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1. INTRODUCTION

We begin by discussing the numerical solution of the obstacle problem with
quasilinear nonlinearity

—bAu < f(x, u, Vu)
u < gx) a.e. in )
(Au + flx, u, Vi))(u — q) =0

u = g(x)on dQ

Here the unknown function u(x) is required to be below the obstacle g(x); @ is a
smooth domain of any shape in R, and — A may be replaced throughout the paper
by a uniformly elliptic operator of second order. We shall sometimes assume for
definiteness that d = 2, although all our results hold for any spatial dimension.

We replace the domain { by a uniform square mesh A, of step size A,
denoting n = (n(, ny), x, = (mh, mh) and u, = u(x,). The finite difference
version of (1) is then

— A, =< f<xn’ u,, Unte z_h un_,_,19 Up e, 2;2 M,,__22>
U, < g, = qx,) v e, @
— ity = f<xn, y, S, St un_e2> when u, < g,

u, = g, for x,€0Q,
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Here A, is the central difference approximation of the Laplacian, and the bound-
ary conditions on 0}, are defined in any standard way (see e.g., [10]); ¢; = (1, 0)
and e, = (0, 1).

To solve the discrete version of the equation —Au = f(x, u, Vu) with
Dirichlet boundary conditions, it is natural to look for the steady-state of the
corresponding parabolic problem, and use the Crank-Nicholson scheme

uﬁ_H _ uﬁ

= afult + (1 — o)A,
-

MP — uP u!’ — uP
P n+ey n-—ey n+ey n—ep 3
+f<xm uy, 7 ; 7 > 3)

with 0 < o = 1, and properly chosen initial guess uJ and the time step 7. This
approach was used by P. Korman [6], and earlier by C.U. Huy, P.J. McKenna
and W. Walter [5] in case fis independent of Vu. The authors of [5] had found that
in order for (3) to give a monotone in p scheme, one needs to impose a restriction
on size of 7 of the type 7 < const + A2 for all 0 < o < 1 (i.e. except for fully
implicit scheme). Since obstacle problems in particular include equations, we
restrict our attention only to the fully explicit and fully implicit schemes for (2).

Starting with u} = g,, we obtain iterations u” decreasing in p for all n. In
case of explicit scheme this requires that # and 7 = 7(h) be small enough (no
restriction on 4 if f is independent of Vu). Monotone schemes have the advantage
that convergence (possibly to — oo) is guaranteed. If one assumes the existence of
a subsolution, then the scheme converges to the solution of (2), and, moreover,
one can obtain a posteriori error bounds.

In Section 3 we use this approach to compute the optimal control associated
with a controlled obstacle problem studied in [2]. In Section 4 one derives the
maximum principle and a numerical algorithm of monotone type for optimal
controls of the elliptic obstacle problem with not smooth pay-off functional of the
form ||y — vollc@,

2. MONOTONE SCHEMES FOR THE OBSTACLE PROBLEM

We begin with the explicit scheme in case f is independent of Vu. The algorithm
for solving (2) in case d = 2 is the following (for all x, € 1)

h2

Un 1= g,

_ 47 T

M«ﬁ+l = ufz <l - _> + ;2_2 (u‘z»ke; + uﬁ—-el + Mﬁ+gz + uﬁ——ez) + Tf(xn, uﬁ)
(H it < g, then u?t! = @t else ul™! 1= g, )

Proposition I: Assume fis Lipschitz continuous in u uniformly in x € Q.
Then for 7 sufficiently small we have

g, = uy=utz= - =ub--- forallpandn (5)

If the limit lim, ., u% = u, exists, then it gives a solution of (2).
Proof: Clearly u) < u’ = g, for all n. We prove by induction that u%*' <
uf for all p (and n). Let w2 = u2*' — 42, and assume w2~ ' < 0. Then from (4),
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wh < wh~! <1 - % - TL> + #(wl,’,;; + whIL 4+ whiL, + whi) < 0 (6)
if 7 is so small that 1 — 47/h* — 7L > O (L is the Lipschitz constant). This
proves (5).

Assume now that lim, ., u = u, exists. We consider two cases.

() #n, = Gy, Then #2*' = uf for all p, as it is clear from (6) that if the
iterates go down from the obstacle, they continue to go down (and hence cannot
come back). Then

l—[ﬁ:-l _ uﬁo , ,
0 < _“-“‘_T_ = Ahuno +f(x0, u,,o
Passing to the limit as p - o, we obtain the first inequality in (2).

(ii) ., < g, By the same reasoning as above, we conclude that &%, < g,,
for all p = p with some p = 1. It follows that u4,_ satisfies the second equation in
(4) (i.e., truncation never occurs). Passing to the limit as p — o, we see that the
third equation in (2) is satisfied at n = ny.

