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We give an exact multiplicity result for a class of boundary-value problems for
cubic nonlinearities with an explicit x dependence. Moreover, we provide a detailed
analysis of global solution curves. @ 1995 Academic Press, Inc.

1. INTRODUCTION

We present exact multiplicity results and a detailed study of the solution
branches for the Dirichlet problem

'+ Au(u — a(x))(b(x) —u) =0 on(—-1,1), u(-1)=u(l)=0. (1.1)

Here A is a positive parameter and the functions a(x) and b(x) are assumed
to be even with 0 < a(x) < b(x) for all x. Under additional assumptions
on a(x) and b(x) we prove that there is a critical Ay > 0 so that the problem
(1.1) has either zero, one, or two nontrivial solutions depending on whether
Ais smaller, equal to, or larger than Ay. Note that by the maximum principle
any nontrivial solution is in fact positive. Moreover, we show that all solu-
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tions of (1.1) lie on a single smooth solution curve, and study behavior of
both branches of this curve as A — «. We remark that for constant a and
b the multiplicity result is known; see S.-H. Wang [11], where one can find
references to earlier papers, and [5], where a simpler proof is given.

We use techniques from bifurcation theory, particularly a theorem of
M. G. Crandall and P. H. Rabinowitz [1], which is stated in the next section.
Our assumptions can be roughly summarized as follows. We assume that
the even functions a(x) and b(x) for x positive satisfy a’(x) > 0, b'(x) <
0, b"(x) < 0, d"(x) + b"(x) =0,a + b’ <0, (ab)’ > 0 and that the
variations of a(x) and b(x) are not large relative to b — a. There are many
functions satisfying these conditions, and the result should be contrasted
with a nontrivial case of constant a and b.

2. PRELIMINARY RESULTS
We consider boundary-value problems of the type
W+ flx,u) =0 forx € (-1,1), u(-1) =u(l) =0. (2.1)

We shall need the following lemma from P. Korman and T. Ouyang [3].
(Except for the last assertion, this lemma is also included in B. Gidas,
W.-M. Ni, and L. Nirenberg [2].)

LEMMA 2.1.  Assume that the function f € C'([0, 1] X R.) is such that

f(=x,u) = f(x,u)  foralxe (—1,1)and u >0, 2.2)
xfx,u) <0  forx € (=1, I\0} and u > 0. 2.3)
Then any positive solution of (2.1) is an even function with u'(x) < 0 on

(0, 1). Moreover any two positive solutions of (2.1) cannot intersect on (—1,
1) (and hence they are strictly ordered on (-1, 1)).

Remark 2.2. If in addition f(x, 0) = 0 for all x € (-1, 1), then u'(x) <
0 on (0, 1]. Indeed, since u = 0 is also a solution of (2.1), the possibility that
u'(1) = 0is excluded by the uniqueness theorem for initial-value problems.
A linearized problem corresponding to (2.1),

w' + f.x, )w =0 on(—1,1), w(-1) =w(1) =0, (24)

will be used often (w = w(x)). Clearly w(x) is an even function (since
w(—x) is also a solution of (2.4)).

LemMma 2.3.  Under the conditions (2.2) and (2.3), if a nontrivial solution
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of (2.4) exists, it does not change sign on (—1, 1), i.e., we can choose it so
that w(x) > 0 on (—1, 1).

Proof. Assume that w(x) changes sign on (—1, 1). Assume that w(x)
has a zero on (-1, 0], and let £ € (—1, 0] be the smallest root of w(x) (the
case when w(x) has a zero on (0, 1) is similar).

Differentiating (2.1), we obtain

uy + fou, + f, =0. 2.5)

Lemma 2.1 implies that u'(x) > 0 on (—1, 0). Next, we multiply Eq. (2.4)
by ' and Eq. (2.5) by w, integrate, and subtract. Obtain

w@wqa—qumq—n—j:ﬂwazo. (2.6)

Since all three terms on the left are negative, we have a contradiction.

The following lemma is needed to verify the condition F, & R(F,) of the
Crandall-Rabinowitz theorem, and to compute the direction of bifurcation.
It generalizes Lemma 2.1 in [5].

