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Abstract

Using continuation methods and bifurcation theory, we study the
exact multiplicity of periodic solutions, and the global solution struc-
ture, for periodic problems of first order. The results are applied to
a population model with fishing, and to the existence and stability of
limit cycles. We also describe in detail our numerical computations of
curves of periodic solutions, and of limit cycles.
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1 Introduction
We study periodic first order equations
(1.1) W+ gt u) = (1)

Here g(t + T,u) = g(t,u), and f(t +T) = f(t) for all t € R, and we are
searching for T-periodic solutions, u(t + T") = wu(t) for all ¢. Similarly to [5]
and [6], we decompose f(t) = p + e(t), with fOT e(t)dt =0 and p € R, and



u(t) = £+ U(t), with fOT U(t)dt = 0 and £ € R, and show the existence
of a continuous curve of solutions (u, u)(&), i.e., u = u(t,§), and p = p(§),
under rather general assumptions on g(t,u) and f(¢). This curve exhausts
the set of all periodic solutions of (1.1). We refer to the continuous function
w = u(€) as the solution curve. To obtain T-periodic solutions of

(1.2) o+ g(tu) =0,
we study the curve of T-periodic solutions of (u € R)
(1.3) u +g(t,u)=p.

If the solution curve of (1.3), u = u(§), has a root &y, then the problem (1.2)
has T-periodic solution of average £,. We give some conditions under which
= u(€) changes sign, and hence it has roots.

As a first application of the above solution curves, we re-derive two re-
sults of H. Brezis and L. Nirenberg [3] on the existence of periodic solutions
of (1.2), providing a wider perspective on these results, and some extra in-
formation. (The paper [3] dealt with a more general setting of first order
equations on a torus.) However, these results have rather stringent condi-
tions, which tend not to hold in applications. We present further existence
results for (1.2) by studying global properties of the solution curve of (1.3),
and we also discuss stability properties of the corresponding T-periodic so-
lutions of (1.2).

We apply our results to a periodic population model with fishing

(1.4) u' = u(a(t) —u) — pf(t),

depending on a parameter p > 0. Here a(t) and f(t) are given T-periodic
functions, and we are looking for a T-periodic solution u(t) > 0. We study
the curves of T-periodic solutions of (1.4) as the parameter p varies. It is
known that T-period solutions of (1.4) lie on parabola-like curve with a turn
to the left in the (u, ||ul|) plane, see [1], [10], [11]. If uo is the turning point
on the solution curve, then ug f(f f(t) dt gives the maximal sustainable level
of fishing. If one changes f(t), up is changed too, and the natural question
is: which f(t) gives the largest maximal sustainable level of fishing. We
prove that in case a(t) is a constant, the optimal f(¢) is also a constant.
For a general a(t), the optimal f(¢) is not necessarily a constant, as our
computations show. Based on our numerical experiments, we state two
open problems.



Another application is to limit cycles, that are closed solutions of au-
tonomous systems of the type

(1.5) X'(t) = F(X,Y)
Y'(t) = G(X,Y).

It is well known that each limit cycle contains at least one rest point, see e.g.,
S.H. Strogatz [14]. Let (z0,yo) be a rest point of (1.5), so that F(xg,yo) =
G(x0,y0) = 0. We wish to find a limit cycle, enclosing (xq,yp). Setting
x =X —1z9and y =Y — yo, and introducing the polar coordinates (r, §) in
the zy-plane, we obtain a problem of the type

(1.6) ' +g(0,7)=0,

with g(0 + 27, 7) = g(0,r), and we are looking for a 27-periodic solution
r = r(f). The existence results of [3] relied on a priori estimates. These
estimates were obtained under the following two conditions: either g, (0, r) >
0 for all # and r, or the problem (1.5) has an ordered sub and super solution
pair. Both conditions are way too stringent for limit cycles. The term “a
priori estimate” refers to estimating solutions, without knowledge of these
solutions. If one attempts to get a priori estimates also without knowledge of
the equation, one is led to impose very stringent conditions, as above. In our
existence results we assume that a priori estimates hold, and then we derive
such estimates for concrete systems by using trapping regions, or energy
considerations. Our approach to limit cycles provides a straightforward
alternative to the traditional one, based on the Poincare-Bendixson theorem,
making it unnecessary to search for the trapping region in each particular
case. Moreover, it unifies some diverse applications, and makes it convenient
to handle multiple limit cycles.

We also present a detailed description of the numerical computation of
the global solution curves, and of limit cycles. In particular, we compute
limit cycles for the Van der Pol and Sel’kov’s equations, and the bifurcation
diagrams for periodic population models with “fishing”.

2 The global solution curve

We begin with some preliminary results. The following lemma is well-known
as Wirtinger’s inequality. Its proof follows easily by using the complex
Fourier series, and the orthogonality of the functions {e®"™} on the interval
(0,T), see e.g., P. Korman [§].



Lemma 2.1 Assume that f(t) is a continuously differentiable function of
period T', and of zero average, i.e., fOT f(s)ds=0. Then

/OT () dt > w? /Osz(t) dt, withw = 2%.
We shall need the following standard lemma, see e.g., [11], [8].
Lemma 2.2 Consider the equation
2 +a(t)z=0,

with a given continuous T-periodic function a(t). This equation has a non-
zero T-periodic solution if and only if fOT a(t)dt = 0.

The following lemma will be crucial for continuation of solutions.

