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MULTIPLICITY AND MORSE INDICES OF
SIGN-CHANGING SOLUTIONS FOR
SEMILINEAR EQUATIONS

PHILIP KORMAN AND TIANCHENG OUYANG

ABSTRACT. We study Morse indices of sign-changing so-
lutions for Dirichlet two-point problems. If solution has k
interior roots, we show that its Morse index is equal to either
k or k 4+ 1, with a precise answer possible in some impor-
tant cases. As an application we establish exact multiplicity
of sign-changing solutions for two classes of problems, which
arise in population modeling.

1. Introduction. We consider both positive and sign-changing
solutions of the two-point problem

(1.1) W fu) =0 forze(-1,1), u(-1)=u(l)=0,

with nonlinearity f(u) of class C'. Problems of this kind arise in many
applications, and there is vast literature devoted to them, see, e.g., [7]
and the references given there. Most of the previous work is concerned
with positive (or negative) solutions. There is a good reason for this
emphasis: positive (or negative) solutions are the only ones with a
chance of being stable. Recall that solution of (1.1) is called stable
if the corresponding linearized equation (see (2.4) below) has only
positive eigenvalues. In other words, the Morse index of the positive
solution, defined as the number of negative eigenvalues of the linearized
equation, is zero. We shall show that more is true: if the solution has
k interior roots, then its Morse index is either k or k+ 1. In particular,
the Morse index of positive solution is either zero or one. We use
the information on Morse index to establish exact multiplicity of sign
changing solutions for several classes of problems, obtaining a complete
description of the solution set. In addition, the Morse index provides
us with the dimension of the unstable manifold for the corresponding
parabolic equation.
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Our results on the problem (1.1) depend heavily on the autonomous
nature of the equation. We show that our results on positive solutions
extend to a class of problems with nonlinearity depending on z, which
we have studied extensively previously, see, e.g., [8],

(1.2) ' + f(z,u) =0 forz e (~1,1), u(-1)=u(l)=0,

with f evenin z and zf; < 0 for z > 0. We show that the Morse index
of any positive solution of (1.2) is either zero or one, and give some
natural conditions under which it is equal to zero or to one.

2. Morse index of positive and sign-changing solutions. We
study Morse index of positive solutions for the two-point boundary
value problem

21) W+ flzu)=0 forze(~1,1), u(-1)=u(l)=0.

We assume that the function f € C! satisfies

(2.2)  f(-z,u) = f(z,u) forall vw>0 and ze (-1,1),
(2.3) zfp(z,u) <0 forall u>0 and ze€ (-1,1).

By the theorem of Gidas, Ni and Nirenberg [4], it follows that any
positive solution of (2.1) is an even function, with v/{(z) < 0 for
0 < z < 1 (see also Korman [5] for a different proof and more general
results in one dimension). Corresponding to any positive solution of
(2.1) we consider an eigenvalue problem

24) v+ fulz,2w)w+Aw=0 forze (-1,1), w(-1)=w(1)=0.

By the Morse index of u we understand the number of negative
eigenvalues of (2.4).

Theorem 2.1. Under the conditions (2.2) and (2.3), the Morse index
of any positive solution of (2.1) is either zero or one.

Proof. We recall that (2.4) has an increasing sequence of eigenvalues
A1 < Az < -+, with one-dimensional eigenspaces, and that kth
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eigenfunction has k — 1 interior roots, see, e.g., [2]. Since the first
eigenfunction, call it ¢(x), can be assumed to be positive, it follows
that it has to be an even function (since otherwise ¢(—z) is also a
first eigenfunction, which is impossible since all eigenspaces are one-
dimensional). Arguing similarly, the second eigenfunction, call it 9(z),
has one interior zero, which has to be at z = 0 (otherwise consider
¢(—z) and obtain a contradiction as before). If we assume the Morse
index of u(z) to be greater than or equal to two, then Ay < 0 and ¢(z)
satisfy

(2.5) "+ fu(z, W) +doyp =0 forz e (-1,1), #(-1)=91)=0.

