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AtmtractmWe develop an explicit method allowing efficient computation of solutions of nonlinear 
boundary value problems with nonlinear boundary conditions. We apply our results to the nonlinear 
beam equation, and to second order problems in the case when the growth of nonlinearities in the 
first derivative of the solution is not restricted, for which there are very few theoretical results. 

1. I N T R O D U C T I O N  

We develop an explicit monotone scheme for solving boundary value problems for nonlinear 
ordinary differential equations with, possibly, nonlinear boundary conditions. We replace the 
discretized boundary value problems with corresponding parabolic problems, and show that so- 
lutions of the parabolic problems approach steady states, provided the initial data is either a 
super- or subsolution and the time step is sufficiently small. The algorithm is easily implemented 
and good accuracy is usually achieved after a moderate number of time steps. 

This algorithm was previously implemented by Huy, McKenna and Walter [1] for semilinear 
elliptic systems and, independently, by Korman [2] for more general quasilinear nonlinearities. It 
was then extended by Choudury and Korman [3] to wide classes of fully nonlinear problems. For 
semilinear monotone elliptic systems, similar theoretical results were established by Sattinger [4]. 

In Section 2, we extend this algorithm to fully nonlinear boundary conditions of first order. 
The novelty here is in proving monotone convergence while working with fictitious mesh points, 
introduced to approximate the boundary conditions. We consider semilinear ordinary differential 
equations for simplicity, although our results can be easily applied in the PDE case. 

In Section 3, we consider quasilinear nonlinearities of the type f(z, u, C) without restricting 
the growth of f in u e. In [2], it was shown that if f is subquadratic in C,  then a result similar 
to the Theorem 2.1 holds. Such conditions (of Nagumo's type) are usually placed in the PDE 
literature, see e.g., [5], since otherwise one cannot expect gradient estimates, which are usually 
used to prove existence. We present a heuristic argument showing that,  in the general case, 
one can expect the iterates to be monotone on the average when one starts with a super- or 
subsolution. This conclusion was confirmed by our numerical experiments. 

In Section 4, we consider fourth order problems, describing static displacements of a uniform 
beam by a nonlinear force. Using ideas from the previous two sections, we show that  one can 
again expect monotone convergence, on the average, for the corresponding evolution equation. 

Once a solution is computed we can represent it by its Fourier series. This is discussed in 
Section 5. We draw some interesting conclusions, in particular, that  problems of the type (3.1) 
can be reasonably accurately solved using only the first harmonic. 
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2. N O N L I N E A R  B O U N D A R Y  C O N D I T I O N S  F O R  S E M I L I N E A R  E Q U A T I O N S  

We are interested in the numerical solution of the following two-point boundary value problem 

u" .q- f ( x ,  u) = O, for a < x < b, (2.1) 
c~(u(a), u'(a)) - 0, 3(u(b), u'(b)) - O, 

with given functions f ,  a and /L We divide the interval [a,b] into N equal parts of length 
h = ( b -  a ) / N  each, denote zo = a, zk = xo + kh for k = 1 , 2 , . . . , N ,  uk = u(zk) ,  and then 
replace the equation in (2.1) by its finite difference version 

F[uk] -- uk+l - 2 u k  + Uk-1 
hU "1-f(xk, uk) - 0, k = 1 , . . . ,  N - 1. (2.2) 

To approximate the boundary conditions in (2.1), one could approximate u'(a) by (ul - u o ) / h  and 
u'(b) by (UN -- UN-1)/h,  however, our numerical experiments suggest that  a much better  accuracy 
is achieved by the following procedure (which is common for Neumann boundary conditions, see 
e.g., [6]). We introduce fictitious mesh points z -1  and ZN+I, and replace u'(a) by (ul - u _ l ) / 2 h  
and u'(b) by (UN+l -- UN_l) /2h.  We then write (2.2) for k = 0 and k = N, which allows us to 
express u-1 through u0 and ul,  and ug+l through UN-1 and UN. Our boundary conditions then 
take the form 

 [uk] = uo, + g y(a, uo = O, 
h (2.3) 

( U N ' - ' h ~ N - l h  ) /~[uk] --/~ UN, 2 f ib,  uN) --" O. 

Our goal is to solve (2.2) together with (2.3). 
We set up the following iteration scheme (p = 0, 1 , . . .  ) 

- -  n u f ( z k ,  t~k ), k = 1 , . . . ,  N - 1, r ?,2 

( - ,) ug +I -- u~ -I- n ~ U~o, uP1 ~" u~0 -I- 7 f (a ,  uo) , 

UP'I" 1 ---~ U~V "-l- T2. (uP ,  ~ N - ~ N - 1  h f ( b , u ~ ) )  
h 2 ' 

(2.4) 

(2.5) 

(2.6) 

with suitably chosen initial mesh functions u °, k = 0 , . . . ,  N, and po6itive parameters r ,  rl and r2. 

