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Abstract

Choudury, G. and P. Korman, On computation of solutions of fully nonlinear elliptic problems, Journal of
Computational and Applied Mathematics 41 (1992) 301--311.

We present an explicit monotone scheme for solving boundary value problems for fully nonlinear -elliptic
equations. We replace the discretized elliptic problems by their parabolic versions, with initial data being

either super- or subsolution. For sufficiently fine meshes we obtain monotone iterations, for which conver-
gence can often be proved.
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1. Introduction

We develop an explicit algorithm for solving boundary value problems for fully nonlinear
elliptic problems. We replace the discretized elliptic problems by the corresponding parabolic
ones, and show that solutions of the parabolic problems tend to those of the elliptic ones,
assuming that the spatial step # and the time step 7 are small enough, = 7(k), and that the
initial data is either a super- or subsolution. While we usually need to choose the time step 7
rather small, we typically get good accuracy after a moderate number of time steps.

This algorithm was previously used [5] for quasilinear Dirichlet problems (including systems)
of the type Au=f(x, u, Du), and in [2], in case f is independent of Du. While in the
one-dimensional case the extension is rather straightforward, difficulties involving mixed
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derivatives arise in higher dimensions. In Section 3 we use a nine-point approximation of the
Laplacian to overcome this problem.

Our results can be easily extended to systems (see [2,5,7]). Preliminary computations
indicated that a similar approach may work for the obstacle problems (see also [6]).

2. One-dimensional problem

We are interested in the numerical solution of the fully nonlinear boundary value problem
with general separated boundary conditions

flul=f(u", u',u, x)=0, fora<x<b,

Biu=au(a) - pu'(a)=A4, Byu=yu(b) +o6u'(b) =B, &y

with nonnegative constants «, 8, v, 8 and real 4, B. We divide the interval [a, b] into N equal
parts of length & = (b —a) /N each, denote x,=a, x, =x,+kh for k=1, 2,..., N, u, = u(x,),
and replace (2.1) by its finite-difference version

Upyr = 2UpF U Upyq — Uy
h? > 2h

Uy —u Uy — Upy_
Buy=oau,—p 1h O=A, BzuNEyuN-HS—ij-f-z—]—V—l:B.

flu =f

U, x| =0, k=1,... ,N-1,

(2.2)

The following result establishes existence of solution for (2.2) and provides an explicit algorithm
for its computation.

We shall obtain the solution(s) of (2.2) as the steady state of the corresponding “parabolic”
problem (p=0,1,...)

uf ™ —uf
-——————=f[u,f], k=1,...,N—1, Buf=A, B,uf =B, (2.3)

T

with a suitably chosen u? and “time” step 7.

Definition 2.1. A grid function ¢, is called a supersolution of (2.2) provided
fld] <0, k=1,...,N—1, B,b,>A, B,by>B. (2.4)

A grid function ¢, is called a subsolution if it satisfies the opposite inequalities.

Theorem 2.2. Assume that the problem (2.2) possesses a supersolution ¢, and a subsolution ,,
with i, < ¢, for all k. Assume that for h < h, sufficiently small,

Folud > thl folue]l, fork=1,...,N—1, (2.5)

and all u, such that y, <u, < ¢, for all k. Assume finally that f is continuously differentiable in
u, u' and u". Then for h <h, the problem (2.2) has a solution u,, with , <u, < ¢, for all k.
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Moreover, if one starts the scheme (2.3) with u$ = ¢,, then for h <h, and v =7(h) sufficiently
small, the sequence uf is monotone decreasing in p for all k. Similarly, if one starts with v =1,
then the corresponding sequence is monotone increasing in k, and

