Funkcialaj Ekvacioj, 33 (1990) 127-138

On Existence of Periodic Solutions for a Class of
Quasilinear Non-Coercive Problems

By .

Philip KormMAN
(University of Cincinnati, U.S.A.)

1. Introduction
We study nonlinear boundary value problems in n + 1 dimensional space

(x15-+.5x,, y)of the type

¢
Uy, = k; a, (x)D%u = g(x, D*u, ..., D¥u) y=1

2

(1.1) Mu=f(x,yu,Du) O<y<1,
u=0 y=0,
where multi-index oy = (0, ..., o, 0), the given functions f and g and the

unknown function u are 27z periodic in each variable x;. In [2-4] we had
studied the case n = 2, and the boundary condition u, — Fu,, = g(x,u) at y = 1.
When the constant F <0, the problem comes from three-dimensional water
wave theory in the absence of surface tension, see [8]. We are interested in the
problem primarily since it represents a model non-coercive problem (i.e. the
Lopatinski-Schapiro condition fails at y = 1, see [3], and hence one cannot use
the standard elliptic theory). In [2-4] we had considered only the case F > 0,
as in the physical case F < 0 one has a difficulty caused by presence of small
divisors.

In this paper we extend the results of [2, 3] in two directions. In section 3
we consider non-coercive problems of type (1.1) with nonlinear boundary con-
ditions of arbitrarily high order. We introduce a notion of dominating deriva-
tives, which plays a role similar to that of the derivatives of the highest order in
the coercive case. We state conditions allowing establishment of a priori
estimates, and prove existence results for nonlinear problems.

In Section 4, we consider the case F < 0, which leads to small divisors.
To see the difficulty, let us consider the problem (4.7) with f = 0. Look for a
solution in the form u = Y%, un(3)e¥ 2, then u,(y) = ¢ sinh /72 + K2y,
If g(x,2) = ) Fre—w gue”™ ™, then to satisfy the boundary condition at y =1

we must solve cy(/j* + k? cosh \/j? + k* — Fj?sinh \/j? + k?) = g, which

involves division by possibly arbitrarily small numbers.
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We distinguish between two and three dimensional cases. For n=2, it
turns out there are really no “small divisors™, ie. for F =F =(coth j)}j, j =1,
2, ..., we have zero divisors, while for F # F; divisors are bounded away from

get arbitrarily small divisors. The a priori estimates which we derive for
F > 1/2 allow us to prove existence for the linear problem, which is nontrivia]
in the presence of everywhere dense set of zero divisors.

2. Notation and the preliminary results

We consider functions of n+ 1 variables (X1, ..., X,, 3) which are 27
periodic in each variable X, and 0y, By V we denote the domain
0<x;,<2n,i= L..,n0<y< 1; its boundary we denote by 8V, and the top
(y =1) part of the boundary by V.. By D' we understand the derivative

corresponding to the multi-index o — (@y,..., 0, Upirdy |ot] = oy + -+ 4 Oprq = 0.
Also,

U= 0ufOx;, = 0%u/0x,0x; .

We shall denote

2n 2n 1
ff:J f f f(xl,...,x,,,y)dxl...dx,,dy,'
0 o Jo

2n 2n
ff___j f fss ey %, Dy .. dx, .
t 0 0

By I I, we denote the norm in the Soboley space H™(V), and by 1T, the one
in H™(V)). We shall also need the norms
fly= 3 D liewy, N = integer > 0 .

lel<N

All irrelevant positive constants independent of unknown functions we
denote by ¢; Dy = Vu,i=1,...,n+1.
We shall need the following relations between our norms, see [3].

Lemma 2.1.  Adssume that ve H""Y(V). For any integer m >0 and any
€ > 0 one can find a constant ¢ (e) so that
@ 0l < [0l
@ ol < elolper + () o],
@) ol < elolpay + cle) o] .
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The following lemma is taken essentially from [Sj.

