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Abstract

We consider positive solutions for a class of non-autonomous equa-
tions on a unit ball in Rn

∆u + f(|x|, u) = 0 for |x| < 1, u = 0 when |x| = 1.

We assume that fr(r, u) ≤ 0, so that in view of [8] all positive solutions
are radially symmetric. If f(|x|, u) = a(|x|)g(u), we obtain several
exact multiplicity results for a class of convex-concave g(u), with g(0) =
0. In another direction, we obtain uniqueness and non-degeneracy
of positive solutions for a class of equations, modeled on f(|x|, u) =
−a(|x|)u + b(|x|)up, with 1 < p < n+2

n−2
.
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1 Introduction

We study uniqueness and exact multiplicity of positive solutions for the
problem

∆u + f(|x|, u) = 0, for |x| < 1, u = 0 if |x| = 1,(1.1)

with nonlinearity depending explicitly on x. Denoting r = |x|, we assume
that the function f(r, u) is differentiable, and

fr(r, u) ≤ 0, for all r ∈ [0, 1], and u > 0.(1.2)
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In view of the classical results of B. Gidas, W.-M. Ni and L. Nirenberg

[8] positive solutions of (1.1) are radially symmetric, with u′(r) < 0 for all
r ∈ (0, 1), and hence they satisfy

u′′ +
n − 1

r
u′ + f(r, u) = 0, u′(0) = 0, u(1) = 0.(1.3)

In case f = f(u), i.e. without explicit r dependence, exact multiplicity of
positive solutions have been studied extensively in recent years, starting with

P. Korman, Y. Li and T. Ouyang [12], and continued by T. Ouyang and J.
Shi [17], [18] (and in a number of other papers by various authors). In [12]

a general scheme for proving such results was developed. It involves several
steps: proving positivity of solutions to linearized equation, studying the
direction of bifurcation, showing uniqueness of the solution curve, etc. Here

we follow the same approach, however when one allows the r-dependence,
i.e. f = f(r, u), all of the above mentioned steps become much more com-

plicated. For example, it appears impossible to follow the steps in [12] to
study the direction of bifurcation. We establish exact multiplicity results

for a subclass of (1.3), depending on a positive parameter λ

u′′ +
n − 1

r
u′ + λa(r)g(u) = 0, u′(0) = 0, u(1) = 0,(1.4)

with g(0) = 0, g(u) > 0 for u > 0, and g(u) convex-concave, i.e. convex

for small u > 0, and concave after a certain point. As for a(r), we assume
it to be positive, non-increasing, and its derivative is not too large, relative
to a(r). We can treat the general problem (1.3) as well, but the conditions

become messy.

There are several possibilities for positive convex-concave g(u). The

case of g′(u) > 0 and limu→∞
g(u)
u

= 0, e.g. g(u) = u2

1+u2 , is covered by the
Theorem 6.1. Assume first that g′(0) = 0. We prove existence of a critical

λ0 > 0, so that for λ < λ0 the problem (1.4) has no positive solutions, it has
exactly one positive solution at λ = λ0, and exactly two positive solutions

for λ > λ0, see Figure 1. Moreover, we show that all solutions lie on a single
smooth solution curve, and study monotonicity of its branches. In case

g′(0) > 0, the situation is similar, except that the lower branch enters zero
at λ1

g′(0) , where λ1 is the principal eigenvalue of ∆u+λa(r)u = 0 on the unit

ball. Another possibility is that g′(u) > 0 and 0 < limu→∞
g(u)

u < ∞, e.g.

g(u) = u3

1+u2 . Here we prove uniqueness of solutions, see Figure 2. As in the

previous case, we show that only turns to the right are possible, but since
bifurcation from infinity is supercritical (i.e. toward increasing λ), no turns
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are possible at all. The remaining case is when g(c) = 0 for some c > 0.

In this case we can give a complete result only in the one-dimensional case,
see Figure 3, because of a technical difficulty when proving the direction of

bifurcation.

As we mentioned, we follow the general scheme developed in [12]. One of

our additional tools (used throughout the proofs) involves certain generalized
Wronskians, introduced recently by M. Tang [20], which are some combi-

nations of solutions of (1.3) and of the corresponding linearized problem.
While using generalized Wronskians is equivalent to using test functions, as
in [12], [17], [18], they do appear to shorten the proofs somewhat.

In another direction we use the same tools to extend recent non-degeneracy
and uniquess results of A. Aftalion and F. Pacella [2], which they proved for

a class of p-Laplace equations with f modelled on f(r, u) = −a(r)u+b(r)uq.
In case of p = 2 our approach appears to be easier, and we also consider

a more general model problem. Previous works in this direction include
E. Yanagida [21], Adimurthi and S.L. Yadava [1], and M. Chaves and J.

Garćıa-Azorero [4].

-
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Figure 1 (See Theorem 6.1)

λ0

We recall the Crandall-Rabinowitz bifurcation theorem [5], which is one
of our main tools.
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Theorem 1.1 [5] Let X and Y be Banach spaces. Let (λ, x) ∈ R×X and let

F be a continuously differentiable mapping of an open neighborhood of (λ, x)
into Y . Let the null-space N (Fx(λ, x)) = span {x0} be one-dimensional and

codim R(Fx(λ, x)) = 1. Let Fλ(λ, x) 6∈ R(Fx(λ, x)). If Z is a complement of
span {x0} in X , then the solutions of F (λ, x) = F (λ, x) near (λ, x) form a

curve (λ(s), x(s)) = (λ+τ(s), x+sx0+z(s)), where s → (τ(s), z(s)) ∈ R×Z
is a continuously differentiable function near s = 0 and τ(0) = τ ′(0) = 0,

z(0) = z′(0) = 0.

-

6
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Figure 2 (See Theorem 6.3)
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Throughout the paper we consider only the classical solutions.

2 Two preliminary results

We consider positive solutions of the problem

u′′ +
n − 1

r
u′ + f(r, u) = 0, u′(0) = 0, u(1) = 0.(2.1)

If u(r) is a solution of (2.1), the following functions come up often, see [12],
[18], [20], and [2]

Q(r) = rn
[

u′(r)
2
+ u(r)f(r, u(r))

]

+ (n − 2)rn−1u′(r)u(r),(2.2)
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P (r) = rn
[

u′(r)
2
+ 2F (r, u(r))

]

+ (n − 2)rn−1u′(r)u(r),(2.3)

where we denote F (r, u) =
∫ u
0 f(r, t) dt. Clearly,

Q(r) = P (r) + rn [u(r)f(r, u(r))− 2F (r, u(r))] .(2.4)

Observe that P (0) = 0, P (1) = u′(1)2 > 0, and

P ′(r) = rn−1 [2nF (r, u(r))− (n − 2)u(r)f(r, u(r))+ 2rFr(r, u(r))]

≡ rn−1I(r).

