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Abstract

In the classical Lotka-Volterra population models, the interacting

species affect each other’s growth rate. We propose an alternative

model, in which the species affect each other through the limitation

coefficients, rather then through the growth rates. This appears to

be more realistic: the presence of foxes is not likely to diminish the

fertility of rabbits, but will contribute to limiting rabbit’s population.

Both the cases of predation and of competition are considered, as well

as competition in case of periodic coefficients. Our model becomes

linear when one switches to the reciprocals of the variables. In another

direction we use a similar idea to derive a multiplicity result for a class

of periodic equations.
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1 Introduction

One way of solving the logistic population equation (here x = x(t))

x′ = ax − bx2(1.1)

is to divide this equation by x2, and obtain a linear equation for u = 1
x .

Here a > 0 is the growth rate, and b > 0 is the limitation (or self-limitation)
coefficient, both given numbers. We wish to explore the interactions of two
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species with populations x = x(t) and y = y(t) for which the substitution

u = 1
x and v = 1

y leads to a linear system. The model we consider is

x′ = ax + x2
(

b
y + e

)

(1.2)

y′ = dy + y2
( c

x + f
)

,

with constants a,b,c,d,e and f . Dividing the first equation by x2, the second
one by y2, and setting u = 1

x and v = 1
y , gives a linear system

−u′ = au + bv + e(1.3)

−v′ = cu + dv + f .

The signs of the coefficients determine the type of interaction, which will
include both predator-prey and competing species cases.

Let us compare (1.2) with the classical Lotka-Volterra predator-prey

model

x′ = x (a − b y)(1.4)

y′ = y (−c + d x) ,

where the constants a,b,c,d are positive. In (1.4) the species affect each other
through the growth rate: the prey, with the number given by x(t), improves
the growth rate of the predator, with the number y(t), while the predator

decreases the growth rate of the prey. In the model (1.2) the species affect
each other through their limitation coefficients. This appears to be more

realistic: the presence of foxes is not likely to decrease the fertility of rabbits
(new rabbits will be born at the same rate), but will place a limitation on

the growth of rabbit population.

Similarly to the Lotka-Volterra model, the proposed model (1.2) predicts

oscillatory behavior for predator-prey interaction, and either stable coexis-
tence or competitive exclusion for competing species. Unlike the Lotka-

Volterra model, it is possible that the population number of one of the
species goes to infinity in finite time, while the number of the other species
remains finite and positive. Explosive growth of populations occurs often

in nature. Notice that our analysis leads to some non-standard questions
about linear systems. For example, if a solution of (1.3) starts in the first

quadrant of the xy-plane, will it stay in the first quadrant for all t?

Using the Floquet theory, we analyze a case of predator-prey interaction

with periodic coefficients, and give a condition for the existence of a limit
cycle.
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In another direction we use the same transformation u = 1
x to derive a

multiplicity result for a class of periodic equations

x′(t) = f(t, x(t)) , with f(t + p, x) = f(t, x) .

2 Explosive predator-prey model

Consider the model

x′ = x2
(

b
y − 1

)

(2.1)

y′ = −y2
(

d
x − 1

)

.

Here x(t) gives the number of prey, and y(t) the number of predator. If y(t)

is small, the prey grows explosively (with x′ behaving like αx2, α > 0). If
the number of predators y(t) is large, then x′(t) < 0 and x(t) decreases. The

number of predators y(t) decreases when x(t) small, and grows explosively
for x(t) large. This model corresponds to (1.2), with a = d = 0. The
coefficients e and f have been scaled out.

The system (2.1) has a rest point (d, b). Letting X =

√
d/b

x and Y = 1
y

transforms (2.1) into a perturbed harmonic oscillator

X ′ = −
√

bdY +
√

d/b(2.2)

Y ′ =
√

bdX − 1 .

