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Abstract

We apply the “monotone separation of graphs” technique of L.A. Peletier and J. Serrin [L.A. Peletier,
J. Serrin, Uniqueness of positive solutions of semilinear equations in Rn, Arch. Ration. Mech. Anal. 81
(2) (1983) 181–197; L.A. Peletier, J. Serrin, Uniqueness of nonnegative solutions of semilinear equations
in Rn, J. Differential Equations 61 (3) (1986) 380–397], as developed further by L. Erbe and M. Tang
[L. Erbe, M. Tang, Structure of positive radial solutions of semilinear elliptic equations, J. Differential
Equations 133 (2) (1997) 179–202], to the question of exact multiplicity of positive solutions for a class
of semilinear equations on a unit ball in Rn. We also observe that using P. Pucci and J. Serrin [P. Pucci,
J. Serrin, Uniqueness of ground states for quasilinear elliptic operators, Indiana Univ. Math. J. 47 (2) (1998)
501–528] improvement of a certain identity of L. Erbe and M. Tang [L. Erbe, M. Tang, Structure of positive
radial solutions of semilinear elliptic equations, J. Differential Equations 133 (2) (1997) 179–202] produces
a short proof of L. Erbe and M. Tang [L. Erbe, M. Tang, Structure of positive radial solutions of semilinear
elliptic equations, J. Differential Equations 133 (2) (1997) 179–202] result on the uniqueness of positive
solution of (1 < p, q < n+2

n−2 )

�u + up + uq = 0 for |x| < 1, u = 0 when |x| = 1.
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1. Introduction

We study uniqueness and exact multiplicity of positive solutions for the Dirichlet problem on
a unit ball in Rn (x ∈ Rn)

�u + λf (u) = 0 for |x| < 1, u = 0 if |x| = 1, (1.1)

with λ a positive parameter. In view of the classical theorem of B. Gidas, W.-M. Ni and L. Niren-
berg [5] positive solutions of (1.1) are radially symmetric, i.e. u = u(r), with r = |x|, and
moreover u′(r) < 0 for all r ∈ (0,1), and hence they satisfy

u′′ + n − 1

r
u′ + λf (u) = 0, r ∈ (0,1), u′(0) = 0, u(1) = 0. (1.2)

Exact multiplicity of positive solutions have been studied extensively in recent years, starting
with P. Korman, Y. Li and T. Ouyang [8], and continued by T. Ouyang and J. Shi [13,14] (and
in a number of other papers by various authors). In [8] a general scheme for proving such results
was developed. It involves several steps: proving positivity of solutions of the linearized problem,
studying the direction of bifurcation, showing uniqueness of the solution curve, etc. In the present
note we apply the “monotone separation of graphs” technique, introduced by L.A. Peletier and
J. Serrin [15,16], and developed further L. Erbe and M. Tang [4], and P. Pucci and J. Serrin [17],
to obtain new results on the positivity of solutions of the linearized problem, which in turn imply
exact multiplicity and uniqueness results.

By a result of C.S. Lin and W.-M. Ni [12], solutions of the linearized problem for (1.1) are
radially symmetric, and hence the linearized problem takes the form (w = w(r))

w′′ + n − 1

r
w′ + λf ′(u)w = 0, r ∈ (0,1), w′(0) = 0, w(1) = 0. (1.3)

For “most” pairs (λ,u) the eigenvalue problem (1.3) admits only the trivial solution w(r) ≡ 0,
we call such a solution pair (λ,u) non-singular. For the bifurcation approach of [8,13,14] one
needs to show that for singular pairs (λ,u), i.e. when (1.3) admits non-trivial solutions, these
solutions are of one sign, i.e. we may assume that w(r) > 0 for all r ∈ [0,1). To prove positiv-
ity, a method of test functions was used in [8,13,14]. In the present work we observe that the
“monotone separation of graphs” technique, originally developed to prove uniqueness of ground
states for semilinear equations, can also be used to prove positivity for (1.3), which gives us a new
multiplicity result, and also a considerably shorter proof of L. Erbe and M. Tang [4] uniqueness
result.