P, <UE<SVES o Sup< v Sul<up <o, forallk. (2.6)
The sequences {u?} and {vf} converge correspondingly to the maximal and minimal solutions of
(2.2).
Proof. Letting ul = ¢,, rewrite (2.3) as

upt'=uf +7f[uf], fork=1,...,N—-1,

_ 1 (2.7)
= (AR ), g = e (B g ).
Denote w? =u?*! — y?. From the definition of the supersolution it follows that w} < 0 for all

k. We prove by induction that wf <0 for all £ and p > 1. Using the mean-value theorem we
obtain from (2.7) (assuming wf ™' < 0),

wh =wf

27 1 1 oo L 1
1- ZE u” +Tfu) + Twl]c7+] (_]—f;ffu” + —i-l:l-fu' +ka—l (Ffu” - Efu’)!
(2.8)
with f,., f,- and f, evaluated at [6uf ™"+ (1 — )uf] for some 0 < 6 < 1. Hence, if we choose A

small enough to satisfy (2.5), and 7= r(k) so small that

2T
l—ﬁfun[uk]_}"f’fu[uk]>o, fOI‘ aﬂ g[/kguk<d)k, kzl,.,N_1, (2.9)

it will follow from (2.8) that wf < 0 for k =1,..., N — 1. Using the second line of (2.7), we then
conclude wf <0 forall k=0,1,...,N.

A similar argument shows that vf form an increasing in p sequence, and that (2.6) holds,
which finishes the proof. O

Remark 2.3. The following two natural conditions (see also [8]) are sufficient for (2.5) to hold:

folu] =c,>0 (ellipticity), (2.10)
1
| folu] |<c2(1 + 71—0;), with 0 <a <1 and c,, ¢, independent of A, (2.11)

for ¥, <u,<¢,, k=1,...,N—1, and any & >0 (which is implied by the condition
| fo(x, u, u', u")Y [ < e+ 1u'|%), ¢ = clu), since we can then set

c,=max max c(u,) max|lo, — .
p=max max (i) maxldy — i)
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Remark 2.4. Existence of super- and subsolutions implies satisfaction of the compatibility
conditions, which are required for the Neumann problem. Consider for example the linear
problem

~u"(x)=f(x), forO0<x<1, u'(0)=u'(1)=0. (2.12)

Writing down the definitions of super- and subsolutions, and integrating in both cases, we
conclude that [}f(x) dx =0, i.e., the problem above is solvable.

Next we show that for the Dirichlet problem the solution of (2.2) converges to that of (2.1).
We shall need an a priori estimate given in Lemma 2.5, which is a slight modification of [1,
p.147]. We shall sketch its proof, but first we state the following standard maximum principle,
see, e.g., [3, p.439].

Lemma 2.5. Let A;, B;, C; be given numbers, 1 <i <N — 1, such that
A;,B,C; >0, A,-2B;+C;<0, 1<i<N-1.

Let the grid function w, satisfy
AW,y =2Bw, +Cw, +Cw,_, 20, 1<ig<N-1.

Then for all 1 <i< N —1,

<1

w; < max(wg,, wy ).
For the grid function u,, k=0,..., N, we define [|ull=1u; ||=maxq_, o nlu,l.

Lemma 2.6. On the grid x, defined above consider the problem

Upyr — 2U, T Uy Upqg — Uy
a (b)) Ty () e (W =f,, k=1,...,N -1,
h 2h
(2.13)

uy=0, uy=_0.
Assume that the functions a,(h), b,(h) and c,(h) are continuous and a,(h) >8>0 and
clh) <0 forallk=1,...,N—1, and 0 <h < h,. Then there exist positive constants h, and c,,
such that for h <hy,

lull<eoll £ (2.14)

Proof. Introduce w(x)=(1+x —a)?, where B is a positive integer to be chosen later. Let

w, =w(x,). Since w(x) and all its derivatives are nonnegative for x > q, it follows that (with
-1<6<1)

Wip1 = 2W W
h2
Wie1 = Wi

2h

=w"(x, +6,h) =w"(x, —h),

=w'(x, +0,h)<w'(x, +h).
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If R > 0 is sufficiently large, then
Wip1 = 2W + Wy
hZ

=(1+x,-a)B(B-1)

k+1 "W

w k=1
Lyw,=a,(h) + b, (h) h + ¢ (h)wy

1—{~xk—a,r~h)ﬁ—2 l+x,—a(l+x,—a+h\?"'
X|6| ——— - R
1+x,—a B-1 Lt+x,—a
B(B—1)
., R(1+b—a) _ (1+b—a)
> ~1)|8(1-h) - ——— " (1 4+ h)P T - R | 5 S,

where § is a positive constant, provided we choose £ sufficiently small and B sufficiently large.
Then with a sufficiently large constant P > 0,

L | Pw, + %
’1( T

Letting z, = Pw, = u, /|l f Il, we rewrite the last inequality as

)>PS~1>O.