Lemma 2.3 Let a(t) be a given continuous T-periodic function, and b € R
a constant. The differential equation

(2.1) w +a(t)w=>

does not have a T-periodic solution, w(t) = w(t +T), satisfying

T

(2.2) / w(t)dt =0,
0

unless b =0, in which case w(t) = 0.

t
Proof: With v(t) = elo almar 0, the solution to (2.1) satisfying
w(0) = wp can be written as

w(t) = % (b/otu(s) ds—l—w0> .

The periodicity condition w(7") — w(0) = 0, and the requirement (2.2) lead
to the following two equations

b/OTV(s)ds—l—wo(l—u(T)) _ 9,

T Jyv(s)ds L S
b/o 701/(15) dt+w0/0 y(t)dt = 0.



The determinant of this linear system for b and wyq is

T T
D = / v(s) ds/ i dt — / fo s) % dt+ v(T / fo s) ® dt.
0 0 t t

Since v(t) > 0 it follows that f(f v(s)ds < fOT v(s)ds for t < T, and then
the sum of the first two terms in D is positive. This shows that D > 0, and
then the linear system has only the trivial solution: b =0 and wg =0.

We shall denote by Cr and Ck the subspaces of C(R) and C'(R) re-
spectively, consisting of T-periodic functions. The next lemma represents
the well-known Fredholm alternative. It can be proved by direct integration.

Lemma 2.4 Consider the equation

(2.3) Y +alt)y = f(t),

with a(t), f(t) € Cp. If fOT a(t) dt # 0, the equation (2.3) has a unique solu-
tion y(t) € Ck, for any f(t) € Cr. In case fOT a(t) dt = 0, the equation (2.3)
has T-periodic solutions if and only if fOT Ff@)up(t) dt =0, where up(t) € Cp
is any non-trivial solution of

(2.4) ' —a(t)u=0.
The number of T-periodic solutions of (2.3) is then infinite.

The following lemma will be used to continue solutions of fixed average.

Lemma 2.5 Let a(t) € Cr. For any £ € R and e(t) € Cr, there ezists a
pair (p*, 2(t)), with u* € R and z(t) € CF, solving
(2.5) 2 +a(t)z = p* + e(t)
Tl A(ydt=¢.
Proof: Case 1. fOT a(t) dt # 0. Consider the operator L : Ck — Cr given

by L(z) = 2’ + a(t)z. By Lemma 2.4, L~! exists, and we can express the
solution of the first equation in (2.5) as

2= LN (1) + LY (e(t)) .

By Lemma 2.3, fOT L~1(1)dt # 0, and hence we can choose u* to satisfy the
second equation in (2.5).



Case 2. fOT a(t) dt = 0. This time L is not invertible. Let ug(¢) > 0 be any
non-trivial solution of (2.4). Choose p* so that fOT [+ e(t)] up(t) dt = 0.
Then the first equation in (2.5) has infinitely many solutions of the form
2(t) = 2z9(t) + cug(t), where zy(t) is some fixed solution, and ug(t) > 0 is any
T-periodic solution of

2 +a(t)z=0.

Choose the constant ¢ so that the second equation in (2.5) is satisfied. <

Lemma 2.6 Let u(t) € Ck be a solution of
(2.6) u'(t) = f(t,u) forallt€ R,

for some continuous f(t,u), while v(t) € Ck is a sub (super) solution of
(2.6), so that

V'(t) < f(t,v) (V'(t) > f(t,v)) forallteR.
Then u(t) and v(t) do not intersect (and hence they are strictly ordered).

Proof: Assume that v(t) is a super solution, and the other case is similar.
If ¢ is a point of intersection of u(t) and v(t), then v'(ty) > u/(tg). If the
T-periodic functions u(t) and v(t) intersected, they would intersect at least
twice, and at one of the intersection points we would have v/(tg) < u/(tg), a
contradiction. &

Any f(t) € Cr can be written in the form f(¢) = pu + e(t), where pu €
R, and e(t) € Cp satisfies fOT e(t)dt = 0. We now consider the following
problem: find u(t) € C% and u € R satisfying

(2.7) u+g(t,u)=p+e(t), ut+T)=u(t) forallt.

Theorem 2.1 Assume that g(t,u) € C%'(R x R) satisfies g(t + T,u) =
g(t,u) for all t and u, and e(t) € Cp. Assume that either g(t,u) = g(u), or
there is a constant cg > 0 such that

(2.8) lg(t,u)| <cy, foralteR, andue R.

Then for any £ € R, one can find a unique solution pair (u(t),n) of (2.7),
with %fOT u(t) dt = &. Moreover, the solution u(t, ) is increasing in §.



Proof: Decompose u(t) = £+U(t), with £ € R, and fOT U(t) dt = 0. Then
U (t) satisfies

(2.9) U+gt,e+U)=p+e(t), Ut+T)=U(t) forallt.

We show next that maxy |U(t)| is bounded, uniformly in £ and p. Multiply
(2.9) by U'(t) and integrate over (0,7). Obtain

T 9 T T
(2.10) / U’ dt+/ g(t,£+U)U’dt:/ U'e(t) dt .
0 0 0

If g(t,u) = g(u), the second integral on the left vanishes by the periodicity of
U(t), and we get an estimate of fOT U(t) dt. In case g(t, &+ U) is bounded,
we estimate the second integral on the left by efOT U'%(t) dt + ¢1(¢), choose
e small, and again obtain an estimate of fOT U’ (t)dt. We then estimate
fOT U?(t) dt by Wirtinger’s inequality, and conclude a bound on max |U(t)|
by Sobolev’s embedding.

