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Abstract

We consider computation of solution curves for semilinear elliptic
equations. In case solution is stable, we present an algorithm with
monotone convergence, which is a considerable improvement of the
corresponding schemes in [4] and [5]. For the unstable solutions, we
show how to construct a fourth-order evolution equation, for which the
same solution will be stable.
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1 Introduction

We are interested in computation of the solution u = u(z) for two point
boundary value problems depending on a parameter A

(1.1) "+ Af(z,u) =0 on (a,b), u(a)=u(d) =0,
and the correspdnding Dirichlet problem

(1.2) Au+Af(z,u)=0 for z€Q, u=0 for z € 6.
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(Here © C R™ is a smooth domain, and typically n = 2.)

For simplicity, we present our results only for the problem (1.1), although
all our results hold for (1.2) also, and we report on computations in both
‘one and two dimensions. In section 2 we consider computation of stable so-
lutions. (Stability means that solution of corresponding evolution equation
tends to u(z)). It is well-known that if one solves the corresponding evo-
lution equation with initial data being subsolution (supersolution) of (1.1)
then its solution will tend increasing (decreasing) to the steady-state, which
is a solution of (1.1). This fact was used in C.U. Huy, P.J. McKenna and
W. Walter [4] to develop both implicit and explicit schemes with monotone
convergence. In P. Korman [5] and G. Choudury and P. Korman [3] it was
shown that an explicit scheme with monotone convergence can be devel-
~oped even for fully nonlinear equations. In V. Barbu and P. Korman [1] a
similar scheme was used for obstacle problems with nonlinear forcing term.
In section 2 we introduce a modification of the explicit scheme, similar to
Gauss-Seidel modification of Jacoby iteration. We prove that this modifi-
cation preserves monotonicity. (The advantages of monotone schemes are
discussed e.g. in [1]). Also, from our experiments it appears that the re-
sulting scheme is much more stable than the explicit scheme, i.e. one can
take much larger time steps. The new scheme is easier to program than
the explicit scheme in [4], while it appears to be faster (CPU time) than
the implicit scheme in [4]. (The last statement, of course, depends on the
implementation.) : ' v

In section 3 we take up computation of unstable solutions of (1.1), i.e.
the steady-states which cannot be reached in practical computations by
the solutions of the corresponding evolution equations (the stable manifold
is typically one-dimensional). Variational techniques, based on the moun-
tain pass lemma can be typically used to compute unstable solutions. This
approach was taken in [2] and independently in [6], where a different im-
plementation, not requiring recomputation of the entire path, is presented.
Here we present a more systematic way to compute the unstable solutions.
We introduce a fourth-order evolution problem for which solution of (1.1) is
now a stable steady-state, so that the unstable solution of (1.1) can be com-
puted by using (say) an explicit scheme for the fourth-order equation. Here
we present an heuristic justification of the scheme, a more rigorous analysis
will be given by one of the authors in a paper in preparation. Our scheme
is very easy to program. While convergence for fourth-order equations can
be slow, one has to “pay the price” only once: once solution of (1.1) is com-
puted for a particular A = Ag, we use very efficient continuation techniques
to compute the solutions for other A. Combination of our techniques in sec-
tions 2 and 3 allow efficient computation of all solutions (including multiple

solutions for fixed A) for any problem of type (1.1) or (1.2), for which one
understands the structure of solutions.
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2 Computation of the stable solutions

In this section we shall consider computations of stable solutions for the
problems (1.1) and (1.2). We recall that solution u(z) of (1.1) is called
stable if the principle eigenvalue of the linearized problem

(2.1) =" = Mu(z,u)v = v on (a,b), v(a)=v(b) =0

is positive. This means that u(z) is a stable steady-state solution for the
corresponding parabolic problem (here u = u(z,t))

(22)  w— oo = f(m,u) a<z<b, >0 u(a,) = u(b,t)=0.

On the other hand, the solution of (1.1) is unstable if the principal eigenvalue
of (2.1) is negative, or it is an unstable steady-state solution of (2.2).

It turns out that the stable solutions of (1.1) are generally easy to com-
pute: it takes only minimal programming effort, and the result is obtained
practically instantaneously on a 486 PC (using 20 mesh points and achiev-
ing stabilization of 6 decimal digits). We describe next such an algorithm,
with convergence being monotone, proposed by C.U. Huy, P.J. McKenna
and W. Walter [4], and independently by P. Korman [5], where more gen-
eral problems were considered (see also [3] where fully nonlinear equations
with general boundary conditions are treated). We divide the interval [a, b]
into N equal parts of length h = bf'\[—”‘ each, denote z¢ = a, zx = z¢ + kh for
k=1,2,...,N, u = u(z), and replace (1.1) by its finite difference version

% — 2Up + Ug—
(2.3) -l hj L= Mzkur), k=1,...,N -1,

ug = uy = 0.

