
proceedings of the
american mathematical society
Volume 103, Number 1, May 1988

ON BLOW UP OF SOLUTIONS
OF NONLINEAR EVOLUTION EQUATIONS

PHILIP KORMAN

(Communicated by Kenneth R. Meyer)

ABSTRACT. We give a complete description of domains of blow up for gen-

eral second order inequalities, which allows us to obtain some new results on

nonexistence of global solutions for nonlinear hyperbolic equations, both in

Rn and bounded domains.

1. Introduction. We study domains of "blow up" of nonlinear evolution equa-

tions, i.e., the set of initial data for which the solution goes to infinity in some norm,

as time t tends to some finite value. Our main result, Theorem 1, provides (under

minimal assumptions) a complete description of the domain of blow up for general

second order ordinary differential inequalities. We then use it as a tool to derive

some new blow up results for several classes of nonlinear hyperbolic equations, both

in Rn and in bounded domains.

In [10] H. Levine lists six available techniques for proving blow up of nonlinear

evolution equations. All of them involve establishment of a differential inequality

for some functional of the solution. One of these techniques "the eigenfunction

method" consists in proving blow up of the first Fourier coefficient of solution (the

earlier references are S. Kaplan [7], R. Glassey [3]). We illustrate it for the equation

(u = u(x,t))

(*) uu - Au = f(u),        xePl, í > 0,

with PI smooth bounded domain in Rn, n > 1, f a convex function.

Let <j)(x) > 0 and A be the principal eigenfunction and eigenvalue respectively

of —A on PI, with Jn 0 dx = 1. Define w(t) = fQu(x,t)(f>(x)dx. Then using the
Jensen's inequality and integration by parts, one easily gets (see [4])

(**) w" + Xw> f(w),

w(0) = I  u(x,0)<p(x)dx = wi,    w'(0) =  I  ut(x,0)4>(x)dx = w2.
Jn Jn

If (wi,w2) belongs to the domain of blow up of (**), then no global (i.e., for all

í > 0) solutions can exist for (*). Theorem 1 below reduces the question to a

straightforward analysis of the conservative equation w" + Xw = f(w).

In §3 we take up accretive equations of the form utt —Au = f(ut), where a similar

approach leads to nonconservative differential inequalities. Theorem 2 presents a

description of the domain of blow up for / = uP, p an even integer.
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In §5 we consider a class of nonlinear hyperbolic equations in Rn, following T.

Kato [8]. T. Kato has essentially proved that the conditions (i)-(iii) of §5 and

p < (n + l)/(n — 1) imply nonexistence of global solutions, provided the initial

data satisfies (16). In the Theorem 3 under a stronger restriction p < (n + 2)/n

we show that blow up occurs for a considerably wider set of data, in particular if

/„„ u(x,0)dx < 0. In Theorem 4 we present a proof of T. Kato's result, partly

for completeness, partly since our approach, based on the theory of Emden-Fowler

equations (see [2]), appears to be more systematic and simpler.

2. Blow up of solutions of differential inequalities.

DEFINITION 1. Consider the differential inequality

(1) w" > f(w,w'), w(0) = wi, w'(0) = w2.

By the domain of blow up for (1) we mean the set of all pairs (wi,w2), such that

any solution of (1) tends to +oo in finite time. (We consider solutions in the class

of piecewise C2 functions.)

DEFINITION 2. Let D be some domain in (w,w') plane. By the shaded region

of D we understand {(w, w')\(w, w' + 6) e D for some 8 > 0}. (Think of sun rays

coming down parallel to the w' axis.) The set of points in the shaded region of D,

which are not in D, will be called the shade of D.

THEOREM l. Assume that the function f(w, w') is such as to provide local exis-

tence, uniqueness and continuous dependence on data for (2) below (e.g., Lipschitz

continuous). Let D be the region complementary in R2 to the domain of blow up

for

(2) w" = f(w,w'),        w(0) = wi, w'(0) =w2.

Then the shaded region ofD is complementary in R2 to the interior of the domain

of blow up for (1). The boundary point will belong to the domain of blow up of (1)

iff the trajectory of (2), starting at this point, will stay in the interior of the domain

of blow up of (3) for all t > 0.

PROOF. Part A. We show that some of the solutions of (1), originating in the

shaded region of D exist for all time. If the initial point P lies in D, there is nothing

to prove, since the solution of (2) starting at P is also a solution of inequality (1).

So let P lie in the shade of D. Notice that the inequality (1) can be written as

w = f(w,w) + u(t), or in the system form as (with u(t) > 0)

(3) w = v,        i) = f(w,v) + u(t).