The following lemma then follows immediately. It gives three sets of condi-
tions for the positivity of P (r).

Lemma 2.1 (i) Assume there is an 0 < r0 ≤ 1, such that I(r) > 0 on the
interval (0, r0). Then P (r) > 0 on (0, r0].

(ii) Assume there is an 0 ≤ r0 < 1, such that I(r) < 0 on the interval
(r0, 1). Then P (r) > 0 on [r0, 1).

(iii) Assume there is an 0 < r0 < 1, such that I(r) > 0 on the interval
(0, r0) and I(r) < 0 on the interval (r0, 1). Then P (r) > 0 on (0, 1].

We will consider a special form of (2.1)

u′′ +
n − 1

r
u′ + a(r)g(u) = 0, u′(0) = 0, u(1) = 0,(2.5)

with a positive and non-increasing function a(r) ∈ C1[0, 1], and g(u) ∈
C2(R̄+), and its corresponding linearized problem

L[w] ≡ w′′ +
n − 1

r
w′ + a(r)g′(u)w = 0, w′(0) = 0, w(1) = 0.(2.6)

The following technical lemma will be used to study the direction of
bifurcation.

Lemma 2.2 Assume that the problem (2.6) admits a positive solution w(r) >
0 on [0, 1), and the function a(r) is non-increasing. Assume that g(u) sat-
isfies

g(0) = 0, and g(u) > 0 for u ∈ (0, c),(2.7)

g′′(u) > 0 when u ∈ (0, α), g′′(u) < 0 when u ∈ (α, c),(2.8)

for some 0 < c ≤ ∞, and α ∈ (0, c), and assume that u(0) > α. Then

∫ 1

0
a(r)g′′(u)u′2wrn−1 dr ≤ 0.(2.9)
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Proof: Consider a function (which was used previously in [20])

θ(r) = rn−1 (

g(u)′w − g(u)w′) .(2.10)

Here, of course, g(u)′ = g′(u)u′. Using the equations (2.5) and (2.6), we
compute

θ′(r) = rn−1g′′(u)u′2w.(2.11)

Integrating (2.11), and using that g(0) = 0,

∫ 1

0
g′′(u)u′2wrn−1 dr = 0.(2.12)

Since g′′(u(r)) is negative for small r and positive near r = 1, with exactly
one sign change, while a(r) is non-increasing, the inequality (2.9) follows.
(The integrand in (2.12) changes sign exactly once, and a(r) is larger where

the integrand is negative.) ♦

-

6
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g(u)
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c
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Figure 3 (See Theorem 6.5, n = 1)

3 Four generalized Wronskians

It turns out that certain expressions involving u(r) and w(r), the solu-
tions of (2.5) and (2.6) respectively, play an important role for most steps
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of our analysis. One such generalized Wronskian, the function θ(r) =

rn−1 (g(u)′w − g(u)w′) has already been defined and used above. We shall
also need the following functions ξ(r) and ζ(r), introduced by M. Tang [20]

(in the case of constant a(r))

ξ(r) = rn−1 (

u′w − uw′) ,

and
ζ(r) = rn [

u′w′ + a(r)g(u)w
]

+ (n − 2)rn−1u′w.

As was observed in M. Tang [20], these functions have the following deriva-

tives
ξ′(r) = a(r)

[

ug′(u)− g(u)
]

wrn−1,(3.1)

ζ ′(r) =
(

2a(r) + ra′(r)
)

g(u)wrn−1.(3.2)

The Wronskian ζ(r) corresponds to the important test function ru′(r), in the

sense that L[−ru′(r)] =
(

2a(r) + ra′(r)
)

g(u). Similarly, ξ(r) corresponds to
the test function u(r), and the Wronskian θ(r) to the test function g(u(r)).

We list another Wronskian η(r) = rn−1w′(r), which corresponds to constant
test functions. Clearly,

η′(r) = −a(r)g′(u)wrn−1.(3.3)

It seems natural to ask: are there any other generalized Wronskians? (I.e.

expressions involving u,u′,w and w′, whose derivatives do not involve u′ and
w′.)

We remark that the generalized Wronskians can be traced back to the

works of P.H. Rabinowitz [19], W.-M. Ni and J. Serrin [16], and B. Franchi,
E. Lanconelli and J. Serrin [7].

4 Positivity for the linearized problem

In this section we give conditions for any non-trivial solution of the linearized
problem (2.6) to be of one sign. Following T. Ouyang and J. Shi [18], for the

function g(u) satisfying the conditions (2.7) and (2.8), we define ρ = α− g(α)
g′(α) .

The following lemma is essentially due to [18], however our proof appears

to be simpler.

Lemma 4.1 Assume that g(u) satisfies the conditions (2.7) and (2.8). Then

any solution of the linearized problem (2.6), w(r), cannot vanish in the re-
gion where u(r) > ρ.
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Proof: We begin by observing that

h(u) ≡ g(u)− g′(u)(u − ρ) > 0, for all u ∈ (ρ, c) \ {α}.(4.1)

Indeed, h(α) = 0 and h′(u) = −g′′(u)(u−ρ), so that h(u) has a minimum at
α (on the interval (ρ, c)), and (4.1) follows. We may assume that w(0) > 0,

and if the lemma is false, let τ be the first root of w(r) in the region where
u(r) > ρ (so that w(r) > 0 on [0, τ)). Define z(r) = ξ(r)+ρη(r), where ξ(r)
and η(r) are the generalized Wronskians, defined above. In view of (3.1)

and (3.3),

z′(r) = −a(r)w(r)
(

g(u)− g′(u)(u− ρ)
)

rn−1 < 0, where u(r) > ρ.

Since z(0) = 0, we conclude that z(τ) < 0, but z(τ) = −τn−1u(τ)w′(τ) +

ρτn−1w′(τ) = −τn−1w′(τ) (u(τ)− ρ) > 0, a contradiction. ♦

We now prove positivity for the linearized problem. Our argument is

inspired by M. Tang [20]. Given a solution u(r) of (2.5), we denote by
r1 ∈ (0, 1) the point where u(r1) = ρ. The following result has a number

of conditions, but we will see later on that these conditions hold for many
natural examples. We denote G(u) =

∫ u
0 g(t) dt.

