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Abstract - -  Zusammenfassung 

An Algorithm for Computing Unstable Solutions of Semilinear Boundary Value Problems. We present a 
partially interactive algorithm for accurate computation of unstable solutions of semilinear Dirichlct 
boundary value problems. 
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Ein Algorithmus zur Berechnung instabiler Liisungen halblinearer Randwertprobleme. Wir stellen einen 
teilweise interaktiven Algorithmus zur genauen Berechnung instabiler L6sungen von halblinearen 
Dirichlet-Randwertproblemen vor. 

1. Introduction 

We are interested in the numerical computation of the unstable solutions of 
semilinear boundary value problems (u = u(x))  

- u "  -- f ( x ,  u) for all a < x < b ,  u(a) = u(b) = 0. (1) 

We recall that solution is called unstable if the principal eigenvalue of the linearized 
problem 

- v "  - f . ( x ,  u)v = 2v a < x < b ,  v(a) = v(b) = 0 (2) 

is negative (see D. Henry [3]). This means that u(x)  is an unstable steady-state for 
the corresponding parabolic equation (here u = u(x ,  t)) 

ut - uxx = f ( x , u )  a < x < b ,  t > 0 ;  u(a , t )  = u (b , t )  = O. (3) 

For example, consider an important Emden-Fowler equation 

- u "  = a ( x ) u  p for a < x < b ,  u(a) = u(b) = O, a (x )  > 0, p > ~. (4) 

It occurs in nuclear physics, gas dynamics, astronomy and other fields, see e.g. 
C. D. Luning and W. L. Perry [6] and the references therein. The positive solution of 
(4) is necessarily unstable. Indeed, if u(x)  > 0 is a solution of (4), then it follows 
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immediately that 7u(x) is a subsolution of (4) for any constant 7 > 1, and it is a 
supersolution if 0 < 7 < 1. This is another equivalent definition of instability (see 
D. I-I. Sattinger [8], where one can also find the definition of super- and 
subsolutions). 

Computation of an unstable solution is a nontrivial task, as for example the 
well-known monotone iteration method cannot possibly work (see [-8]). Also, one 
cannot obtain the solution of( l)  as a limit when t --* ov of the solution of (2), as was 
done for stable solutions in [-4, 5, 2]. Continuation algorithms can be used, see e.g., 
E. L. Allgower, C. S. Chien and K. Georg [13 or M. Smiley [-8], however such 
algorithms appear to be not easy to apply, particularly getting onto a branch of 
solutions might be hard. For Emden-Fowler equations an ingenious algorithm with 
monotone convergence is proposed in Luning and Perry [-6], however their tech- 
nique does not extend to other equations. One can use shooting method for (1), 
however it has its limitations, ~nd does not extend to PDE. 

We present here a partially interactive algorithm based on the fact that unstable 
solutions of (1) are typically saddle points of the corresponding "energy" functional 
defined on H~ (a, b) 

J(u)=f; flk~u '2-F(x,u))dx, F(x,u)=f~f(x,z)dz. (5) 

We shall assume that 

f(x, 0) = 0 for all a < x < b, (6) 

i.e. u = 0 is a solution of (1). Notice that J(0) = 0. If we also assume 

F(x, u) 
lim u2 -0  uniformly i n a < x < b ,  (7) 
u ~ 0  

then in view of Poincar6's inequality we have J(u) > 0 for sufficiently small u (see 
e.g., [7]). If there is a function e(x) such that J(e) < 0, then assuming a technical 
condition (P4) in [7], p. 9, which is satisfied in all our examples, the mountain pass 
lemma guarantees existence of a nontrivial solution. That is the solution that we 
compute. 

Our algorithm breaks naturally into two parts (and two separate computer 
programs). In the first part of the algorithm we interactively compute an approxima- 
tion to the minimax of J. In the second part we use this approximation to begin a 
defect minimizing descent. 