We now embed (2.7) into a family of problems
(2.11) u +kg(t,u) =p+e(t), ult+T)=mu(t) forallt.

depending on a parameter k, with 0 < k < 1 (k = 1 corresponds to (2.7)).
When k£ = 0, and g = 0, the problem has infinitely many solutions in
CL, so that for any € € R we can choose the unique solution ug(t) with
%fOT ug(t) dt = €. We now continue in k the solutions of

(2.12)  F(u,p, k)= +kg(t,u)—p—e(t) =0, u(t+T)=u(t)
7 Jo ult)dt=¢°,

with the operator F(u,pu, k) : Ch x R x R — Cr. We show next that the
implicit function theorem applies, allowing us to continue the solution pair
(u, 1) as a function of k. Compute the Frechet derivative (with w € C%)

Flu (w, i, k) (w, 1) = w' + kgu(t, u)w — p*,
JFw(t)dt=0.

By Lemma 2.3, the map F{,, ,)(u, i, k)(w, *) is injective, and by Lemma 2.5
this map is surjective. Hence, the implicit function theorem applies, and we
have a solution curve (u, p)(k). By the a priori estimate above, this curve
continues for all 0 < k < 1, and at £ = 1 we obtain a solution of the problem
(2.7), with & [ u(t) dt = €°.



Turning to the uniqueness part, let (u(t), i) be another solution of (2.7),
with %fOT a(t)dt = €°. Then (u(t), i) is a solution of (2.11) at k = 1. We
continue this solution backward in k, until £ = 0, using the implicit function
theorem. Integrating the equation, we conclude that u = 0, when £ = 0.
Then at k = 0, p = 0 we obtain a T-periodic solution of v’ = e(t), which
is different from wug(t) (since the solution curves do not intersect, by the
uniqueness part of the implicit function theorem), a contradiction.

Next, we use the implicit function theorem to show that solutions of
(2.7) can be continued in &, for all £ € R. Decomposing u(t) = £ +U(t) with
fOT U(t) dt =0, we see that U(t) satisfies

FU =0 +kg(t,6+U)—p—e(t)=0, Ut+T)=U(t)
JFU®dt=0,

with the operator F(U,u, &) : Ch x R x R — Cp. Compute the Frechet
derivative (with w € C%})

Fuw (U, p, k) (w, 1*) = w' + kgu(t, u)w — p*,
Jw(t)dt=0.

As above, we see that the implicit function theorem applies, and we have
a smooth solution curve (u, p)(€) for the problem (2.7). By the a priori
estimate above, this curve continues for all £ € R.

Finally, we prove the monotonicity of solutions. Let & < & be arbitrary.
Assume, first, that u(&2) = u(&1). Then u(t, &) and u(t, &) are two solutions
of the same equation, and they cannot intersect by uniqueness of the initial
value problems. Since u(t,£2) has a greater average, it follows that u(t, £2) >
u(t, &) for all t. Assume next that p(&2) < p(&) (w(€2) > w(&1)). Then
u(t, &) is sub (super) solution for the equation that u(t, &) satisfies. By
Lemma 2.6, u(t, &) and u(t, &) are ordered, and hence u(t, &) > u(t, &) for
all t. &

We now discuss the stability of T-periodic solutions of
(2.13) W+ gt u) = e(t),

with g(t,u) and e(t) satisfying fOT e(t)dt = 0, and the conditions of the
Theorem 2.1 above.

Theorem 2.2 Let y = (&) be the solution curve of (2.7). Assume that
w(&o) = 0, so that (2.13) has a solution of the form ug(t) = & + U(t) with



fOT U(t)dt = 0. Assume that there is an interval (§y — €,& + €) so that

1(€) <0 (u(§) >0) on (& —€,&o), and p(&) >0 (u(€) <0) on (&0, % +€),
for some € > 0. Then u(t) is a stable (unstable) solution of (2.13).

Proof: Assume that the first set of inequalities holds, and the other case
is similar. Take any & € (& — €, &), calculate u1 = p(§1) < 0, and the
corresponding solution w; (¢) of (2.7). Then

(2.14) W+ gl un) = pr + elt) < ()
so that uy(t) is a sub solution of (2.13). By Lemma 2.6
(2.15) ui(t) < wuo(t) for all ¢.

Thus we have a family of sub solutions below wug(t), and tending to ug(t).
Similarly, we produce a family of super solutions above ug(t), and tending
to ug(t). The stability of up(¢) is then well-known. (By Lemma 2.6, any
solution of (2.13), lying below ug(t), at any point cuts above the subsolution
uq(t), passing through the same point.) O

3 Existence of T-periodic solutions

We apply the global solution curves to give alternative proofs of two results
of H. Brezis and L. Nirenberg [3] on the existence of T-periodic solutions of

(3.1) w +g(t,u) =0, u(t) =u(t+T) forallt.

Theorem 3.1 Assume that g(t,u) € C%'(R x R) satisfies g(t + T,u) =

g(t,u) for all t and u. Assume the existence of constants M < M such that

T T -
(3.2) / g(t, Mydt < 0, / g(t, T dt > 0.
0 0
Assume finally the existence of constants My < My such that for all t

(33) g(tv ’LL) > g(tvﬁ) fOT u > Mo
g(tvu) < g(t,M) fOT’LL < M.

Then the equation (3.1) has a T-periodic solution.



Proof: Step 1. A priori estimate. Write g(t, M) = & — v/(t), with
fOT v(t)dt =0, and £ > 0 by (3.2). Consider u(t) — v(t). It satisfies

(3.4) (u—v) +g(t,u) = " = g(t, M) — £ < g(t, M).