Theorem 4.1 Assume that g(u) satisfies the conditions (2.7) and (2.8).
Assume that the function I(r) = 2na(r)G(u(r))− (n − 2)u(r)a(r)g(u(r))+
2ra′(r)G(u(r)) satisfies either the condition (i) of Lemma 2.1 with r0 = 1,

or the condition (ii) of Lemma 2.1 with r0 = r1 or the condition (iii) of
Lemma 2.1. Assume that

u(r)g(u(r))− 2G(u(r)) > 0, for r ∈ (r1, 1).(4.2)

Assume that the function K(u) ≡ ug′(u)

g(u)
satisfies

K(u) is decreasing on (0, ρ), K(ρ) > 1,(4.3)

K(u) < K(ρ) for u ∈ (ρ, c).

Assume that the function a(r) is positive, and the function φ(r) ≡ 1 +
1

2

ra′(r)

a(r)
is positive and non-increasing on [0, 1). Then any non-trivial solu-

tion of the linearized problem (2.6) is of one sign, i.e. we may assume that
w(r) > 0 on [0, 1).
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Proof: Using the generalized Wronskians ξ(r) and ζ(r), we define a

function O(r) = 2ξ(r)−γζ(r), with a constant γ > 0 to be selected. In view
of (3.1) and (3.2), we compute

O′(r) = 2a(r)g(u(r))w(r)rn−1 [K(u(r))− 1 − γφ(r)] .(4.4)

Let w(0) > 0, and assuming the theorem to be false, let τ1 ∈ (0, 1) denote the
smallest root of w(r). By Lemma 4.1 u(τ1) < ρ, and then our assumptions
on K(u) imply that

K(u(τ1)) > 1, K(u(r)) < K(u(τ1)) for r ∈ [0, τ1),(4.5)

K(u(r)) > K(u(τ1)) for r ∈ (τ1, 1).

We now fix γ so that the square bracket in (4.4) vanishes at τ1, i.e.

K(u(τ1)) − 1 = γφ(τ1).

Using monotonicity of φ(r) and (4.5), we see that the square bracket in (4.4)
changes sign exactly once on (0, 1), at r = τ1, and K(u(r)) − 1 − γφ(r) is

negative on (0, τ1) and positive on (τ1, 1). If we now denote by τ2 ∈ (τ1, 1]
the second root of w(r), we see from (4.4) that O(r) is a decreasing function

on [0, τ2). Since O(0) = 0, we conclude that

O(r) < 0 for all r ∈ [0, τ2].(4.6)

There are two cases to consider.

Case (i) τ2 = 1. From (4.6) we have O(1) < 0. On the other hand,

O(1) = −γζ(1) = −γu′(1)w′(1) > 0, a contradiction.

Case (ii) τ2 < 1. Since ξ(τ1) > 0, while ξ(τ2) < 0, we can find t ∈ (τ1, τ2),

such that ξ(t) = 0, i.e.
u(t)

w(t)
=

u′(t)

w′(t)
.(4.7)

Since u(τ1) < ρ, we have τ1, t ∈ (r1, 1). (Recall, u(r1) = ρ.) Hence, by
Lemma 2.1, (2.4) and (4.2), we conclude that

Q(t) > 0.(4.8)

In view of (4.6),

ζ(t) = −1

γ
O(t) > 0.
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On the other hand, using (4.7) and (4.8),

ζ(t) =

[

tn
(

u′w′ u

w
+ a(t)g(u)u

)

+ (n − 2)tn−1u′u

]

w

u
= Q(t)

w(t)

u(t)
< 0,

giving us a contradiction. ♦
Remark We say that a function f(u) ∈ C1(u1, u2) belongs to the class K on

(u1, u2) if Kf(u) ≡ uf ′(u)
f(u) is non-increasing on (u1, u2). In the above theorem

both g(u) and a(r) were assumed to be of class K on some intervals, so we

want to say more on this class. Since

Kfg = Kf + Kg,

we see that the class K is closed under the multiplication. Also

Kfr = rKf,

for any r > 0. This implies, in particular, that we can deform any function of

class K to a constant, while staying in the class. Indeed, f1−θ for 0 ≤ θ ≤ 1
gives such a deformation.

5 The direction of bifurcation

We now consider the problem

u′′ +
n − 1

r
u′ + λa(r)g(u) = 0, u′(0) = 0, u(1) = 0,(5.1)

depending on a positive parameter λ. Recall that a solution (λ, u(x)) of

(5.1) is called degenerate if the corresponding linearized problem

L[w] ≡ w′′ +
n − 1

r
w′ + λa(r)g′(u)w = 0, w′(0) = 0, w(1) = 0(5.2)

has a nontrivial solution.

We shall need the following technical lemma. It is only at this step that
we need to assume that g′(u) > 0.

Lemma 5.1 Assume that g(u) > 0 and g′(u) > 0 for all u > 0, and

A(r) ≡ (n − 1)a(r) + (r2a′(r))′ + (n − 1)ra′(r) > 0(5.3)

for all r ∈ [0, 1).

Assume n > 1. Then for any solution of (5.1)

φ(r) ≡ (n − 1)u′(r)− λr2a′(r)g(u(r)) < 0 for all r ∈ (0, 1].
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Proof: Observe that φ(0) = 0, while in view of the equation (5.1), and

our assumptions

φ′(r) + 1
n−1 b(r)φ(r) =(5.4)

−λg(u(r))
[

A(r) + λ
n−1 r4a′2(r)g′(u(r))

]

< 0,

where we have denoted b(r) =
[

(n−1)2

r
+ λr2a′(r)g′(u)

]

. Integrating (5.4),

we conclude the lemma. (The function b(r) is singular at r = 0. However,

the integrating factor for the inequality (5.4) is a continuous function.) ♦

Lemma 5.2 Assume that a(r) and g(u) satisfy the conditions of the The-

orem 4.1, and of Lemma 2.2, and also (5.3). If (λ0, u0) is a degenerate
solution of (5.1), then the Crandall-Rabinowitz Theorem 1.1 applies, and
moreover only turns to the right are possible on the solution curve, i.e.,

λ′′(0) > 0.(5.5)

Proof: We show that the Crandall-Rabinowitz Theorem 1.1 applies at
any degenerate solution (λ0, u0) of (5.1). Let B denote the unit ball |x| < 1

in Rn. We define the function spaces X = {u ∈ C2,α(B̄) | u = 0 on ∂B} and
Y = Cα(B̄). Let F : R+ × X → Y be given by F (λ, u) = ∆u + λa(r)g(u).