One way to ensure convergence of u% is to assume existence of a subsolu-
tion, i.e., a grid function ¢,, such that ¢, < g, in @, and

—Ahﬁan = f(-xn’ ‘pn) in Qh @n = &n on th (7)
Define iterates v? by using (4) with vl = o,.

Proposition 2: Assume fis Lipschitz continuous in ¥ uniformly in x € Q.
Then for 7 sufficiently small we have

o= vis o =sulsuy <ag, (8)
Call lim,. o, uf, = u,, lim, ., v = v,. Then both u, and v, are solutions of (2).
Proof: The inequalities in (8) are proved by induction, using an argument
similar to the one in Proposition 1. Then for all p and n
p+l _ P
0= T8 = AL + f(x,, VD)
.
Passing to the limit as p — oo, we obtain the first inequality in (2). If v, < g¢,, then
passing to the limit in the second line of (4), we obtain the third equation in (2).
Next we describe the implicit scheme for (2), corresponding to @ = 1 in (3).
Starting with uy = ¢,, we solve at each step an obstacle problem with a known
force term (I denotes the identity operator)

(I - TAh)ulrJl-H = uﬁ + Tf(xna ulrjt)
u£+1 < gn

X, € Qh (9)
d — 7A)ul™!

uh + 1f(x,, u?)  whenu?'! < g,
ub*™' = g on 089,

We solve (9) using Gauss-Seidel iteration with truncation (see [4]), taking u?, for
an initial guess.

Pr@paéition 3: Assume that fis Lipschitz continuous in # uniformly inx €
{1 with Lipschitz constant L. Then for 7 < 1/L the iterates defined by (9) will
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satisfy (5). Moreover, if there exists a subsolutlon ¢, defined by (7), and we
define the iterates v by using (9) with v} = ¢,, then (8) holds.

Proof: One easily sees that the map from uf to u’™', defined by (9), is
monotone. The rest of the proof is similar to the above.

Example: Consider the obstacle problem (1) for the equation —u" =
u(5 — u)for0 < x < 2, u(0) = u(2) =0, and the obstacle g(x) = (x — 1) + 1.
The problem describes steady-state density of a certain species, which obeys the
logistic population model with diffusion and an obstacle for growth. For the
explicit scheme we took 2 = 0.1, 7 = 0.0025 and obtained stabilization of six
decimal digits after 300 time steps. For the implicit scheme we took i = 0.1, 7 =
0.5, and obtained the same accuracy after 150 time steps. We checked our result
by a program based on the usual monotone iterations, developed in [7].

Next we discuss the case f = f(x, u, Vu), which can be treated using the
explicit scheme. We omit the proof of the following result, since it is a simple
combination of Proposition 1 above and Theorem 3 in [6].

Proposition 4: Assume that the function f(x, u, p;, p,) is continuously
differentiable in u, p;, py; and for x € @ and |u| < K satisfies

1l = c + |pl + 1pah% . i=1,2, 0=a< 1, c=cE (10

Assuming existence of a subsolution, define the sequences u}, and v/ as in the

Propositions 1 and 2. Then for 4 and 7 = 7(h) sufficiently small the conclusions of
the Proposition 2 hold.

Remark: It is natural to expect that one may allow 0 < o < 1 in (10).
Example: Consider the obstacle problem for the equation —u" = 1 + u'

for 0 < x < 2, u(0) = u(2) = 0, and the obstacle g(x) = 0.5. Integrating the
equation, we see that the solution of class H%(0, 2) is

oy st 2 0))| P RS
COoS oy
ulx) = (0.5 sSx<gq
cos(—x + o) - <
In cos(—2 + o) =x=2

where p and giare determined by the conditions u(p) = u(q) = 0.5, u'(p) =
u'(g) = 0. -

One calculates oy = p = 0.919 and o, = ¢ = 2 — «;. We computed the
solution-with & = 0.1: The contact set consisted of x = 0.9; 1.0 and 1.1, -and the
values at other mesh points corresponded to the above formulas.

3. CONTROL OF THE OBSTACLE PROBLEM IN L2-NCRM
In [2] the following control problem was considered (we specialize):
Minimize ||y — yollr2@ + h(u) ' (11D
on aH (y, u) e (HXQ) N Hy(Q) x LX), subject to
—Ay+ By —Y)su +fx)inQ 'y = 0onol (1‘2)
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where

0 forr > 0
B(r) = {R~ forr =0
%) forr <0

_ (o if —p<ux) <pae. in
h(w) = {+oo otherwise

and fe LX(Q), ¥ € HX(Q), y, € L*(Q) are known functions withy < 0ondQ; p > 0
is a given constant.