The “monotone separation of graphs” technique allows one to show that different positive
solutions of (1.2) do not intersect. We show that this implies that at any turning point any non-
trivial solution of the linearized problem (1.3) is of one sign, and then the bifurcation analysis of
P. Korman, Y. Li and T. Ouyang [8], and T. Ouyang and J. Shi [13,14] applies. In case f (u) =
up + uq , with 1 < p,q < n+2

n−2 , we are able to show that the solution curve does not turn, which
results in a short proof of uniqueness (and existence) of solutions, which was first proved in
L. Erbe and M. Tang [4]. For a class of convex f (u) we show that the solution curve makes
exactly one turn, which implies a new exact multiplicity result.

We observe that two more methods for proving positivity of (1.3) are available, in addition to
the two methods just described. One of them involves considering the ratio of any two solutions,
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as in M.K. Kwong and Y. Li [10] or in Adimurthi, F. Pacella and S.L. Yadava [1], and the other
one in P. Korman and T. Ouyang [9] is based on certain generalized Wronskians of M. Tang [19].

2. Preliminary results

Since positive solutions of

u′′ + n − 1

r
u′ + f (u) = 0, r ∈ (0,1), u′(0) = 0, u(1) = 0 (2.1)

are strictly decreasing, see B. Gidas, W.-M. Ni and L. Nirenberg [5], we can consider the inverse
function r = r(u), which satisfies

r ′′(u) − (n − 1)
r ′2(u)

r(u)
− f (u)r ′3(u) = 0. (2.2)

If v(r) is another solution of (2.1), then its inverse function r = s(u) satisfies

s′′(u) − (n − 1)
s′2(u)

s(u)
− f (u)s′3(u) = 0. (2.3)

The following well-known lemma on “monotone separation of graphs” is due to L.A. Peletier
and J. Serrin [16].

Lemma 2.1. (See [16].) Suppose r(u)− s(u) > 0 on some interval I . Then r(u)− s(u) can have
at most one critical point on I . Moreover, this critical point is a strict maximum.

Proof. If ū is a critical point of r(u) − s(u), then r ′(ū) = s′(ū), and hence

(r − s)′′(ū) = (n − 1)

(
1

r(ū)
− 1

s(ū)

)
r ′2(ū) < 0. �

Assume now there are two intersecting solutions of the Dirichlet problem (2.1), u1(r) and
u2(r). Denote α1 = u1(0) and α2 = u2(0). By the uniqueness result of L.A. Peletier and J. Ser-
rin [15], we may assume that

α2 > α1.

Let r0 be the smallest point of intersection, and let u0 = u1(r0) = u2(r0). Let r1 � 1 be the
next point of intersection, with u1 = u1(r1) = u2(r1), and u1 � 0. Clearly, r1(u) − r2(u) > 0 on
(u1, u0). In view of Lemma 2.1 we can find a point ū ∈ (u1, u0) such that

r ′
1(ū) = r ′

2(ū), and r ′
1(u) < r ′

2(u) for u ∈ (ū, u0]. (2.4)

It was observed by M. Tang [18] that this inequality continues to hold over the interval (u0, α1)

too.
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Lemma 2.2. (See [18].)

r ′
1(u) < r ′

2(u) for u ∈ (ū, α1). (2.5)

Proof. We need to prove (2.5) over (u0, α1). On this interval the function r2(u) − r1(u) > 0
can have by Lemma 2.1 only one critical point. Now, (r2 − r1)(u0) = 0 and (r2 − r1)

′(u) → ∞,
as u → α1. It follows that r2 − r1 cannot have any critical points at all, i.e. r ′

2 − r ′
1 > 0 on

(u0, α1). �
The crucial role in the proof of uniqueness is played by an identity of L. Erbe and M. Tang

[4], as generalized by P. Pucci and J. Serrin [17]. Defining [4,17]

P(r) = rn

(
1

2
u′2(r) + F

(
u(r)

)) + nrn−1u′(r)F (u(r))

f (u(r))
, (2.6)

where as usual, F(u) = ∫ u

0 f (t) dt , and u(r) is a solution of (2.1), one shows that [4,17]

P ′(r) = nrn−1u′2(r)Φ
(
u(r)

)
, (2.7)

where

Φ(u) =
(

F(u)

f (u)

)′
− 1

2
+ 1

n
. (2.8)

We can write P(r) = rnE(r) + nrn−1u′(r)F (u(r))
f (u(r))

, where

E(r) = 1

2
u′2(r) + F

(
u(r)

)
.

