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Abstract 

We give a detailed description of dynamics for periodic Lotka-Volterra systems with constant interaction rates. 
We also give an exact multiplicity result for a periodic species with a threshold. We present some numerical 
computations, which both illustrate our results and indicate possibilities for further developments. 
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1. Introduction 

We begin by considering Lotka-Volterra systems of the type 

i_(t) =x(t)(+) -b(t)+) - c(t)y(t)), Y(t) =y(t>(+> -e(t).+> -f(t)v(t)>, 

(1.1) 

with continuous p-periodic coefficients a(t), . . . , f(t), and we are interested in positive solu- 
tions x(t) > 0, y(t) > 0. We assume that the carrying capacities a(t) and d(t) have positive 
averages and that self-limitation coefficients b(t) and f(t) are positive. The signs of the 
interaction coefficients c(t) and e(t) determine the type of interaction: competing species if 
c(t) and e(t) are positive, predator-prey if one of the signs is reversed, and cooperating species 
if both signs are reversed. We show that dynamics of (1.1) can be described in detail if the 
coefficients b, c, e and f are constant. It appears reasonable to assume that self-limitation and 
crowding coefficients change less with time (or seasons) than the carrying capacities. Section 2 
is devoted mostly to the cooperating-species case, for which we obtain a complete description 
of the dynamics. We then recall our results in [4], which give a complete understanding of the 
dynamics for the competing-species case (for constant b, c, e and f). For the predator-prey 
case we obtain a necessary and sufficient condition for existence of a positive p-periodic 
solution (for constant b, c, e and f>. This solution is globally stable under an additional 

0377-0427/94/$07.00 0 1994 Elsevier Science B.V. All rights reserved 

SSDI 0377-0427(93)EOllO-8 



268 P. Korman /Journal of Computational and Applied Mathematics 52 (1994) 267-275 

condition: ce < bf. Our numerical experiments indicate that this restriction may be relaxed. 
In Section 3 we consider a periodic model for a species with a threshold: 

i(t) =x(t)(x(t) -a(t))(b(t) -x(t)). (1.2) 

Assuming max,a(t) < min,b(t) and a technical condition, we prove existence of exactly two 
positive p-periodic solutions. We then study numerically competition of a Lotka-Volterra 
species with a species of a threshold type. 

2. Remarks on periodic Lotka-Volterra systems 

We begin with a general Lotka-Volterra system describing interaction of two cooperating 
species in a periodic environment (X =x(t), y = y(t)>: 

i =x(a(t) -b(t)x + c(t)y), Y =Y(+) +e(+ -f(t)y). (2.1) 

Here a(t), . . . , f(t) are continuous p-periodic functions such that 

b(t), c(t), e(t) and f(t) are positive functions, (2.2) 

A = /“a(t) dt > 0, D = j%(t) dt > 0. (2.3) 
0 0 

Lemma 1. Let (x(t), y(t)) and (u(t), u(t)> be two positive (componentwise) solutions of (2.1) 
such that u(O) 2 x(O) and v(O) > y(O) with at least one inequality being strict. Then u(t) > x(t) and 
v(t) > y(t) for all t > 0. 

Proof. Denote z = u -x, w = u - y. Then, 

i = (u + cy - bx - bu)z + cuw, z(0) 2 0, 

li, = evz + (d + ex -fy -fv)w, w(0) > 0, (2.4) 

and ~~(0) + w2(O> > 0. Let now z = ePhf[, w = ePAt 77, with a constant A to be determined. Then 
(2.4) becomes 

5’=(A+u+cy-bx-bu)[+cuq, t(O)=z(O)aO, 

7j =evt+(h +d+ ex -fi --fv)q, r(O) =2(O) 2 0. 
(2.5) 

For any T > 0 we can choose A > 0 so large that all the coefficients in (2.5) are positive for 
0 < t G-T. This implies that t(t) and q(t) are positive on (0, T], and so are x(t) and 
T was arbitrary, the proof follows. 0 

The following result is an adaptation of a theorem of [3]. 

y(t). Since 

Theorem 2 (Essentially of de Mottoni and Schiaffino [3]). Er;ery positive solution of 
tends to a positive p-periodic solution us t + + CO or to infinity (in both components). 

(2.1) either 
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Proof. We begin by introducing the natural directions in the (x, y)-plane. We say that a point 
P = ( pl, pz) lies northeast of Q = (qr, q2) if p1 2 q1 and p2 2 q2. The other three directions 
(northwest, southeast and southwest) are defined similarly. We say that the point P lies strictly 
northeast of Q if the above inequalities are strict, and similarly for other directions. Let 
P = (x(O), y(0)). By P’ we denote (x(t’), y(t’>) the solution of (2.1) for some t’ > 0, and Q’ is 
defined similarly. By P” we denote (X(Y), y(Y)>, etc. 