Positive solutions of the problem (5.1) are solutions of the operator equation
F (λ, u) = 0. The left hand side of (5.2) is then Fu(λ, u)w, since by [6] any

solution of the linearized equation Fu(λ, u)w = 0 is radially symmetric.

Observe that the null-space of Fu(λ0, u0) is one-dimensional, since it
can be parameterized by w′(1). Since Fu(λ0, u0) is a Fredholm operator of

index zero, it follows that codimR(Fu(λ0, u0)) = 1. Finally, if the condition
Fλ(λ0, u0) /∈ R(Fu(λ0, u0)) was violated, we could find some z ∈ X satisfying

L[z] = a(r)g(u). By the Fredholm alternative this will imply that a(r)g(u)
is orthogonal to w(r), which is impossible since a(r), g(u) and w(r) are

all positive. Applying the Crandall-Rabinowitz theorem, we conclude that
(λ0, u0) is a bifurcation point, near which the solutions of (5.1) form a curve

(λ(s), u0 + sw + z(s)), with λ(0) = λ0, λ′(0) = 0, and z(0) = z′(0) = 0.

It remains to prove (5.5). For this we need the formula

λ′′(0) = −λ0

∫ 1
0 a(r)g′′(u0)w

3rn−1 dr
∫ 1
0 a(r)g(u0)wrn−1 dr

.(5.6)
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We omit the proof of (5.6), since it is similar to [12], and also a more general

formula is derived in the next lemma. Since w(r) > 0, the denominator in
(5.6) is positive. Following the crucial trick from [12], we will show that

∫ 1

0
a(r)g′′(u0)w

3rn−1 dr <

∫ 1

0
a(r)g′′(u0)u

2
0r

wrn−1 dr.(5.7)

Since by Lemma 2.2 the right hand side of (5.7) is non-positive, it will follow
that λ′′(0) > 0.

We begin our proof of (5.7) by differentiating (5.1) (we intentionally mix
two notations for the derivative, and also we write u(r) in place of u0(r))

u′′
r +

n − 1

r
u′

r +λa(r)g′(u)ur =
1

r2

[

(n − 1)u′(r)− λr2a′(r)g(u)
]

< 0,(5.8)

in view of Lemma 5.1, in case n > 1. (In case n = 1 the inequality (5.7)
is proved the same way as in the Theorem 6.5 below.) It is only at this
point that we need this lemma, with its extra conditions. It follows that

−ur is a subsolution of the linearized equation (2.6). We claim that the
functions −ur and w intersect exactly once on (0, 1). (We consider only the

points of intersection where these functions change their order, and ignore
any points where they merely “touch”.) If, on the contrary, these functions

intersect more than once, then there is an interval (r1, r2) ⊂ (0, 1), on which
w(r) < −ur, and w(ri) = −ur(ri), i = 1, 2. We can then find a constant

µ > 1, such that −ur ≤ µw for all r ∈ (r1, r2), and −ur(r0) = µw(r0) for
some r0 ∈ (r1, r2). Since −ur and µw are respectively a subsolution and

solution of the linearized equation (2.6), we obtain a contradiction by the
strong maximum principle.

Let now r̄ be the point where g′′(u0(r)) changes sign (i.e. u(r̄) = α). By

considering µw with a proper constant µ, we may assume that −ur and w
intersect (and change order) at the same point r̄. Then (5.7) follows, since

the integrand on the right is pointwise larger than the one on the left. ♦
We shall need a more general version of our problem (5.1)

u′′ +
n − 1

r
u′ + a(r, µ)g(u) = 0, u′(0) = 0, u(1) = 0,(5.9)

depending on a positive parameter 0 ≤ µ ≤ 1.

Lemma 5.3 Assume that a(r, µ) and g(u) satisfy the conditions of the The-
orem 4.1, and of Lemma 2.2, and also (5.3), for all 0 ≤ µ ≤ 1. Assume
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also that aµ(r, µ) < 0 for all r ∈ [0, 1) and 0 ≤ µ ≤ 1. If (µ0, u0) is a degen-

erate solution of (5.9) then the Crandall-Rabinowitz Theorem 1.1 applies,
and moreover only turns to the right are possible on the solution curve, i.e.,

µ′′(0) < 0.

Proof: Similarly to the previous lemma, we show that the Crandall-
Rabinowitz Theorem 1.1 applies at any degenerate solution (µ0, u0), which

implies that the solution set of (5.9) near that point forms a curve of the
form (µ(s), u0 + sw + z(s)), with µ(0) = λ0, µ′(0) = 0, and z(0) = z′(0) = 0.
To complete the proof, we need a formula for µ′′(0), generalizing (5.6):

µ′′(0) = −
∫ 1
0 a(r, µ0)g

′′(u0)w
3rn−1 dr

∫ 1
0 aµ(r, µ0)g(u0)wrn−1 dr

.(5.10)

To prove (5.10), we differentiate the PDE version of (5.9) twice in s, denoting
for convenience f(r, u, µ) = a(r, µ)g(u),

∆uss + fuuss + fuuu2
s + fµµ′′ + 2fµuµ′us + fµµµ′2 = 0.

Setting here s = 0, and using that µ′(0) = 0 and us|s=0 = w(r), we obtain

∆uss + fuuss + fuuw2 + fµµ′′(0) = 0.(5.11)

Multiplying (5.11) by w, the linearized equation (2.6) by uss, integrating

and subtracting, we conclude (5.10). By the previous lemma, and by our
assumptions, both integrals in (5.10) are negative. ♦

6 Exact multiplicity results

We can now prove our exact multiplicity results. We define g′(∞) = limu→∞
g(u)

u
.