Setting X(t) = ξ(t) + 1√
bd

, Y (t) = η(t) + 1
b leads to a harmonic oscillator

ξ′ = −
√

bdη

η′ =
√

bd ξ ,

so that the solution of (2.2) is

X(t) = 1√
bd

+ c1 cos
√

bd t − c2 sin
√

bd t(2.3)

Y (t) = 1
b + c1 sin

√
bd t + c2 cos

√
bd t ,

which is just a rotation of the point (X(0), Y (0)) around the point ( 1√
bd

, 1
b ),

the rest point of (2.2), on the circle of radius
√

c2
1 + c2

2. The solution of (2.1)

is then

x(t) =

√
d/b

1
√

bd
+c1 cos

√
bd t−c2 sin

√
bd t

(2.4)

y(t) = 1
1

b
+c1 sin

√
bd t+c2 cos

√
bd t

.
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The constants c1 and c2 are determined from the initial values (x(0), y(0)):

c1 =

√

d/b

x(0)
− 1√

bd
, and c2 =

1

y(0)
− 1

b
.(2.5)

It is now clear that the rest point (d, b) is a center for (2.1), and we can give
a complete description of the behavior of positive solutions.

Theorem 2.1 Given the initial point (x(0), y(0)), calculate c1 and c2 by

(2.5), and R =
√

c2
1 + c2

2. If the circle C of radius R around the point

( 1√
bd

, 1
b ) lies completely inside the first quadrant of the (X, Y ) plane, then

the corresponding solution (x(t), y(t)) of (2.1) is a closed curve around the
rest point (d, b), given by (2.4). Moreover, the period of all these closed

curves is the same, and x(t) > d
2 , y(t) > b

2 for all t. Assume now that this
circle C, traveled counterclockwise beginning with the point (X(0), Y (0)) =

(

√
d/b

x(0) , 1
y(0)), hits one of the axes of the (X, Y ) plane. If it hits the Y -axis

first, then there is a time T > 0 so that limt→T x(t) = ∞, while limt→T y(t)

is finite and positive. If C hits the X-axis first, then there is a time T > 0
so that limt→T y(t) = ∞, while limt→T x(t) is finite and positive.

Proof: In view of the discussion above, it remains to prove the lower

bounds for the periodic solutions in the first part of the theorem. From
(2.3) one sees that the positivity of X(t) and Y (t) implies that X(t) < 2√

bd

and Y < 2
b , from which one gets the lower bounds on x(t) and y(t). ♦

Example Using Mathematica, we computed four periodic solutions for the
system (2.1), with b = 3 and d = 2, surrounding the rest point at (2, 3), see

Figure 1.

3 Explosive competing species model

Consider the model

x′ = a x + x2
(

b
y − 1

)

, x(0) > 0(3.1)

y′ = d y + y2
(

c
x − 1

)

, y(0) > 0 ,

with positive constants a,b,c and d. Each species grows explosively, if the
number of the other one is small, while if the competitor’s number is large,

the growth is logistic-like. Clearly, the interaction is competitive in nature.
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Figure 1: Periodic solutions for the system (2.1)

We begin with a simple observation: if x(0) > 0 and y(0) > 0, then
x(t) > 0 and y(t) > 0 for all t > 0. Indeed, writing the first equation in the

form x′ = A(t)x, with A(t) ≡ a + x(t)
(

b
y(t) − 1

)

, and integrating, obtain

x(t) = x(0)e
∫

t

0
A(s) ds > 0. Similarly, y(t) > 0 for all t > 0. Hence, we can

limit our study of (3.1) to the first quadrant of the (x, y) plane.