Let tg be the point of maximum of u — v. At ¢

(3.5) g(to, u(to)) < g(to, M),
so that u(tg) < Mz by (3.3). Then
u—v <max(u—v)=u(ty) —v(ty) < Mz + max |v|,
u < v+ My + max |[v| < My + 2max|v].

This gives an estimate of u(t) from above. To get an estimate from below,
write g(t, M) =n + w’, with fOTw(t) dt =0, and n < 0 by (3.2). We have

(u+w) +g(t,u) =w" = g(t, M) —n> g(t,M).

Let t; be the point of minimum of u + w. Then g(t1,u(t1)) > g(t1, M), and
u(ty) > Mj by (3.3). We conclude

u+w > min (u+ w) = u(t;) + w(t;) > M; — max |w|,
u > —w + M; — max|w| > M; — 2max |w| .

Step 2. Modify g(t,u) for u outside of [M, M| to be a bounded function,
satisfying (3.3), and call it g(¢,u). Clearly, g(¢,u) satisfies (3.2) too. By
above, any T-periodic solution of

u +g(t,u) =0

satisfies the same a priori estimate as before, and hence it is a solution of
(3.1). Therefore we may still work with (3.1), but assume that g(t,u) is
bounded.

Step 3. Embed (3.1) into a family of problems
(3.6) w4+ g(t,u)=p, u(t)=u(t+T) forallt,

depending on a parameter u. Decompose u(t) = & + U(t), with £ € R
and fOT U(t)dt = 0. By Theorem 2.1 we have a continuous solution curve
w=pu(&) for all £ € (—o0, 00). Recall that U(t) satisfies

T
(7)) U'tglté+U)=p, [ UWd=0, U®)=U(t+T),

0

10



and max |U(t)| is bounded uniformly in & and p.
Step 4. Integrate (3.7):

T = /OTg(t,&—l—U(t))dt.

For & large, £ + U(t) > M, for all t. Using (3.3), and then (3.2)

T [RE—
(3.8) uT >/ g(t, T dt > 0,

0
so that g > 0. Similarly, p < 0 for —¢ large. We conclude the existence of
& with u(&) = 0, which gives a solution of (3.1). O
Remarks

1. Schauder’s fixed point theorem was used in [3], and as mentioned in
[3], this result can also be proved using super and sub solutions.

2. If g(t,0) = 0 for all ¢, and g(t,u) is Lipschitz continuous in u, then
either u(t) > 0 or u(t) < 0 for all ¢, by uniqueness for initial value
problems.

3. The first condition (3.3) is rather restrictive. In particular, it does not
apply to the Sel’kov system, considered below.

4. Our approach provides some extra information: there exists a curve
(1, u(t))(&) of T-periodic solutions of (3.6), and £ (the average value
of u(t)) is the global parameter on this curve.

The following variation on this result is also due to H. Brezis and L.
Nirenberg [3].

Theorem 3.2 Assume that g(t,u) € C%'(R x R) satisfies g(t + T,u) =
g(t,u), and the condition (3.2). Assume also that

gu(t,u) >0 forallt,u.
Then the equation (3.1) has a T-periodic solution.

Proof: The argument is almost the same. From (3.5), it follows that
u(to) < M, leading to the a priori estimate as above. As for the estimate
(3.8), once & is so large that £ + U(t) > M, we have

T T _
uT:/O g(t,£+U(t))dt>/0 g(t, T dt > 0,

and the rest of the proof is the same. &

11



4 A further existence result, and applications to
limit cycles

We now change the notation, and consider the existence of 2w-periodic so-
lutions of
dr

(4.1) @—1—9(9,7") =0,

where g(6,r) is 2m-periodic in 6. It is known that any 27-periodic solution
of (4.1) is in fact a limit cycle, attracting the nearby solutions, see V.A. Pliss
[12]. We shall assume that

g(0,0) =0, forall § € [0,27),

which is the case in applications to limit cycles. The last assumption implies
that solutions of (4.1) do not change sign, and we shall search for solutions
with r(0) > 0 for all §. We now give a general result on the existence of a
27-periodic solution of (4.1).

Theorem 4.1 Assume that g(0,0) = 0, and g(0,7) € CO' (R, x [0,27])
satisfies g(0 42w, 1) = g(0,r), for all @ and r. Assume that there a constant
My > 0, such that any positive 2m-periodic solution of (4.1) satisfies 0 <
r(0) < My. Assume that for somep > 1 the following limits exist, uniformly

n 0
(4.2) lin% @ =a(f), with f027r a(f)dd >0 (<0),
(4.3) lim # =b(0), with [J7b(0)dd <0 (>0).

Then the equation (4.1) has a 2m-periodic solution r(6) > 0.

Proof:  Assume that the first set of inequalities holds in (4.2), (4.3), and
the other case is similar. By modifying g(6, r) for r > My, and for r < 0, we
may assume that this function is bounded, for all § and r. We embed (4.1)
into a family of problems

(4.4) " +g0,7)=p, r(0+27)="1(0).

Decompose r(0) = £+ R(6), with f027r R(6) df = 0. By Theorem 2.1, we have
a solution curve p = u(€), with € > 0, and p(0) = 0. We wish to show that
w(&o) = 0 for some &y > 0.

We claim that for any £ > 0, 7(6) > 0 for all §. In case u = 0, r(6) cannot
change sign by the uniqueness theorem, and since its average is positive, r(0)

12



is positive. In case |u| > 0, we see from the equation (4.4) that »/(6) has the
same sign at all of its roots, which makes roots impossible. Again, r(6) is
positive, since its average & is positive.