The vector field of (3), v = (v, f(w, v) + u(t)) has the first component and f(w, v)

bounded on compact sets. Also, without loss of generality we may assume v to be

of one sign, say negative. Let R be a point in the region D directly over P, and

Q an arbitrary point in the same component of D to the left of R. By choosing

u(t) sufficiently large, we can make the vector field v point inside the triangle PQR

along the line PQ (and v points inside PQR along PR). Hence there is a solution

of the inequality (1), which starts at P and enters the region D at some time t = T.

Setting u(t) = 0 for t > T, we get a global solution for our inequality (1).

Part B. We show that any solution of the inequality (1), originating outside the

shaded region of D, will blow up in finite time. Rewrite (2) in the system form as

(2)' x = y,        y = f(x,y).
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FIGURE   1

By Xa(í) and Ya(¿) we shall denote the trajectories starting at the point A of (2)

and (3), respectively.

Step 1. We show that any solution of (2)', starting outside the shaded region of

D, will never enter the shade of D (it cannot enter D by definition). Indeed, assume

that the trajectory Xa(í) goes into the shade of D. We may assume that A lies

in the lower half plane y < 0 (otherwise refer to Step 3). Since it blows up, Xa{í)

must reach the x axis at some point A, see Figure 1. Notice that all trajectories of

(2)', starting on x = a above A blow up, hence they must reach the x axis. If we

choose a point B on x = a sufficiently close to the x axis, then by the continuous

dependence on data it follows that Xß(t) reaches the x axis (at B), while staying

in the unshaded region. Now let A ^> B, then A —> B, and the trajectory Xa(í)

must pass through D, which is a contradiction.

Step 2. Since any trajectory Ya(í) lies above Xa(í), it follows that Y^(i) will

enter the upper half-plane, while staying in the unshaded region.

Step 3. Finally, we show that any solution of (3), starting at a point A in the

upper half-plane, outside of shaded region of D, blows up in finite time. Similarly

to the Step 1, notice that Xa(í) lies above D (which obviously cannot extend to

y = +oo, since everything to the left of it, including A would then lie in D). Hence

Ya(í) also lies above D. Since along these trajectories both x(t) and u(t) increase

monotonically, and x(t) —► +oo in finite time, it remains to show that u(t) > x(t).

For that it suffices to show that if x(ii) = u(t2), then ii > t2. Indeed,

/.

z(t,)    ¿ ru(t2)    du

^^ / -T~\=t2'
y(x)    Jhx     vw

which finishes the proof.

Example I. w" > wp, w(0) = wu w'(0) = w2 (p> l).
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The complement to the domain of blow up of w" = wp consists of the curve

r : w' = -y/2/(p+ l)w<p+1)/2, w > 0. Hence the domain of blow up for w" > wp is

the complement in R2 of the shaded region of P (it includes the ray w = 0, w' < 0).

3. Blow up for a class of equations in bounded domains. We study the

blow up of solutions for the following problem (Pi C Rn), n > 1,

(4) utt = Am + up,        x e Pi, t > 0, p an even integer,

it(x, 0) = g(x),        ut(x, 0) = h(x),

u(x,t) =0,        x e dPl.

Let 4>(x) and A denote the principal eigenfunction and eigenvalue of A0 +A0 = 0

in PI, (p = 0 on ¿9f2, with cf> > 0 in Q and Jn 4>dx = 1 (which are known to exist

under proper assumptions on PI). Letting as before w = fnu<pdx, integrating by

parts and using the Holder's inequality, we get

(5) w" > -Xw + w'",

w(0) =  /  g(x)(f>(x)dx = wi,    w'(0)= /  h(x)(p(x)dx = w2,
Jn Jn

and we are interested in the domain of blow up for (5).

The case p = 2 is special, since the equation w" = —Xw + w'   can be integrated

explicitly. First, by stretching time (this does not affect the blow up of solutions)

we reduce it to

(6) w" = -w + w'2.

Letting w' = p(w), w" = p'p, we get (p2/2)' = — w +p2, which is a linear equation

for p2. Integrating, we get the phase curves for (6)

(7) w' = ±yjce2w +w + |.

The constant c is determined by the initial data, c = (w2 —wi — \)e~2wi. (Notice,

c > — \ for any wi, w2.) It is easy to see that solutions of (6) behave as follows.

(i) c > 0, blow up in finite time.

(ii) c = 0, solution goes to infinity in infinite time.

(iii) — | < c < 0, solutions are periodic.

(iv) e = — ¿, equilibrium point at the origin.

One sees that the curve P: w' = +\/w + | separates the regions of blow up and

global existence. Hence the blow up region for (5) with p = 2 is the complement in

R2 of {(wi,w2)\w2 < yjwi + \, -\ < wi < oo} U (-§,0).

We show next that the situation is similar for p = 2k, k > 1. By stretching of

independent and dependent variables, we may write (5) as x = —x + x2k, or in

system form

(8) x = y,    y = -x + y2k,        k> 1.