Lemma 2.3. For any continuous f (u), and any solution u(r) of (2.1)

E(r) > 0 for all r ∈ [0,1).

Proof. We have E′(r) = −n−1
r

u′2 < 0, and E(1) � 0. �
As we mentioned, it is often advantageous to work with r(u) instead of u(r). We shall also be

switching back and forth between the two representations. For example, consider the expression
Q(r) ≡ rn−1u′(r), which occurs in the definition of P(r). It can be written as

Q(u) = rn−1(u)

r ′(u)
. (2.9)

However, to compute Q′(u) it seems easier to observe from (2.1) that Q′(r) = −rn−1f (u), and
then by the chain rule

Q′(u) = −rn−1(u)f (u)r ′(u). (2.10)
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Remark. Of course, the identity (2.7) is straightforward to verify. However, if one writes P(r) =
rnE(u(r)) + nQ(r)

F(u(r))
f (u(r))

, with E′(r) = −n−1
r

u′2(r) and Q′(r) = −rn−1f (u(r)), one gets an
easy and illuminating proof of the identity (2.7).

Given two solutions r1(u) and r2(u) (with α2 > α1), one defines

S(u) = Q1(u)

Q2(u)
. (2.11)

(Here Qi(u) denotes Q(u) evaluated at ri(u), i = 1,2.)

Lemma 2.4. (See [4,17,18].) Assume that f (u) > 0 for u > γ � 0. Then on (γ,α1) we have
S′(u) < 0 (S′(u) > 0) if and only if r ′

1(u) < r ′
2(u) (r ′

1(u) > r ′
2(u)).

Proof. In view of (2.10), we have

S′(u) =
(

r1

r2

)n−1 r ′
2

r ′
1
f (u)

(
r ′2

2 − r ′2
1

)
< 0,

and the proof follows. �
In terms of r(u) we rewrite P(r) as

P(u) = rn(u)

[
1

2

1

r ′2(u)
+ F(u)

]
+ nQ(u)

F (u)

f (u)

= rn(u)E(u) + nQ(u)
F (u)

f (u)
, (2.12)

where Q(u) is given by (2.9), and then (2.7) takes the form

P ′(u) = nΦ(u)Q(u). (2.13)

Lemma 2.5. Assume that Φ(u) > 0 for u > 0. Then, with α = u(0), we have P(α) = 0, and

P(u) > 0 for u ∈ [0, α).

Proof. We see directly that P(α) = 0, and from (2.13) P ′(u) < 0 on (0, α). �
Recall that in case two solutions of (2.1) intersect, we have denoted by (r0, u0) the first point of

intersection, and there exists a point ū defined by (2.4). The following theorem is due essentially
to L. Erbe and M. Tang [4], see also M. Tang [18], and P. Pucci and J. Serrin [17]. (We have
achieved some simplification by introducing the function φ(u) below.)

Theorem 2.1. (See [4,17,18].) Assume that f (u) > 0 and Φ(u) > 0 for u > 0. Then any two
positive solutions of (2.1) cannot intersect.
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Proof. Given two solutions r1(u) and r2(u), one defines

Ψ (u) = P1(u)Q2(u) − P2(u)Q1(u) = rn
1 (u)E1(u)Q2(u) − rn

2 (u)E2(u)Q1(u),

and shows that by two different evaluations Ψ (ū) is both negative and positive. It follows that the
point ū does not exist, i.e. the solutions do not intersect. Indeed, by Lemma 2.3 and the definition
of ū, E2(ū) = E1(ū) > 0, while

rn
1 (ū)Q2(ū) − rn

2 (ū)Q1(ū) = rn−1
1 (ū)rn−1

2 (ū)
r1(ū) − r2(ū)

r ′
1(ū)