By the above ¢(z) has its only interior root at z = 0, and so we may
assume that ¢(z) is positive on (~1,0) and negative on (0,1), with
¥'(~1) > 0 and ¥'(1) > 0. We now differentiate our equation (2.1)

(2.6) W' 4 fo(z,w)u + fo(z,u) =0.

Multiply the equation (2.5) by v/, and subtract from it (2.6) multiplied
by 1. Then we integrate the result over (~1,1), obtaining

1 1
(27) W @)Y(L) -~ (1) + A2[1¢u’ do — /_lfﬂs dz = 0.

Since all terms on the left are nonpositive, and the third one is negative,
we obtain a contradiction.

More detailed conclusion is possible provided that

(2.8) F(£1,0) > 0.

Theorem 2.2. Assume conditions of the previous theorem and (2.8)
hold. Then the Morse index of any positive solution of (2.1) is either
zero or one, and if it is one, then the second eigenvalue 18 not zero.

Proof. Condition (2.8) and the Hopf’s boundary lemma imply that
w/'(~1) > 0 and w'(1) < 0. Then the first two terms in (2.7) are
negative, and we obtain the same contradiction as before if we assume
that Ay = 0.
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Remark. If f(+1,0) < 0, then the second eigenvalue may be zero.
Indeed, let us consider a simple example

(2.9) W' H+u-A=0 forze(~1,1), u(-1)=u(l)=0.

Then for small values of the parameter A there is a curve of positive
solutions, and the solutions on this curve stop being positive for large
A, see, e.g., Korman [6]. Since for positive solutions u'(z, ) < 0 for all
« > 0, the only way this may happen is for 4/(1, ) = 0 at some A = ),
and then solution becomes negative near the endpoints for A > A.
Differentiating the equation (2.9), we see that zero is an eigenvalue
of the linearized equation, and it has to be the second one since the
corresponding eigenfunction, u'(z, A), changes sign exactly once.

Theorem 2.3. In addition to the conditions (2.2) and (2.3), assume
that (f(z,u)/u) is an increasing function of u for all w > 0 and
z € (=1,1). Then the Morse indez of any positive solution of (2.1)
is one. If, on the other hand, (f(z,u)/u) 1s a decreasing function of u
for all z, then the Morse index of any positive solution of (2.1) is zero.

Proof. Let p be the principal eigenvalue of the linearized equation
and ¢(z) the corresponding eigenfunction, i.e.,

(2.10) "+ fulz,u)p+pp =0 forze(-1,1), ¢(-1)=¢(1)=0.

Recall that ¢(z) > 0 is an even function. We now multiply (2.1) by
#(x) and subtract from that the equation (2.10) multiplied by u(z),
and then integrate the result over (0,1). We obtain

(2.11) /ol uqﬁ(f—%’—y—)— - fu(x,u)> dx — y/ol u¢pdz = 0.

Assume first that (f(z,u)/u) is increasing in u. This implies that
(f(z,u)/u) — fu(z,u) <0 for all z € (0,1) and u > 0. If, contrary to
what we want to prove, the Morse index of u is zero, then p > 0. It
follows that the first term in (2.11) is negative, while the second one is
nonpositive, a contradiction.

Similarly, if we assume that (f(z,u)/u) is decreasing in u but the
Morse index of u is one, then g < 0, and we obtain a similar contra-
diction in (2.11).
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Next we give an application of the above theorem for the autonomous
problem (1.1).

Theorem 2.4. Assume that f(u) € C%(Ry) satisfies f(0) <0, and
the condition

(2.12) F'(u) >0 forallu>0.

Then the problem (1.1) admits at most one positive solution and its
Morse index is one. If, on the other hand, f(u) € C*(Ry) satisfies
f(0) > 0 and the condition

(2.13) f'(u) <0 forall u>0,

then the problem (1.1) admits at most one positive solution, and its
Morse indez 1s zero.