Lemma 2.2. Suppose that the functions wy, ..., wye C™(V) or C"(V,). Sup-
pose that ¢ = ¢(wy, ..., W,) possesses continuous derivatives up to order m =1
bounded by c on max;|w;| < 1. Then

(¥ gy, s Wl S el + 1) for max [wi= <1.
(We denote |wll,, = max; [w]l,,). If in addition we assume gb(_(), e 0=0,m=1
then
(i) @Wis - Wl = 6(IWll,n) »
where 6(t) >0 as t — 0.
Remark. The lemma is also true for functions ¢ = ¢(x, y, wy, ..., w;) with

¢ € C™ in all variables. Conclusion (i) is as before, and for (i) the corres-
ponding assumption is ¢(x, »,0, ..., 0) = 0 for all (x, y)e V or V.

Lemma 2.3. Let oy, ..., a, be some collection of multi-indices, ko=
max, << |04 Consider the subset G™ of functions in H™(V) such that

£
Nl = lullm + kz,l Dty < O .
Then G™ with norm ||l is a Banach space, provided that m = ko +
[(n+ 1)/2] + 1.
Proof. To prove completeness, let {u"} be a Cauchy sequence in G",
4
ie. |u —u?|,+ Y |D*u" — D%u?|,_, =0, as r, p— 0. Since H™(V) and
k=1

H™ (V) are Banach spaces, ¥’ —u in H"(V), and D*u" > v, in H" (V). It
remains to show that v, = D*u(x, 1). Indeed, both functions are continuous
and o, — D%ullo < g, — D ey + D% — D]y sy >0 a5 7 c0.

3. A priori estimates and existence results

Consider the problem (non-coercive in general)

¢
ty+ 3 D% = g3 y=1,
(3.1) Au = f(x, y) 0<y<t,
u=20 y=0.

Here u=u(x,y), x=(X1,...,%,), 0<y<1, D% denotes derivatives in x
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variables only, |o,| = %er + 0 gy 1(x) = a + Pe(x), a, = const, £ = integer
> 1. Throughout this section U f, 9, p. are assumed to be 2n periodic
in each x;, We shall study solvability and derive a priori estimates for
the problem (3.1) without restricting max log, the order of the boundary

operator, and without requiring it to be coercive. Then we consider nonlinear
problems.

Definition. We say that derivative Dy is subordinate to D% if o = [,
i=1,...,n and Bi#0if o, £0. We say that derivative D%y is g4 dominating

derivative in a set § = {D*wy, ..., D*u}, if it is not subordinate to any other
derivative in that set,

Clearly, there can be several dominating derivatives in a set, and of differ-
ent orders,

- Lemma 3.1. For the problem (3.1) assume that (—1)=I2q, > ( Jor all even
lowl, and either (— 1)l +1)/2 @ = 0 holds for all odd |a,|, or the opposite inequality
does. The above inequalites are assumed to be strict Jor all k corresponding to
the dominating derivatives in the set S.  Then for max, | Pkl sufficiently small the
Jollowing a priori estimate holds (m = integer > )

‘ 4 .
(3.2) Il + kZl 1D%ull,, < C<k; D% W+ 11£ 1l + Hglfm> :

Proof.  'We begin by assuming that p,(x) = 0 for all k. Let y — Y it(y)ed
f=Y50ev= g = g€ p=/jZ 1 1 Ji- Substituting these into (3.1)
and suppressing the multi-index j, we get:

£
(3.32) u'(l) + k; a (i) u(l) =g,
(3.3b) W -pu=fy O0<y<1,
(3.3¢) u0) = 0.

