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1. INTRODUCTION

We apply the monotone iteration techniques to solve boundary
value problems for nonlinear elliptic equations and systems. We
replace the discretized elliptic equations by the corresponding
parabolic ones, and show that solutions of the parabolic problems
tend to those of the elliptic ones, assuming that the time step T
and the spatial step h are sufficiently small, T = t(h), and that
the initial guess is either a super- or subsolution. This allows
us to solve wide classes of elliptic problems without ever having
to solve linear systems. The algorithm is easily implemented, and
good accuracy is usually achieved at very moderate final times
(see sec. 5).

In section 4 we take up systems of equations with singular
right-hand sides, for which there are no apparent supersolutions.
We present a technique, which allows one to conclude existence of

solutions by a computation.
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2. SEMILINEAR EQUATIONS AND SYSTEMS

We are interested in numerical solution of the boundary value
problems of the type
(2.1) -pu = f(x,u) x €9, u=g(x) for x € 8Q @ < R,
Since our focus is on computations we restrict ourselves to d=1
or 2, although most of our results carry over to arbitrary number
of dimensions. We replace (1.1) by the corresponding
finite-difference problem (say d = 2)
(2.1)’ —Ahun = f(xn,un) X € Qh, u, = g(xn) for X, € th.

Here we replace the domain Q by uniform square mesh Qh ot step

size h, denoting n = (nl,nz), X = (nlh,nzh) and unl,nz = u(xn).
The Laplacian is replaced by the central difference quotient
1
Au == [u + U - 4u +u +u ,
h™n h2 n1+1,n2 nl,n2+1 nl,n2 n1 1,n2 nl,nz-l

for d = 2. We obtain the solution of (2.1)’ as a steady-state of

the corresponding parabolic problem (uk = uk )
n n,,n,
uk+1 - u
n n _ k ky . k _
(2.2) — = Ahun + f(xn,un) in Qh’ u = g(xn) on 6Qh,

with properly chosen ug and the time step size 7.

Next we define the concept of super- and subsolutions for a
grid function ¢n on the mesh Qh.

Definition. A grid function ¢n ijs called a supersolution of
(2.1)" iff
(2.3) _Ahén = f(xn,¢n) x, € Qh, ¢n = g(xn) on 8Qh.
A grid function wn is called a subsolution if it satisfies the

opposite inequalities.
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Theorem 1. Assume that the problem (2.1)’ possesses a
supersolution ¢n and a subsolution wn with wn = ¢n for all n =
(nl,nz). Assume also that f(x,u) is continuous on  x R, and g(x)
is continuous in a neighborhood of 8Q. Then the problem (2:1)’ has
a solution u, with wn = u = ¢n for all n. Moreover, if one starts
the scheme (2.2) with ug = ¢n’ then for T sufficiently small the
sequence ui is monotone decreasing in k for all n. Similarly, if
one starts with ug = wn then the corresponding sequence, call it
vi, is monotone increasing in k and
(2.4) wnsv;s%zls... su S ... Suisu;S% for all n.

If solution of (2.1)’ is not unique, we obtain existence of a

minimal and maximal solutions.

Proof. Letting ug = ¢ , rewrite (2.2) ford = 2 as

okl _ k. 4T k
(2.5) u o= un(l ;2) +tf(xn,un)
T . k k k k
+—. [u u + U + u .
hz n1+1,n2 nl,n2+1 nl—l,n2 nl,nz—l
Denote wi = ui - u§+1. It follows from (2.2) that wg z 0 for all

n. We prove by induction that wi 2z 0 for all k = 1. Assume that T

is chosen so small that
(2.6) K =1 - 312 -t max £ (x,u)] >0,
h Q x [a,bl

where a = min wn’ b = max ¢n. Then writing (2.5) for k-1,

subtracting and using the mean-value theorem, we estimate
k k-1 v . k-1 k-1 k-1 k-1
W = Kw +—= [w + W + W
n n h2 n1+1,n2 nl,n2+1 nlr-l,n2 nl,nz—l

Hence, {ui} is a decreasing sequence, and similarly {vi} is an

1 =0.

increasing one in k. An argument similar to the above shows that

k . s s k
= v = i =
u for all n and k, justifying (2.4). Call u élm u, v
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%im vk. Clearly u_ and v_ are the maximal and minimal solutions
3% N n n

’ 2 7 e
of (2.1)’. (If W is a solution of (2.1)' with wn SwW = ¢n, then
the same argument applied once more implies that wi = v = ¢i for

all k and n.)

Next we present a simple application of the theorem 1 to a
class of nonlinear problems. First, we recall some simple facts on
the eigenvalues of the discrete Laplacian Ah.