LEMMA 2.4. Let u(x) be a solution of (2.1) and assume there exists a
nontrivial solution w(x) of (2.4), and let all conditions of Lemma 2.1 be
satisfied. Then

ﬁﬂxmmnw>a @2.7)
Proof. Multiply Eq. (2.4) by u, and Eq. (2.5) by w and subtract. Obtain
(w'w' — wu") = wf,. <0 for all x € (0, 1).
Since the function u'w’ — wu" is decreasing
u'(xyw' (x) - wu'(x) > u'(1w'(1) =0 forallx € (0,1). (2.8)
Integrating (2.8) yields

0< j; (u'w' —wu"ydx= -2 f:) wu" dx =2 f;f(x, ww dx.

A word on notation. We shall denote derivatives of u(x) by either u’(x)
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or u, and mix both notations to make our proofs more transparent (1, will
denote the second derivative of u(x), when convenient).
Next we list some background results. The following result is standard.

LemMA 2.5. Let y(x) and Y(x) be respectively super- and subsolutions
of (2.1), and y(x) = ¥(x) on (—1, 1), with y(x) # Y(x); then y(x) > (x)
on (—1,1).

We shall often use this lemma with either y(x) or y{x) or both as solutions
of (2.1). The following lemma is a consequence of the first.

LeEmMA 2.6.  Let u(x) be a nontrivial solution of (2.1) with f(x, 0) = 0.
Ifu(x) =0o0n (-1,1), then u > 0 on (-1, 1).

Next we state a bifurcation theorem of Crandall and Rabinowitz [1].

TueoreM 2.1 [1).  Let X and Y be Banach spaces. Let (A, X) € R X X
and let F be a continuously differentiable mapping of an open neighborhood
of (A, %) into Y. Let the null-space N(F,(X, X)) = span{x,} be one-dimensional
and codim R(F,(X,%)) = 1. Let F,(A,X) & R(F{(A,X)). If Z is a complement
of span{x,} in X, then the solutions of F(A, x) = F(A,X) near (A, X) form a
curve (A(s), x(5)) = (A + 7(5),X + sx0 + 2(5)), where s — (7(s), z(5)) €
R X Z is a continuously differentiable function near s = 0 and ™0) =
7(0) = z(0) = z2’(0) = 0.

3. MurTtipLicity RESULTS FOR CuBic EQUATIONS wiTH VARIABLE RooTs

We study exact multiplicity results for a class of Dirichlet problems with
cubic nonlinearities,

W+ Au(u — a(x))(b(x) —u) =0 forxe (-1, 1) 3.1
u(=1) = u(1) = 0, 3.2)

depending on a parameter A > 0. We assume that

a(x) and b(x) are even functions of class C*(—1, 1) N C[—1, 1], with
0 <a(x) < b(x) forallx € (- 1, 1). (3.3)
We shall denote f(x, u) = u(u — a(x))(b(x) — u) = —u® + a(x)i® — B(x)u,
with @ = a + b, B = ab. We assume that the even functions a(x) and B(x)

satisfy the conditions

a'(x) <0 for x € (0, 1). 34
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B'(x) >0 for x € (0, 1). 3.5)

By Lemma 2.1 any positive solution of (3.1), (3.2) is an even function with
u'(x) <Oforx>0.
We shall also need the linearization of (3.1),

w” + A (x, w)w = 0 on (-1, 1), w(-1) = w(l) = 0. 3.6)

By Lemma 2.3 we can assume that w(x) > 0 on (-1, 1).

Since max b(x) is a supersolution of (3.1)-(3.2) it follows that if this
problem has positive solutions, it has a maximal solution. We continue the
curve of maximal solutions for decreasing A using the implicit function
theorem. When the implicit function theorem does not apply, i.e., the
problem (3.6) has a positive solution, we can use the Crandall-Rabinowitz
theorem. Indeed, the crucial condition of Theorem 2.1, F, € R(F,), follows
by application of Lemmas 2.3 and 2.4, Once we show that only turns “to
the right” are possible, we will obtain an exact multiplicity result. At a
turning point (Ay, 4o) we have A’'(0) = 0 and

I3 i ww(x) dx

MO =~ f(l) flx, ww(x) dx .