We show next that p(¢) > 0 for £ > 0 and small. Divide the equation
(4.4) by r(#) > 0, and integrate over (0,27). By periodicity, f027r %d@ =0,

and we have o o(6.7(6)) o 1
Y g ’,r. T
— 2 df = / —db.
/o r(6) )

By continuity, r(0) is small when £ > 0 and small. Then p > 0, in view of
the condition (4.2). Similarly, dividing the equation (4.4) by r?P(6) > 0, and
integrating over (0,27), we see that p(§) > 0 for £ large. By continuity of
w(€), we conclude that p(&p) = 0 at some &y > 0. O

Example This theorem provides the existence of positive 2m-periodic solu-
tion to the equation

r +a(@)r +b(0)r’ =0,
withp > 1, and 27-periodic a(6) and b(6) such that 7™ a(#) df and [7™ b(6) d6
have opposite signs, provided there is an a priori bound on 27-periodic so-

lutions. An a priori bound will hold if, for example, b(#) has no roots. Both
Theorems 3.1 and 3.2 do not apply in case of sign-changing a(6) and b(6).

We now provide a version of the last result. Introduce the function (M
is a real number)

o(M) = /0% g(6, M) d.

Then the conditions (4.2) and (4.3) can be replaced by ¢'(0) > 0 (< 0), and

limps—oo “OZE%) < 0 (> 0) respectively. Indeed,

2T 2T 2T
/ a(f) df = / tim 297 g — / 9-(6,0) df = ¢'(0),
0 0 0

r—0 r
21 21

B g0r) (M)
0 b(@)d@—/o Tll{go rp da_z\/}linoo Mp

We now turn to the limit cycles, which are closed solutions of autonomous
systems of the type

(4.5) X'(t) = F(X,Y)
Y'(t) = G(X,Y).

13



It is well known that each limit cycle contains at least one rest point, see
e.g., S.H. Strogatz [14]. Let (z¢,yo) be a rest point of (4.5), so that

F(x0,y0) = G(z0,40) = 0.

We wish to find a limit cycle, enclosing (zg,yp). Setting x = X — ¢ and
y =Y — yg, we obtain

(4.6) @' (t) = F(z 4 0,y + vo)
y'(t) = G(x + 0,y + ¥0)

with the rest point at the origin (0,0). We then switch to polar coordinates
in the (z,y) plane, given by x = rcosf and y = rsinf. We obtain

(47 dr  xF(x+ 0,y + yo) + yG(z + 20,y + Yo)

dt /22 1 42

and

d
Ao _ o — %y 2G(w+ w0,y + y0) — yF(x + 0,y + y0)
dt x? 4 92 x2 4 92

Using that 2% = %%, and defining

xF(x 4+ xo,y + o) + yG(x + zo, y + yo) /
hZE, = ! ’ :L'2+ 27
(@,y) 2G(x + 20,y + yo) — yF(z + 20,y + yo) Y

and
(4.8) g(0,7) = —h(rcosf,rsinf) ,
we obtain from (4.7)

dr

@ + 9(9, 7") =0.

This is a particular case of the equation (4.1), where g(, r) is given by (4.8).
Clearly, g(0,0) = 0, and g(0, r) has period 27 in 6. We study the existence
of a 2m-periodic solution r(#) of that equation, which corresponds to a limit
cycle enclosing (xg,yo), that is a graph of a polar curve around (xg,yo).
Observe that the function g(6,r) is singular, i.e., it assumes infinite values
at some finite # and r. Singular problems occur often in applications, see
the recent book of P.J. Torres [15] for a nice review, or P. Korman [7].

Example We consider next the classical Van der Pol equation

(4.9) 2+ (2 -2+ =0.
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Setting ' = y, we transform it to the system (4.5), where F(x,y) = v,
G(z,y) = —(2? — 1)y — z, with the rest point zg = yo = 0. To get an a
priori bound from above for any limit cycle of the equation (4.9), one can
consider the energy, which is decreasing for |z| > 1. We search for a limit
cycle, which is a polar curve in the (z,y) plane, so that r = r(0) satisfies
(4.1), with the function in (4.8) given by

~2r(1—c0s20)(2 — (1 + cos 26))
(4.10) 9(6:) = 8 —2(2 —1r2)sin26 + r2 sin 46

To find a 27-periodic solution of (4.1), we compute the curve u = u(€) of
2m-periodic solutions of (4.4), and the result is presented in Figure la. One
sees that for a & slightly over 2, u(&y) = 0, corresponding to a limit cycle
of the Van der Pol equation. (The value of £, gives the average of r(6).)
We confirmed by a direct integration that the solution r = r(#) at p =0 is
identical to the limit cycle of the Van der Pol equation.

However, the function g(6,r) is unbounded when the denominator in
(4.10) is zero. Therefore, the 2m-periodic solutions of (4.4) will be restricted
to the domain defined by 8 —2(2—72) sin 20+r2sin 46 = 0, which is displayed
in Figure 1b together with a solution () for £ = 2.2. With increasing & the
solutions come even closer to the boundary of this domain and the periodic
solutions cease to exist for & > & with & € (2.2,2.3). It also means that
the curve p(§) can’t be continued past &;.

Example To model oscillations connected to glycolysis (the process of cells
breaking down sugar to obtain energy) the following model was proposed by
E.E. Sel’kov [13], see S.H. Strogatz [14] for a nice presentation,
(4.11) ¥ = —z +ay+ 2%y

v =b—ay—2%y.
Here a and b are positive parameters. The unknown functions z(t) and y(¢)

represent some biological quantities, and are also assumed to be positive.