A,z 1—2Bz, +Cpz,_1 >0, (2.15)

with 4, = a,(h) + 3hb,(h), B, = a,(h) — 3h’c,(h), C, = a,(h) — $hb,(h). Decreasing h if nec-
essary, we see that Lemma 2.5 applies to (2.15), and hence for all k=1,...,N—1,

Ug
f

and the lemma follows. O

+

<z, <P max(wy, wy),

Theorem 2.7. Let u(x) € C*a, b] be solution of (2.1) with u(a)=u(b) = 0. Assume that for
x €la, bl, y <u < ¢, and all values of u' and u”, the following conditions hold.:
M £, >0,
(i) f, <0,
(iii) f is continuous and continuously differentiable in u", u' and u, with derivatives f,, [+, f»
uniformly bounded.
Denote by u, the solution of (2.2) with uy=uy =0, and by [ul, the solution of (2.1) with

u(a) =u(b) =0 evaluated at the grid points x,. Then one can find positive constants ¢ and h,
such that

lu, — [u]ll<ch?, for h<hy.
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Proof. We follow the standard scheme: stability plus approximation implies convergence. By
our assumptions (using the Taylor’s formula),

f[[u]k] :f(”"(xk) +O(R?), u'(x,) + 0(112), Up, xk)
=f(u"(x)s u'(xp)s g, xp) + O(h?) = O(h2)7 (2.16)

since u(x) solves (2.1). Subtracting (2.16) from (2.2), using the mean-value theorem, and
denoting w, = u, — [ul,, we obtain

Wis1 = 2We T Wy Wivr — Wp

-1
u” hZ +fu' 24 +fu\/vk = O(hz)a (217)

where f,.[ ], f,[], f,[-]are evaluated at 6[ul, + (1 — 6)u, with 0 <8 < 1. Applying Lemma 2.6
to (2.17), we conclude the proof. O

3. Two and more dimensions

We present our results for the two-dimensional case, although they easily generalize to
arbitrary number of dimensions. We start by considering the Dirichlet problem

flul =f(uey, uyy, uy, uy, u, x, ) =0, in QCR?, )
u(x, y)=g(x,y), on 342, ”

where the equation does not explicitly depend on u,,. We replace the domain {2 by the
uniform square mesh (2, of step size h, denoting k = (k,, k,), x, = (k;h, k,h) and u, = u(x,)
with positive integers k,, k,, (assuming (2 to lie in the first quadrant). We replace (3.1) by its
finite-difference version

flu] Ef(Sfu, 82u, S,u, 8,u, uy, xk) =0, in{,,

(3.2)
u,=g(x;), on {2,

where

uk-%elwl'{k—-el uk+el_21’{k+uk—el
o 8iu = e , e, =(1,0),
8,u and §$u are defined similarly, and the boundary values are defined on 92, in a standard
way. We obtain the solution of (3.2) using the scheme (p =0, 1,...)

p+1 __ . p
Uj u

“‘F__k =fluf], in 0, up=g(x,), ondfl, (3.3)

i

o.u=

with properly chosen u{ and the step size 7.

Definition 3.1. A grid function ¢, is called a supersolution of (3.2) if
flee]l <0, in 0, b >g(x,), ondf2,. (3.4)
A subsolution s, is defined by reversing the above inequalities.

The following result is similar to Theorem 2.2.
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Theorem 3.2. Assume that the problem (3.2) has a supersolution ¢, and a subsolution ., with

b, < ¢, forall k. Assume that for h < h sufficiently small, and all u, such that J, <u, < ¢ in
0

h?

fu lu] > %h‘fu,[uk”’ fu, Ll

»y

Wlwdls i, (3.5)

Assume finally that f is continuously differentiable in u, u ., u,, u,., u,, for y <u<¢ and all

values of other arguments. Then conclusions are word for word the same as in Theorem 2.2.