(3.7)

To prove that A”(0) > 0 we need, in view of Lemma 2.4, to show that
j | fuw dx <0, (3.8)

Differentiate Eq. (3.1) twice,
uy + Afyu, + Af, =0, 3.9
Wy + Muttey + At + 2Af 1, + Af, = 0. (3.10)

Multiply Eq. (3.10) by w, and subtract from it Eq. (3.6) multiplied by u,,,
and then integrate over (0, 1),

wu;xl(l) - uxxw'l(l) + A J-:)fuuujzcw dx
(3.11)
A [ Qfucthy + fhw dx = 0.
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We have u”(0) = 0, since u"(x) is odd, and u"(1) = —Af(1, u(l)) =
—-Af(1,0) = 0. Hence all the boundary terms in (3.12) vanish and then

f (‘) Fuadi2w dx + f (‘) Qf wett + fu)w dx = 0. (3.12)

As in [5] our goal will be to show that the second integral in (3.12), I =
f Qf.u, + fo)w dx, is positive. This will imply that

f " fatiw dx <0, (3.13)
and the last inequality will be used to prove (3.8).

LeMMA 3.1.  In addition to the conditions (3.4)—-(3.5) assume that

"(x) =0  forallx € (0, 1), (3.14)

a(x) — Vo (x) — 38(x) < a(l)  forallx € (0, 1), (3.15)

a(x) + Vo —38(x)  forall x € (0, 1). (3.16)
3

1
‘2‘ a(O) <

Then the solution of (3.1)-(3.2) intersects each of the functions }a(x) and
da(x) exactly once on (0, 1).

Remark. Itis interesting to examine the conditions (3.15) and (3.16) in
the case when a(x) and b(x) are constant functions. The inequality (3.15)
then holds trivially, while (3.16) is equivalent to (b — a)* > 0.

Proof. We begin by showing that u(x) must intersect the function 3a(x)
(and hence also 3a(x)) at least once. Indeed, assuming otherwise we would
have u(x) < a(x) for all x € (0, 1), and then

fu(x,u)—i(iclz—lll=u(—2u+a)>0 forallx € (—1,1).

Comparing now the problems (3.1)-(3.2) and (3.6), we see, in view of
Sturm’s comparison theorem, that it is impossible for both of them to have
positive solutions, a contradiction.

To see that u(x) and $a(x) intersect exactly once on (0, 1), we introduce
p(x) = da(x) — u. Compute

P(x) = da” — (W) =" + A + Afe. (3.17)

The first and third terms on the right are negative by our assumptions. Let
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x; and x, denote respectively the smallest and largest points of intersection
of $a(x) and u(x) on (0, 1). On (x;, x7)

bo(l) < sa(x:) < u(x) < to(x)) < 3a(0).

Denote by u; and u, the roots of f,, u;, = (a(x) = Va?(x) — 38(x))/3. The
function f, is positive between its roots. Conditions (3.15) and (3.16) imply
that (3ae(1), 3a(0)) C (1, u) for all x € (xq, x;). Hence the second term in
(3.17) is also negative, and we conclude that

p(x) <0 for x € (x;, x2). (3.18)

Note that p(1) = 3a(1) > 0. Assume now that there is exactly one zero of
p(x) in (xy, x3), i.e., p(£€) = 0 and £ € (xq, x,). Then somewhere on (x,, £)
we would have p” < 0, and somewhere on (£, x,): p” > 0. But this contradicts
the fact that p”(x) is a decreasing function, in view of (3.18). If p(x) has
more than one zero in (x;, x2), one obtains a similar contradiction. The
final possibility is that p(x) has no more zeroes inside (x,, x,). The function
p(x) must change signs at x, and then at x;, since the other possibilities
lead to the same contradiction as that above. Hence p(x) > 0 on (0, x,),
i.e., u(x) < ja(x) < a(0) on (0, x;). Hence f, > 0 for x € (0, x,), and so
p” < 0on (0, x3). Also, p’(0) = 0. Somewhere on (0, x,), p(x) is concave,
while somewhere on (x;, x;) it is convex, which again leads to the same
contradiction.

To show that $a(x) and u(x) intersect exactly once, we denote p(x) =
da(x) — u(x) and proceed similarly.

LemMa 3.2.  Under the conditions (3.4)-(3.5) and (3.14)—(3.16) the in-
equality (3.13) holds.

