List of corrections Lectures on Differential Equations Philip L. Korman

p. 86: For the problem IV. 10 the correct answer is

$$
y=\frac{4}{9} e^{2 t}-\frac{1}{9} e^{-t}(3 t-5) .
$$

P. 104, Case 3: $y=c_{1} e^{p s} \cos q s+c_{2} e^{p s} \sin q s$.
p. 144: For the problem III. 6 it should be

$$
y_{1}(x)=1+(x-2)^{2}+\frac{1}{6}(x-2)^{3}+\frac{1}{6}(x-2)^{4}+\frac{1}{15}(x-2)^{5} \cdots .
$$

p. 206: The direction of the motion on the stable spiral should be clockwise.
p. 211: For the problem II. 6 the correct answer is saddle.
p. 237: A limit cycle is a periodic solution that attracts nearby solutions as $t \rightarrow \infty$, or $t \rightarrow-\infty$.
p. 241: The function $h(x, y)$ in (6.5.7) need not be assumed positive.
p. 242, line 11: $a(t)$ is the rate of growth (not carrying capacity).
p. 243, third line above Corollary 6.6.1: ... an increase in the rate of growth will increase...
p. 262: The number 6 on the graph should be 5 .
p. 264, lines 3 and 4: $d x$ is missing in the integrals.
p. 268 In Case 2: $y(L)=c_{1}+c_{2} L$.
p. 313: For the problem II. 8 the correct answer is

$$
u(x, y)=2+\frac{1}{2}\left(x^{2}-y^{2}\right)-y .
$$

p. 339: The integral in the last line should be $\int_{x_{0}-c t_{0}}^{x_{0}+c t_{0}} g(\tau) d \tau$.
p. 374: the formula in (iii) should read:

$$
\int_{D} u_{x} v d V=-\int_{D} u v_{x} d V+\int_{S} u v n_{1} d S
$$

p. 390: We need to solve the system $(B-4 I) x=0 \ldots$