Proof. We prove the first part, the other one being similar. Positive
solutions of (1.1) are even functions, decreasing on (0,1), see, e.g.,
[4]. Moreover, different positive solutions of (1.1) are strictly ordered
on (—1,1), see, e.g., [5] where more general results are available.
Differentiating the equation (1.1),

(2.14) ul + f'(u)u, = 0.
If v(z) > u(z) is another solution of (1.1), then
(2.15) vy + [ (w)vs + [f'(v) = f(w)]vs = 0.
Denoting p(z) = u/v' — u'v", we conclude from (2.14) and (2.15)
(2.16) p(e) = [f'(v) = f'(u)ueve >0 on (0,1).
Clearly, p(0) = 0, while
p(1) = —f(0)(v'(1) —w/(1)) <0,

since v/(1) < «/(1). This contradicts (2.16), proving the uniqueness.
Turning to the Morse index, we notice that (f(u)/u)’ = (g(u) Ju?),
where g(u) = f/(u)u — f(u). Since by our conditions g(0) = 0 and
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g'(u) > 0 for all w > 0, it follows that the function (f(u)/u) is
increasing, and hence the previous theorem applies.

More detailed results on Morse index are possible in case f = f(u).
But first we need a lemma, which rephrases the Sturm’s comparison
theorem.

Lemma 2.1. Consider solutions of two linear equations on some
interval I = (e, B)

(2.17) v +a(z)v =0,
and
(2.18) ¢" + a(z)p +b(z)¢ =0,

with continuous functions a(z) and b(z). If b(z) > 0 on I, then
¢ oscillates faster than v, i.e., if ¢ keeps the same sign on some
subinterval J of I (i.e., either ¢ > 0 on J or the opposite inegquality
holds), then v cannot have two roots on J. On the other hand, if
b(z) <0 on I, then ¢ cannot have two roots on any subinterval J of I,
where v keeps the same sign.

We now consider sign-changing solutions of the problem
(2.19) v+ fu)y=0 forze(0,1), u(0)=u(l)=0.
‘We shall need the corresponding eigenvalue problem
(2.20) W'+ f(w)w+Iw=0 forze (0,1), w(0)=w(l)=0.

We denote by m the Morse index of the solution u(z), i.e., m is the
number of negative eigenvalues of (2.20). Let £ > 0 denote the number
of interior roots of u(z) (i.e., roots inside (0,1)).

Theorem 2.5. Let u(z) be any solution of (2.19) with w/'(0) # 0.
Assume that f(u) € C*(R). Then eitherm =k or else m =k + 1.

Proof. Assume that eigenvalues of (2.20) are

M <A <0 Amgr <o
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and ¢;(z) are the corresponding eigenfunctions. Given any function
v(z), we shall denote by n, the number of roots of v(z) inside the
interval (0,1). Observe that it is well known that ng,, = m — 1. Since
u(z) vanishes at the endpoints, n,, = k -+ 1. Also observe that if all
roots of any function v(z) are simple, then the number of subregions
of (0,1), where v(z) keeps the same sign is equal to n, + 1.

Differentiate the equation (2.19)
(2.21) ull + f'(u)ug = 0.

Since Am+1 > 0, applying Lemma 2.1 to the equations (2.20) and (2.21),
we see that the number of roots of u, is not greater than the number
of regions, where ¢,+1 keeps the same sign. In other words,

k+1=mny, <ng.., +l=m+1

so that k < m. On the other hand, since Ay, < 0, ¢ can have at most
one root in any region where u, keeps the same sign, except two corner
regions where ¢, cannot have any interior roots at all. Indeed, since
¢m(0) = 0, while uz(0) # 0, it follows by Lemma 2.1 that dm(z) can
have no roots on (0, z1) where z; is the smallest root of uz. A similar
argument applies near the z = 1 corner. It follows that

m-1=ng, <Ny, +1-2=kF,

i.e., m < k+ 1. The proof follows.