We denote by λ1 > 0 the principal eigenvalue of

u′′ +
n − 1

r
u′ + λa(r)u = 0, u′(0) = 0, u(1) = 0.(6.1)

Theorem 6.1 Assume that a(r)and g(u) satisfy the conditions of the The-
orem 4.1, and the function aµ ≡ a(0)1−µa(r)µ satisfies the condition (5.3),

for all 0 ≤ µ ≤ 1. Assume that g(u) satisfies the conditions (2.7) and (2.8),
with c = ∞, and in addition g′(u) > 0 for all u > 0, and g′(∞) = 0. Assume
first that g′(0) = 0. Then there is a critical λ0 > 0, so that for λ < λ0 the

problem (5.1) has no positive solutions, it has exactly one positive solution
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at λ = λ0, and exactly two positive solutions for λ > λ0. Moreover, all

solutions lie on a single smooth solution curve, which for λ > λ0 has two
ordered branches 0 < u−(r, λ) < u+(r, λ), for all r ∈ [0, 1) and λ > λ0,

with u+(r, λ) strictly monotone increasing in λ, and limλ→∞ u+(r, λ) = ∞
for all r ∈ [0, 1). For the lower branch we have limλ→∞ u−(r, λ) = 0 for all

r ∈ [0, 1). (See Figure 1.) In case when g′(0) > 0, the situation is similar,
except that the lower branch enters zero at λ1

g′(0) (and hence there is exactly

one positive solution for λ > λ1

g′(0)).

Proof: In case a(r) is a constant, the theorem is proved by using the

arguments of [12] and [18] (and we repeat most of those arguments below.)
In particular, in case a(r) is a constant, we have a maximal solution for large
λ, which tends to infinity as λ → ∞.

We shall prove that the problem (5.1) has a positive solution, if λ is large
enough. Define U = U(r, λ) > 0 to be the maximal solution of

U ′′ +
n − 1

r
U ′ + λa(0)g(U) = 0, U ′(0) = 0, U(1) = 0.(6.2)

By above, this maximal solution tends to infinity when λ → ∞, providing

us with arbitrary large supersolution of (5.1) at any fixed λ. Similarly to
(6.2), we consider an autonomous problem

ū′′ +
n − 1

r
ū′ + λa(1)g(ū) = 0, ū′(0) = 0, ū(1) = 0.(6.3)

Either one of its two solutions for large λ will provide us with a subsolution
to the problem (5.1). We conclude that the problem (5.1) has a positive

solution for large λ, moreover it has a maximal solution, in view of existence
of arbitrary large supersolutions. The maximal solution is increasing in λ,

since maximal solution at any λ̄ is a subsolution at all λ > λ̄.

We now continue the maximal solution for decreasing λ. At a non-
degenerate solution this can be done by the implicit function theorem, and

the case of a degenerate solution will be discussed below. We claim that a
degenerate solution will be reached eventually, and the solution curve will

turn back. Indeed, the solution curve has no other place to go for decreasing
λ. Since u(r) < U , the only possibility is for it to go to zero. Notice that

g(u) = o(u) for u small. Multiplying the equation (5.1) by u, integrating
by parts and using the Poincare’s inequality, we see that the solution curve

cannot go to zero.
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It follows that a degenerate solution must be eventually reached. By

Lemma 5.2 at this solution the Crandall-Rabinowitz Theorem 1.1 applies,
and a simple turn to the right occurs. According to the Theorem 1.1 near

the turning point (λ0, u0) there is a solution asymptotic to u0 +sw, which is
increasing in s for small s, and a decreasing solution asymptotic to u0 − sw.

Arguing as in [12], we see that the increasing branch stays increasing until
a possible next turn occurs. (Here is a brief outline: by above, uλ > 0 near

the turning point, and by maximum principle we will get a contradiction at
the first λ where this inequality is violated.)

We claim that after the turn at (λ0, u0), the lower branch of the solution
curve continues for all λ > λ0, without any more turns. Indeed, at the next

turn (to the left), we would have u(0) < α, since otherwise only turns to the
right are possible, in view of Lemma 5.2. After that turn the solutions are

decreasing, as we discussed above. Hence the inequality u(0) < α continues
to hold. But then g(u) is convex for all values of u(r), and only turns to

the left are possible, see (5.6). Hence our branch, which is traveling to the
left now, cannot turn, and it has no place to go, a contradiction. As for
the upper branch, emerging at (λ0, u0), no other turns are possible in view

Lemma 5.2, and hence it continues for all λ > λ0. Arguing as in [11], we see
that the upper branch tends to ∞, and the lower one tends to 0 as λ → ∞.

It remains to show that the parabola-like curve of solutions, described
above, exhausts the set of all positive solutions of (5.1). This is certainly
true in case of constant a(r). (For autonomous problems the value of u(0)

uniquely identifies the solution (λ, u(r)), and on our curve all possible values
of u(0), from zero to infinity, are “taken”.) Assume on the contrary that

at some λ1 > λ0 there is a third solution of (5.1). Consider a family of
problems

u′′ +
n − 1

r
u′ + λa(0)1−µa(r)µg(u) = 0, u′(0) = 0, u(1) = 0,(6.4)

with a parameter 0 ≤ µ ≤ 1. At µ = 0 the problem is autonomous, and
so it has at most two positive solutions. The function a(x)µ satisfies the

conditions of both Theorem 4.1 and Lemma 5.3, so that at any degenerate
solution any nontrivial solution of the linearized problem is positive, and

since fµ = f ln a(r)
a(0) < 0, we have µ′′(0) < 0. (Here f ≡ a(0)1−µa(r)µg(u).)

It follows that only turns to the left are possible in the (µ, u) “plane”, and

hence no spontaneous bifurcation of solutions may occur. So that either the
two solutions coalesce at some µ0 ∈ (0, 1), and we have no solutions at µ = 1,
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or we have exactly two solutions at µ = 1. Both possibilities contradict our

assumption of three solutions. ♦
We show that the theorem applies to the problem

u′′ +
n − 1

r
u′ + λa(r)

u2

u2 + 1
= 0, u′(0) = 0, u(1) = 0.(6.5)

To verify that, we need an elementary lemma.

Lemma 6.1 Denote g(u) = u2

u2+1
, G(u) =

∫ u
0 g(t) dt. Then d

du

(

ug(u)
G(u)

)

< 0

for all u > 0.

Proof: Compute

d

du

(

ug(u)

G(u)

)

= − u2

(3 + u2)(1 + u2)2(u − tan−1 u)2

[

− 3u

3 + u2
+ tan−1 u

]

.

We claim that the function p(u) ≡ − 3u
3+u2 +tan−1 u is positive for all u > 0.

Indeed, p(0) = 0, and p′(u) = 4u4

(1+u2)(3+u2)2 > 0, and the lemma follows. ♦

Theorem 6.2 Assume that a(r) satisfies all of the assumptions of the The-

orem 6.1. Then all of the conclusions of Theorem 6.1 hold for the problem
(6.5), and its bifurcation diagram is given by Figure 1.