It follows from Lemma 1 that if Q lies northeast (southwest) of P, then Q’ lies strictly 
northeast (southwest) of P’ for any t’ > 0. If the point Q lies northwest (southeast) of P, then 
we claim that only one of two possibilities occurs. 

(i) Q’ is either northeast or southwest of P’ for some t’ > 0. Then, by the above, Q” will lie 
correspondingly strictly northeast or strictly southwest of P” for all t” > t’. 

(ii) Q’ is strictly northwest (southeast) of P’ for all t’ > 0. 
We show that the other possibilities cannot occur. Assume for definiteness that Q lies 

strictly northwest of P, Q’ is strictly southeast of P’ for some t’ > 0. By continuous dependence 
on data for (2.1), this would imply the existence of 0 < t” < t’, such that Q” is either northeast 
or southwest of P”. By (i) it is then impossible for Q’ to be southeast of P’. 

Starting with an arbitrary point (x(O), y(O)), we now consider its images under the Poincare 
map, denoting P,, = (x(np), y(np)), n = 0, 1,. . . . It follows from the above that for 12 > ~1~ 2 0, 
P,, moves in either of four strict directions, i.e., its components are monotone. If P,, lies in a 
bounded region, then P,, + P, with P a fixed point of the Poincare map. Finally, we remark 
that P cannot lie on either of the coordinate axes, since, e.g., the x-component of the periodic 
solution of (2.1) is bounded below by the p-periodic solution of i = z(a(t) - b(t)z), which is 
strictly positive (as can be seen by a direct integration). 0 

Theorem 3. Assume that the interaction coefficients b, c, e and f are constant while a(t) and d(t) 
satisfy (2.3). Then for existence of a positive p-periodic solution of (2.1) it is necessary and 
sufficient that ec < bf. In such a case the positive p-periodic solution is unique, and it attracts all 
other positive solutions when t + + co. If ec = bf, then both components of any positive solution of 
(2.1) go to + w in infinite time (i.e., solution of (2.1) exists for all t > 0). If ec > bf, then any 
positive solution of (2.1) blows up in finite time. 

Proof. If (x(t), y(t)> is a positive p-periodic solution of (2.11, then dividing the first equation in 
(2.1) by x(t), the second one by y(t) and integrating from 0 to p, we express 

P 

/ 0 

Af+cD P Ae+bD 
(2.6) 

0 
X7 d7= bf-ec ’ / 0 o Y 7 dT= bf_ec > 

which proves necessity of ec < bf. 
(i) Assume ec < bf. Denote a, = max a(t), d, = max d(t). Choose M > 0, N > 0 such that 

aIn -bM+cN<O and d,+eM-fN<O. 

Then (2.1) has an invariant rectangle (0, Ml X (0, N) and hence a positive p-periodic solution 
exists by Theorem 2. To show that it is unique, we first show that there is a maximal p-periodic 
solution by constructing standard monotone iterates, and then use formulas (2.6). (Alterna- 
tively, we could show that the local index of any p-periodic solution is 1, and use the degree 
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theory. The last approach was introduced in [l].) By Theorem 2, the unique p-periodic solution 
is a global attractor. 

(ii) ec = bf. No positive p-periodic solution exists. Referring to the proof of the Theorem 2, 
the points P, must eventually move strictly northeast and tend to ~0, i.e., both x(t) and y(t) 
tend to ~0. 

We show next that solution exists for all t > 0. The proof is almost identical to the one we 
used in [5]. Denote pr(t) = exp( - /&z(r) dr), ,uu, = exp( - /Ofd(r) dr). Rewrite (2.1) as 

P-7) 

Denote X = ,~rx, Y = p2y and divide the second equation in (2.7) by the first: 

dY eY 
-=--- 
dX bX’ 

Integrating and returning to the original x and y gives 

p2y=c1 
e 

/+C’ ’ cl = -, c2 a constant of integration. 
b 

This implies that x(t) cannot go to 03 in finite time, since otherwise y(t) would have to go to 
zero. 