We recall that a grid function ¢y = ¢ is called a supersolution of (2.3) if

k+1 — 20k + Q-
(2'4) —90 2 2 ! > ’\f(wk790k)? k:l,...,N-—-l,
2>

%o 0: Pn Z 0.

A subsolution 1)y is defined by reversing all the inequalities in (2.4).

To solve (2.3), one sets up iterations by discretizing (2.2), which in the
case of explicit scheme is done as follows (n = 1,2,...)

n+1 n n n n
Up g Mgy = 2uf +up _
- = % + Af(eg,ul), k=1,...,N -1,
(25)  wgtt = Wl =0,

This allows us to compute u}™ given u}. It was shown in [4] and [5] that
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if one starts the iterations with ul = ¢y, then for sufficiently small 7 the
iterates ul are decreasing in n for all k, and so if the u} are bounded below
they must converge to a solution of (2.3). One way convergence can be
ensured, is when one assumes existence of both super- and sub-solutions,
and ¥y < ¢y for all k (see [4], [5] for details). .

Next we present an improvement of the scheme (2.5), which is of “Gauss-

Seidel” type. We replace (2.5) by
un-{-l —y? ul, . — 2ul + uni—‘l .
k,T k — k+1 hzk kl,'{"Af(wk,uk), kzl,...,N——-l’

(2.6) uptt = Wl =0,

i.e., we immediately use the computed values of u’,:'H.
It is natural to expect that the scheme (2.6) is faster than (2.5). It also
turns out to be more stable (one can use larger 7), and, as the following

theorem shows, it preserves the monotonicity property of (2.5).

Theorem 2.1 Assume that the problem (2.3) possesses a subsolution 1y
and a supersolution @ with Y, < @ for all k = 1,...,N — 1. Assume
that the function f(z,u) is continuous in z and Lipschitz continuous in u
uniformly in z. Then the problem (2.3) has a solution, which can be ap-
prozimated using (2.6). Namely, letting ud = @ (u) = ¥x) and choosing
T sufficiently small, we get a decreasing (increasing) in n sequence u} con-
verging to a solution of (2.3).

Proof: Letting u = ¢k and denoting U™ = (uf,...,uk_;), we rewrite
(2.6) in matrix form as
(2.7) (I - %A) Ut = TBU™ + D(U™).

Here A = (a;;) is an (n—1) x (n—1) matrix such that a;; = 1 when ¢ = 541,
j=1,...,N—2,a;; = 0 otherwise; B = (b;;) is an (n— 1) x (n — 1) matrix
such that b; = 1 when j =1+ 1landé=1,...,N -2 and D is a diagonal
matrix with dgx = (1 - %%) u? + 7Af(zk, u}). Denote W" = Untl — Un,
n = 0,1,.... We claim that W% < 0, i.e. u} < @& This is proved by
induction in k. Indeed, by the definition of the supersolution

U= e _ 2= 20
: T = K2 + Af(wls({gl) <0,

ie., ut < ¢, and then

ud — 2 o3 — 205 + u} — 22+
=P BT L M (e ) £ ST 4 M f(ea,42) S 0,
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i.e., u3 < ¢, and so on.

We now prove by induction that W™ < 0 for all n. Indeed, from (2.6)
we obtain (assuming W"~! < 0 and denoting by I the Lipschitz constant
of f(z,u))

h? h?

Writing I — ;74 as a product of the elementary matrices, we see that the

(2.8) (_r - lA) W" < BW™l 4 (1 _A TL) wrL,

-1

matrix (I - ETTA) is a lower triangular one, and all of its entries on and
below the diagonal are positive. If we now choose T so small that 1 — i—; -
7L > 0, then W™ < 0.

If we denote by v} the iterates (2.6) starting with vQ = 4, then repeating
the above arguments two more times, we show that forall k = 1,..., N -1,

Ye S vk S vk << ug S ug <y,

and the proof follows.

Our numerical experiments in one and two dimensions have shown the
scheme (2.6) to be a substantial improvement over (2.5). The main reason
is that one can choose larger time step 7 for (2.6). (It is also faster for equal

).
Example 1. We computed the positive solution of
u'+u(d5—-u)=0 on (0,1), u(0)=u(2)=0.

We took N = 20 (i.e. h = 0.1), 7 = 0.009, u) = 6 for all k, and after
just 80 time steps we obtained the solution with six decimal digits stabilized
(maximum value, u(1) ~ 2.948380) using the scheme (2.6). By comparison,
when the scheme (2.5) was used with the same N and u{, the largest value

of 7 we could take was 7 = 0.0026 (7 = 0.0027 led to overflow), and it took
around 1300 time steps to achieve the same accuracy.