Proof: We show how to verify that the Lemma 2.1 applies (which was

the key ingredient in proving positivity for the linearized problem), with
the other conditions of the Theorem 6.1 being straightforward to verify. We

write I(r) = a(r)G(u(r))J(r), where

J(r) = 2n − (n − 2)
u(r)g(u(r))

G(u(r))
+ 2

ra′(r)

a(r)
.

It suffices to show that the function J(r) is decreasing on (0, 1), since then

it is either positive or negative on (0, 1), or else it changes sign exactly once,
and in the way we want it, i.e. J is positive near r = 0 and negative near

r = 1. And the sign of I(r) is the same as that of J(r). In view of Lemma
6.1 we have

d

dr
J(r) = −(n − 2)

d

du

[

ug(u)

G(u)

]

u′(r) + 2

(

ra′(r)

a(r)

)′

< 0.

Turning to other conditions of the Theorem 6.1, we see that g(u) =
u2

u2+1
is a positive and increasing function, which changes concavity only
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once at α = 1√
3
. We compute ρ = 1

3
√

3
. Here K(u) = 2

1+u2 , which is a

decreasing function for all u > 0, and K(ρ) = 27
14 > 1. Finally, letting

h(u) = ug(u)− 2G(u), we compute h′(u) = u2−u4

(1+u2)2
, which means that h(u)

is an increasing (and hence positive) function when u ∈ (0, ρ), verifying the

condition (4.2). ♦
We turn next to the case when 0 < g′(∞) < ∞.

Theorem 6.3 Assume that a(r) and g(u) satisfy the conditions of the The-
orem 4.1, and the function aµ ≡ a(0)1−µa(r)µ satisfies the condition (5.3),

for all 0 ≤ µ ≤ 1. Assume that g(u) satisfies the conditions (2.7) and (2.8),
with c = ∞, and in addition g′(u) > 0 for all u > 0, and 0 < g′(∞) < ∞.

Assume also that g(u)
u

< g′(∞) for all u > 0. Assume first that g′(0) = 0.

Then for 0 < λ < λ1

g′(∞) the problem (5.1) has no positive solutions, and it

has a unique positive solution for λ1

g′(∞) < λ < ∞. Moreover, all solutions

lie on a single smooth solution curve, which tends to infinity when λ ↓ λ1

g′(∞) ,

and to zero when λ → ∞. (See Figure 2.) In case g′(0) > 0, the situation
is similar, except that the solution curve enters zero at λ1

g′(0) (i.e. there no

positive solutions for λ > λ1

g′(0)).

Proof: By a standard analysis, bifurcation from infinity occurs at λ1

g′(∞) ,
and it is super-critical, i.e. the solution curve emerges from infinity toward

increasing λ, see e.g. Proposition 3.4 in [18]. As we continue the solution
to the right, no degenerate solutions are encountered, since by Lemma 5.2
at any degenerate solution a turn to the right would have to occur, which

is not possible. As before we show that the solution curve tends to zero for
increasing λ, and that the solution curve is unique. ♦
Remark Since g′(∞) > 0, it follows that f(u) ∼ au + b for large u, with

some a > 0 and b ∈ R. The assumption that g(u)
u

< g′(∞) implies that b ≤ 0.

We needed that assumption to show that bifurcation from infinity is toward
increasing λ. In case b > 0 we cannot tell the direction of bifurcation from

infinity. If it is to the right, then the same result holds. Assume bifurcation
from infinity is to the left, and g′(0) = 0. Then the solution curve makes

exactly one turn to the left, and then continues for all λ, since only turns
to the left are possible. In case g′(0) > 0, the solution curve enters zero at

λ1

g′(0) , travelling always to the left if g′(0) > g′(∞), and making exactly one

turn to the left in case g′(0) ≤ g′(∞). So that in any case we obtain an
exact multiplicity result.

17



We show that the theorem 6.3 applies to the problem

u′′ +
n − 1

r
u′ + λa(r)

u3

u2 + 1
= 0, u′(0) = 0, u(1) = 0.(6.6)

Again, we need an elementary lemma.

Lemma 6.2 Denote g(u) = u3

u2+1 , G(u) =
∫ u
0 g(t) dt = u2

2 − 1
2 ln(1 + u2).

Then d
du

(

ug(u)
G(u)

)

< 0 for all u > 0.

Proof: Compute

d

du

(

ug(u)

G(u)

)

=
4u3(2 + u2)

(1 + u2)2 (u2 − ln(1 + u2))2

[

2u2

2 + u2
− ln(1 + u2)

]

.

We claim that the function p(u) ≡ 2u2

2+u2 − ln(1+u2) is negative for all u > 0.

Indeed, p(0) = 0, and p′(u) = − 2u5

(1+u2)(2+u2)2
< 0, and the lemma follows.

♦
Similarly to the Theorem 6.2, we obtain the following result.

Theorem 6.4 Assume that a(r) satisfies all of the assumptions of the The-

orem 6.3. Then all of the conclusions of Theorem 6.3 hold for the problem
(6.6), and its bifurcation diagram is given by Figure 2.

Proof: Thanks to Lemma 6.2, we see as above that the Lemma 2.1

applies here. So let us run through the verification of other conditions. Here
g(u) = u3

u2+1
is a positive and increasing function, which changes concavity

only once at α =
√

3. Here K(u) = u2+3
u2+1

, and K ′(u) = − 4u
(u2+1)2

, which

implies that K(u) is a decreasing function, greater than 1, for all u > 0.

Finally, letting h(u) = ug(u) − 2G(u), we compute h′(u) = 2u3

(1+u2)2
, which

means that h(u) is an increasing (and hence positive) for all u > 0, verifying
the condition (4.2). ♦

In the remaining case, when g(c) = 0, we have to assume that n = 1,
although in this case we can relax our conditions on a(r). In case n > 1, we

can still say quite a bit about the solution set (since we still have positivity
for the linearized equation), but we do not have a complete exact multiplicity

result.