< 0,

i.e. Ψ (ū) = E1(ū)[rn
1 (ū)Q2(ū) − rn

2 (ū)Q1(ū)] < 0.
On the other hand, let us define φ(u) = P1(u)Q2(ū) − P2(u)Q1(ū). Since P1(α1) = 0 and

P2(α1) > 0 (by Lemma 2.5), we see that φ(α1) = −P2(α1)Q1(ū) > 0. By (2.13) and Lem-
mas 2.2 and 2.4, we see that on the interval (ū, α1)

φ′(u) = nΦ(u)
[
Q1(u)Q2(ū) − Q2(u)Q1(ū)

]
= nΦ(u)Q2(u)Q2(ū)

[
S(u) − S(ū)

]
< 0. (2.14)

It follows that φ(ū) > 0, but φ(ū) = Ψ (ū) < 0, a contradiction. �
The condition Φ(u) > 0 may be written as

f ′(u)F (u)

f 2(u)
<

n + 2

2n
. (2.15)

It holds for many positive functions f (u).

Example 1. f (u) = up + uq , with 1 � p < q < n+2
n−2 . We show that (2.15) holds, provided that

q − p < 1. Compute

f ′(u)F (u) = p

p + 1
u2p +

(
q

p + 1
+ p

q + 1

)
up+q + q

q + 1
u2q .

Clearly, p
p+1 <

q
q+1 , and we also have

q

p + 1
+ p

q + 1
< 2

q

q + 1
,

since (q − p)2 < q − p. It follows that f ′(u)F (u) <
q

q+1f 2(u), i.e.

f ′(u)F (u)

f 2(u)
<

q

q + 1
<

n + 2

2n
,

since q < n+2
n−2 . Of course, for n � 6 the condition q − p < 1 holds automatically.
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Example 2. f (u) = up + a, with p > 1. Calculate

f ′(u)F (u) − n + 2

2n
f 2(u) =

(
p

p + 1
− n + 2

2n

)
u2p + a

(
p − n + 2

n

)
up − n + 2

2n
a2.

On the right we have a quadratic polynomial in up , whose leading coefficient is negative, pro-
vided that p < n+2

n−2 . This quadratic is negative for all u, and any a > 0, if

(
p − n + 2

n

)2

< −4

(
p

p + 1
− n + 2

2n

)
n + 2

2n
. (2.16)

The difference between the right-hand side and the left-hand side of (2.16) is p2(4+n−np)
n(p+1)

. It
follows that (2.16) is satisfied, and hence condition (2.15) holds for

1 < p <
n + 4

n
. (2.17)

(Observe that n+4
n

< n+2
n−2 for all n � 1.)

Recall that we have denoted E(r) = 1
2u′2(r) + F(u(r)), and that E′(r) = −n−1

r
u′2(r). Com-

pute

(
rkE(r)

)′ = rk−1
[
k

2
u′2 + kF (u)

]
− (n − 1)rk−1u′2.

If we choose here k = 2(n − 1) we obtain the following identity of L.A. Peletier and J. Serrin
[16]

(
r2(n−1)E(r)

)′ = 2(n − 1)r2n−3F
(
u(r)

)
. (2.18)

The following result is due to L.A. Peletier and J. Serrin [15], who considered ground state
solutions. However, their argument works equally well for Dirichlet problems, as was observed
previously by M.K. Kwong and L. Zhang [11].