Example 2. We consider the problem (in two dimensions)
(2.9) = Au = —(Ugg + Uyy) = Ae* In Q, u=0 on 69,

which is prominent in applications, particularly in combustion theory, see
e.g. [9]. This equation is often referred to as Bratu or Gelfand equation.
It is known that the branch of positive stable solutions (emanating from
A =0, u=0) bends back at a critical Ag = Ao(Q2) > 0. We took Q to be
the unit square £ = (0,1) X (0,1) and A = 6.5, which is close to the critical
Ao. We took uniform square mesh of step size A = 0.1 (i.e. the solution
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was computed at 9% = 81 interior points). We used the scheme (2.6) (with
Ukp = ’U/(kh,ph)),

un+1 .

k,p k,p - 1 n n n+1 n+1 n
(2.10)7- = 72 {ukﬂ,p Uk T U Iy p T Uy ~ AUy

+ A exp(u’j:,p)

for k,p = 1,...,9. We tock 7 = 0.0045 and after just 80 time steps we
obtained five decimal digits stabilized (the maximum value was u(0.5,0.5) =
1.00623). The maximum over all £ and p of the absolute values of the
right hand sides in (2.10) was 0.0000000 (we shall refer to this below as
defmax = 0.0000000). When we tried the scheme (2.5) for the same problem,

the largest time step we could take was 7 = 0.0013, and the convergence
was much slower.

3 Computation of unstable solution branches

For the unstable solutions of (1.1) or (1.2) neither the approach above nor
the well-known method of monotone iterations can possibly work. In Ko-
rman [6] a partially interactive algorithm for computing unstable solutions
was presented, see also [2]. Here we present a more direct and systematic
approach.

Denote by U = (u1,...,un—-1) and by —Apuy the left hand side of (2.3).
Then solving (2.3) is equivalent to finding the zero minimum points of the
nunnegative function

N-1
(3.1) F(U)= 3" (Anuk + Af(ze, u))™.

k=1

Similarly, solving (1.1) can be seen as looking for the minimum of the func-
tional

(3.2) Fu) = / (5 (o, 0))de,

In developing our algorithm we shall use the discrete and continuous versions
of the equation (1.1) and of the functional (3.2) interchangeably, deferring
rigorous justification of the method to a paper in preparation.

Assume that u(z,?) is a solution of the following fourth-order problem,
resembling the Cahn-Hilliard equation

(3.3) U = —(Uzz + AS(2,4))ze = Aful2, 0) (e + Af(2, u))
fora<z<b, t>0

(3.4) u(a,t) = u(b,t)=0
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(3.5) Uge(a, ) + Af(a,u(a,t)) = ugg(b,t) + AF(b,u(b,t)) =0
(3.6) u(z,0) = ug(z).

(For the PDE version just replace double differentiation in z by Laplacian.)
Condition (3.5) represents the equation (1.1) written at 2 = a and z = b,
which is a common computational device. Notice that this condition is linear

in view of (3.4). Along the trajectories of (3.3-3.6) we compute, integrating
by parts twice,

d
()

b
/ 2tz + A (2, 0)) (Uggr + M fute)da
b
= -2 / udt < 0.

Now assume that the problem (1.1) has a finite number of solutions, and
that they are non-degenerate, i.e., the only solution of the linearized problem

(3.7) =" = Mu(z,u)v =0 on (a,d), v(a)=2(b)=0

is zero. If the solution of (3.3-3.6) stays in a compact region, it can be
expected to converge to a steady-state solution of (3.3). Comparing (3.3)
and (3.5) with (3.7), we conclude that the steady-state solutions of (3.3) are
solutions of (1.1) (denoting v(z) = uze + Af(z,u), we see that v satisfies
(3.7), and hence v = 0). Finally, since each point of minimum of F(u) has its
own basin of attraction for the flow induced by (3.3-3.6), it follows that we
can expect that if up(z) is chosen close to the solution @(z) of (1.1) (stable
or unstable), then the solution u(z,t) of (3.3-3.6) will converge to (z) as
t — 0. (Actually, the basins of attraction are usually quite large.) We
explain our approach on the following numerical examples.

Example 1.
(3.8) —-u" = Xu? on (0,1), u(0)=u(1)=0.

The problem (3.8) has exactly two solutions: a positive one, which is unsta-
ble, and a stable trivial solution (as can be seen by a phase plane analysis).
Hence the functional F(u) has only two minimums, and the basin of attrac-
tion of each one (in particular of the positive solution) can be expected to
be large. Starting with ug(z) = 6 for 0 < z < 1, and using an explicit
scheme for (3.3-3.6) we obtained solution of (3.8) for A = 1,10,15. We took
h = 0.1, 7 = 0.000009. Solutions are given in Table 1. By defmaz we denote
the maxy [Apuk + Af(zk, ur)|, where Apuy is the left hand side of (2.3).
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H
lul
A Ao
Pic. 1.
Example 2.
(3.9) —u" = M*(1-u), on (0,1), w(0)=u(1)=0.

