoercive problems. 

We present an existence result for (l), which extends the one in [3], 
where we had considered the equation Au =f(x, y, z, U, Du) with the same 
boundary conditions. The main dilliculty for the fully nonlinear case lies in 
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the derivation of suitable a priori bounds, which had to be performed in a 
way completely different from [3]. 

2. NOTATION AND THE PRELIMINARY RESULTS 

We consider functions of three variables x, y, z which are 271 periodic in 
x,z and O<y<l. By Vwe denote the domain O<x,z<271, O<y<l; its 
boundary we denote by LJL’ and the top (y = 1) part of the boundary by V,. 

We shall also denote 

.if=JoZRjol jfn f(x, Y, z) dx 4 & 
c,/= J:' Jo*' j-(x, 1, z) dx dz. 

It is often convenient to denote x1 =x, x2 =y, x3 = z, uj = &/axi, 
~~=a*~~a~,a~,. 

By 11. Ilrn we denote the norm in the Sobolev space H”( I’), and by I).)lm 
the one in H”( I-‘,). We shall also need the norms 

IflAJ= c Im-IL~CV,~ N = integer > 0. 
III <iv 

All irrelevant positive constants independent of unknown functions we 
denote by c; DU E Vu, D2u the Hessian of U. 

We shall need the following relations between our norms (see [4]). 

LEMMA 2.1. For any integer m 2 0 and any E > 0 one has 

0) PII,< II~llm+l~ 

(ii) l141m G & IIullm+l + c(E) Ibllo, 

(iii) IIVllmGE l141m+1 +4&I Ibllo, 

(iv) Mm d E lluyllm + 4~) I1410. 

The following lemma is taken from [S]. 

LEMMA 2.2. Let 4(x, y, z, u) be defined in Vx {u= (u,, . . . . II,) in 
luli = CT! 1 uf < c’}. Assume that q5 possesses continuous deriuatiues up to 
order m which are bounded by c. Then we haue 

provided that u E H” and lu10 d c. (We denote Ilull~ = Cy=, lluill$.) 
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We define a linear normed space G” as a subset of functions in H”(V) 
for which u(x, 0, z) = 0 and 

lllulll = ll4lm + Il~xllm- 1 < a. 

LEMMA 2.3. The space G” with the norm 111. l(Im is a Banach space, 
provided m 3 3. 

ProoJ: To prove completeness, let {u’} be a Cauchy sequence in G”, 
i.e., /Iu’--~~~~+IIu:-u,PI~~~,~O as r,p-+co. It follows that u’--,u in 
H”(V) and u> -+ v in Hm-‘( V,) for some UE H”( V) and v E H”-‘( V,). It 
remains to show that v = u,. Indeed, both functions are continuous and 

~ - 
II~--.~llcl6 lb--u:Il,+ lI~:--u,II, --+o as r+oo. 

3. A PRIORI ESTIMATES AND EXISTENCE RESULTS 

We now present the existence result for fully nonlinear equations. In the 
following lemmas we first derive a priori estimates and discuss the 
solvability for the linearized problem. Then we use the contractive mapping 
principle to prove existence for the nonlinear problem. Throughout this 
section summation in i, j = 1, 2, 3 is implied. 

LEMMA 3.1. Consider the problem 

uy - Fu,, - rlu,--2u=g, y= 1, 

Lu - aijuti + a,ui + au =f, O<y<l, (3.1) 

u = 0, y = 0. 

Assume that a,(x, y, z), a,(x, y, z), a(x, y, z), ri(x, z) are C”(V), 
adO,r,dO, F=const>O, and a,i<i<j3c, l<l2 for all FERN, 520, co>0 
(i, j= 1, 2, 3). Then 

l~lo~C(lflO+ Islo). (3.2) 

Proof Let v = fu + Iflo v+~(Y) + lgloti2(y), where +,(Y) = 
b(l -e-j+ - Aye-“), ij2(y) = d(1 - eePY), with constants 6, d, I, p to be 
determined. (Note that $, , 1//2 3 0.) Compute 