3. Curves of sign-changing solutions. We consider sign-changing
solutions of the two-point problem

(3.1) u'+ f(u)=0 forze(0,1), u(0)=u(l)=0.

We call solution u(z) of (3.1) nonsingular if the corresponding linearized
problem

(3.2) w4 f(Ww=0 forze(0,1), w(0)=w(l)=0

has only the trivial solution w(z) = 0. We shall also need the
corresponding eigenvalue problem

(3.3) ¢+ f(u)p+up=0 forze(0,1), ¢40)=q¢(1)=0.
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Theorem 3.1. Assume that f € C1(R) and either

(3.4) —Ji%Q — f'(u) >0 for almost ail real u,
or
(3.5) I%Q — f'(v) <0 for almost all real u.

Then any solution of the problem (3.1) satisfying v’ (0) # 0 is nonsin-
gular.

Proof. Assume on the contrary that the problem (3.2) has a nontrivial
solution w(z).

Step 1. We show that the number of interior roots of © and w differs
by one. Assume for definiteness that condition (3.4) holds. Then
f'(w) < (f(u)/u) for almost all u and hence, by Sturm’s comparison
theorem, the function u(z) has a root between any two roots of w(z).
Since both functions vanish at the endpoints, z = 0 and z = 1, it
follows that w has one fewer interior root than u.

Step 2. We show that u and w have the same number of interior
roots. This will result in a contradiction, proving the theorem. The
functions w and u, satisfy the same equation and hence their roots are
interlaced. Since w(z) vanishes at the endpoints and u, does not, it
follows that n,_ = n, + 1 (as before n, denotes the number of interior
roots of v). Since n,_ = n, + 1, the claim follows.

Remark. Notice that condition (3.4) means that the function (f(u)/u)
is increasing for u < 0 and decreasing for u > 0.

Theorem 3.2. Let u(z) be the solution of (3.1) with k interior roots,
and assume that the condition (3.4) holds. Then the Morse indez of
u(z) is k. If, on the other hand, the condition (3.5) holds, then the
Morse indez of u(z) is k + 1.

Proof.  Assume (3.4) holds. By Theorem 2.5 the Morse index
m = m(u) is either k or k+ 1. Assume that, on the contrary, m = k+1.
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Consider k + 1 eigenpair pt = pry1 < 0 and ¢ = ¢pq1 with k interior
roots on (0,1). Since ¢ and u have the same number of interior roots
and both vanish at the endpoints, one of three arrangements of interior
roots must occur: the smallest root of ¢ is to the left of the smallest
root of u, the largest root of ¢ is to the right of the largest root of u or
there are two consecutive roots of ¢ with no root of u in between. In any
case we can find two consecutive roots 0 < a < § < 1 of ¢(z) so that
either u > 0 on (e, 8) or u < 0 on (e, 8). Assume for definiteness that
u > 0 on (&, ) (the other case is similar), and we may also assume
that ¢ > 0 on (a,3). Multiplying the equation (3.1) by ¢ and the
eigenvalue problem (3.3) by u, subtracting and integrating, we obtain

F%Q - f’(u)} up d

2
-—,u/ updz = 0.

o

B8
—u(B)¢ (B) + u(e)d(c) + /

@

Since the first two terms on the left are nonnegative, and the integrals
are positive, we have a contradiction.

Assume now that condition (3.5) holds but m(u) = k. We again
consider k + 1 eigenpair g = pigy1 > 0 and ¢ = ¢p41 with &k interior
roots on (0,1). Arguing as above, and reversing the roles of u(z) and
#(z), we can find two consecutive roots 0 < a < 8 < 1 of u(z) so that
either ¢ > 0 on (a,B) or ¢ < 0 on (e, ). Assume for definiteness this
time that u < 0 on (&, ) (the other case is similar), and we may also
assume that ¢ > 0 on (a, 8). Proceeding as before, we get

£(8)6(8) w9 + [ 2 ) uses

B
——,u/ upde = 0.

o3

Since all terms on the left are nonnegative and the third one is positive,
we again have a contradiction.