2. Description of the Algorithm 

For the problem (1) we assume conditions (6) and (7) to hold, and let e(x) be a known 
function, such that J(e) < 0. Typically we tried e(x) = Ax(1 -- x) with a constant 
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b - a  
A > 0. We divide the interval [a, b] into N equal parts of  length h - each, 

N 
denote Xo = a, Xk = Xo + kh for k = 1, 2, . . . ,  N, Uk = U(Xk), and replace (1) by its 
finite difference version 

Uk+ 1 - -  2u:~ + U k _  1 
h2 = f ( X k ,  Uk) k = 1 . . . . .  N - 1, Uo = us = 0. (8) 

Set U = (Uo, u l . . . . .  us). Using numerical integration we represent J -- J(U). Define 

Uk+ 1 --  2U k + Uk-1 
dk = hE - -  f ( x k ,  Uk)  k -= 1 . . . . .  N - 1, 

N - 1  

p = p ( U ) =  ~ d2; d e f m a x ( U ) =  max Idol. (9) 
k=l l<~k<_N-1 

Solving (8) is equivalent to finding a zero of p, i.e. to the minimization of  the 
nonnegative function p(u). Since p has more  than one min imum (including the trivial 
one), we must  get close to the nontrivial  solution of (8) before using a minimization 
algori thm for p(U). 

Part I. Interactive search for the minimax. 

1 
Step 1. With  e k = e ( X k )  , E = (eo, e x . . . . .  eN) , z = ~ ,  N1 an integer parameter  at 

our  disposal, we join E to the origin in R N+I by a straight line, i.e. we define 

V~ = (1 - iv)E, i = 0, 1 . . . . .  2 N t .  

Assume J(Vio ) = maxo<i<2N 1J(Vi). Then U 1 = Vio is our  first guess. Using (8) we 
compute  defmax(U1).  If  defmax(U 1) is judged to be small (usually less than one), 
then U 1 can be passed as the initial guess for Par t  II. If  a smaller value of defmax 
is desired then, since the desired solution is a saddle point  of  J, it is natural  to try 
to get closer to it on a path minimizing J. 

Step 2. Compute  the Frechet derivative and use integration by parts, 

J'(u)v= ff  (u'v'- f(x,u)v)dx= - f f  (u" + f(x,u))vax. 
Hence J'(u)v < 0 for v = - T a ( - u "  - f ( x ,  u)), z 1 > 0. I.e., if we define U 1'~ = U 1, 
and (Uk = Uk) 

Uk a'~+~ = Uk ~'i -- z~d(U~'~), i = 1 . . . . .  ml ,  k = 1. . .  U - 1, (10) 

with U~ '~+1 = U~ '~+~ = 0, we expect J to decrease for zl small. The constants ~ > 0 
and the number  of  steps m~ are at our  disposal. While iterating (10), we moni tor  
defmax(Uk~'~). If  that  quant i ty  does not  decrease, we keep m~ small and pass to the 
next step. 

Step 3. We join U i'm1 by straight lines to E and to the origin, i.e., we let (z and Na 
as in Step 1) 
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1/'1, i = (1 -- 2iz)E + 2 izU T M  , i = O, 1 . . . . .  N 1 ; 

Vl,i = (1 - 2iz)E, i = 0, 1 . . . . .  N1. 

Among  all Vl,i and Vl,i we select the one maximizing J, and call it U 2. 

We then return to Step 2 to produce U 2'~ . . . . .  U 2'"2. We continue to alternate 
between steps 2 and 3, terminating the process when clefmax(U . . . .  ) is suitably small. 
We could always accomplish that in our  experiments. 

Part  II .  We use gradient descent to minimize p(U). Compute  

P,,1= - - 2 (  - 2 d l  + d2 ) 
h 2 + fu(X, Ul)dl  

p , k =  _ 2 ( d  k - l - 2 d k + d k + l  ) 
h2 + fu(x, uk)d k , k = 2 . . . . .  N - 2, 

( -dN-2h2+ 2du-1 + f , ( x ,  u u _ l l d u _ l  ) P,N-, = - 2 \  

i.e., if we define do = dN = 0, d = (d o, d~ . . . . .  dN), then we can write 

- Vp = 2Ahd + 2f ,(x,  u)d (Ahd - discrete version of d"). 

Starting with U o = (Uol , . . . , Uou-1 ) = ( U~ 'm~, . . . .  U~v'2f ) (the boundary  values are not  
used in Par t  II), we iterate 

U~+xk = U~k -- rzVp(Xk, U,k), i = 1 . . . . .  M,  k = 1 . . . . .  N - 1, 

with suitably chosen r 2 > 0 and M. This allows us to improve the solution at the 
interior mesh points (keeping Uo = uN = 0). 

3. Numerical Experiments 

First we describe a modification of"Gauss-Seider '  type, which allowed us to obtain 
better approximat ions  to the solution (smaller defmax)  on Par t  I of the algorithm. 
One replaces (10) by 

Ukr, i+l r , i  - -  Z d tU  r'i+l rrr, i§ r,i r,i = U/~ 1 , 1 , " ' , ' ~ k - 1  , U[ . . . . .  U~_I) (11) 

for all r, i and k. We used this modification in the examples below, a l though the 
algori thm also works without  it. 