Lemma 2.1. Consider the eigenvalue problem

(2.7 Ahun +2au_ =0, inQ u = 0 on th'

n h’
Then all eigenvalues are positive, the smallest one (call it Al)
is simple and its eigenvector can be chosen to have positive

entries (call it wi).

Proof (sketch). One easily shows that the maximum principle
holds for Ah. This implies that the Dirichlet problem for Ah is
uniquely solvable. Hence the inverse matrix A;l exists, and all
its entries are positive. The rest follows by the Perron-Frobenius
theorem.

Proposition 2.1 Consider the problem

(2.8) Ahun +au - f(xn,un) = 0, in Qh, u = 0 on BQh.

Assume that a > Al and the function f(x,u) is such that
aM - £(x,M) < O for some M > 0 and all %, and f(x,u) = o(lul) as u »
uniformly in X, % € Q. Then the problem (2.8) has a positive
solution, which can be computed using the scheme (2.2).

Proof. One easily sees that ¢n = M and ¢n = ew; are super- and
subsolutions, provided ¢ is small

Next we turn to the system case. To simplify the presentation

we restrict ourselves to the case of two equations with two
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unknowns. Similar approach works for systems of arbitrary size,
which are essentially quasimonotone increasing (see [4] for the

definition and complete characterization of such systems).

We are interested in solving a discrete version of an elliptic

system
Ahun + f(xn,un,vn) =0, x e Qh’
(2.9) Ahvn + g(xn,un,vn) =0, Xe Qh’
u = gl(x),vn = gz(x) for x e BQh.
Similarly to the case of one equation we shall use the following
scheme with suitably chosen ug and vo,
“?1"“ K kK k X
= = Ahun + f(xn,un,vn) in Qh’ u = gl(xn) on th,
(2.10)
xli”"’n K k k K
—_— = Ahvn + g(xn,un,vn) in Qh, v, = gz(xn) on BQh.

Theorem 2. Assume that the problem (2.9) has a pair of coupled
super- and subsolutions (¢;,¢§) and (wi,wi) respectively, i.e.,

1 1 1
A¢n = f[xn,¢n,v) X € Qh’ ¢n = gl(xn) on th,
(2.11)

—A¢i z g(xn,u,¢§) in Qh’ ¢i = gz(xn) on th,

= 1 1 2 2
for all (u,v) € V = {(u,v) | wn sy = ¢n’ wn =v = ¢n}, and the
reverse inequalities holding for subsolutions. Assume that either
of the two conditions hold in V x Qh:
(1) f_ =0, g =0,
(ii) fu =0, g =0.

Assume finally that f,g,gl,gz are continuous functions on Qh x V,
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Then the problem (2.9) has a solution (un,vn) € V. Moreover, for t

sufficiently small one can construct monotone sequences converging

to a solution, by taking in case (i) ug = w;, vo = wz

n
vg = ¢i) to obtain two increasing (decreasing) in k sequences {ui}

0] 1
(un - ¢n)

k ‘s o_,1 o0_,2,0_.1
and {vn}. In case (ii) we can take u = wn’ v, = ¢n (un = ¢ny
vg = wi) to obtain an increasing in k sequence for u and a

decreasing one for v (decreasing for u and increasing for v).

We omit the straightforward proof of this theorem, since it is
similar to that of the theorem 1 (see also [7] for the continuous
version of this result). In our numerical experiments we found
that convergence usually occurs for more general initial guesses.
3. QUASILINEAR EQUATIONS

We are interested in approximate solution of the Dirichlet

problem

(3.1) -Au = f(x,u,u_, ... ,u ) for x e R, u= g(x) on dQ.
% X
1 d
We approximate this problem by (taking d = 2 for simplicity)

Ynte, " Un Ynte, ~ Un :
(3.2) -Au = f(x_,u_, 1 2 for x_ € Qh,
h™n n’ n , ) n
h h

and u, = g(xn) on 6Qh. Here e, = (1,0), e, = (0.1).
To solve (3.2) we construct the iteratiomns, k = 1,2,...

k+1 k

Yy T Y k Kk 1k 2k
(3.3) —_— = Ahun + f(xn,un,Dhun,Dhun) for X € Qh’

and uk = g{x_) for all k and x_ € 8Q . Here we denote
n n n n

i1
Dhu = E(un+ei un).