As an application we now give a complete description of the solution
set for a class of problems

(3.6) v+ Au—uuf =0 forze(0,1), u(0)=u(l)=0,
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depending on a real parameter A. Here p > 0 is a constant. It is well
known that near Ay = k%7? there are curves of solutions bifurcating off
the trivial solution u = 0, see [3]. We show next that these curves do
not turn and that they exhaust the solution set.

Theorem 3.3. The set of nontrivial solutions of (3.6) consists of
infinitely many solution curves, bifurcating off the trivial solution u = 0
at A= Ag, k=1,2,.... These curves consist of nonsingular solutions
and continue without turns for all A > Ag. All solutions on the kth

curve have ezactly k — 1 interior roots, and their Morse indezx is equal
to k.

Proof. Existence of nontrivial solution curves bifurcating to the right
(ie., for increasing A) off u = 0 at A is well known, see [3]. By
the Hopf’s boundary lemma condition u'(0) # 0 is satisfied for any
nontrivial solution, and hence by Theorem 3.1 (condition (3.4) holds
here) there are no singular solutions, and so all solution curves continue
without any turns. Since, by maximum principle maxoj|u(z)| is
bounded for any fixed A, it follows that the kth curve continues for
all A > .

We claim next that the problem (3.6) has no solutions except the
ones lying on the curves through A;. Assuming existence of such a
solution, we continue it for decreasing A and discover that it has no
place to go. Indeed, by the above, this solution curve cannot turn, it
cannot approach the trivial solution at A\; by uniqueness of bifurcating
curve, and finally the solution curve cannot continue until A = 0 since
at A = 0 there are no nontrivial solutions (multiply (3.6) by u and
integrate over (0,1)).

The curve bifurcating off g is asymptotic to sin krz for A near Mg (see
[3]), and hence solutions on this curve have k — 1 interior roots. Since,
as noted above, the condition u'(0) s 0 is always satisfied, it follows
that the number of interior roots stays equal to k — 1 throughout the
curve.

The remaining conclusions follow by Theorems 3.1 and 3.2.

Remark. The exact multiplicity part of the theorem can also be
established by a direct integration, see, e.g., [1]. Our approach, in
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addition to the extra information it gives, appears to be more flexible.
Consider, for example, the problem

(3.7) v+ Au—g(u)=0 forze(0,1), u(0)=u(l)=0,

with a function g(u) € CU(R) satisfying g(0) = g¢'(0) = 0,
lim|y| o0 (9(u)/u) = oo, and the condition (3.4). Then all conclusions
of Theorem 3.3 hold, and the proof is exactly the same. Similar results
for problem (3.7) were obtained recently by Shi and Wang [9] (their
results also apply to radial solutions on balls). Our Theorems 3.1 and
3.2 cover general situations where solution branches are not necessarily
bifurcating off the trivial solution.

Similar reasoning applies to the problem

(3.8) v +du+uuf =0 forze(0,1), u(0)=u(l)=0.

Theorem 3.4. The set of nontrivial solutions of (3.8) consists of
infinitely many solution curves, bifurcating off the trivial solution u = 0
at A= Mg, k=1,2,.... These curves consist of nonsingular solutions
and continue without turns for all A < Mg. All solutions on the kth

curve have ezactly k — 1 interior roots, and their Morse index is equal
tok+1.

Example. Consider the problem
(3.9) u +ululff =0 forz € (0,1), u(0)=u(l)=0,

with a constant p > 0. Our results, combined with simple scaling
arguments, imply that the problem (3.9) has a unique positive solution
up(z), and for each integer k > 1 it has exactly two solutions Fuy(z)
with k interior zeros. The roots of uj(x) subdivide the interval (0, 1)
into k£ + 1 equal parts, and solution on each subinterval is a constant
multiple of a stretched version of the positive solution ug(z). The Morse
index of ug(z) is equal to k + 1 for all k > 0.
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