Proof. Starting with ul=¢,, define the iterates u? by uf™'=uf +rfluf], and similarly
starting with v = ¢, define the iterates vf. We clann that the inequalities (2.6) hold. Indeed,
with wf =uf <1 uf, we obtain, using the mean-value theorem,

W/‘f = (1 - —‘fu Z’;fy_‘_y + Tfu)
+%Wi€;ell(fu ]hfu ) W]f ell(fu %hf“,r)

WL fu, L) + wpsAl f, = 01 ).

In view of the conditions (3.5) we can make the last four brackets on the right positive by
choosing A sufficiently small, and then we can make the first bracket positive by choosing
r=7(h) small enough. The inequalities (2.6) then follow by induction, and they imply the

theorem. O
We can allow the u,, term in (3.1), provided the equation has a special form:
flul=f(4u, uy, uy,u,, u,u,u,x,y)=0 inQ,
u=g(x,y), on af2.

To preserve the monotonicity properties we use the nine-point approximation of the Laplacian

(3.6)

Apuy = Ap o T AU o T AU o T AU T U s,

1
o
+uk—el+ez + uk~el—ez + uk—f-ei—ez - 20”/{] .

(The usual five-point approximation does not allow one to control the terms like u, ., .,
introduced by u,,.) We then replace (3.6) by

_ 2 2 2 _ :
Flug] =f(A,Zuk, 87Uy, Oy Uy, Ooly, 8.1y, 8 Uy, Uy, xk) =0, in &,

(3.7)

e =g(x,), on 882,,
where
) 1
Srylhy = e [Mk+el+el T Uk tey Ukt ey T uk~el~ez] ‘

To solve (3.7) we again use the scheme (3.3) (a numerical example is given at the end of Section
4).
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Theorem 3.3. Assume that the problem (3.7) has a supersolution ¢, and a subsolution ¥, with
U, < &, forall k. Assume that for h < h sufficiently small and all u, such that ¢, <u, <, in
0, the following conditions hold:

$Faului] +f [ue] > %h\fux[uk] )
Faulwed > 3| £ il ]

Assume finally that f is continuously differentiable in Au, u, ., u,,, u,, U, u,, ufor f<u <o
and all values of other arguments. Then conclusions are exactly the same as in Theorem 2.2.

2

%fAu[uk] +fu),>,[uk] > %h fu),[uk]

(3.8)

Proof. Letting u) = ¢,, rewrite (3.3) (for (3.6)) as

1
M£+1=u£+7f(g}1—2(4u1€+e1+ +ul€+e1+ez+ _20u£)>

W(u£+el+e2i cee )’ ﬁ(ul};rel ——2u,€ +M/Ic)—e1)s

1 1
Ej(u£+e2 - Zuﬁ + u,‘c’_ez), EE (u1€+e1 - u/f—q)’
1 p
E(Miwuez - uf—ez)? Uk X }s
where + - -+ and + - -- denote similar terms. Denoting wf =uf*' —uf, and choosing % < h,
and 7 so small that

10+ 2T 2r
1- gil-z*fw— ?Zifuxx" ﬁfuj,y+7fu>0, for all ¥, <u, < ¢,,

we conclude by induction as in Theorem 2.2 that

. 107 27 27 )
Wf = W;‘? (1 - ?f,du - —;l—ifbux - ﬁf”yy + Tfu)

_1 27 T T
+Wf+el(WfAu + ﬁfu” + ﬁfnx

1 1
+ o +W/f+e11+e2(WfAu + Zh_zf“*‘y) 4+ <0,
for all k and p, which implies that the inequalities (2.6) and the prcof follows (here again