Theorem 3. Assume that the function f(x,u,pl,pz) is continuous
in all arguments and for x € Q and |ul| = K satisfies

£ | =c(1+ Ip. ]+ Ip. D% 1 =12 , a<1i, ¢c=clK).
pi 1 2
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Assume that the problem (3.2) possesses a supersolution ¢n = ¢ defined

by

(3.5) —Ah¢ = f(xn’¢’¢x1’¢x ) x €eQ, ¢= g(xn) on 8Q, ,

2

and a supersolution wn’ defined by reversing the above
inequalities. Moreover, ¢n = wn for all n. Then for h sufficiently

small the problem (3.2) has a solution, which can be approximated

using (3.3). Namely, letting ug = ¢n (ug = wn) and choosing h and

T = t(h) sufficiently small, we get a decreasing (increasing) in k
sequence ui converging to a solution of (3.2).
Proof. Denote by ui the iterates obtained by (3.3) starting
with uo = ¢ _, and by vk the ones starting with VO =y . We claim
n n n n n
that
(3.6) a;vnsvrl1 =, ..= vis suif1 =, ..= uxll:s ¢>n,

from which the proof of the theorem follows as in the theorem 1.

The proof of (3.6) is by induction in k. By definition of super-

and subsolutions it follows that wn = Vi, u; = ¢n for all n.

Assume (3.6) to be true up to k. From (3.3) express

k+1 k,, 4T T . k k k k
(3.7 u =u (1-—;) + =, (u + U +tu_+tu- )
n n hZ h2 n+e1 n+e2 n-e, n-e,
k 1,k k., 1,k k
Tf(xn’un’ﬁ(un+e “ U )iy un))'
1 2
. k+1 k .
Define wn = un - un. Using the mean-value theorem we express
from (3.7)
- 4 k-1 k-1
(3.8) w* =w - Soewf - pf - g )+ S0 v )
noon h u Py 2 h 1 2
T k-1 T k-1
+ —=(1 + hf_ Jw + “=(1 + hf_ v ,
h2 p1 n+e1 hz P, n+e2
with fu’fp ,fp evaluated at an intermediate point. By the

1 72

inductive assumption wi_i = 0. By (3.4) we estimate
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max l¢ - ¢ |
Ihf | =ch(1 + ( 2—2 D)% <1, 1=1,2
Py h

by chosing h sufficiently small. Next we choose T = T(h) so that

1- i + Tf

T
- = f f > 0.
hz u h

-
p, h’'p,
It follows from (3.8) that wﬁ+1 = 0. A similar argument shows that

k k

uo =V for all k and n, completing the proof of (3.6}, and the

theorem follows.

We remark that for the continuous case a similar result appears
to be known only in the one-dimensional case [2].

4, ELLIPTIC SYSTEMS WITH SINGULAR RIGHT-HAND SIDES

We begin with a single equation
(4.1) -Au = T%ﬁ in Q, u=0 on 89,
which has received considerable recent attention in connection
with the phenomenon of "quenching" for the corresponding parabolic
equation, see e.g., [2,6]. Clearly, u = 0 is a subsolution of (4.1).
However, it is not clear which function can serve as a

supersolution, which does not allow us to proceed as in the

theorem 1. Instead we proceed as follows. Starting with u = 0 we
obtain an increasing sequence of Picard iterates. If we can show
that they are bounded from above by a constant less than one, then
the sequence must converge to a solution of (4.1). Similarly we
approach the system (4.5) below. We formulate our results for
differential equations, howe&er it is clear that similar results
hold for the corresponding difference equations.

Define U(x) to be solution of

(4.2) -AU=1 inQ, U=0 on 89,
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and M. = max U. Starting with u
0 O 0

solutions of

=0 in Q, let un(x), n =1, be

- 1 s =
(4.3) —Aun =105 in Q, u = 0 on 8Q.
n-1
Denoting Mn z max un(x), one shows inductively that we may take
Q
= 1 =
(4.4) M =sm—M, n=12,...,
n-1

assuming that Mn < 1 for all n.

The recursive relation (4.4) is easily analysed. Indeed, Mn
form an increasing sequence so long as Mn < 1. Hence, if this
sequence is to remain bounded by 1, it has to converge. If M is
the linit, then M = 3 - VI/Z - Hy , i.e. we need that My =3 . So
that using standard arguments, concerning passage to the limit, we
conclude that (4.1) has a positive solution bounded by N, provided
the domain Q is such that m;x U(x) = % . The last condition can be
verified computationally.