One checks that the only rest point is at zg = b, yg = m—%' It is known
that there is a limit cycle around (xg, yo), provided that the parameters a
and b satisfy Sel’kov’s condition

(4.12) a? +2ab* +a+b* — > < 0.

(This condition holds for small b > 0, and even smaller a > 0.) Next we
derive an a priori bound from above for any 27 periodic solution of the
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(a) (b)

Figure 1: a) The curve of 2m-periodic solutions of (4.4) for the Van der
Pol equation. b) The domain for the 27-periodic solutions, with a periodic
solution with & = 2.2

equation (4.1), which corresponds to (4.11). Since the limit cycle is around
(g > 0,90 > 0), at least part of it must lie in the first quadrant. However,
from the equations in (4.11), the limit cycle cannot exit the first quadrant,
and hence it lies completely in the first quadrant. Adding the equations in
(4.11), we get

(z+y) =b—ux,

so that in the first quadrant all trajectories travel southwest if > b. Also,
y <0 fory > g. It follows that all trajectories in the first quadrant enter
the trapping region bounded by the line y = % for 0 < x < b, the line
r+y=>b+ g forb<z<b+ 3, and the coordinate axes. In particular, any
limit cycle must lie in this region, so that 0 < r(0) < My for some My > 0.

Example We computed the curve p = p(§) of 2w-periodic solutions for the
problem (4.4) corresponding to (4.11), for the case of a = 0.08 and b = 0.6,
satisfying the condition (4.12). The curve was similar to Figure 1, with
1£(0.64) ~ 0. The polar curve r = r(6) centered at (z9,y0) (computed at
€ = 0.64) is then the limit cycle for Sel’kov’s system (4.11), and it is given
in Figure 2. Again, we used a direct integration to confirm the validity of
this limit cycle.
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Figure 2: The limit cycle for Sel’kov’s system (4.11)

However, our computations for Sel’kov’s system reveal the limitations
of our approach, involving polar curves around (zg,yp): for some (a,b),
satisfying the condition (4.12), the solution curve p = pu(€) blows up, before
reaching its first root (e.g., for a = 0.001, b = 0.3).

A challenging example is presented by a predator-prey system with the
Holling type II functional response, see S.-B. Hsu and J. Shi [4],
dx mxy  dy mxy
(4.13) E_$(1_$)_a+:n’ E__dv—i_a—l—:n'
We computed the curve p = u(€) of 2m-periodic solutions for the problem
(4.4) corresponding to (4.13), for the parameter values a = 0.5, m = 1, and
d = 0.1. This time p(§) < 0 for small £ > 0, and the first root of p(§) occurs
at & ~ 0.345. Our computations indicate that u(&) = p'(&) = 0, and
that the curve u = p(§) blows up soon after . The solution curve for the
corresponding equation (4.4), as well as the limit cycle of (4.13), involving
a sharp transition, are given in Figure 3.

A similar approach allows one to compute multiple limit cycles. For a
modified Van der Pol equation

(4.14) 2" 4+0.04(z* - D)9 -2+ =0
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Figure 3: a) The curve of 27-periodic solutions for the problem (4.4) corre-
sponding to (4.13) b) The limit cycle for the predator-prey system (4.13)

the energy is being pumped up for small z, dissipated at larger x, and
pumped up again for large z. It is natural to expect the existence of a
smaller stable limit cycle, and of larger unstable limit cycle. However, the
solution curve p = p(&) of the corresponding equation (4.4) blows up soon
after its first root,d\gith |p| — 0o. We see from (4.7) and (4.8) that the blow

up happens when 2 approaches zero. Near the second (and any other) limit

cycles we expect % to stay away from zero, since otherwise the period of
the limit cycle, T' = 027r g—f) df, would get large. Hence we need to “help”
the solution curve p = u(&) to get through a “rough spot”, on its way to-
ward its second root. Therefore we suggest approximating the corresponding
equation (4.4) by

(4.15) dr g(6,r) _

do " 1+ eg®(6,r) —

with some integer m > 1, and small € > 0. For sufficiently small € the
periodic solutions of (4.15) are close to those of (4.4). For the example
(4.14) above we took m = 3 and ¢ = 0.0001, and the solution curve of (4.15)
is presented in Figure 4. As above, the roots of i(§) provided us with very
accurate approximation of the limit cycles of the original equation (4.14),
see Figure 5. We verified their accuracy by a direct integration (forward
in time for the smaller stable cycle, and backward in time for the unstable
larger one).
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Figure 4: The curve of 27-periodic solutions of (4.15)

Conclusions. Given that the autonomous system (4.5) has a rest point at
(20, y0), we introduce polar coordinates with respect to (xg, yp), and convert
(4.5) to the periodic first order equation (4.1). Then we embed (4.1) into
the family of equations (4.4). Since the functions g(6, r) is often singular, we
approximate the solutions of (4.4) by those of (4.15), for which we compute
the global solution curve i = i(§), where & is the average of the solution
r(0) over [0,27]. Each root of fi(§) provides us with a limit cycle of (4.5).
This straightforward approach avoids the need to construct the trapping
region for each particular system (4.5). Our approach raises an interesting
open question. Suppose a limit cycle of (4.5) encloses just one rest point.
Under what condition this limit cycle is star-shaped with respect to the rest
point (so that it is a polar curve with respect to the rest point).

5 Numerical computation of solutions
To solve the periodic problem (with g(t + T, u) = g(t,u), for all ¢ and u)
(5.1) u +g(t,u) =p+e(t), ult) =ult+T) forallt,

we used continuation in . (Recall that u(t) = {4+ U(t), with fOT U(t)dt=0.)