Theorem 6.5 Assume n = 1. Assume that a(r) and g(u) satisfy the condi-
tions of the Theorem 4.1. Assume that g(u) satisfies the conditions (2.7) and
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(2.8), with c < ∞, and g(c) = 0. Assume first that g′(0) = 0. Then there is

a critical λ0 > 0, so that for λ < λ0 the problem (5.1) has no positive solu-
tions, it has exactly one positive solution at λ = λ0, and exactly two positive

solutions for λ > λ0. Moreover, all solutions lie on a single smooth solution
curve, which for λ > λ0 has two ordered branches 0 < u−(r, λ) < u+(r, λ),

with u+(r, λ) strictly monotone increasing in λ, and limλ→∞ u+(r, λ) = c
for all r ∈ [0, 1). For the lower branch we have limλ→∞ u−(r, λ) = 0 for all

r ∈ [0, 1). (See Figure 3.) In case g′(0) > 0, the situation is similar, except
that the lower branch enters zero at λ1

g′(0) .

Proof: All of the steps of our analysis in the previous cases carry over

here, except the step when we were proving that w and −ur cannot intersect
more than once. We can no longer rely on Lemma 5.1, since we do not have

the positivity of g′(u). We observe that this time −ur is a supersolution of
the linearized problem (2.6). If the functions w and −ur intersected more

than once, we could find an interval (r1, r2) ⊂ (0, 1), on which w(r) > −ur,
and w(ri) = −ur(ri), i = 1, 2. We can then find a constant µ < 1, such

that −ur ≥ µw for all r ∈ (r1, r2), and −ur(r0) = µw(r0) for some r0 ∈
(r1, r2). Since −ur and µw are respectively a supersolution and solution
of the linearized equation (2.6), we obtain a contradiction by the strong

maximum principle. ♦

7 A simple approach to non-degeneracy and unique-

ness

We consider positive solutions of the problem

∆u + f(|x|, u) = 0, for |x| < 1, u = 0 if |x| = 1.(7.1)

We assume that f(r, u) is a continuously differentiable function (with

r = |x|), and

f(r, 0) = 0, and fr(r, u) ≤ 0, for all r ∈ [0, 1], and u > 0.(7.2)

In view of the classical results of B. Gidas, W.-M. Ni and L. Nirenberg

[8] positive solutions of (7.1) are radially symmetric, with u′(r) < 0 for all
r ∈ (0, 1), and hence they satisfy

u′′ +
n − 1

r
u′ + f(r, u) = 0, u′(0) = 0, u(1) = 0.(7.3)
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By [6] (see also [15]) any solution of the linearized problem for (7.1) is also

radial, and hence it satisfies

w′′ +
n − 1

r
w′ + fu(r, u)w = 0, w′(0) = 0, w(1) = 0.(7.4)

In addition to (7.2), we assume that f(r, u) satisfies the following conditions
(which have appeared before in [2])

ufu(r, u)− f(r, u) > 0 for all r ∈ [0, 1], and u > 0,(7.5)

α(r) = 2f(r,u(r))+rfr(r,u(r))
u(r)fu(r,u(r))−f(r,u(r))(7.6)

is a non-increasing function of r, for r ∈ (0, 1).

We will show that under these conditions any positive solution of (7.3)
is non-degenerate. We start with two technical lemmas.

Lemma 7.1 Let u(r) be a positive solution of (7.3), and assume that the
function f(r, u) satisfies the conditions (7.2) and (7.5). Then the function

f(r, u(r)) can change sign at most once on (0, 1).

Proof: Let ξ ∈ (0, 1) be such that f(ξ, u(ξ)) = 0. We claim that
f(r, u(r)) > 0 for all r ∈ [0, ξ). Indeed, from (7.5) we conclude that

fu(ξ, u(ξ)) > 0, and in general fu(r, u(r)) > 0, so long as f(r, u(r)) > 0,
and hence

d

dr
f(r, u(r)) = fr(r, u(r))+ fu(r, u(r))u′(r) < 0,

and the claim follows. So that, if the function f(r, u(r)) is positive near

r = 1, it is positive for all r ∈ [0, 1). If, on the other hand, f(r, u(r))
is negative near r = 1, it will change sign exactly once on [0, 1) (since it

cannot stay negative for all r, by the maximum principle). ♦

The lemma implies that there is a r2 ∈ (0, 1], so that f(r, u(r)) > 0 on
[0, r2) and f(r, u(r)) < 0 on (r2, 1).

Lemma 7.2 In the conditions of the preceeding lemma, any solution of the

linearized problem (7.4) w(r) cannot vanish in the region where f(r, u(r)) <
0 (i.e. on (r2, 1)) .
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Proof: Assume the contrary is true, and let τ denote the largest root of

w(r) in the region where f(r, u(r)) < 0. We may assume that w(r) > 0 on
(τ, 1). Then integrating the formula (7.9) below over (τ, 1), we have

u′(1)w′(1)− τnu′(τ)w′(τ) =

∫ 1

τ
(2f(r, u(r))+ rfr(r, u(r)))wrn−1 dr.

We have a contradiction, since the left hand side is positive, while the inte-

gral on the right is negative. ♦

Theorem 7.1 Assume that the conditions (7.2), (7.5) and (7.6) hold. As-

sume also that either the condition (i) of Lemma 2.1 holds with r0 = r2, or
the condition (ii) of Lemma 2.1 holds with r0 = 0, or the condition (iii) of
that lemma holds. Assume finally that

u(r)f(r, u(r))− 2F (r, u(r)) > 0 for r ∈ (0, r2).(7.7)

Then any positive solution of (7.3) is non-degenerate, i.e. the corresponding
linearized problem (7.4) admits only the trivial solution.

Proof: We use again the generalized Wronskians ξ(r) = rn−1 (u′w − uw′),
and ζ(r) = rn [u′w′ + f(r, u)w] + (n − 2)rn−1u′w. We have

ξ′(r) = [ufu(r, u)− f(r, u)]wrn−1,(7.8)

ζ ′(r) = 2f(r, u)wrn−1 + rnfr(r, u)w.(7.9)

As before, we introduce the function O(r) = 2γξ(r)− ζ(r), which in view of

(7.8) and (7.9) satisfies

O′(r) = 2 [u(r)fu(r, u(r))− f(r, u(r))]w(r)rn−1 [γ − α(r)] ,(7.10)

with α(r) as defined by (7.6).

We may assume that w(0) > 0. We claim that the function w(r) cannot

have any roots inside (0, 1). Assuming otherwise, let τ1 be the smallest root
of w(r), i.e. w(r) > 0 on [0, τ1). Let τ2 ∈ (τ1, 1] denote the second root of

w(r). We now fix γ = α(τ1). By monotonicity of α(r) the function γ −α(r)
is non-positive on [0, τ1) and non-negative on (τ1, τ2). Since O(0) = 0, we
then conclude from (7.10) that

O(r) ≤ 0 for all r ∈ [0, τ2].(7.11)
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We consider two cases.