According to [8] there exists a critical Ay > 0, such the problem (3.9) has
no solutions for A < Ao, exactly one solution for A = Ag, and for A > ) the
problem (3.9) has exactly two positive solutions, 0 < uy(z) < uz(z). The
upper one, uz(z), is stable, while the lower one u; () is unstable. Also there
is a trivial solution u = 0, which is stable. The bifurcation diagram is given
in Pic. 1. The stable solution us(z) is easily computed using the scheme
(2.6) with u9 being a supersolution, e.g., wW=1k=1,...,N—1. Next we
describe the computation of unstable solutions.

We took ~ = 0.1 and started with A = 60. We took uQ = 0.5 for all ,
7 = 0.000009, and computed u;(z) using the explicit scheme for (3.3-3.6) for
all k. The initial guess u} = 0.5 turned out to be in the basin of attraction
of uy(z), even though it is relatively far from the solution. A systematic
way to obtain an approximation to the unstable solution is described in
[6]. The convergence was rather slow. However, this computation gave us
a point on the branch of unstable solutions. Using the standard predictor-
corrector method (with two Newton steps) we were able to trace very quickly
the unstable branch of solutions, obtaining very accurate solutions for both
increasing and decreasing A (and the step in A does not have to be small).
For a “predictor” at A + A, we used the formula u(z, A + A)) ~ u(z, A) +
ur(z, A\)AX, where u) is the solution of the linear problem
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TABLE 2
Lambda = 61.0 umax = 0.24315565
Lambda = 62.0 ©oumax = 0.23784542
Lambda = 63.0 umax = 0.23278223
Lambda = 64.0 umax = 0.22794765
Lambda = 65.0 umax = 0.22332517
Lambda = 66.0 umax = 0.21890000
Lambda = 67.0 umax = 0.2146587¢6
Lambda = 68.0 umax = 0.2105893¢
Lambda = 69.0 umax = 0.20668091
Lambda = 70.0 umax = 0.202292332
Lambda = 71.0 umax = 0.19930751
Lambda = 72.0 umax = 0.19582511
Lambda = 73.0 umax = 0.19246844
Lambda = 74.0 umax = 0.18923046
Lambda = 75.0 umay = 0.18610463
Lambda = 76.0 umax = 0.183084%94
Lanmbda = 77.0 umax = 0.18016582
Lambda = 78.0 umax = 0.17734209
Lambda = 79.0 umax = 0.174608%4
Lambda = 80.0 umax = 0.17196191

uy 4+ A(2u — 3u)uy = —u?(1—u) on (0,1), ux(0) = uy(1) = 0.

The critical value of the parameter turned out to be )y ~ 40.8. This value
can be accurately predicted by the following heuristic argument. Consider
@(p) = J(pp1), where J is the energy functional of the problem (3.9),

111 . ud ut
J(u)_/{) (iu _’\"3"“2) d,

and ¢ = +/2sin 7z, the normalized principal eigenfunction, fol pidz = 1,
corresponding to Ay = 72, Then one verifies that for A small the function
¢(p) has only ome critical point, while for A large ¢(u) has three critical

1,4
points. The transition occurs at A = 4)\1—4[3&'1-2; ~ 41.1. In Table 2 we
| Jo etd=
give the maximum values of some solutions from the lower branch. For all
of these solutions the defmaz (defined above) was < 0.0000000002.
We remark that the solution curve in Example 2 could also be traced
starting from the stable branch, although “turning the corner” would require

extra effort. In Example 1, however, the entire curve of solutions is unstable,
so that this alternative is not available.
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Example 8. With Au = uzz+uy,, we solved a two-dimensional problem
(3.10) —Au=Au*(1-u) on Q=(0,1)x(0,1), u=0 on 09.

The exact multiplicity for (3.10) appears to be an open question, although
we believe that the situation here is similar to that of the problem (3.9),
i.e. the bifurcation diagram is given in Pic. 1, with an unstable solution
uy(z, A) and stable solution us(z, A), and ui(z, A) < ug(z, A) for all A > Ao
and z € .

We took uniform square mesh of step size h = 0.1. In Table 3 we present
both solutions for A = 50 at the interior mesh points. The stable solution
up(z, \) was quickly computed, using the scheme (2.6), and also it could be
computed using (3.3-6) with up(z) = 1. To compute the unstable solution

uy(z, \) we were using (3.3-6) with ug(z) = 0.1. The critical value of the
parameter A turned out to be Ag ~ 21.3.
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