+ - -+ denotes similar terms). O

4, Numerical experiments

Tt was an easy matter to implement the explicit scheme (3.3) in both one- and two-dimen-
sional cases. While the time step 7 has to be taken rather small to ensure convergence, we had
usually obtained stabilization of solution after rather moderate number of time steps. To speed
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up the convergence an overrelaxation was tried, i.e., after computing u?*! by (3.3), we would
set ul*l=uf+w(uf*t —up), with typically w = 1.8 (by analogy with linear problems) and
other values of w. This did not seem to intervene with the monotonicity of the convergence
(typically we compared the results after every ten iterations). However, the overrelaxation
tended to have a destabilizing effect, making it necessary to choose considerably smaller time
steps, and so it was not effective. In most cases we used either super- or subsolution, as it seems
to be a luxury to have both for fully nonlinear problems. Control examples may also be hard to
come by for such problems, however for ODEs [4] is an excellent source.
The problem (see [4, problem 6.137])

Qun"+u?+1=0, for0<x<2, u(0)=u(2)=0, (4.1)

was solved using y =0, h = 0.1 and 7= 0.004. By the time ¢ = 1 (i.e., after 1000 iterations), our
iterations had six decimal digits stabilized, converging to the exact solution, which is a cycloid
x=m"Yt—sint), u=m"(1—cost) with 0 <t <2mw. (We kept six digits since the discretized
version of (4.1) is also of interest. Of course, because of the approximation error, some of the
digits have no significance for the original equation (4.1).) For example, at x = 1 the exact value
of the solution is 2/m = 0.6366. We obtained u(1) = 0.6261. When we repeated the computa-
tion with 4 = 0.05 and 7 = 0.001, we obtained a more accurate value u(1) = 0.6316, with similar
improvements at the other mesh points. The accuracy was decreasing towards the boundary.
For example, u(0.1) was computed with relative error = 10% when A = 0.1, and the relative
error = 5% when h = 0.05. The problem (4.1) also has a positive subsolution i, = € sin 3wx,
provided e is small enough. To verify the condition (2.5) compute

furlwi] £ 3hflug] = 2u, £ hug > up £ hup =, >0, for u >4,

Computed values at different times ¢ are shown in Fig. 1. It is clear from the figure that by
t = 0.4 at least two decimal digits are stabilized.

07
0.6 1
0.5
0.4

0.3

0.2 4

O.14
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0.3 4 0.6 4

0.2 0.4

Fig. 3.

For the problem

u '+ (w +2)x—2u+10=0, for0<x<2,  u(0)=u(2)=0,

we took A =0.1, r=0.0002, s =0, and obtained the exact values of the solution, which is
u=x(2—x), at all mesh points by ¢ =0.3. When we tried 2 =0.1 and 7=0.001 as in the
previous example, the scheme was unstable and the program was aborted. The critical 7 is here
= (0.0003. One sees that dependence of 7 on /i varies from one equation to another. We have
no theoretical explanation on how 7 should be selected, except that it usually should be
considerably lower than 7= 1h? from the linear theory.

For the two-dimensional problem on [0, 1] X [0, 1],

flu]l =x°(1 —x)BuiX +y3(1 —y)3uiy oy, Fuy, +2y(1—y)+2x(1-x) + 16u>

=0, (4.2)

u(x, 0)=u(x,1)=0, for0<x<1, u(0, yy=u(l, y)=0, forO0<y<li,
(4.3)

for which the solution is u =x(1 —x)y(1 —y), we started with a subsolution =0, and by
taking # = 0.1, 7 = 0.001, we obtained three stabilized digits by ¢ = 0.4 (see Fig. 2).
Finally, we present numerical results for the following equation on 2 = (0, 1) X (0, 1):

(1+Vu)du+ (1—-10w)ud, —4u3 —u) +y(4x*—1)+5=0, u=0, ondQ,

which is of the type (3.6) and for which the solution is not known. One can easily see that
conditions (3.8) are satisfied at u, =0, which makes it reasonable to try the scheme (3.3), and
that s =0 and ¢ =1 are a sub- and supersolution, respectively.

The graph in Fig. 3 represents values at ¢ = 0.5, computed with 2 =0.1, r = 0.002, and =0

as a starting point (using the nine-point approximation of 4u). In this example, four decimal
digits are stabilized by ¢ = 0.5.
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