Setting X = 1
x and Y = 1

y produces a linear system

X ′ = −aX − bY + 1 , X(0) = 1
x(0) > 0(3.2)

Y ′ = −cX − dY + 1 , Y (0) = 1
y(0) > 0 ,

with a unique rest point (X0, Y0) given by

X0 =
d − b

ad − bc
, Y0 =

a − c

ad − bc
.(3.3)

Since x(t) > 0 and y(t) > 0 for all t > 0, we may restrict the system (3.2)
to the first quadrant of the (X, Y ) plane. The rest point (X0, Y0) lies in the

first quadrant if either

d > b and a > c (and then ad > bc) ,(3.4)

or
d < b and a < c (and then ad < bc) .(3.5)
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Letting ξ = X − X0 and η = Y − Y0, we translate the rest point to the

origin, obtaining the system

ξ′ = −aξ − bη(3.6)

η′ = −cξ − dη ,

with the matrix A =

[

−a −b
−c −d

]

. The eigenvalues of A are

λ1,2 =
1

2

(

−a − d ±
√

a2 − 2ad + 4bc + d2
)

.

The corresponding (column) eigenvectors are

ξ1,2 =

(

−−a + d±
√

a2 − 2ad + 4bc + d2

2c
, 1

)T

.

In case (3.4) holds, both eigenvalues are negative, and the rest point (X0, Y0)

is a stable node, while in case (3.5) holds, one eigenvalue is negative and the
other one is positive, so that (X0, Y0) is a saddle.

Theorem 3.1 (i) Assume that the condition (3.5) holds. Then one of the
species (depending on the initial conditions) grows explosively. Namely, for

any solution of (3.1) there is a time T > 0 so that limt→T x(t) = ∞, while
limt→T y(t) is finite and positive, or the other way around.

(ii) Assume that the condition (3.4) holds. If x(t) and y(t) remain finite for
all t > 0 then limt→∞ x(t) = 1

X0
and limt→∞ y(t) = 1

Y0
.

Proof: The general solution of (3.2) is

(X(t), Y (t))T = (X0, Y0)
T + c1e

λ1tξ1 + c2e
λ2tξ2 .(3.7)

(i) In case (3.5) holds, the eigenvalues of A are of opposite sign say λ1 <

0 < λ2. The term c1e
λ1tξ1 is negligible in the long run. The eigenvector ξ2

corresponding to the positive eigenvalue (“plus” in front of the square root)

has one component positive, and the other one is negative. It follows that
all of the solutions of (3.2) eventually move either northwest or southeast of

the rest point (X0, Y0) intersecting either the X or the Y axis.

(ii) In case (3.4) holds, the general solution of (3.2) is given by (3.7), with

negative λ1 and λ2. It follows that the point (X(t), Y (t)) tends to the
point (X0 > 0, Y0 > 0) as t → ∞. If the point (X(t), Y (t)) stays in the first
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quadrant, then x(t) and y(t) are defined for all t, otherwise one of the species

becomes infinite in finite time. ♦
Remark In case (3.4) holds, the solution of (3.2) connects the points

(X0, Y0) and (X(0), Y (0)) in the first quadrant. While it is rare for the
solution (X(t), Y (t)) to exit the first quadrant, this may indeed happen if

the points (X0, Y0) and (X(0), Y (0)) lie near one of the axes. We used
Mathematica to solve (3.2) with a = 4, b = 1, c = 1, d = 5, X(0) = 5,

Y (0) = 0.1. Here X0 = 4
19 > 0 and Y0 = 3

19 > 0. The graph of the solution
in Figure 2 shows that Y (t) becomes zero at some T , which corresponds to

limt→T y(t) = ∞.

1 2 3 4 5
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Figure 2: A solution of the system (3.2) exiting the first quadrant of the

XY -plane (the motion is from right to left)

4 Explosive predator-prey model with periodic co-

efficients

We now consider a periodic perturbation of the explosive predator-prey

model

x′ = x2
(

b+β(t)
y − 1

)

(4.1)

y′ = −y2
(

d+δ(t)
x − 1

)

,

with small continuous functions β(t) and δ(t) of period p, so that β(t+p) =
β(t) and δ(t + p) = δ(t) for all t. (We make no assumptions on the sign of

β(t) and δ(t).) The linear system for X = 1
x and Y = 1

y

X ′ = − (b + β(t))Y + 1(4.2)