Step 1. We began by implementing the numerical solution of the following
linear periodic problem: given the T-periodic functions b(t) and f(¢), find
the T-periodic solution of

(5.2) Lyl =/ (t) +b(t)y = f(t), y(@t) =y(t+T).
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Figure 5: The two limit cycles of (4.14)

The general solution of (5.2) can be written as

y(t) = y1(t) + cya(t),

where y; (¢) is the solution of

y'(t) +b(t)y = f(t), y(0)=0,

y2(t) is the solution of

Y (1) +b(t)y =0, y(0)=1,

and c is an arbitrary constant. We have y(0) = ¢, y(T) = y1(T) + cy=(T),

and setting y(0) = y(T') gives ¢ = —yf(lj(,?zl, so that
_ . y1(T)
(5.3) y(t) = (1) (T =1 11/2(75)

gives us the T-periodic solution of (5.2), or L™'[f(¢)], where L[y] denotes
the left hand side of (5.2), subject to the periodic boundary condition. We
used Mathematica’s NDSolve command to compute y;(¢) and ya(t).

A natural question is why we did not use the explicit formula available
for the equation (5.2). To solve the nonlinear problem (5.1) we shall be
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repeatedly solving the linear problem (5.2) with b(t) and f(¢) given as inter-
polating functions (produced by Mathematica on the previous steps). The

integrating factor v(t) = efot bt il require computing a definite integral
for each value of ¢, and then solving of (5.2) will require double integration,
while computation of ¥ (¢) and y2(t) can be compared to a single integration.
The explicit formula appears to be a useless curiosity, as far as numerical
computations go.

Step 2. Then we implemented the “linear solver”, i.e., the numerical solution
of the following problem: given the T-periodic functions b(t) and f(t), find
the constant u, so that the problem

T
(5.4) Y+ bty = i+ f(8), /0 y(t) dt = 0

has a T-periodic solution (of zero average), and compute that solution y(¢).
The solution is

y(t) = pL™ 1]+ L7 F ()],
with the constant p chosen so that fOT y(t)dt = 0.

Step 3. Turning to the problem (5.1), we begin with an initial £y, and using
a step size A, we compute the solution (fin, un(t)) with the average of w,, (1)
equal to &, = {o+nAE n=1,2,...,nsteps, in the form u, (t) = &, + Uy,(1),
where U, (t) is the T-periodic solution of

T
(5.5) U+ g(t, 60+ U) = p+e(t) | /0 Ut)dt =0,

and pu, is the corresponding value of u. We use Newton’s method to ap-
proximate the solution of (5.5) (i.e., (pn, Un(t))) by constructing a sequence
of approximations {V,,} (with the corresponding values of u). We set
Vo = Un—1(t), and with V,,, already computed, we linearize the equation (5.5)
at &n + Vin(t), writing g(t, &, +U) = g(t, & + Vin) + gu(t; En + Vi) (U — Vin),
and call the linear solver to find the T-periodic solution of the problem (5.4)
with b(t) = gu(t, §n+Vin), and f(t) = e(t) —g(t, &n+Vin) + gu(t, §n+ Vi) Vin,
obtaining an approximation of V,,, and of the corresponding pu. We found
that just four iterations of Newton’s method (1 < m < 4), coupled with a
relatively small A¢ (e.g., A = 0.1), were sufficient for accurate computa-
tion of the solution curves. Finally, we plot the points (&, i) to obtain the
solution curve.

We verified our numerical results by an independent calculation. Once
a periodic solution wu(t) of (5.1) is computed at some u, we took its value
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of u(0), and computed numerically the solution of (5.1) at this u, with the
initial value equal to u(0) (using the NDSolve command), as well as the
average of u(t). We had a complete agreement (with u(t) and &) for all p,
and all equations that we tried.

For applications to fishing we need to solve the periodic problem (with
g(t+T,u) = g(t,u), for all t and u)

(5.6) u +g(t,u) = pj(t), u(t) =u(t+T) forallt,

where j(t) is T-periodic, and j(¢) < 0. Similarly to the above, we used
continuation in £&. The Step 1 is as above. The “linear solver” part is
modified: given the T-periodic functions b(t), j(¢) and f(t), find the constant
1, so that the problem

T
(57) v+ b0y = i)+ 10, [ u(b)yde=0
has a T-periodic solution, and compute that solution y(¢). The solution is

y(t) = uL O]+ LTHF(0)],
with the constant p chosen so that fOT y(t)dt = 0.

To solve (5.6), we begin with an initial £y, and using a step size A&, we
compute the solution (i, u,(t)) with the average of w,(t) equal to &, =
o +nAE n=1,2,...,nsteps, in the form u,(t) = &, + Uy(t), where U, (t)
is the T-periodic solution of

T
(5.8) U+ g(t, ép+ U) = pj(t) /0 Ut)dt =0,

and p, is the corresponding p. We use Newton’s method to approximate the
solution of (5.8), by constructing a sequence of approximations {V,,,}. We
set Vo = Up,—1(t), and with V;,, already computed, we linearize the equation
(5'5) at £n+Vm(t)v writing g(tv én‘i'U) ~ g(tv £n+Vm)+gu (tv £n+Vm)(U_Vm)v
and call the new linear solver to find the T-periodic solution of the problem
(5.7) with b(t) = gu(t, &n+Vin), and f(t) = —g(t, &n+Vin) +gu(t, &t Vin) Vin,
obtaining an approximation of V,,, and the corresponding u. After around
four steps of Newton’s method, we obtain an accurate approximation of
(ptn, Un(t)). Finally, we plot the points (&, i1,,) to obtain the solution curve.