Theorem 2.2. (See [15].) Assume that F(u) < 0 for 0 < u < β . Let r0 be a point of intersection
of two positive solutions of (2.1) u1(r) and u2(r), with u0 = u1(r0) = u2(r0). Then

u0 > β. (2.19)

Proof. Assume that u′
1(r0) > u′

2(r0). Recall that given the intersection point (r0, u0), we can
find ū, satisfying (2.4). Let r̄1 and r̄2 be defined by u1(r̄1) = u2(r̄2) = ū. We now integrate the
identity (2.18) for the first solution over the interval (r0, r̄1) (denoting E1 = 1

2u′2
1 (r)+F(u1(r))),

and switch to the u variable, u = u1(r), with dr = r ′
1(u) du

r̄
2(n−1)
1 E1(r̄1) − r

2(n−1)
0 E1(r0) = −2(n − 1)

u0∫
r2n−3

1 (u)F (u)r ′
1(u) du.
ū
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Similarly, we integrate the identity (2.18) for the second solution over the interval (r0, r̄2), and
then subtract from the first formula the second one (with E2(r) = E(u2(r)), and k = 2(n − 1),
and observing that E1(r̄1) = E2(r̄2))

(
r̄k

1 − r̄k
2

)
E1(r̄1) + rk

0

(
E2(r0) − E1(r0)

)

= k

u0∫
ū

(
rk−1

2 r ′
2(u) − rk−1

1 r ′
1(u)

)
F(u)du. (2.20)

The first term on the left is positive by Lemma 2.3, and the second one is positive, since u2 is
steeper than u1 at r0. By (2.4) we have

rk−1
1 r ′

1(u) < rk−1
2 r ′

2(u) < 0 for u ∈ (ū, u0).

Hence, if we assume that u0 � β , then F(u) < 0, and hence the right-hand side of (2.20) is
negative, giving a contradiction. �
Corollary. If, moreover F(β) = 0, and f (u) > 0, Φ(u) > 0 for u > β , then any two positive
solutions of (2.1) cannot intersect more than once.

3. Uniqueness and exact multiplicity results

We study uniqueness and exact multiplicity of positive solutions for the problem (here λ is a
positive parameter, and f (u) ∈ C2(R̄+))

�u + λf (u) = 0 for |x| < 1, u = 0 when |x| = 1, (3.1)

by using the methods of bifurcation theory, as developed in P. Korman, Y. Li and T. Ouyang
[8], and further extended by T. Ouyang and J. Shi [13,14]. By the classical theorem of B. Gidas,
W.-M. Ni and L. Nirenberg [5] positive solutions of (3.1) are radially symmetric, i.e. they satisfy
(r = |x|)

u′′ + n − 1

r
u′ + λf (u) = 0, r ∈ (0,1), u′(0) = 0, u(1) = 0. (3.2)

Moreover, u′(r) < 0 for all r ∈ (0,1), i.e. u(0) is the maximum value of the solution. It turns
out that the value of u(0) uniquely identifies both λ and u(r), as follows easily by scaling λ out
of (3.2), and using uniqueness result for initial value problems of type (3.2) from L.A. Peletier
and J. Serrin [15], see also E.N. Dancer [3]. Hence the solution set of (3.2) can be faithfully
depicted by planar curves in (λ,u(0)) plane. It is customary to refer to these curves as solution
curves.

By a result of C.S. Lin and W.-M. Ni [12], any non-trivial solution of the corresponding
linearized problem is also radially symmetric, and hence the linearized problem takes the form

w′′(r) + n − 1

r
w′(r) + λf ′(u)w(r) = 0, r ∈ (0,1),

w′(0) = 0, w(1) = 0. (3.3)
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We call solution (λ0, u0(r)) of (3.2) non-singular if the corresponding linearized problem (3.3)
admits only the trivial solution w(r) = 0, and we call the solution (λ0, u0(r)) singular, in
case (3.3) admits non-trivial solutions. At a non-singular solution, the implicit function theo-
rem applies, and the solution can be continued to nearby λ, i.e. for |λ − λ0| small. At a singular
solution it turns out that the bifurcation theorem of M.G. Crandall and P.H. Rabinowitz [2] ap-
plies, see [6,8,13]. The Crandall–Rabinowitz bifurcation theorem implies that either the solution
curve continues through the singular solution (with λ being either increasing or decreasing), or
that a simple turn occurs. To study the direction of the turn, one usually needs to show that any
non-trivial solution of the linearized problem (3.3) is of one sign. The following lemma provides
a crucial link to the results of the preceding section.