Example 1. - u" = 10u  2, 0 < X < 1, U(0) = U(1) = 0. We took  h = 0.05, N 1 = 5 (i.e. 
z = ~0), e(x) = 9x(1 -- x)(J(e)  < 0). On  Step 1 the maximum value o f J  - 1.72 was 
achieved at 0.6e(x). (The values of  J were computed  using the trapezoidal rule with 
h = 0.05, and they are not  very accurate. However,  what  we need is relative values 
of  J at various points). For  steps 2 and 3 we took  Zl 0.001, and ml = m2 . . . . .  
m p  = 12. We made several trial runs with various p (the number  of repetitions as 
defined in Step 3). It  was possible to obtain small values of  defmax,  and we also 
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noticed that  minimax value of J -~ 1.34 (below this value defmax was increasing). 
The best result was achieved when the following modification was introduced in 
Step 2: when J < 1.35 then zt := 0.0005. Then with p = 2, m~ = 12 and rn 2 = 375 
we reduced defmax to 0.002759. 

Corresponding  U = (Uo, ul . . . . .  uN) is already a good  approximat ion  of  the solution. 
We then passed this u to defect minimizat ion program. We took  z z = 0.0000008, 
and after M = 109500 steps we achieved defmax = 0.000000. The values of  the 
solution at mesh points are given in the Table 1. Notice that  the value of  z z has to 
be small (when we tried z 2 -- 0.0000009, then defmax was increasing). 

The computa t ion  of  Par t  I took  only a few seconds on S U N  386, while Par t  II  took  
a round  90 minutes. (One could use faster descent algori thms like PARTAN).  

E x a m p l e  2. - u "  = u 2 + xu 3, 0 < x < 1, u(0) = u(1) = 0. We found it advanta-  
geous to rescale the problem by letting u = 10v, obtaining 

--v"  = 10V 2 + 100XV 3 0 < X < 1, V(0) ---- V(1) ---- 0. 

This allowed us to take e(x) = Ax(1 - x) with A -- 4. For  the original problem we 
would need to choose A considerably larger. This would necessitate taking large 
N1, and also would make  the vaues  of  J less accurate. We took  h = 0.1, N1 = 10. 
On  Step 1 the max imum value of d --- 0.304 was achieved at 0.45 e(x). For  the Steps 
2 and 3 we took z~ = 0.001 and ml = m2 . . . . .  ms = 12, i.e., we repeated the Step 
2-Step 3 five times making  12 iterations each time. Fo r  the above five repetitions, 
defmax would typically decrease on the first few iterations of the Step 2, and then 

Table 1 

u(O.OO) = o.oooooooooo 
u(O.05) = 0.1646599276 
u(O. lO) = 0 .3286420331 
u(O. 15) = 0 .4899239992 
u(0.20) = 0.6452053275 
u(0.25) = 0 .7900794086 
u(0.30) = 0 .9193478535 
u(0.35) = 1 .0274862874 
u(0.40) = 1 .1092315204 
u(0.45) = 1 .1602168902 
u(0.50) = 1.1775496803 
u(0.55) = 1 .1602168902 
u(0.60) = 1.1092315204 
u(0.65) = 1 .0274862874 
u(0.70) = 0 .9193478535 
u(0.75) = 0 .7900794086 
u(0.80) = 0 .6452053275 
u(0.85) = 0 .4899239992  
u(0.90) = 0 .3286420331 
u(0.95) = 0 .1646599276  
u(1.O0) = 0 .0000000000  

clef max  = 0.000000 
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increase again. On  the sixth repeti t ion of Step 2 defmax kept  on decreasing, so we 
took  m 6 = 21 (the opt imal  number),  and obta ined an approx ima t ion  to the solution 
with defmax ~_ 0~093. Fo r  the defect minimizat ion we took  z2 = 0.00001, and after 
4500 steps we again obta ined defmax = 0.000000. The entire compu ta t ion  took  
under  5 minutes  on S U N  386. The solution is given in Table  2. 