Lv=+f+lfloLIl/1+18loL~2, 
LII/,= -b~e~“-V(a221-a2+a2e”‘-“~‘))+all/,, 

LG2 = -dpe-VY(a,,p - a*) + a$2. 
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Since uZ2 2 c0 > 0, we can fix 1 so large that a,,1 - a2 + uzeACv- ‘) > 0, 
and then take b large, so that L$, < - 1. Also we can pick ,u so large that 
Le2 < 0. Then 

Lvd ,f- lflo<O, O<y<l. (3.3) 

At the boundaries y = 0 and y = 1 we have 

v=o at y =O, (3.4) 

v.v - Fv.r, -r,vx-rzv= fg+(gl,dpCUy 

-r2 Iflol(/l(l)-r2 Iglo$2(1)~0 at y= 1, (3.5) 

provided d is taken sufficiently large. 
From (3.3) to (3.5) it follows that 020. (By (3.3) v cannot assume a 

negative minimum except possibly on the boundary of the strip 0 < y < 1. 
The point of negative minimum P cannot lie on the y = 1 part of the boun- 
dary, since then v,(P) < 0 by Hopfs lemma, and v,,(P) 20, which con- 
tradicts (3.5). Hence the minimum of v is zero.) Then IuJ,, < b IfI,, + d IgJ,. 

Remark 3.1. The same result holds for the problem (3.13) below. 

LEMMA 3.2. In addition to the conditions of Lemma 3.1 (without the 
condition aGO) awm that lq12, lrj12, lla,ill,, I141m, IMI,,,, lIrill,+I dc, 
with integer m 2 0 (i, j = 1, 2, 3). Then 

II4 m+2 + Il~.Al,+ 1 ~c(Ilfllm+ Ilgllm+l+ Il40)* (3.6) 

Proof To simplify the presentation we shall assume that ai = a = r2 = 0, 
F= 1 (i= 1, 2, 3). 

Step 1. Multiply the equation in (3.1) by u and consider two cases. 

a., # a22, e.g., 
(Q,, 2j&i)tZ,). 

i # 2. Then j ayuuq = -f apiuj - J a,iiuuj 

(ii) f a22q.v = -J a22$ - 1 42,y9 + St a2,uu,; St a22uuy = 

St a224h + rlu, + g) = -J, a22uZ + f 1, a22,d2 - t It (Wx)(a22r,)u2 

+ St a22 w. 

Combining both cases (i) and (ii), we get 

-it, Jagui”jp i 

i,j=l 

[aij.iuuj-J a,,u:+k/ a22,xxu2 
* I 

1 a -- 
s -(a22r,)u2+~,a2,ug=jfu. 2 ,ax 
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By our assumptions and Lemma 2.1 we easily conclude 

(3.7) 

Step 2. Multiply the equation in (3.1) by u,, and consider two cases. 

(i) a,i#a2,, e.g., i#2. Then j u,,atiuii = - j uxxiaijuj - s u,,aii,iuj 

= j aiju,i”xj + S uxi4j.x~, - J u,,ao.iuj. 

(ii) j u.r.ra22u, = - j uxxya22uy - j a22,yuxxuy + St Q22UxxUy; 

- j ux.d22u, = f a22uL 

+ g) = jt ~224, 

+ j a22,xu,uy; j a22u,,uy = jt a22uxx(uxx + ~IU, 

- t jt (Wx)(a22hi4 - jr a22,dbg - j, a22uxgx. 

Combining (i) and (ii) we get 

+s 
1 a 

a224,-- 1 -(a2,rlb+ 2 ,ax s 
a22,xu,g- 

i 
a22uxgx= fu,, 

f , f s 

from which we easily conclude, using (3.7), 

5 IVux12+[ ~z,,~~(llgll:+ Ilfll~+ nGi,. (3.8) 
I 

Similarly (multiplying the equation by u,, and using Lemma 2.l(iv)), we 
get 

J IVuz12+J-, u2,,~c(Ilgll:+ IlflG+ Ibll3. (3.9) 