THEOREM 2. There exists a trajectory P of (8), separating the blow up and

global existence regions. It is symmetric with respect to the x-axis, intersecting it

once at xo < 0. Along P both x and y tend to oo as t —► ±oo.

PROOF. We begin by noticing symmetry: if (x(t),y(t)) is an integral curve

of (8), so is (x(—t),-y(—t)).   Hence the phase portrait of (8) is symmetric with
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respect to the x-axis. Consider the vector field of (8), v = (y,—x + y2k) on the

curves Ti : — x + y2k = 1, and F2 : — x + y2k — 0 in the first quadrant. It is easy

to see that v points above (the tangent of) Ti and below of T2. This means that

there exist solutions of (8) in D (see e.g. [5]). Call P the highest of the trajectories

trapped in the region D between Ti and P2.

Notice that its y intercept in the first quadrant i/o / 0 (r cannot enter the origin,

since by (8), limI_o-i- dy/dx ^ +oo). When traced back in time, P will decrease

monotonically in x and y, and intersect the x-axis at some Xq < 0. The symmetry

with respect to the x-axis gives us the rest of P by reflection.

Since in the region D, x < (x + l)1^2k, it follows that T is a global solution, and

hence so are all trajectories to the right of P (they travel slower than P). It remains

to show that all trajectories to the left of P blow up. Indeed, after a finite time any

such trajectory will enter the region Di : y > (x + l)1/2fc, x > 0 (above Ti). Any

point in Di will lie to the left of the curve PE: x = (1 — e)y2k if e is sufficiently

small, i.e., it will lie in the region De = Di n (x < (1 — e)y2k). We show next that

the trajectories never leave De. The curves Tt and P£ intersect at y = £~x/2k. On

re the vector field is v = (y,ey2k) with the slope ey2k~1. The slope of tangent on

T£ is l/2fc(l - s)y2k~1. And it is easy to see that ey2k-1 > l/2k(l - e)y2k~1 for

y > e~^l2k, provided e is sufficiently small. This implies that trajectories cannot

leave through PE, and since they cannot leave through Ti too, they must remain in

In De we have

y = -x + y2k > -(1 - e)y2k + y2k = ey2k,

and hence no global solutions are possible. We see that P separates the blow up

and stability regions, and the proof is complete.

4. Nonexistence of global solutions for a class of hyperbolic equations

in Rn.  We consider nonlinear hyperbolic equations

(9) utt - Au = f(x,t,u),        xeRn,t>0,

u(x,0)=g(x),        ut(x,0) = h(x).

Here A is a uniformly elliptic operator in divergence form,

A= E^MM)^-£^MM).
3,k=l        J 3 = 1        J

Throughout this section we assume the following.

(i) The data g(x),h(x) are of compact support, supported say in |x| < 1. We

also assume that for / = 0 equation (9) has propagation speed not greater than

one, i.e., u(x,t) is supported in |x| < t + 1.

(ii) f(x,t,0) = 0. This guarantees us that at time t solution of (9) is supported

in |x| < t + 1.

(iii) f(x,t,u) > c0|w|p, p > 1, c0 = const > 0.

We do not make any explicit smoothness assumptions on cr^, a,j, f, g, h, since we are

not interested in the existence problem here. Instead, we make assumptions on the

solution u, such as the finite propagation speed and regularity, u e C2(Rn x (0, oo)).

Define w(t) — JR„ u(x, t) dx. Notice that w(0) = JRn g(x) dx, w'(0) = fRn h(x) dx.
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Integrating equation (9) over Rn, using (iii) and that u is of compact support,

we get

(10) /    lul:
Jñ»

w" > cq /     \u\p dx.

Since u(x,t) is supported in the ball \x\ < t-\-1 of volume cn(t + l)n, we estimate

(l/p+l/q = l)

Í   u(x,t)dx  <((    \u\pdx\      c1Jq(t + l)n,q,

which combined with (10) gives

(11) w">ci(t + iynp/"\w\p        (ci=co/cp/tl).

Assuming now p < (n+ l)/(n — 1) for n > 1, and automatically for n = 1, we get

(12) w" >ci(t + l)-p-1\w\p.

kW2

±1 ■>■ W

/

II /

/

/

/

y

/

Figure 2

THEOREM 3. For the problem (9) assume (i), (ii), (iii) and 1 < p < (n + 2)/n.

Denote u>i = fRn g(x) dx, w2 = fRn h(x) dx. Then there exists a trajectory P of

the equation w" — w' = ciwp (ci as in (12)), joining the origin with (oo, —oo) in

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



NONLINEAR EVOLUTION EQUATIONS 195

the (w,w') phase plane, such that if (wi,w2) lies outside of the shaded region ofP,

then (9) cannot have a global classical solution.