Case (i) τ2 = 1. From (7.11) we have O(1) ≤ 0. On the other hand,

O(1) = −ζ(1) = −u′(1)w′(1) > 0, a contradiction.

Case (ii) τ2 < 1. Observe that f(τ2, u(τ2)) > 0. Indeed, assuming oth-
erwise, we conclude by Lemma 7.1 that f(r, u(r)) ≤ 0 on (τ2, 1). But

this contradicts Lemma 7.2. Applying Lemma 7.1 again, we conclude that
f(r, u(r)) > 0 over [0, τ2).

Since ξ(τ1) > 0, while ξ(τ2) < 0, we can find t ∈ (τ1, τ2), such that

ξ(t) = 0, i.e.
u(t)

w(t)
=

u′(t)

w′(t)
.(7.12)

By Lemma 7.2 t ∈ (0, r2), and then by Lemma 2.1, (2.4) and (7.7)

Q(t) > 0.(7.13)

In view of (7.11)
ζ(t) = −O(t) ≥ 0.

On the other hand, using (7.12) and (7.13),

ζ(t) =

[

tn
(

u′w′ u

w
+ f(t, u)u

)

+ (n − 2)tn−1u′u

]

w

u
= Q(t)

w(t)

u(t)
< 0,

giving us a contradiction.

It follows that w(r) cannot have any roots, i.e. we may assume that
w(r) > on [0, 1). But that is impossible, as can be seen by integrating (7.8)

over (0, 1). Hence w ≡ 0. ♦
We consider next the problem (here r = |x|)

∆u − a(r)u + b(r)up = 0, r ∈ (0, 1),(7.14)

u = 0 for r = 1.

We assume that p < n+2
n−2 , and the functions a(r), b(r) ∈ C1[0, 1] satisfy

a(r) > 0, b(r) > 0, a′(r) > 0, b′(r) < 0 for r ∈ (0, 1).(7.15)

These assumptions imply, in particular, that any positive solution of (7.14)

is radially symmetric, in view of [8]. We define the functions

A(r) ≡ 2a(r) + ra′(r),

B(r) ≡
(

n

p + 1
− n − 2

2

)

b(r) +
rb′(r)

p + 1
.

Observe that n
p+1 − n−2

2 > 0 for subcritical p, i.e. when p < n+2
n−2 .
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Theorem 7.2 In addition to the conditions (7.15) assume that the function

A(r) is positive and increasing, while the function B(r) is positive on (0, 1).

Assume also that the function rb′(r)
b(r) is decreasing on (0, 1). Then the problem

(7.14) has a unique positive solution. Moreover, the Morse index of the
solution is equal to one.

Proof: We imbed the problem (7.14) into a two-parameter family of
problems, with parameters θ ∈ [0, 1] and λ ∈ [0, 1],

∆u − λa(r)u + bθ(r)up = 0, r ∈ (0, 1),(7.16)

u = 0 for r = 1.

At λ = 0 and θ = 0 the problem has unique solution of Morse index one.
This is known for general domains, see e.g. K.C. Chang [3], or a simple
proof for the case of a ball can be found in [10]. At λ = 1 and θ = 1 we have

the original problem (7.14).

We check that the Theorem 7.1 applies for all θ ∈ [0, 1] and all λ ∈ [0, 1].

Compute

(p − 1)α(r) = −λ
A(r)

bθ(r)up−1(r)
+ 2 + θ

rb′(r)

b(r)
.

In view of our assumption, α(r) is a decreasing function, verifying (7.6).

Compute

uf(u)− 2F =
p − 1

p + 1
bθ(r)up+1 > 0,

verifying (7.7).

Denote Bθ(r) =
(

n
p+1 − n−2

2

)

bθ(r)+θ
rbθ−1(r)b′(r)

p+1 . Observe that Bθ(r) >

bθ−1(r)B(r) > 0. Writing Bθ(r) = bθ(r)
[

n
p+1 − n−2

2 + θ
p+1

rb′(r)
b(r)

]

, we see that

the quantity in the square bracket is positive and decreasing on (0, 1), and
hence Bθ(r) is positive and decreasing on (0, 1). Compute

I(r) = −λA(r)u2 + 2Bθ(r)u
p+1 = 2Bθ(r)u

2
[

− λA(r)

2Bθ(r)
+ up−1

]

.

The quantity in the square bracket is a decreasing function, which is negative
near r = 1. Hence, either I(r) is negative over (0, 1), or it changes sign

exactly once, thus verifying the conditions of Lemma 2.1.

As we vary λ and θ (along any curve from (0, 0) to (1, 1)), we can apply

the implicit function theorem to continue the solution, since by Theorem
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7.1 all solutions of (7.16) are non-degenerate. By the a priori estimates of

B. Gidas and J. Spruck [9] the solutions stay bounded, and hence they can
be continued for all λ and θ. At λ = 1 and θ = 1 we conclude existence and

uniqueness of positive solutions for our problem. (If there were more than
one solution at λ = 1 and θ = 1, we would have more than one solution

at λ = 0 and θ = 0, a contradiction.) Moreover, the Morse index of this
solution is one, since eigenvalues of the linearized problem for (7.14) change

continuously, and they cannot cross zero, since solutions are non-degenerate
(and so the number of negative eigenvalues of the linearized problem at

λ = 1 and θ = 1, is the same as at λ = 0 and θ = 0, i.e. one). ♦
Remark According to Lemma 7.1 the conditions (7.2) and (7.5) imply that
f(r, u(r)) changes sign at most once on [0, 1). When one adds the condition

(7.6) (i.e. under the conditions of the Theorem 7.1), then one can typically
expect that f(r, u(r)) changes sign exactly once, the way it happens for the

model example f(r, u) = −a(r)u+ b(r)up, considered above. We shall prove
that for an important special case. Namely, assume that the conditions of the

Theorem 7.1 hold, f = f(u) and f ′(0) 6= 0. We claim that f(u) is negative
for small u. Indeed, assuming that on the contrary f(u) > 0, we conclude

from (7.5) that K(u) ≡ uf ′(u)
f(u) > 1 for all u > 0. On the other hand, from

(7.6) K(u) is a non-increasing function, and by L’Hospital, limu→0 K(u) = 1,
implying that K(u) ≤ 1 for small u, a contradiction.
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