For p 5 0 solution of (3.3b) and (3.3¢) is

. 17 .
(3.4 u(y) = y sinh py + ;f J(@) sinh p(y — f)dr .
4]
To find y we substitute this into (3.3a)

i
(3.5) (p coshi p + 3" a,(ij)™ sinh p)
k=1

+ fl f@ [cosh ol —1+ %(i ak(ij)“k> sinh p(1 — t)]dt =g.
0 k=1
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Denote A = p cosh p + ¥ £_; a(ij)™ sinh p. Multiplying (3.4) by A, using (3.5)
and standard identities for hyperbolic functions, we get:

1

(3.6) Au(y) =g sinh py — J
0

iy I:COSh p(1 — t)sinh py
+ %(f ak(ij)“k> sinh p(1 — £) sinh py:| dt
k=1
+ Jyf(t) [Sinh p(y —t)cosh p

1 {
+ ;( Y ak(ij)“k> sinh p(y — t) sinh p:| dt
k=1

1

= g sinh py — J f(t)[cosh p(1 — t) sinh py

0

Z
+ %( ) ak(ij)“k) sinh p(1 — t) sinh py:| dt

k=1

— ,(y 1) [sinh pt cosh p(y —1)

0

k=1

2
+ %(Z ak(ij)“k> sinh pt sinh p(1 — y):l dt .

Notice that by our assumptions |4|> ce’(p + j*), for all 1 <k< ¢ Then
from (3.6) we easily estimate (see [2, p. 876] for a similar argument)

@) )l < c( LA 1(f1 If(t)lzdt>m)
. u S " — .
g p+ % p\Jo
This implies (restoring the subscripts)
1 5 {gjlz 1 1 )
0 p P~ Jo
In the case p = 0 we easily get from (3.3)
1 1
(3.9) J luo?dy < C<190|2 + f |fo(f)l2dt> :
0 0

Differentiating (3.6) and going through the same steps as in derivation of (3.7),
we get

» 1
(3.10) |2 <c<1gj|2+j |Jj~12dt).
0
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From (3.8-10) and from (3.7) with y=1 we conclude the estimate (3.2) with
m= 0. Higher estimates are easily proved by induction, differentiating (3.1)in x.

Turning to the general case, we write the boundary condition at y=1in
the form )
1 4
Uy + Y @ D%y =g+ Y p(x) Dy,
k=1

k=1

and.apply the estimate (3.2) for the constant coefficient case.
Since

“pk(x)Daku”m < chklm ”Daku”m H

with |p|,, small, the proof follows,

Remark 1. Notice that the above argument establishes existence of so-
lution wu(x, y)e G"*1 to the problem (3.1) in the case Px) =0 for all i,
provided fe H™*ko(y), geH™V), m>0. For the general case existence
follows in the same way as in the theorem 3.1 below, under the additional
condition m > k, + [(n+ 1)/2] + 1. :

Remark 2. All conditions on a, which correspond to lo] odd can be

dropped if none of the corresponding D% is g dominating derivative in the
set S.

Remark 3. A partition of unity argument (which allows one to remove the
smallness conditions on i) produces the estimate (3.2) with an extra term llullo
on the right. We do not know how to remove this term (notice, there is no
apparent maximum principle).

Sharper estimates can be obtained in the following special case.

Lemma 3.2.  Consider the problem (3.1) with £ = 1.  Assume that (—1)laliz

a, >0 in case |oy| is even and ay #0 in case |o;| is odd. Then Jor |p4]
sufficiently small we have (integer m > 0)

m

Il o+ 1D%ully < (U f 11 + g1, -

Proof. 1t is sufficient to consider the case p1 =0, from which the general
case will follow as before, Follow the proof of lemma 3.1. From (3.10) it
follows (by taking derivatives of (3.1) in x and setting y = 1)

Nyl < €U f Nl + ligl,)

and hence

1D%ull <Tuyl + llgllm < c(lif1,, + lgllm) -

Combining this with (5.8-9), we conclude the proof.
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Theorem 3.1. Consider the problem
' u, = p(x, D*u,...,D%u)  y=1,
(3.11) Au = gf(x, y)
u=0 y=0.