DEFINITION. A mesh function ~o = (~o0,~ol,..., ~ON ) -- ~ok is called a supereolution of  the sys- 
tem (2.2), (2.3), provided that 

F[~ok] S 0, ~[~ok] S 0, 3[~o,,] < 0; k = 1 , . . . ,  N - 1. (2.7) 

A mesh function ¢ - (¢o, ¢ 1 , . . . ,  Cn) is called a subsolution of  (2.2), (2.3), i f  it satisfies the 
opposite inequalities. 

We remark that ~o and ¢ can often be obtained as discretizations of the super- and subsolutions 
of the continuous problem (2.1). 

The following result establishes existence of solutions for (2.2), (2.3) and provides an explicit 
computational algorithm. 

THEOItEM 2.1. Assume that the problem (2.2), (2.3) possesses a supersolution ~ok and a sub- 
solution Ck, with Ck <_ ~ok, for all k. Assume that f ( z ,  u) is continuous in both variables and 
Lipschitz continuous in u unfl'orm/y in a < z < b, and mink ~bk < u < maxk ~ok. Assume that 
a(u ,  u I) and 3(u,  u I) are continuous in both variables and continuously differentlable in u I, and 
clw >_ 0 and ~u, <_ 0 when ~bo <_ u <_ ~Oo and CN <_ u ~_ ~N, respectively, and u' E R. Then, the 
problem (2.2), (2.3) has a solution uk with Ck <__ uk ~_ ~ok for all k. Moreover, i f  one starts the 
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scheme (2.4)-(2.6) with u~ = ~k, then for r, n and 1"2 sufficiently small (precise conditions may 
be found in the proof) the sequence u~ is monotone decreasing in p for each k. Similarly, i f  one 
starts with u ° = ~bk, then the corresponding sequence, ca/l it ~ ,  is monotone increasing in p, and 

~ ,  <__ d ___ d _<... _< u, _<... _< u~ ___ ul _< ~, for ~ k. (2.8) 

The sequences {u~t } and {v~t } converge, correspondingly, to the maxima /and  minima/solutions 
0[(2.2), (2.3). 

PROOF. Let u~ = ~k and denote w~k = u[ +1 - u~. From the definition of the supersolution it 
follows that  w~ < 0, for all k. We prove by induction that w~k < 0 for all k and p > 1. Assume 
that  w~k -1 < 0, for all k = 0, 1 , . . . ,  N.  Using the mean-value theorem, we obtain (with L the 
Lipschitz constant of f ( z ,  u)) 

~ <( 1 - 2~ -~z )~  - : _  ~: 

~O -- ~o-l J- TI Gu 

< (1  + r l  a .  - 

~___ (1 +r2~ + 

+ ~  + ~ - 1  , 

~0_1 + ~1 ~., g - ~  - ~0 -~ ~h -: (:(., Co)- 
1"1 r: h L ) 1"1 w~l _ : , 
:~.,---T-~., ~-~ +-~., 

rzhL ~ 

with a,, a,, and/~,, /~,,, evaluated at some intermediate points. Fixing h, and choosing r, rl 
and I"2 so that all three expressions in brackets in front of w~k -I are positive, we conclude that 
w~t < 0, for k = 0, I,..., N. This implies that the sequence {u~} is decreasing in p. A similar 
argument shows that the sequence {v~} is increasing in p. Applying the same argument once 
more, we see that ~ _< u~ for all k and p, justifying (2.8). Hence, the sequences {u~} and {v~} 
converge, and it is clear from (2.4)-(2.6) that their limits are solutions of (2.2), (2.3). If uk is any 
solution of (2.2), (2.3), such that ~bk _< uk _< ~ok for all k, then the same comparison argument 
as above implies that uk _< u~ for all p and k and, hence, the sequence {~} converges to the 
maximal solution. 

EXAMPLE. We have solved 

- u "  = v ~ -  2dYs-~- x, 0 < x < 2, 

u'(O) - u3(O) + 9 -- O, u(2) - O, 

starting with a supersolution ~o = 4 - z 2, taking h = 0.1 and r = 0.0015. By p = 6000, the 
iterations had six decimal digits stabilized, giving the exact values of the solution u = 2 - x at 
the mesh points. 