Proof. Integrating by parts, we express

1 d 1 1 1 '
1=j0 (fuxu,+3;fx)wdx=fo Fult wdx—f0 fw' dx, (3.19)

using the fact that f,w|s = 0 (because f, is odd). Since f,, = 2a'u — £,
f. = a'u? — B'u, we express

I= f:) a’(2uu'w _ uzwr) dx — J';B:(ulw _ uw') dx = Il + 12' (320)

We claim that
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L= j; o' (Quu'w — ww’) dx > 0. (321)

If we denote J; = 2uu'w — uPw’, it suffices to show that J; < 0. Note that
Ji(0)=5/(1)=0. (3.22)
Differentiate J; and use (3.1) and (3.6) to express the second derivatives

[ /2 ” . 2.,
Ji=2u"w+ 2uu'w — u*w (3.23)

= 2u"w + Aw(—ut + Bu?).

It follows from the previous lemma that the graphs of u(x) and VB(x)
intersect at least once, and since B(x) is increasing, they intersect exactly
once. Let ¢ be the point where u(¢) = VB(£€). Then from (3.23) we see
that J{ > 0 and (¢ 1), and hence by (3.22), Ji(x) < 0 and [§ 1), and
in particular

1(® < 0. (3.24)

We now differentiate Ji/w using (3.23), and again expressing u” from (3.1),

<JT§) = Aw'u(68 — 4au). (3:25)

On the interval (0, £) we have u(x) > VB(x), and then
dau > 4aVB = 4(a + b)Vab > 6ab = 68,

which implies in view of Lemma 2.1 that the right hand side of (3.25) is
positive. But then

w—w'
—1——‘172—'—>0 on (0, &).

Applying the maximum principle on (0, £), and using (3.22) and (3.24),
we conclude that J;(x) < 0 on (0, 1), and hence I, > 0.
We now turn to the integral /,, denoting J, = u'w — uw’. Clearly,
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J2(0) = S (1) = 0. (3.26)
Differentiate J,(x), using (3.1) and (3.6),
Jy=u'w — uw” = Mew(—2u + a).

By Lemma 3.1 we know that J; is positive near x = 1, negative near x =
0, and vanishes only once. Together with (3.26) this implies that Jo(x) <0
on (0, 1), which finishes the proof of the lemma.

LEMMA 3.3.  Under the conditions (3.4)~(3.5) the functions w? and u?
intersect exactly once on (0, 1).

Proof. 1t suffices to prove that w(x) and —u, intersect exactly once.
Recall that our conditions imply that f, < 0 for x € (0, 1) and « > 0.
It follows that —u, is a supersolution of (3.6). Assuming that —u, and
w(x) intersect more than once, we conclude existence of two intersection
points x; < x,, so that —u, < w(x) on (x;, x;) (since —u,(0) < w(0) and
—u (1) > w(l)). Since w(x) is solution of a linear equation (3.6), any
multiple of w(x) is also a solution of (3.6). For 0 < y < 1 sufficiently small
yw(x) < —u, on (x1, x3). It follows that there is a 0 < y, < 1, such that
yow(x) = —u, on (x, x;) and yw(X) = —u,(x) for some ¥ € (x;, x,). But
that is impossible in view of Lemma 2.5.

Next we remark that the conditions (3.4)-(3.5) imply that

a(x)y>0 and b'(x) <0 for x > 0. (3.27)
Indeed, using (3.4) in (3.5) we conclude that
O0<ab+ab <b'(a->b),
which implies that 5" < (. But then from (3.5)
a’b > —ab’ > 0,

and so a' > 0.
We shall also assume that

b'(x) <0  forx € (1, 1). (3.28)

We show next that this condition implies that any solution of (3.1)-(3.2)
satisfies
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u(x) < b(x) forall x € (-1, 1). (3.29)
Indeed, denoting v = b(x) — u, we express

V"= v+ (b—-viib—-—a—-viy=20 on (—1,1),

(3.30)
v(x1l) = b(*x1) > 0.

If (3.29) were violated, we would obtain a contradiction in (3.30) at the

point of a non-positive minimum of v(x). Also, we note that any nontrivial

solution of (3.1)-(3.2) is positive by the maximum principle.

We now state our main result.

THEOREM 3.1. For the problem (3.1)-(3.2) assume that the conditions
(3.4)—(3.5), (3.14)—(3.16), and (3.28) are satisfied. Then only two possibilities
can occur:

(A) The problem (3.1)—(3.2) has no nontrivial solution for any A > 0.

(B) Thereis a Ay > 0 so that the problem (3.1)-(3.2) has either zero,
one, or two solutions depending on whether A < Ay, A = Ay, 0r A > Ay,
respectively. Moreover, all solutions are even functions and lie on a single
C-like curve. Solutions on the lower branch tend to zero over (—1, 1)\{0},
and moreover the maximum value of solutions on the lower branch decreases
monotonously.