O<y<1,

Assume that p(x,0,...,0)=0. Denote r, = —(0p/0D*u)(x,0, ..., 0), and assume
that r(x) satisfy the same conditions as in lemma 3.1. Let ko = max, g, |o] 2 1,
my = ko + [(n+ 1)/2] + 1, fe C™**™ pe C™ for (x, y)e V and in small balls
around the origin for other variables. Then for & and max,|py|,, sufficiently
small the problem (3.11) has a solution u e C*(V)N C(V)).

Proof. Define a map T:u e G™ — v e G™ by solving (see lemma 2.3)

¢ ¢

v, + Y @D = p(D™u,...,D"u) + ) aD%u y=1,
k=1 k=1 :

Av = ¢f(x, ) 0<y<l,

v=20 y=0.

Using lemma 3.1 it is easy to see that T is a contraction on sufficiently small
balls around the origin in G™.

Remarks. 1. It is easy to see that a similar perturbation result will hold
for f = f(x, y, u, Du, D*u), provided max; ¢, <, || < L.

2. Clearly the smoothness of solution increases with that of p and f. In
particular if p, f € C* so does u.

Example. Letu = u(x, y,z). The non-coercive problem

2
Uy = Uxx — Upexx T Uszz y= 1 >
Au = gin X sin z O<y<x1,
u=20 y=0

verifies conditions of the theorem 3.1, and hence it has a C*® solution, 2z
periodic in x and z, provided ¢ is small enough.

Theorem 3.2. Consider the problem
u, = p(x, D*u, ..., D*u) y=1,
(3.12) Au = ¢f (x, y, u, Du) 0<y<l,

u=20 y=0.
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Assume that p(x,0,...,0)=0. Assume that one of the derivatives in the set S,
say D*, dominates all others. With n(x) as defined in the theorem 3.1, we
assume that r,(x) satisfies the conditions of lemma 3.2, and 1, = 0 for k = 2, v £
With ko and my as above assume that f,peC™ for (x,y) eV and in small balls
around the origin for other variables. Then Jor ¢ and | P1lm, Sufficiently small the
problem (3.12) has a solution ue C*(V)N C*o(¥)).

The proof is similar to that of the theorem 3.1,

4. Small divisors in dimensions two and three

We show first that the situation is rather simple for the two-dimensional

case, i.e. u = u(x, y). Namely, except for F=(coth j)/j where zero divisors ap-
pear, for other F the divisors are bounded away from zero.

Lemma 4.1. Consider the problem (u, f and g are 2n periodic in x)

uy+Fuxx=g(x) y=1=
4.1 du = f(x, y) O<y<1,
u=20 y=0.

Assume that F # (coth j)/j, j=1,2, co,and F#0. Then

(4.2) [tz + Tullmsz < CUlf lhpas + 1glm) -

Proof.  Look for solution in the form u(x, y) = 3 2, ufy)e, and follow
the proof of lemma 3.1. This time A = Jjcosh j— Fj?sinh j. Notice that if
F+#(coth j)/j and F #0, then |4] > coj’e’ for some ¢, > 0. The rest of the
proof is similar to that of lemma 3.1.

Theorem 4.1. Consider the problem

uyzp(u’uxa uxx) y= 1 >
(43) uxx+uyy=f(x9y> u, ux7 uy) O<y< 1 )
u=20 y=0.

Assume that f is 2n periodic in x, and the Jollowing
@ p(0,0,0) = p,(0,0,0) = p, (0,0,0) = 0;

1
Fy = —puxx(0,0,0);é]—,cothj, j=12..,F,#0.

) peC f, f, Jus fu, € C* in all arguments (for 0 < x < 2n, 0<y <1
and in small balls around the origin for other variables).




ivatives in the set S,
the theorem 3.1, we
=0fork=2..1¢
V and in small balls
sufficiently small the

he two-dimensional
© zero divisors ap-

iodic in x)

/(e and follow
J. Notice that if
). The rest of the

Periodic Solutions for Non-Coercive 135

Then fOT ”f(xs }’= 09 Oa 0)”3: Hf;;(xﬁ ya 09 0’ 0)“3’ ”fux(xa Vs 0: 09 0)“3 and
£, (%, ¥, 0,0, 0)[} sufficiently small the problem (4.3) has a C? solution, 2n periodic
in x.