(The only significant difference is in the treatment of term 

I a22uzzux.~ = - 
f 

a22,xvzz - 
f r i 

a22u,u,,, 
, 

= s a22 d, u, - t 
, ’ i a22,d4 + 

* f 
a22 UL 

I 

From Eq. (3.1) we express u,= -(av/a22)uii+f/a22 which allows us to 
estimate J u&. Combining this with (3.8) and (3.9) we conclude (3.6) with 
m = 0. 
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Step 3. Differentiate (3.1) in x or z, denoting the derivative by a prime: 

u.; - u:, - r,u[r=g’+r;ux, y= 1, 

a,ub=f’-a;uii, O<y<l, (3.10) 

u’=O, y = 0. 

Applying the estimate (3.6) with m = 0, we get 

Il4,+mL ~C(llflll + Ilgll*+ Il40) (3.11) 

(since lla~uvllo~ kql I I1412r II T;u,((, <c (r112 ((~~(1 r). From (3.1) we express 
u yy~ = (a/@)(f/azz) - (a/l$)((a,/a,,)uii), which together with (3.11) gives 
lluYYJ,, < c( llfll 1 + /IgIl, + IlujlO). Combining this with (3.11), we conclude 
the estimate (3.6) with m = 1. 

Step 4. We proceed with an induction proof, assuming that (3.6) holds 
up to an index m B 1. We use that llfgllm < Ilfll, II gll,,, for m > n/2, where n 
is dimension of the space (n = 3 for V, n = 2 for V,). Applying (3.6) to 
(3.10) we estimate for m 2 2, 

llu’ll m+2+ II&Alm+l~~(Ilf’ll,+ lla;ll, IIuiillm 
I- + Ilr llm+l ll~.xllm+l + Ilg’llm+I)d~Wll,+I+ Ilgllm+2+ Il4d 

(3.12) 
For m = 1 the same inequality (3.12) is true, since 

lla&lll G lagI I1413~cWI~ + llgl12+ Ilulld 

From (3.1) we express D, m+3u=D;+‘(f/a22)-D~+1((aij/a22)uij). Then 
using (3.12) and Lemma 2.2 (note that all derivatives of 4 = l/u are 
bounded for u 2 c,,) we estimate 

Gc lla2211m+l Ilfllm+l +c IIa,ill,+, lla2211m+l II=vllm+l 

~cwllm+I + Ilgllm+a+ Il40). 

Combining this with (3.12), we obtain the estiate (3.6) for m + 1, com- 
pleting the proof. 

LEMMA 3.3. In addition to the conditions of Lemma 3.2 assume that 
ad 0, m 2 2, then 

Ilull m+2+ lI%cII,~C(lIfIIm+ ll8llm+1)~ 
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Proof By Lemmas 3.1, 3.2, and the Sobolev’s imbedding theorem, we 
conclude I140~c 140~c(lfl~+ lgld6cW,+ IlgllA 

LEMMA 3.4. In addition to the conditions of Lemma 3.3 assume that 
f E H*(V), g E H3( V,). Then the problem (3.1) has a unique solution of 
class G“. 

Proof For 0 d t 6 1 consider the problem 

uy - Fu,.x - tr,u,-tr,u=g, y=l, 

taiiuii + (1 - t) Au + ta,u, + tau =f, O<y<l, (3.13) 

u = 0, y = 0. 

For t = 0 the problem (3.13) has a solution of class G4, as can be seen by 
simple Fourier analysis. We show next that the set of t for which the 
problem (3.13) is solvable is both open and closed in [0, 11, which will 
imply existence for (3.1) by setting t = 1 (uniqueness follows by 
Remark 3.1). The openness part easily follows by the contractive mapping 
principle. Assume now that for a sequence ( t,} with t, + to, problem (3.13) 
has a solution u, E G4. By Lemma 3.3 ll~~ll 4 6 c, and hence we can extract a 
subsequence which converges in H3( V) to some u E H3( V). Passing to the 
limit in (3.13) (with t = t,, u= u,), we see that u is a solution of (3.13) 
corresponding to t = to. Moreover, u E G4 by Lemma 3.3. 