3. DIRICHLET PROBLEM FOR QUASILINEAR EQUATIONS 

We discuss numerical solutions of the problem 

- - u ' - - f ( x , u , U ' )  f o r a < x < b ,  u ( a ) = u ( b ) - O .  (3.1) 

We assume the function f is continuous in all variables and continuously differentiable in u 
and u', but do not assume any structure conditions, in particular, we do not place Nagumo type 
restrictions on the growth of f in u ~. Proceeding as in the previous section we obtain the finite 
difference approximation of (3.1), 

h2 = f Zn, Un, -- , n=I,...,N-I, UO=UN=0. (3.2) 
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To solve (3.2), we set up the explicit scheme (p = 0, 1 , . . .  ) 

( P p )  U~ "1"I -- U~ U~.I. 1 --  2B~ "~- U~_ 1 Un+ I Un_ 1 
7" - h ~ + f Zn' UPn' ~-h ' 

~ +1  = ( 1 -  7-1) UPo, u~v +1 =~il - 7-2)U~v , 

n =  1 , . . . , N -  1, 
(3.3) 

0 and positive 7-, 1"1 and 7-2. with a suitably chosen initial guess u , ,  
Denoting as before, w~ "- u~ +1 - uS, we express, from (3.3), 

2~ ) 7- ~_-~-W.:: wPn= 1-~-:+7-fu wPn-:+~'(W~nz:+W~n-::)+7-f.' "+'2h (3.4) 

N - :  
Denoting W p = E w~, we obtain, from (3.4), 

n----1 

N - :  N - 1  
7" 

= E :. + E :., • 
n = l  n = l  

Assume now that  fu and fu, do not change much from one mesh point to another. Then the last 
te rm on the right telescopes up to the boundary terms, which we ignore since they are quadratic 
in r ,  r:  and r2. Then,  

wp __ (1 + 7-E) wp-: ,  (3.5) 

where f* is some fixed value of fu. 
Let ~n be a supersolution of (3.2) defined by 

~n-I-1 -- 2~n W ~ n - 1  ( 
h2 >_ f Xn,~n, \ 

~0 _> 0, 

~n+l ~ h t a " - l ) ,  n =  1 , . . . , N -  1, (3.6) 

~N >_0. 

If we now start  the scheme (3.3) with u ° = ~ , ,  then w~ _< 0, for all n = 0, 1 , . . . ,  N,  and hence, 
W 1 _< 0. For sufficiently small r we can expect, from (3.5), that  W p <_ 0 for all p, i.e., the 
iterations, on the average, go down. If we start  with a subsolution ¢ (defined by reversing the 
inequality signs in (3.6)) with ¢ _< ~, then iterations are expected to go up on the average, and 
stay, on the average, below the iterations starting with ~. It is then natural  to expect convergence. 

EXAMPLE. The problem 

- u "  = e u' + 6 z  - 4 - e ~ - a ~ 2 ,  0 < z < 2 ,  u ( 0 )  = u(2) = O, 

has an explicit solution u = z2(2 - z). We have solved it starting with a supersolution 
= - 4 z  2 + 16, taking h = 0.1, r = 0.0025, 7": = 2r, r2 = 1. We obtained stabilization of 

six decimal digits by p = 4000, with values close to the exact solution (we used overrelaxation 
with w = 1.8). 

We now discuss the role of rl  and r2 in the scheme (3.3). They are placed there to ensure 
stability. In the example above we were able to set 1"2 = 1, since the initial guess ~ vanishes at 
z = 2. If one tries to do the same at the left end, z = 0, one gets large values for (u2 - uo)/2h ~- 
u ' (z l ) ,  and an immediate overflow when computing e u'. 

4. D I S P L A C E M E N T S  OF  A N O N L I N E A R  E L A S T I C  B E A M  

We consider a model problem 

u "  = f ( z ,  u, u'), for a < z < b, (4.1) 

u ( a ) = ~ ,  u ' ( a ) = ~ ,  u ( b ) = 7 ,  u ' ( b ) = 6 ,  
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with a given function f and given constants a ,  ~, ~, and 6, describing vertical deflections of a static 
beam subject to a nonlinear force f .  The finite difference approximation of the equation (4.1) is 

un+,-4u.+l + 6 u . - 4 u . - l  +u . - ,  ( un+l -u . - x )  hZ .. = f zn,un, ~ , n = 2 , 3 , . . . , N - 2 .  (4.2)  

As in the previous sections, for n = 2, 3 , . . . ,  N -  2, we set up an iteration scheme (p = 0, 1 , . . .  ) 

( unn+X=unn_rA~unn+rf zn,u~, un+x un-x , (4.3)n 

where A 2 uPn denotes the left hand side of (4.2) (notice that  ut + u~xx = f is the evolution 
equation corresponding to (4.1)). 