Proof. Let G™(m = integer > 1) be a subset of H™(V) consisting of func-
tions u € H™(V) such that in addition ue H™(V,). By lemma 2.3 G™ with the
norm ||ull,, = llull, + [u],. is a Banach space (notice that by lemma 2.1 this
norm is equivalent to ||u,, + [|t4llm—s for n =1). Define a map T of G™ into
itself by solving (v = Tu)

vy+FOUxx=p(u> ux> uxx)+F0uxx y=17
4v = f(x, y, u, Uy, u,) 0<y<xl,
U=O y:o_

Using lemma 4.1 it is straightforward to show that the map T takes a suffi-
ciently small ball around the origin in G* into itself and is a contraction (see
[2] for a similar argument).

Next we turn to the three-dimensional case, ie., u = u(x, y, z), where the
situation is more involved. Notice first that the set of F corresponding to the
set F = {F,} of zero divisors F;; = (\/j* + k?/j*) coth \/j* 4+ k? is everywhere
dense on the positive real axis, as we showed in [2].

We restrict now to the rational F = p/q, and see that the situation changes
depending on whether F > 1/2 or F < 1/2. For F =p/qg>1/2 and F ¢ & we
show that the denominators are bounded away from zero, which allows us to
derive a priori estimates. For F = p/g < 1/2 it is possible that F ¢ #, but the
denominators can get arbitrarily small. We also show that for each rational F
condition F € # can be decided by a finite number of computations.

Lemma 4.2. Let F = p/q > 1/2 be an irreducible fraction. Then there exists
a constant ¢, > 0, such that

d=J/(j*+ 1) —Fj’| 2 ¢,

for all integers j, k, possibly with the exception of finitely many pairs (j, k).

Proof. Without loss of generality we restrict to positive j and k. We
consider three cases.

(i) k= Fj* Then

2

1
d>JG? + F5%) — Fj* = J >

SN+ F2 T SO+ FO+F
() k=Fj?—¢¢>=2. Then one easily gets:
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K —UF) + A = 1F) _ 2k+ 4 — UF) _ ik + )
—\/(I/F(k+/)+kz)+k+//\/(2(k+f)+k2)+k+f/01'(k+/)

=c¢;>0.

(iii) It is easy to see that it remains to consider the case k = Fj? — ¢ with
/g < ¢ <2~ 1/q, where £ = m/q (for some m = integer > 0) may be a reducible
fraction. Then
g\ = = (B2 = 0P |2 4 2B — 7]
VG + ) + Fj? VU + k) + Ff?

Notice that 2F¢ = 2(p/q)(m/q) # 1, for otherwise we would have 2m = g%/p with-
p and g being mutually prime a contradiction. Denote |2F/ — 1| =7¢, > 0.
Then for j > j, — large,

+2 2
c j =7
d>=
Vit + (Ej? = ¢ + Fj?

Remark 4.1. If F =1, then we easily estimate d > 3/8, with the exception
of j=k=0and j=+1,k=0.

=co> 0.

Lemma 4.3. Let F > 1/2 be rational, and F # F;,. Then there exists a
constant c3 > 0, such that for any pair of integers J» k we have

14l = 1V/J* + & cosh \/j2 + k? — Fj? sinh \ /7% 1 k2| > ¢, edP7%

Proof. Write

Al = S5 |+ R — B 4+ e NPT RE 4 Ry
iz
=S ld+a.

By Lemma 4.2, |d| > ¢, for il = jo. Also |d] > ¢, for Il <jo and [k| > k,,
ko —large. By increasing j, and ko, if necessary, we can also assume
that |d;| < ¢o/2 for |j| = j, or |k| > ko. Let now ¢, =min 1l<jo lK|<ko |4 + dq].
Notice that T, >0, since F # F,. The lemma now follows with €3 =
min(c,/4, ¢,/2).