Lemma 3.1. Let (λ0, u0(r)) be a singular solution of (3.2), at which a turn occurs. Assume that
any two positive solutions of (3.2) do not intersect (for all λ). Then any non-trivial solution of
the linearized problem (3.3) is of one sign, i.e. we may assume that

w(r) > 0 for all r ∈ [0,1). (3.4)

Proof. The Crandall–Rabinowitz theorem [2] provides a detailed description of the solution
curve in a neighborhood of a turning point. Namely, in a neighborhood of (λ0, u0(r)) we have

λ = λ0 + τ(s) and u = u0 + sw + φ(s),

where the smooth functions τ(s) and φ(s) satisfy τ(0) = τ ′(0) = 0 and φ(0) = φ′(0) = 0, and s

is some parameter, with |s| < ε (usually, s = u(0) − u0(0)). Since a turn occurs, τ(s) is of one
sign, say τ(s) > 0. Hence for every fixed λ > λ0, and λ close to λ0, we can find two solutions
u1 = u0 + s1w + o(s1) and u2 = u0 − s2w + o(s2), with some s1, s2 positive and small. If we
assume that w changes sign, then u1 and u2 would have to intersect for small s1 and s2 (since
u1 − u2 � (s1 + s2)w for |s| small), contrary to our assumption. �

We consider positive solutions of (x ∈ Rn)

�u + λ
(
up + uq

) = 0 for |x| < 1, u = 0 when |x| = 1, (3.5)

where 1 < p < q < sn, with sn = n+2
n−2 for n > 2, and sn = ∞ for n = 2, and λ is a positive

parameter. We shall assume n � 2, since for n = 1 uniqueness is easy to prove for all 1 < p <

q < ∞. The following result is due essentially to L. Erbe and M. Tang [4], although we add some
information on the solution curves. (The main point is that our proof is much shorter.)

Theorem 3.1. If n � 6, or if 2 � n � 5 and q − p < 1, the problem (3.5) has a unique positive
solution for all λ > 0. Moreover, all positive solutions lie on a unique smooth solution curve,
which tends to infinity as λ → 0, and to zero when λ → ∞.

Proof. As is well known, there is a curve of positive solutions bifurcating from infinity at
λ = 0. We now continue this curve for increasing λ. At non-singular solutions we apply the
implicit function theorem. Now, suppose a singular solution (λ0, u0(r)) is reached. If no turn
occurs at this solution, we continue the solution curve forward in λ. Now suppose a turn occurs.
By Example 1, solutions of (3.5) cannot intersect, and then by Lemma 3.1, w(r) > 0. Since
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f (u) = up + uq is convex, it follows that at any turning point a turn to the left must occur in
(λ,u(0)) plane, see [8,13]. But this means that no turn can occur at (λ0, u0(r)), since no more
turns would be possible, while if λ is always decreasing, the solution curve has no place to go
(multiplying (3.5) by u and integrating, we see that the solution curve cannot approach the point
(λ = 0, u = 0)). Hence, there are no turns on the solution curve, implying both existence and
uniqueness of solutions. Along the curve, u(0, λ) is monotone decreasing, see [8,13], and if its
limit was not zero, as λ → ∞, we would have a contradiction by the Sturm comparison theorem
(solution would have to become sign-changing for large λ). �

The same approach provides a partial result in the case when 0 < p < 1 < q < n+2
n−2 , provided

that q − p < 1 (i.e. it implies the conclusions of Theorem 3.2 below under the additional as-
sumption that q − p < 1). The nonlinearity f (u) = up + uq is then concave-convex, i.e. f (u) is
concave on (0, u0) and convex on (u0,∞), for some u0 > 1. The optimal result given by P. Kor-
man [7], based on Adimurthi, F. Pacella and S.L. Yadava [1], and independently by M. Tang [20],
is the following.

Theorem 3.2. Consider the problem (3.5), with 0 < p < 1 < q < n+2
n−2 . There is a critical λ0 > 0,

such that for λ > λ0 there are no positive solutions, for λ = λ0 there is exactly one positive
solution, and for λ < λ0 there are exactly two positive solutions. Moreover, all positive solutions
lie on a unique solution curve, which has two branches for λ < λ0, denoted by 0 < u−(r, λ) <

u+(r, λ), with u−(r, λ) strictly monotone increasing in λ, and limλ→0 u+(0, λ) = ∞.