PROOF. Since -np/q > -2 for p < (n + 2)/n, it follows from (12) that

(13) w" >ci(t + l)~2\w\p,        w(0) =u>i, w'(0) = w2.

Let now r = log(£ + 1). Then (13) becomes

(14) wTT - wT > ci\w\p,        w(0) = wi, wT(0) = w2.

We proceed to show that the domain of blow up for (14) is as described in the

theorem. First, we describe the domain of blow up for wTT — wr = ci|w|p, or in

system form

(15) wT=v, w(0) = wi,

vT=ci\w\p + v,        v(0) = w2.

We divide the (w, v) phase plane into four regions; see Figure 2.

(i) Domain I, {(wi,w2), w2 > 0 or w2 = 0, wi ^ 0}. In this case wTT > ci|w|p,

and hence all trajectories starting in I, blow up in finite time by Example 1.

(ii) Domain II, {(wi,w2), wi < 0, — ci|u)i|p < w2 < 0}. Trajectories starting

here move northwest, and enter Domain I in finite time.

(iii) Domain III, {(wi,w2), —oo < wx < oo, w2 < — ci\wi\p}. In this domain

trajectories move southwest with the slope ci|w|p +v/v < 1. Hence, they must

enter Domain II in finite time.

(iv) Domain IV, {(wi,w2), u>i > 0, — ciwp < w2 < 0}. Trajectories leave

Domain IV through every point of its boundary. Hence there exists a trajectory P,

entering the origin. It is unique, since nonuniqueness would imply that the vector

field (whose divergence is one) contracts some volumes, which is impossible by the

Liouville's theorem. Trajectories above P enter Domain I, and the ones below it

enter Domain IV in finite time. Hence P is the complement of the domain of blow

up for (15), and so the proof is complete in view of the Theorem 1 (the ray wi = 0,

w2 < 0 belongs to the domain of the blow up).

THEOREM 4 (Essentially of T. Kato [8]). Assume 1 < p < (n + l)/(n - 1),

and

(16) either w'(0) > 0, or w'(0) = 0 and w(0) ^ 0.

Then inequality (12) has no global solutions. (And hence (9) has no global classical

solution.)

PROOF. First notice that w' is a nondecreasing function; then w'(t) > 0 for

t > 0, since by (16) either w'(0) > 0, or w'(0) = 0 and w"(0) > 0. Hence, as

t —> +00 we have only two possibilities: (a) w' —> a = const > 0, (b) w' —» -f-oo.

In case (a) we have w ~ at as t —* +oo, but then

w" > cj(i + l)_p_1(è at)P ^ C2(!A)    for large *.i

i.e., w > C3Í log¿ for large t, a contradiction.
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In case (b), w > At for any A > 0, eventually (i.e., if t is large enough). From

(12)

w'w" > ci/p +l[(t + l)-*-1^1]' + ci(t + i)-p~2wp+1

>c4[(t+irp-iwp+i]'.

Integrating, we get

(17)       w>2 > 2c4rp"^ - c5 = 2c4 (^y-1 (Ï)' - c5 > Ai (|)2 ,

for arbitrary large At, eventually. Integrating (17), we see that w > tk for ar-

bitrary large k, eventually. Returning to (17), we see that w' > cqw1+^p~1^4,

eventually. The last inequality obviously cannot have global solutions with w > 0,

which completes the proof.

REMARK. Our approach makes the proof of blow up especially simple if p <

(n + l)/(n — 1). Indeed, in this case we consider instead of (12) inequality (11)

with —np/q > — p — 1. Then, starting in case (b) with w > At (A arbitrary large),

by iterating (11) we see that eventually w > tk for any k > 0, but then from (12),

w" > |w|(p+1)/2 and the blow up is obvious (see Example 1).

Limitations of the method. The proof of blow up depended in a crucial

way on finite propagation speed, which is a major limitation of the method. For

example, for operators of the form

v      ' 3<m \       /       \      /

it would require that \v\ + j < m, see [11].

Finally, we show that T. Kato's power p = (n + l)/(n — 1) (n > 1) is the best

obtainable by this technique, namely for p > (n + l)/(n — 1) inequality (11) may

have global solutions with w'(0) > 0.  Indeed, if p = (n + l)/(n — 1) + e, e > 0,

then it is easy to check that (11) (with equal sign) has a solution w(t) — ß(t+ l)a,

where

2 + en(n-l)      , .     fa(a - 1) \1/(p-1}
a = —-^--v- > 1    and    ß = [ —-

2 + e(n-l) \      ci      J

However, the power p = (n+ l)/(n — 1) is not optimal (e.g., for n = 3 solutions

blow up, provided 1 < p < \/2-|-1, as follows from F. John [6]).
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