Lemma 4.4. For each rational F > 1/2, condition F e & can be decided by
a finite number of computations. (Recall that the set F is everywhere dense)

Proof.  Condition F € & implies that for some jand k

44 N T eVl S
F2+ Ji*+ k2
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By Lemma 4.2,

F? =PRI ‘o

Fi*+./i2+ 12~ F(j2+ 1) +/i2 + 12

and the left hand side of (4.4) is less than that quantity for large j, k, e.g. for

1
@5) JP K> /F: G2+ k),
0

which concludes the proof.

Remark 42. 1# %. Indeed, by Remark 4.1 we can take ¢, = 3/8. Then
in view of (4.5) we have only to check j= 41, k=0and j=0, k = £1, which
is easily done.

Lemma 4.5. Condition F > 1/2 in lemmas 4.2, 4.3 cannot be removed.

Proof. Namely, we show that 1/2¢ %, but d = ./j*+ k* — j*/2 gets
arbitrarily small for large j, k. Indeed, take k=j?/2—1, j—even. Then
d=1)(/j* + k* + j?/2). Condition 1/2¢ & is equivalent to checking impos-
sibility for any j and k of

4.6) N R Nt Nl iy
PR+ R

For this, one first notices that the left hand side of (4.6) is less than the absolute
value of the right hand side if j2 + k® > 8, and then one eliminates all remain-
ing possibilities.

We can now obtain the following a priori estimates.

Theorem 4.2. Consider the problem (u = u(x, y, z))

Uy + Fuy, = g(x, 2) y=1,
4.7) du= f(x, y, 2) 0<y<1,
u=0 y=0.

Assume that F > 1/2 is rational, F ¢ & f and g are 2n periodic in x and z. Then
we have the following estimate

(4.8) Il + Nl < c(lf lmts + lgllm) -

Proof. Look for solution in the form u(x, y,z) =Y T —o up(y)e’™ *

This time |A| = |/j* + k* cosh /j? + k? — Fj? sinh \/j* + k*| = coev P by

lemma 3.3. Then proceed as in lemma 5.1.
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Corollary. If fe H5(V), g€ HY(V)) then the problem (4.7) has a unique

C?(V) solution.

Acknowledgements. Tt is a pleasure to thank L. Nirenberg for posing the

problem, and H. Levine and G. Lieberman for their interest in my work and
useful discussions,

[1]
[2]
[3]
[4]
(5]
[6]

[7]
[8]

References

Agronovich, M. S, Singular elliptic integro-differential operators, Uspekhi Mat. Nauk., 20
(1965), 1120, (Russian).

Korman, P, Existence of periodic solutions for a class of nonlinear problems, Nonlinear
Analysis, TMA 7 (1983), 873-879,

Korman, P., Existence of solutions for a class of nonlinear non-coercive problems, Comm.
Partial Difl. Eqns, 8 (1983), 819846,

Korman, P, On existence of solutions for a class of fully nonlinear noncoercive problems,
to appear in J. Math. Anal, Applic.

Moser, J., A rapidly convergent iteration method and non-linear partial differential equa-
tions I, Ann. Scuola Norm. Sup., Pisa 20 (1966), 265-315. :

Nirenberg, L., Topics in Nonlinear Functional Analysis, Courant Institute lecture notes
(1974).

Schwartz, J., Nonlinear F unctional Analysis, Gordon and Breach, New York 1969.

Shinbrot, M., Water waves over periodic bottoms in three dimensions, J. Inst. Math.
Applic., 25 (1980), 367-385.

nuna adreso:

Department of Mathematical Sciences
University of Cincinnati

Cincinnati, Ohio 45221-0025

USA.

(Ricevita 1a 7-an de junio, 1988)