Proof. 1f there is a nontrivial (positive) solution of (3.1)-(3.2) then, as
described previously, we continue this solution for decreasing A until a
turning point (Ag, Ug) is reached, i.e., there exists a solution w(x) > 0 of (3.6).
At this point the Crandall-Rabinowitz theorem applies. Indeed, define a
map F: C3(—1,1) X R, — C%—1, 1) by F(A, u) = u” + Af(x, u). Then the
crucial condition F, & R(F,) is equivalent to checking that the problem

2"+ Aofulx, ug)z = f(x, up) on(—L1),z(-1)=2z(1)=0

has no solution. Since by Lemma 2.4, fi] Sflx, ug)w dx # 0, this is clearly
the case by the Fredholm alternative.

Applying the Crandall-Rabinowitz theorem, we conclude that (Aq, 1)
is a bifurcation point, near which the solutions of (3.1)~(3.2) form a curve
(Ao + 7(5), 4y + sw + z(s)) with s near s = 0, and n0) = 7(0) = 0,
z(0) = z’(0) = 0. We claim that

Sy fud Wi dx [ fuw? dx
I flx ugyw dx [, fwdx

N(0) = = (3.31)
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For completeness we include next the derivation of (3.31). Differentiate
(3.1) in s twice, set s = 0, and use the fact that 7(0) = 0 and u,},.p = w(x),

Wl + AofuW? + Aofoug + 7(0)f = 0. (3.32)

Multiplying (3.32) by w and (3.6) by u,,, integrating, and subtracting, we
obtain (3.31).
By Lemma 2.4 the denominator in (3.31) is positive. We claim that

f . fu® dx <0, (3.33)

Since f,, = —6u + 2e, it follows by Lemma 3.1 that there is a point x; €
(0, 1), such that f,, < 0 on (0, xy) and f,, > 0 on (xy, 1). By Lemma 3.3
the point of intersection of w? and w2 is also unique. By scaling w(x) we
can make w? and u? to intersect also at x,. But then by Lemma 3.2

1 !
JO fu? dx < JO fuwti2dx <0

(fuu 1s positive where w? < u? and negative where the opposite inequality
holds).

We conclude that A"(0) > 0, and so at any bifurcation point a “turn to the
right’” occurs in the (A, «) “plane.” By the Crandall-Rabinowitz theorem we
have two solution branches in the neighborhood of (A, 1) which we denote
by u.(x, A) and u_(x, A), and u_(x, A) < u.(x, A) for A close to A¢ and all
x € (-1, 1). Moreover, u.(x, A) is increasing in A for A close to Ay, and
u_(x, A) is similarly decreasing in A.

To recapitulate, we followed a curve of nontrivial solutions for decreasing
A until a turning point was reached, and a ““turn to the right” in the (A, u)
“plane” occurred. Since at any critical solution (A, u) the Crandall-
Rabinowitz theorem applies with a turn to the right, it follows that there
are no more turning points on the branches u.(x, A), and hence both
branches can be continued for all A > A, giving us a parabola-like curve
of solutions.

Next we justify our claims about the lower branch u_(x, A). We claim
that u(0, A} is decreasing on the lower branch. We adapt a similar argument
from [5]. We begin by noting that for any x; € (0, 1),

9 E”’) FOe(u), ) du = % i) >0, (3.34)
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where x = x(u) is the inverse of the solution u(x) (just multiply (3.1) by
«' and integrate). Differentiate (3.1) in A, denoting (3/9A)u_(x, A) = u,,

uy + Ay + fx,u) =0 on(—1,1), uy(—1) =u,(1) = 0. (3.35)

By the Crandall-Rabinowitz theorem we know that u,(x, A) < 0 for
A close to Ay and all x € (—1, 1). Assuming the claim to be false, let
A; be the smallest A where u,(0, A;) = 0. From (3.34) we conclude that
(O, u(0, A))) > 0, and then we see from (3.35) that u}(0, A;) <O. This
implies that x = 0 is not a point of minimum of «,(x, A,), and then we may
assume that u,(x, A;) is negative for x positive and close to zero (the
other case is similar). Let 0 < x; = 1 be the zero of u,(x, A,) adjacent to
x =0, 1ie.,

w)(x1, Ay) = 0. (3.36)

Multiply (3.35) by u, and (3.9) by u,, integrate from O to x,, and subtract
(hat, — ) [51 + f““" foxu), uydu = A [ fandx =0, (3.37)
A x x4rJ{0 «(0) ) 0 7 A . .