We use the formula (4.3) at ~1 also. The right hand side of (4.3)1 will then involve uP_. 1. We 
approximate the second boundary condition by ( ~  - u~l)/2h =/3.  We express u [  1 = u~l - 2h13 
and use this in (4.3)1. We apply the same procedure at ZN+I. This leads us to the iteration 
formulas 

( ' , 1" (4.4) 
- 2h , / '  

T 
- ( 2 h 6 -  + - + 

+ r f  (ZN_I,UPN_I, upN-u~-'  ) ~ , (4.5) 

~ + 1  = a  + (1 - rl) (uP0 - a) ,  (4.6) 

u~v +l --7 + (1 - r~)(U~v - 7). (4.7) 

A function ~(z)  is called a supersolution of (4.1) if 

~m, ~ f ( z ,  ~, 9~'), for a < x < b, (4.8) 

A subsolution ¢ is defined by reversing the signs of inequalities in (4.8). Assume that ¢(x)  _< ~ ( z ) ,  
for all z in [a, b]. 

By an analysis similar to that  of the previous section, it follows for the scheme (4.3)-(4.7), that  
N if one sets u ° = ~o(zn), n = 0, 1 , . . . ,  N,  then ~'~,~=0 u~n is expected to decrease in p and converge 

to the solution of (4.1). This was confirmed by our numerical experiments, however, in contrast 
to the previous sections, the convergence was rather slow. 

EXAMPLE. We solved the problem 

u"" = u s + 1, 0 < x < 2, (4.9) 

u ( o )  = u ' ( o )  = u ( 2 )  = u ' ( 2 )  = o,  

taking h = 0.1, I" = 0.00001 (taking r = 0.000015 lea~ls to overflow) and rl = r2 = 1. Starting 
with a subsolution ¢ = 0, we obtained stabilization of six decimal digits by p = 60000 (the 
computation took under 9 minutes on a SUN 386). We verified the result by a program based 
on the monotone iteration scheme, developed in [7]. 
REMAaKS. The scheme (4.3)-(4.7) is quite flexible, in particular, we could include lower order 
terms on the left in the equation (4.1). We believe it can also be extended to handle functions 
of the type f = f(z, u, u ~, u u, urn). However, for an important special class of problems of the 
type (a(z)u")" = f(z, u) with a(z) > 0, we suggest using the monotone iteration scheme of [7], 
applying the Green's function method (see [8]) to solve the linear problems, particularly if one 
wants computations with small h. 
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5. A P O S T E R I O R I  F O U R I E R  A N A L Y S I S  

Let us consider the  problem (3.1) with a = 0, b - 1. Any  solution can be  wri t ten  in the fo rm 

o o  

u(z) = E c,~ sin nlrx,  ~0 
1 

c,, = 2 u (x)  sin n r x  dx.  

Once the  solution of  (3.1) is computed  at the grid points  zn,  we can evaluate the  integrals in cn 
by (say) the  t rapezoid  rule, using the  same grid points.  

EXAMPLE 1. Take - u "  = 10u 2 ÷ 1, u(0) = u(1) = 0. The  problem was solved with h = 0.1, 
r = 0.0025, ¢ = 0. The  first 20 Fourier coefficients of  the solution are given in the  Table 1. Since 
the  equat ion  above is invariant  under  the  change of  variables z --* l - z ,  all even numbered  Fourier 
coefficients o f  the  solution are equal to  zero. We find it remarkable tha t  c2, c4, c6, c8 and c10 are 
so close to  zero, given the approximat ion  errors. Coefficients f rom clx on should he disregarded 
as numerical  noise (similar noise was obta ined  when running  - u "  -- 1, u(0) -- u(1) -- 0). Also 
notice tha t ,  with reasonable accuracy, u(z )  ~_ Cx sin 7rz. Similar results were ob ta ined  for o ther  
nonlineari t ies of  the type  f = . f(u).  

EXAMPLE 2. Take - u "  = (u~) s + 1, u(0) = u(1) = 0. The  problem was solved with h, r and ¢ 
as above, and  Fourier coefficients are given in Table 2. This t ime, even numbered  coefficients 
are no t  expected to  be zero, bu t  cl still predominates ,  a l though to  a smaller degree. The  last 
p roper ty  was c o m m o n  to  all nonlinearit ies f = f ( z ,  u, u ~) tha t  we tried. 

Table I. Table 2. 

n C n C 

1 0.14769862 1 0.12900708 
2 -0.00000002 2 0.00074879 
3 0.00441024 3 0.00476743 
4 -0.00000001 4 0.00020581 
5 0.00097014 5 0.00100431 
6 -0.00000001 6 0.00006308 

7 0.00031481 7 0.00032285 

8 -0.00000001 8 0.00002099 
9 0.00007992 9 0.0000817'3 

10 -0.00000001 10 -0.00000001 

11 -0.00686936 11 -0.00604312 

12 0.012467'02 12 0.01088602 

13 -0.01972931 13 -0.01728411 

14 0.01168754 14 0.01015632 

15 -0.03117548 15 -0.02728043 
16 0.03991352 16 0.03449854 
17 -0.03433395 17 -0.03056843 
18 -0.03873912 18 -0.03465806 
19 -0.02372190 19 -0.021087'06 
20 -0.10181452 20 -0.09382150 
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