Y ′ = (d + δ(t))X − 1

has p-periodic coefficients. Let F (t) be the normalized fundamental solution
matrix (with F (0) = I , the identity matrix) of the corresponding homoge-

neous system

X ′ = − (b + β(t))Y(4.3)

Y ′ = (d + δ(t))X .
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For small β(t) and δ(t), F (t) is close for t ∈ [0, p] to the normalized fun-

damental solution matrix F0(t) =





cos
√

bd t −
√

b
d sin

√
bd t

√

d
b sin

√
bd t cos

√
bd t



 of the

unperturbed system

X ′ = −bY(4.4)

Y ′ = dX .

By the continuous dependence of eigenvalues on the coefficients of the ma-

trix, the Floquet multipliers of (4.3), i.e., the eigenvalues of F (p) are close
to the eigenvalues ρ1 and ρ2 of F0(p). Clearly,

ρ1ρ2 = 1 = detF0(p)(4.5)

ρ1 + ρ2 = 2 cos
√

bd p = traceF0(p) .

Theorem 4.1 Assume that
√

bdp 6= 2πm, for any integer m. Then the

system (4.1) has a unique positive p-periodic solution (xp(t), yp(t)) for suf-
ficiently small β(t) and δ(t).

Proof: Observe that ρi 6= 1, for i = 1, 2. Indeed, if ρ1 = 1, then from the

first line in (4.5) ρ2 = 1, giving a contradiction in the second line in (4.5),
because cos

√
bd p 6= 1. Since β(t) and δ(t) are small, the Floquet multipliers

of the homogeneous problem (4.3) are different from one, so that (4.3) has

no p-periodic solution, and then by a standard result the non-homogeneous
system (4.2) (and hence the original system (4.1)) has a unique p-periodic

solution (Xp(t), Yp(t)). It remains to show that Xp(t) > 0 and Yp(t) > 0 for
all t.

We derive next an a priori bound on Xp(t) and Yp(t), uniform in β(t)

and δ(t), provided that |β(t)| + |δ(t)| ≤ c0, for some constant c0. Indeed,
integrating both equations in (4.2) over (0, t), with t ∈ (0, p), taking absolute

values and then adding the corresponding inequalities, obtain

|Xp(t)|+ |Yp(t)| ≤ a1

∫ t

0
(|Xp(s)|+ |Yp(s)|) ds + a2 ,(4.6)

for some positive constants a1 and a2. The desired bound over (0, p) follows

by the Bellman-Gronwall lemma, see e.g., [2].

We claim that Xp(t) > 0 and Yp(t) > 0 for all t. Setting Xp(t) = ξ(t)+ 1
d

and Yp(t) = η(t) + 1
b in (4.2) obtain

ξ′ = −b η − β(t)Yp(t)(4.7)

η′ = dξ + δ(t)Xp(t) .
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Express
[

ξ(t)
η(t)

]

= F0(t)

[

c1

c2

]

+ F0(t)

∫ t

0
F−1

0 (s)f(s) ds ,

with some constants c1 and c2, and f(t) =

[

−β(t)Yp(t)

δ(t)Xp(t)

]

. Since the vec-

tor

[

ξ(t)

η(t)

]

has period p, and the fundamental solution matrix F0(t) has

period 2πm√
bd

6= p, it follows that c1 = c2 = 0. The vector f(t) is small by

our assumptions, and the a priori estimate (4.6). Both matrices F0(t) and

F−1
0 (s) have bounded entries. Then the vector

[

ξ(t)
η(t)

]

is small, so that the

trajectory (Xp(t), Yp(t)) remains near the point
(

1
d , 1

b

)

, and hence it stays

in the first quadrant for all t. ♦

5 Multiplicity of solutions for a class of periodic

equations

The transformation u(t) = 1
x(t) of the preceding sections turns out to be

useful for a class of first order equations with periodic coefficients. V.A.