The first term in (3.37) is equal to u;(x,)u’(x;) < 0, the second is negative
by (3.34), and the third is negative by our assumptions. The resulting
contradiction proves that u_(0, A) is decreasing.

We show next that lim,..u-(x, A) = 0 for x € (=1, 1)\{0}. Let I, =
{x:u(x) > a(x)}. We claim that I, — {0} as A — . Indeed, assume that
I,, D (—c, c) for some ¢ > 0 and some sequence A, — 0. Since the shapes
of u(x) and a(x) are different, we would have u(x, A,) > a(x) + € over
(0, ¢ — &), and then u"(x, A,) would tend to —c over a fixed interval,
which is impossible for a bounded solution. One shows similarly that
lim,ofx:e < u(x) < a(x)} = & for any € > 0, which shows that u_(x, A)
tends to zero for x # (.

We show next that the problem (3.1)-(3.2) has no other solutions. Indeed,
by the same analysis, any other solution would have to lie on a similar
parabola-like curve of solutions, with a lower branch v_(x, A) tending to
zero. Arguing as in 5], we obtain a contradiction, which completes the
proof of the theorem.

It is easy to give a condition ensuring existence of a positive solution of
(3.1)-(3.2) for some A > 0, thus obtaining an exact muitiplicity result. With
f(x, u) denoting, as before, the nonlinearity in (3.1), define F(x, u) =

J, fix, z) dz.
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THEOREM 3.2. In addition to the conditions of Theorem 3.1 assume that
j | F(x,b(x)) dx >0,

Then the possibility (B) of Theorem 3.1 holds. If moreover
F(x, b(x)) > 0 forall x € (-1, 1), (3.38)

then the upper branch tends to b(x) over (—1, 1) as A — .

Proof. Solutions of (3.1)-{3.2) are critical points in H}(—1,1) of the
functional

Jw = B w’ = AF(x, u)] du.

By modifying the functxon b(x) near *1 we obtain a function ue(x) €
H{(—1,1), such that f F(x, uy(x)) dx > 0. But then J(uy) < 0 for A
sufficiently large. It follows that the functional J has a negative minimum
which gives a nontrivial solution of (3.1)-(3.2) and rules out the possibility
(A) of Theorem 3.1.

Turning to the upper branch, we know that it increases in A near Ay, and
by the same argument that we used for the lower branch, it follows that
for u(x, A) = u.(x, A) we have u,(0, A) > 0 for all A > Ay,. Assume that
u.(x, A) does not converge to b(x) for x € (—1, 1) as A — . Arguing as
in Theorem 3.1, we conclude existence of 0 < a < 1, such that u.(x, A)
converges to b(x) over (—a, @) and to zero over (—1, I)\(—a, ). In view
of (3.38), for large A we would then have J(uo(x)) < J(u.(x, A)), with the
function uy(x) as defined above. Minimizing J(u) over Hi(—1, 1), we would
then obtain a nontrivial solution of (3.1)~(3.2) which is different from u.(x,
A). But this is impossible, since we have exactly two nontrivial solutions,
completing the proof of the theorem.

Remark. 1If the condition (3.38) is violated, then u*(x, A) may indeed
converge to zero in a neighborhood of x = *1, as the following numerical
example indicates. We took a = 2, and b(x) = 4.9 for |x] = 0.1 and
b(x) = 2.5 for 0.1 < |x| < 1. The computed solution was converging to
zero over (=1, 1\[-0.1, 0.1] as A was increasing, and to b = 4.9 over
[~0.1, 0.1].

ExAMpPLE. Leta(x) = A + Bx?, b(x) = C — Dx? with positive constants
A, B, C,and D. Then o' = 2(B — D)x < 0 for x > 0, provided we assume
D > B, and 8’ = 2x(BC — AD) — 4BDx*® > 0 for x > 0, if we assume
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> (1/B)[AD +2BD]. Assuming that B, D are not large compared to
— A (so that (3.15) and (3.16) are satisfied), we see that Theorem 3.1

applies. If additionally C — 24 > 2B + D then F(x, b(x)) > 0 for all x €
(—1, 1), and so Theorem 3.2 also applies.

2.
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