We now turn to our main exact multiplicity result. It covers many f (u), but does not include
the preceding result (except when q −p < 1). It basically says that the solution curve in (λ,u(0))

plane is parabola-like, with a turn to the left. Recall that we assume f (u) ∈ C2(R̄+).

Theorem 3.3. For the problem (3.1) we assume that f (u) > 0 and Φ(u) > 0 for u > 0, and either
f (0) > 0 and f (u) is convex, or f (0) � 0 and f (u) is concave-convex. Assume finally there is
β � 0 so that uf ′(u) − f (u) > 0 on (β,∞). Then for the problem (3.1) there exist three critical
numbers λ0 � 0, λ∞ � 0 and λ∗ > 0, with max(λ0, λ∞) < λ∗, such that there are no positive
solutions for 0 � λ � min(λ0, λ∞) and for λ > λ∗, there is exactly one positive solution for
min(λ0, λ∞) < λ � max(λ0, λ∞) or λ = λ∗, and for max(λ0, λ∞) < λ < λ∗ there are exactly
two positive solutions. Moreover, all positive solutions lie on a unique smooth solution curve,
which has two branches for λ < λ∗, denoted by 0 < u−(r, λ) < u+(r, λ), with u−(r, λ) strictly
monotone increasing in λ and limλ→λ0 u−(0, λ) = 0, while limλ→λ∞ u+(0, λ) = ∞. If, moreover,

limu→∞ f (u)
u

= ∞, then λ∞ = 0. If, moreover, limu→0
f (u)

u
= ∞, then λ0 = 0.

Proof. We begin the solution curve from the zero solution. If f (0) > 0 then solution curve
starts from (λ = 0, u = 0) by the implicit function theorem. If f (0) = 0 and limu→0

f (u)
u

= ∞,
then solution curve again starts from (0,0), this time existence is proved by minimization of
the corresponding functional. If f (0) = 0 and limu→0

f (u)
u

= f ′(0) > 0, then we have standard
bifurcation from zero at (λ1/f

′(0),0), where λ1 is the principal eigenvalue of the Laplacian on
the unit ball. (And the final possibility, f (0) = f ′(0) = 0, is inconsistent with concavity and
positivity of f (u) for small u.) We now continue the solution curve for increasing λ, by applying
the implicit function theorem. We cannot continue this curve for all λ, since our assumptions
imply that f (u) > au for all u > 0 and some a > 0, which implies that the problem (3.1) has no
solutions for large λ (just multiply by the principal eigenfunction and integrate). Let λ∗ be the
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supremum of λ’s for which we can continue the curve. The solution curve cannot go to infinity
at λ = λ∗, since our assumption uf ′(u) − f (u) > 0 on (β,∞) implies that any bifurcation from
infinity is supercritical (i.e. forward in λ), see Corollary 3.8 in T. Ouyang and J. Shi [14]. Hence
we have a turning point at λ = λ∗.

In view of Theorem 2.1 and Lemma 3.1, any non-trivial solution of the linearized equation
is of one sign. As in [8,14] this allows one to show that the solution curve can make only turns
to the left (and hence there is only one turning point, the one at λ = λ∗). It is here that we use
positivity of solutions of the linearized problem, and our convexity assumptions on f (u). If we
assume further that limu→∞ f (u)

u
= ∞, then the solution curve can go to infinity only at λ = 0,

by the Sturm comparison theorem. The rest of proof is just standard bifurcation analysis, see the
proof of Theorem 6.21 in [14]. �
Example. f (u) = up + a. In view of Example 2, our result applies if 1 < p < n+4

n
, for any

n � 1, and any constant a > 0. Here λ0 = λ∞ = 0. Theorem 6.21 in T. Ouyang and J. Shi [14]
also applies (and gives the same conclusions) if n � 4 and 1 < p < n

n−2 . Our result is better for
all n 	= 4 (and is the same for n = 4).
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