Next we consider a system case
1

-Au = oe— inQ, u=0 on 89,
1-a,u~b,v
i 1
(4.5)
A=t inQ, v=0 onoaq
1—a2u—b2v

Defining uo(x) = vo[x) = 0, we construct approximations

—Aun = = alu T in Q, un = 0 on 89,
1" n-1 1 n-1
(4.6)
1
-Av_ = inQ, v_ =0 on 89Q.
n 1 LU 4 bzvn_1 n

Clearly, un(x) = un—l(X)’ vn(x) = vn—l(X) for all n =1 and x € Q.
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Theorem 4. In the (u,v) plane consider the region D defined by

u>0, v>0, 1-a,u- blv >0, 1 -a,u-Db.v >0,

1 2 2
and the curves Fl, Tz defined by [MO as defined above)
2 = -
Fl : au + bluv -u= MO
2 = -
FZ : auv + b2v - v = MO'
If the curves F1 and F2 intersect in the region D, then the

iterations constructed in (4.6) converge to a positive solution of

(4.5).
Proof. Define U = max u_(x), V_ = max v_{(x), then by induction
n g D n qg n
we may take
U = 1 M Uu. =20
n T-aU _ -bV 0 0
(4.7)
- 1 =
V= T-20 - bV Myr Vg =0

2 n-1 2 n-1

These recursive relations define a map T : (U , v ) » (U_,V.),
; n-1’ n-1 n’ n
and we are interested in its iterates, starting with (0,0).
By induction one sees that both sequences Un and Vn are
increasing in n, while (Un’vn) € D. Also, one checks that the map

T is monotone in D, i.e., if U =U .,V =V ., and
n-1 n-1 n-1 n-1

n = T(Un-l’vn—i)’ Vn = T(Un—l’vn—l) then Un = Un’ Vn = Vn. Nctice

next that the curves Fl and Fz are unimodal and on Fl, vV o> ~-» as

u - 0, while on TZ, u->-was v > 0. Let (U,V) be the point of
intersection of Fl,FZ which is closer to (0,0). Notice that (U,V)
is a fixed point of T. By monotonicity of T,

(4.8) Un = U, Vn =V for all n. ' ~
Since Un,Vn are increasing sequences they must converge. Since

they have to stay in the region defined by (4.8), it follows that
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(Un,Vn) > (U,V). By standard arguments un(x), vn(x) then converge
to a classical solution of (4.5).

5. NUMERICAL EXPERIMENTS

A common feature of our numerical experiments was stabilization
of solutions in rather small time t = Tk. For example, by the time
t = 6 we had obtained the solution of

-u’’ =u(5 - u), u(0)=ul2) =0,
with six stabilized digits. We toock h = 0.1, 7 = 0.001, and
started with a supersolution ¢ = 6. The result was verified by a
program based on the usual monotone iteration scheme. For a similar
two-dimensional problem

u * uyy = y(12-u) for 0 < x <2, 0<y<2,

u = 0 on the boundary of the rectangle, with h = 0.1, 7 = 0.001
and ¢ = 13, we obtained stabilization of two decimal digits by
t = 1. We have studied a competing species model with constant
a,b,c,d,e,f (see e.g. [3])

£

u’’ + ula - bu -cv) =0, u{0) = u(2) =0 (0 < x < 2)

v/’ + v(d - eu - fv) =0, v(0)

L

v(2)

0.

Without loss of generality we have always assumed that b = f = 1.
We found that it is usually not necessary to start computations
with super-subsolutions, as described in the theorem 2. For
example for a = 8, d =9, ¢ = 0.5, e = 0.9, we obtained
stabilization of three digits by time t = 6, starting with

u=v = 6. (Monotonicity was, of course, lost.) A very interesting

result was obtained by letting a = 5.000001, d =5, ¢ =e = 10. At

the time t = 2.5 the solutions u and v were identical to three
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Figure 1

decimal places. By the time t = 5, the dominant species u drove
the species v to extinction (zero to 36 decimal places).
For the problem
u’’ =vu for 0 < x < 10, u(0) = u(10) = 1,
we were able to compute the "dead core", which appears to extend
over the interval [3.5,6.5]. For the quasilinear problem (see [1])
-u’’ =1+ 0.49u'2 for 0 < x < 1, u(0) = u(1) = 0,
we obtained monotone convergence starting with a subsolution
Y = % %(1-x). We took h = 0.05, T = 0.0003. Iterations converged

to the exact solution, which is easily obtained.
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For the problem (4.5) we took a1 = 0.5, b, =1, a2 = 0.9,
b2 = 0.5, MO = 0.08. The picture we obtained on a PC screen can be
seen in Fig. 1. It suggests‘very strongly existence of a positive
solution for (4.5). (By a careful justification of the fact that
Fl and FZ intersect, it is possible to give a computer assisted
proof.) Incidentally, in case Fl and Tz do not intersect,
iterations of the map T produce very interesting patterns on the
screen, suggesting possibility of strange attractors (computations
of D. Schmidt).
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