Pliss [5] considered what he called the Abel equation:

x′(t) = a0(t)x
3 + a1(t)x

2 + a2(t)x + a3(t) .(5.1)

Assuming that the given functions ai(t), 0 ≤ i ≤ 3, are of period p, and a0(t)
is either positive or negative for all t, he proved that the equation (5.1) has

at most three p-periodic solutions. The proof involved a clever combination
of the equations that the inverses of solutions satisfy.

What if one changes the a0(t)x
3 term to a0(t)x

2n+1? In case it is a0(t)x
5,

the method of V.A. Pliss [5] still gives the same result with a little extra

effort. For higher powers things get more involved, and in fact existence of
at most three p-periodic solutions was proved by another elegant method
in A.A. Panov [4]. It turns out that the following more general result was

already known.

Theorem 5.1 For the equation

x′(t) = f(t, x)(5.2)
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assume that the function f(x, t) is continuous and has three continuous

derivatives in x, and also for some p > 0 and all real t and x one has

f(t + p, x) = f(t, x) ,(5.3)

fxxx(t, x) > 0 (or the opposite inequality holds) .(5.4)

Then the equation (5.2) has at most three p-periodic solutions.

This theorem follows from a more general result of A. Sandqvist and

K.M. Andersen [6]. They considered the equation (5.2) on the interval (0, p)
and called a solution to be closed if x(p) = x(0). Assuming the condition
(5.4) holds, they showed that the problem (5.2) has at most three closed

solutions, which implies the Theorem 5.1.

A simpler proof of the Theorem 5.1 was found in P. Korman and T.

Ouyang [3]. We now simplify the presentation in that paper. The proof will
follow from the following three simple lemmas.

Lemma 5.1 Assume the condition (5.4) holds and f(t, 0) = 0 for all t ∈ R.

Then for all t ∈ R and x > 0 one has

Q(t, x) ≡ 2f(t, x)− 2xfx(t, x) + x2fxx(t, x) > 0 .

Proof: Calculate Q(t, 0) = 0 and Qx(t, x) = x2fxxx(t, x) > 0. ♦

Lemma 5.2 For the problem

y′(t) = g(t, y)(5.5)

assume that for some p > 0 and all t ∈ R and y > 0 one has

g(t + p, y) = g(t, y) ,

gyy(t, y) > 0 (or the opposite inequality holds) .

Then the equation (5.5) has at most two positive p-periodic solutions.

The proof is standard, and it can be found in e.g., P. Korman [2], p. 245.
The next lemma is crucial.

Lemma 5.3 For the problem (5.2) assume that f(t, 0) = 0 for all t ∈ R,

and the conditions (5.3),(5.4) hold for all t ∈ R and x > 0. Then the
equation (5.2) has at most two positive p-periodic solutions.
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Proof: Set x = 1
y in (5.2). Then

−y′ = y2f(t,
1

y
) ≡ g(t, y).(5.6)

By Lemma 5.1 for any y > 0

gyy = 2f(t,
1

y
)−2

y
fx(t,

1

y
)+

1

y2
fxx(t,

1

y
) = 2f(t, x)−2xfx(t, x)+x2fxx(t, x) > 0 .

By Lemma 5.2 the equation (5.6) has at most two positive p-periodic solu-

tions, and the same is true for (5.2). ♦

Turning to the proof of the Theorem 5.1, observe that different solutions
of (5.2) do not intersect by the uniqueness theorem. If the equation (5.2) has

four p-periodic solutions, let ξ(t) be the smallest one. Then z(t) = x(t)−ξ(t)
satisfies

z′ = f(t, z + ξ) − f(t, ξ) ≡ g(t, z) ,(5.7)

and the equation (5.7) has three positive p-periodic solutions. However,
g(t, 0) = 0 and gzzz(t, z) > 0 for z > 0, contradicting the Lemma 5.3.

Equations of the type (5.2) occur often in ecological problems, see e.g.,
S. Ahmad and A.C. Lazer [1], or P. Korman [2].
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