(iii) ec > bf. Choose cr, p > 0 so that 

e b+a 

f+p> c ’ P-8) 

and divide the positive quadrant rW: into the regions A, = {0 <x < ~0, y > ex/(f + p)}, A, = 
(0 <x < 03, (b + (u)x/c < y < ex/(f + PI} and A, = (0 <x < m, y < (b + a)x/c}. If a trajectory 
eventually stays outside A,, then x(t) blows up in finite time, since then i(t) > x(t>(a(t) + ax). 
Similarly, if a trajectory stays eventually outside A,, then y(t) blows up. As in (ii), we know that 
x(t) and y(t) go to CO as t increases. In order for a solution to exist for all t, the trajectory 
would have to visit both A, and A, infinitely often on its way to infinity. We show next that 
this is impossible. 

Let y = yx, with (b + a)/c < y < e/(f + p). Then, 

dy 
lim - = lim 

y(d + ex -fi) e-fr 

x+m dx .++a-bx+cy) =’ -b+cy > Y? 

if we choose y sufficiently close to b/c (decreasing cr > 0 if necessary). This implies that the 
vector field crosses the line y = yx only in one direction for large x, completing the proof. q 

Remark 4. In case ce < bf our numerical experiments have shown the convergence to a 
p-periodic solution to be very fast. In fact even with (x(O), y(O)) taken rather far from the 
periodic solution, by time t = 2p the solution usually is very close to the periodic one. This 
remains true also in the case when b, c, e and f depend on t. 
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Example 5. In Fig. 1 we present a computation for the system 

X =x(9 + 2 sin(27rt) -4x + 1.5 y), j =y(ll - 8 sin(27rt) + 0.1 x -y). 

The system was integrated using a program written by D. Schmidt, which is using a fifth- and 
sixth-order Runge-Kutta method with automatically adjusted time steps (Fehlberg’s method). 
We started with x(0) = y(O) = 1. One sees quick convergence to a periodic pattern in the 
(x, y)-plane. The fact that x(t) and y(t) converge to one-periodic functions was verified by a 
separate computation of x(t) and y(t) (keep in mind that the system is nonautonomous). 

Similar detailed description of dynamics is also possible for the case of competing species 
with constant and positive b, c, e and f: 

X =x(a(t) - bx - cy), j =y(d(t) -ex -fy). (2.9) 

The following result we proved in [4] (it can also be deduced from [3]). 

Theorem 6. Assume a(t) and d(t) satisfy (2.3). Then for the existence of a positive p-periodic 
solution of (2.9) it is necessary and sufficient that 

Af -cD bD-eA 

bf-ce 
> 0 and 

bf-ce >” 

In order for this solution to attract all other positive solutions as t + m, it is necessary and 
sufficient that Af - CD > 0 and bD - eA > 0. 

Next we consider the periodic predator-prey model 

X =x@(t) - bx - cy), y =y(d(t) + ex -fy), 

with constant interaction rates b, c, e, f > 0. 

(2.10) 

Theorem 7. Assume a(t) and d(t) satisfy (2.3). Then condition 

Af-cD>O (2.11) 

is necessary and sufficient for existence of a positive p-periodic solution of (2.10). If in addition 
ec < bf, then this solution is unique and attracts all other positive solutions as t + ~0. 

Fig. 1. 



272 P. Korman /Journal of Computational and Applied Mathematics 52 (1994) 267-275 

Proof. Expressing as before 

P 

/ () 

@-CD P 

/ 0 

Ac+bD 
xt dt= 

0 bf+ce ’ o 
yt dt= 

bf+ce ’ 

we see the necessity of (2.11). Sufficiency easily follows by using the degree theory, in a similar 
way as we used in [4]. The stability assertion follows from [7] (or by setting up monotone 
iterations as in [6] and then using the iterates to prove global stability similarly to [2]. This 
approach would carry over to a class of n-species systems with constant interaction rates). q 

3. On a periodic model with a threshold 

We begin with the equation (U = u(t)> 

ti =u(u -a(t))(b(t) -u) (34 

with positive continuous and p-periodic functions a(t) and b(t). We assume that 

rnax u(t) < min b(t). 
f (3.2) 

Here we have a species whose growth rate is negative when u < a(t) (the threshold) and 
positive for a(t) < u < b(t). 