22



6 Periodic population model with fishing

We begin with the logistic population model (v = wu(t) is the number of
units of fish at time )
' =ula(t) —u).

We assume that a(t) is a continuous and T-periodic function, satisfying
fOT a(t) dt > 0. By direct integration, it is easy to see that there is a unique
T-periodic solution, which attracts all other positive solutions, as t — oo,
see e.g., M.N. Nkashama [11], or P. Korman [8] (exact multiplicity results for
more general polynomial models were given in P. Korman and T. Ouyang
[9]). To model fishing, let j(¢) be a positive continuous T-periodic function,
giving the number of units of fish taken at time ¢, and let the number b > 0
give the decrease in the growth rate per one unit of fish taken, and denote
f(t) = bj(t). Then the model is

v =ula(t) —u) — f(t), u(t+T)=u(t) forallt.
Let us now vary the intensity of fishing, and consider
(6.1) u =wu(a(t) —u) — pf(t), ut+T)=u(t) forallt,

depending on a parameter p > 0.

The following result is well known see [1], [10], [11], and also [2]. We
sketch the proof for completeness.

Proposition 1 Assume that fOT a(t)dt > 0, and f(t) > 0. Then there is a
critical po > 0, so that the problem (6.1) has two exactly positive T-periodic
solutions for 0 < p < ug, exactly one positive T-periodic solution at pu = g
and for u < 0, and no T-periodic solution for u > ug. (With the bifurcation
diagram as in Figure 6. The case when p < 0 can be interpreted as stocking
of fish). Moreover, in case u > g, all solutions of (6.1) tend to —oo, in
finite time.

Proof: At p = 0 the equation (6.1) has a unique T-periodic solution.
We now continue T-periodic solutions for p > 0. Clearly, T-periodic solu-
tions remain positive. Indeed, assuming otherwise, we can find an interval
(t1,t2) on which u(t) < 0 that u(t1) = u(t2) = 0. From the equation (6.1),
u'(t) < 0 on (t1,t2), a contradiction. The continuation in g cannot proceed
indefinitely, because the right hand side of (6.1) becomes negative. There is
at most two positive T-periodic solutions of (6.1), see e.g. p. 245 in [8]. &
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It follows from the Proposition 1 that for u > pg the fishing is not
sustainable, while u = pg gives the maximal sustainable level of fishing. We
call pg fOT f(t)dt the maximal fishing take (5% fOT j(t) dt gives the maximal
possible average number of fish, caught over one period). The problem is:
find the fishing strategy f(¢) (or j(¢)) to maximize the maximal fishing take
140 fOT f(t) dt. For example, assume that the growth rate a(t) has one point of
minimum and one point of maximum, corresponding to summer and winter.
What are good seasons for fishing?

In case a(t) = a and f(t) = 1 are constants, the T-periodic solutions of
(6.1) are also constants. In that case pug = %, and the maximal fishing take
is then ppT = %T.

Proposition 2 Assume that a(t) = a is constant. Then the optimal fishing
strategy is for f(t) to be a constant too, i.e.,

T (12
(6.2) 4o /0 Feyde <

Proof: Assume that ug(t) is the solution of (6.1) at uyo, i.e.,

(6.3) uy = aug — uy — po f(t).

Since the solution curve does not continue in p to the right of ug, the im-
plicit function theorem does not apply, and so the corresponding linearized

equation

w' = (a — 2ug)w

has non-trivial T-periodic solutions. By Lemma 2.2, fOT ug(t) dt = %aT. We
now integrate (6.3), to obtain

T 1 T 1 1 (7 S
Mo/ f(t)dt = =a®T —/ ud(t) dt < —a®T — — / ug(t)dt| = —T,
0 2 0 2 T 0 4

concluding the proof. O

The inequality (6.2) can be generalized to any T-periodic a(t). Indeed
writing the equation (6.1) as

2
o = (u= 30 + 620 -t @),

and integrating, we conclude that for all u
T 1 T

(6.4) M/ F(t) dt < —/ a2(t) dt .
0 4 Jo
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Figure 6: The curve of 1-periodic solutions of (6.5)

Suppose that a(t) is not a constant. Is it true that the optimal fish-
ing strategy is still for f(¢) to be a constant? Our numerical experiments
indicate that the answer is no, in general.

Example We computed the curve of 1-periodic solutions for
(6.5) v = (14 0.4sin27t)u — p (1 + bsin2nt) |

with b = 0.2, see Figure 6. Here the maximal fishing take turned out to be
140 fol (1 + bsin27t) dt = po ~ 8.9955. When we took b = 0, the maximal

fishing take decreased to =~ 8.9818. In Figure 6, £ = fol u(t) dt, and our
computations were using the method developed in the preceding section.

Open Problem: Given T-periodic non-constant a(t), find the optimal T-
periodic f(t), maximizing the maximal fishing take fOT f(t)dt.

Our numerical experiments suggest the following conjecture.

Conjecture: Decompose a(t) = A+a(t), with constant A > 0 and fOT a(t) dt =
0. Then the maximal fishing take satisfies

T A2
(6.6) po [ s de< ST

Observe that OT a’(t)dt = ATZT—I—i fOT o?(t) dt, so that the inequality (6.6)
is significantly sharper than (6.4).

The inequality (6.6) implies that if the averages of a(t) and f(t) are fixed,
the best fishing outcome occurs if a(t) and f(¢) are constants.
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