THEOREM 3.1. For the problem (1.1) assume that F> 0, f, q, and p are 2n 
periodic in x and z, and the following conditions. 

(i) In Vx{lul,<r} we have f(x, y,z,O,O,O)-0, fEC3(VxR3), 
fU(x, y, z, 0, 0,O) < 0, and fu,,ritj > co ItI* for all t E R3, 5 # 0, for some 
constants r, co > 0. 

(ii) In V, x { IuI 1 < ro} we have p(x, z, 0,O) =O, p E C”( V, x R*), 
pU(x, z, 0,O) < 0 for some constant r. > 0. 

Then for 11q11 2 sufficiently small the problem (1.1) has a solution of class 
C’(P). 

Proof Define a map T: G4 + G4 by solving (v = Tu) 

vy - Fv,, - rlvX-r2v=p(x, z, 2.4, u,)-r,uX-r2u, y= 1, 

aiivU + aivi + av 

= q-f (x, y, z, u, Du, D2u) + aiiuii + aiui + au, O<y<l, 

v = 0, y = 0, 
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where rl = py,(x, z, 0, O), r2 = put-x, z, 0, O), au =f&(x, y, z, 0, 0, 01, ai = 
&(x, y, z, 0, 0, 0), a=f,(x, y, z, 0, 0,O). By Lemmas 3.3, 3.4, and 2.2 the 
map T is well defined. It is straightforward to show that T is a contraction 
on sufficiently small balls around the origin in G4, provided 1fq/12 is small 
enough (see [3] for a similar argument). 

Remark 3.2. Under the additional assumption that f, 60 and pu < 0 
for ]ulz small, it is easy to prove uniqueness of the sufficiently small 
solution. 

Remark 3.3. Theorem 3.1 implies existence of a solution for the 
problem Lu = aiiuu + aiui + au = sf(x, y, z, u, Du, D’u), 0 < y < 1, with the 
boundary conditions of (1.1 ), provided E is sulkiently small (with au, ai, a 
satisfying conditions of Lemma 3.3, f that of Theorem 3.1, f, > 0). Indeed, 
writing g(x, y, z, u, Du, D2u) E Lu - &f+ &j-(x, y, z, 0, 0, 0) = tf(x, y, z, 
0, 0, 0), we see that g(x, y, z, 0, 0,O) = 0, and Theorem 3.1 applies. 

ACKNOWLEDGMENTS 

I thank L. Nirenberg for posing the problem and for his useful discussions, and June Ander- 
son for her efficient typing. 

REFERENCES 

1. M. S. AGRONOVICH, Singular elliptic integro-differential operators, Uspekhi Mat. Nauk 20 
(1965) l-120. [Russian] 

2. J. R. CANNON AND G. H. MEYER, On diffusion in a fractured medium, SIAM J. Appl. 
Math. 20 (1971), 434+l8. 

3. P. KORMAN, Existence of periodic solutions for a class of nonlinear problems, Nonlinear 
Anal. TMA 7 (1983), 873-879. 

4. P. KORMAN, Existence of solutions for a class of nonlinear non-coercive problems, Comm. 
Partial DSfferential Equations 8 (1983), 819-846. 

5. P. KORMAN, Existence of solutions for a class of quasilinear non-coercive problems, Non- 
linear Anal., TMA 10 (1986), 1471-1475. 

6. G. M. LIEBERMAN AND N. S. TRUDINGER, Nonlinear oblique boundary value problems for 
nonlinear elliptic equations, Trans. Amer. Math. Sot. 295 (1986), 509-546. 

7. G. H. MEYER, Personal communication. 
8. J. MOSER, A rapidly convergent iteration method and non-linear partial differential 

equations I, Ann. Scuola Norm. Sup. Piss Cl. Sci. 20 (1966), 265-315. 
9. L. NIRENBERG, Topics in nonlinear functional analysis, “Courant Institute Lecture Notes,” 

1974. 
10. M. SHINBROT, Water waves over periodic bottoms in three dimensions, J. Inst. Math. 

Appl. 25 (1980), 367-385. 