Theorem 8. Assume, in addition to (3.21, that the following two conditions hold: 

my a(t) < i[a(t) + b(t)], 

/a(t)b(t) < min b(t). 
f 

Then the problem (3.1) has exactly two positive p-periodic solutions, with 0 < u 1( t ) < u 2( t ) for all 
t. Moreover, u2( t) is asymptotically stable as t + + 03, while ul( t) is unstable. Also, we have 

mina(t) G ul(t) G max u(t), (3.5) 
t t 

m;lnb(t) G u*(t) < m;x b(t). (3.6) 

Proof. Define the Poincare map u0 E R++ T(u,) E R, by T(u,) = u(p, uO), where u(t, uO> 
is the solution of (3.1) with ~(0, uO> = uO. It is clear that T maps the interval [min,b(t), 
max,b(t)] into itself, while T-’ maps [T(min,a(t)), T(max,a(t))] into itself. Since the fixed 
points of T correspond to periodic solutions, it follows that (3.1) has at least two p-periodic 
solutions, with at least one satisfying (3.5) and (3.61, respectively. Also notice that all p-periodic 
solutions must satisfy either (3.5) or (3.61, since outside these regions ti is either positive or 
negative. 

Next we establish the stability claim, from which the exact multiplicity of solutions will easily 
follow. The variational equation of (3.1) is 

i, = [ -3u2 + 2(” + b)u - ab]u. (3.7) 
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Its Floquet multiplier is 

f=u(p,l)=exp /aP(-3~z+2(a+b)u-ab)dt). (3.8) 

We show next that for any p-periodic solution satisfying (3.6), f < 1, which implies asymptotic 
exponential stability of the solution. 

Dividing (3.1) by u and integrating, we get in view of periodicity 

/( ’ -u2 + (u + b)u - ab) dt = 0. 
0 

P-9) 

Motivated by [l], we now rewrite (3.7): 

d=[-u2+(u+b)u-ab]u+[-2 U2+(a+h)u]a=$u+[-2U2+(u+b)u]u. (3.10) 

Letting 5 = u/u, we express 

i= [ -2u2+ (a +b)u]5. 

Using (3.91, 

(3.11) 

iP[ -2u2 + (u + b)u] dt = kp( -u2 + ab) dt. (3.12) 

It follows from (3.11) that if (3.4) holds, t(t) + 0 as t + +w. But then u(t) + 0 as t + + a, 

which implies that f< 1 (since the integral in (3.8) has to be negative). Instability of any 
solution satisfying (3.5) follows similarly, using (3.12) (here f > 1). 

Next, we show uniqueness of the p-periodic solution satisfying (3.6). We use the Brouwer 
degree theory similarly to [l]. Define the function F(r) : R, + R, by F(Y) = r - T(r). Choose 
any number s E (min,b( t), max,b(t)). Then for any E > 0 sufficiently small and any 0 < 8 < 1, 

OF(r) + (1 - f3)(~ -s) < 0, for Y = mm b(t) -E, (3.13) 

and the opposite inequality holds for r = max,b(t) + E. It follows that with Z = (minb(t) - E, 
max,b(t) + E), 

deg(F(r), I, 0) = deg(r -s, I, 0) = 1. (3.14) 

The C1 function F(r) will have a finite number of roots on I, provided we can show that 
F’(r) > 0 at any root Y, and then its degree (3.10) is the sum of indices of each root. But the 
index at Y is 

sign F’( ?) = sign( 1 - T’(r)) = sign( 1 - f?) = 1, 

where f, < 1 is the Floquet multiplier of u( t, Y). Hence F(r) has only one root in I, satisfying 
(3.6). 

Uniqueness of the p-periodic solution satisfying (3.5) can be reduced to the above argument 
by reversing time, i.e., defining T(u,) = u( -p, u,,). q 
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Fig. 2. 

Remark 9. We had no difficulty numerically computing both periodic solutions, the stable 
(higher) one by considering the long-time behavior of u(t, uO> for t > 0 and u0 > 0 large, and 
the unstable (lower) one when t < 0 and u0 > 0 small (stability of u,(t) and u,(t) is reversed for 
t < 0). 

Based on Theorem 8, one can consider various interaction models. We present a numerical 
example. 

Example 10. We consider competition of a Lotka-Volterra species with one of threshold type: 

i =x(x - 1)(9 +p sin(27rt) -4x-y), y = y(7 + q sin(2rrt) - 3x - y), (3.15) 

with constant p and q. If p = q = 0, then (3.15) has a fixed point (2, 11, which attracts as 
t + + m all solutions of (3.15) with x(O) > 1 and y(O) > 0. For all constants p and q that we 
tried, we found that (3.15) had a one-periodic solution, attracting all other solutions with 
x(0) > 1 and y(O) > 0. In Fig. 2 we present the (x, y)-picture of the solution for p = 2 and 
q = - 8, with x(0) = 7, y(O) = 2. W e used the program of D. Schmidt, which was described 
previously. 

4. Note added in proof 

Recently we found another proof of Theorem 8, which does not require conditions (3.3) and 
(3.4). It will appear elsewhere. 
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