Example  3. - u "  = 2uZ(1 - u), 0 < x < 1, u(0) = u(1) = 0. Mult iplying the equa-  
t ion by u, integrat ing by parts  and using Poincar6 's  inequality, we conclude that  no 
positive solution exists for 2 < 47~ 2. Fo r  2 > 2o, where 2o > 4re z a critical value, two 
positive solutions exist, see [7]. The  solutions are ordered 0 < ul(x)< u2(x) for 
0 < x < 1. The upper  one, uz(x), is stable, while the lower one u~(x) is unstable. Also, 
there is a trivial solution u = 0, which is stable. We obta ined  Uz(X) using a m o n o t o n e  
scheme developed in [5], i.e., as a limit when t ~ ~ of the corresponding evolut ion 
equation,  with u(x, 0) being a supersolut ion (we took  u(x, 0) = 2). Compute :  

y+ 

It  is easy to see that  u = 0 is a point  of local min imum of J(u). The stable solution 
Uz(X ) is also a point  of local min imum.  We indicate the a rgument  next. Suppose a 
function of i f(x)is  close to Uz(X) in H0i(0, 1), and J(~b) < J ( u 2 ) .  Since u2(x) is stable, 
it follows that  the solution of the corresponding evolut ion equaton,  s tart ing at  ~(x), 
will tend to Uz(X). But a long that  solution J(u) is decreasing in t (see [3]), a 
contradict ion.  One  can think of a "graph"  of J(u) as having two local m in imums  0 
and u2(x), and a saddle point  between them corresponding to u~(x). 

Next  we describe computa t ions  for 2 = 60. To  compute  ul(x) we took  Uz(X) as the 
start ing function e(x). For  Par t  I we took  h = 0.05, N 1 = 5, Zl = 0.001, ml . . . . .  
rn 7 = 12, m8 = 50, and obta ined an approx ima t ion  to the solution with defmax ~- 
0.0093. Fo r  Par t  I I  we took  z 2 = 0.0000008 (zz = 0.00000081 led to overflow), and 
after M = 243000 steps obta ined defmax = 0.000000. While computa t ions  of u2 (x) 

Table 2 

v(0.00) = 0 .0000000000  
v(0.10) = 0 .0986561959  
v ( 0 2 0 )  = 0 A 9 6 2 4 3 0 6 5 0  
v(0.30) = 0 .2884672838  
v(0.40) = 0 .3651688652  
v(0.50) = 0 .4090577585  
v(0.60) = 0 .4019903688  
v(0.70) = 0 .3397872714  
v(0.80) = 0 .2385774459  
v(0.90) = 0 .1208119918  
v(1.O0) = 0 .0000000000  

defmax = 0.000000 
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Table 3 

u 1 (x) u2(x) 

u(0.00) = 0.0000000000 u(0.00) 
u(0.05)=0.0357196888 u(0.05) 
u(0.10) = 0.0712548296 u(0.10) 
u(0.15) = 0.1060826497 u(0.15) 
u(0.20)= 0.1394015116 u(0.20) 
u(0.25) = 0.1702118007 u(0.25) 
u(0.30) = 0.1974159897 u(0.30) 

=0.0000000000 
= 0.1513223995 
= 0.2997297864 
=0.4387005478 
=0.5614673093 
= 0.6634972496 
= 0.7433064697 

u(0.35) = 0.2199283046 u(0.35) 
u(0.40)=02367809905 u(0.40) 
u(0.45) = 0.2472151690 u(0.45) 
u(0.50)=0.2507483433 u(0.50) 
u(0.55)=0.2472151690 u(0.55) 
u(0.60)=0.2367809905 u(0.60) 
u(0.65) = 0.2199283046 u(0.65) 
u(0.70) =0.1974159897 u(0.70) 
u(0.75) = 0.1702118007 u(0.75) 
u(0.80) = 0.1394015116 u(0.80) 
u(0.85) = 0.1060826497 u(0.85) 
u(0.90)=0.0712548296 u(0.90) 
u(~95) = 0.0357196888 u(~95) 
u(l.00) = 0.0000000000 u(1.00) 

defma~= 0.000000 defmax 

=0.8018420399 
=0.8412667415 
=0.8638404062 
=0.8711733140 
= 0.8638404062 
= 0.8412667415 
= 0.8018420399 
= 0.7433064697 
= 0.6634972496 
= 0.5614673093 
=0.4387005478 
=0.2997297864 
=0.1513223995 
= 0.0000000000 

= 0.000000 

a n d  o f  P a r t  I t o o k  o n l y  a few s e c o n d s ,  i t  t o o k  us  c lose  t o  4 h o u r s  for  P a r t  I I  ( S U N  

386). B o t h  p o s i t i v e  s o l u t i o n s  a r e  g i v e n  in  T a b l e  3. 
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