The optimality system derived in [2], with an additional (not very restric-
tive) assumption that Ay # =p a.e. in Q, is (with a dual function p(x) € Hy(Q))

—Ay = psignpin @, = {xeQy > Yy}
—Ay = psignpa.e. in @y = O\Q,
y = yae. inQ
y = 0 on 0
—Ap =y° —yinQ,
p=0onQ,Ud (13)

where

a
signp = § |p|
[—1, 1] forp =20

The problem (13) can be thought of as an obstacle problem for y coupled with a
““‘Poisson equation’’ in p. However, the domain of the equation for p depends on
the values of y. The problem (13) can be numerically solved similarly to (1). We
present here the explicit version of the algorithm. Although the Propositions of
the previous section do not carry over to (13), the algorithm is quite effective
numerically in one and two dimensions.

We start with an arbitrary y2, p%. We compute as follows (Yo, = Yolxa),

Y = ¥(x0)

forp = 0

yﬁ“ =yt 4 TAhyﬁ + 70 signepﬁ (14)
If y¢*1 > o, then
pﬁ*—l = Pﬁ + TAthrct + TVon — Ty’r(z (15)
Ifyi*! < Y, then yi™' i= y,, pi*l = 0 (16)
Here
!
1 if-p >1
€

1
sign, p = oP if—-1=-p=1

m | =

1
-1 ifzp< -1
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The algorithm converged for all one- or two-dimensional examples that we tried,
with six decimal digits of y(x) stabilizing uniformly in e for e < 1073,

Example: Assume y, < ¢ < 0 for all x € Q. Then since y = ¥, it follows

by the maximum principle thatp < 0in @, i.e., —Ay = —p in Q.. Let now
Q=1(0,2),p =8, Yx = —1, yo(x) = —5. Then one easily calculates that
4(x> — x) forOst:,lz-
ux) = —1 for%s;es%
4f(x — 2)* + x — 2] for%s;rsZ

is a solution of (13). We ran the algorithm (14) with # = 0.1, 7 = 0.0025, and
obtained a close approximation of the solution at the grid points.

““Sticky’’ obstacle: The algorithm above had the disadvantage that on the
contact set the iterates would go on and slightly off the obstacle. The following
computational artifice was used to overcome the problem: after a certain time £,
once the solution y(x) gets into contact with the obstacle at some grid point, the

solution is forced to stay in contact there for all later times. I.e., we replace
(14) by

If (¥ > ¢,) or (¢ < tp) then
k+1

yitli= yk + 7A,¥E + 7p sign, pi (17)

We note that initially the iterates must be allowed to evolve freely, so that 7, must
be chosen carefully. When this modified algorithm was run for the above example
with 7, = 2.5, we obtained the exact values of the solution at all grid points.

Example: We computed the solution of (13) on & = (0, 2), with y, =
~2x + 1.5,y = —1.2and p = 8. Wetook h = 0.1, 7 = 0.0025. Figure 1
shows the result after 2000 time steps.

4. OPTIMAL CONTROL OF THE OBSTACLE PROBLEM IN
SUPP-NORM

We shall study here the optimal control problem
Minimize ||y — Yollc@ + hw) (18)
on all (y, u) € (HXQ) N HY(Q)) x U subject to

—Ay + By —¥)2Bu+f inl
y=0 ondd (19)

Here { is a bounded and open domain of R? with a smooth boundary (of class C*!

for instance)
0 forr > 0
B(r) = - forr =0 20)

%) forr< 0
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&

- YolX)

Y (x)

Figure 1

yo € C(Q) fe LX(Q) and ¥ € HXQ) are given functions such that ¥ < 0 on Q.
The controllers space U is a real Hilbert space with the norm ||+ || and scalar
product (-, *) and Bis a linear continuous operator from U to L*().
The functionh: U — R = ] — o0, + o] is convex, lower semicontinuous and
llllim h(n) = 4o 21)
ull = oo
We have denoted by C({) the space of all continuous real valued functions on {
with the usual supremum norm ||*||¢@; H*(2) and Hy(() are usual Sobolev spaces
on 1.
It is well known that under our assumptions problem (2) has a unique solu-

tiony € H*() N H}(Q) which satisfies the complementarity system (the obstacle
problem)

Ay +Bu+f)y —¢) =0 ae. inQ
y=y Ay+ Bu+ =0 ae. inQ
By =0 on 09 (22)
Moreover, since H*(@) C C(Q) he functional u — |y* — Yolle@ + hu) is
weakly lower semicontinuous on U (y" is the solution to (19)) and so by (21) it
follows that the problem (18) has at least one solution u.
The main result of this section, Theorem 1 below is concerned with first

order optimality conditions (the maximum principle) for this problem. Such a
result has been established in [1], [2] (see also [3], [4]) for problems of the form

Minimize g(y) + h(u) subject to (19) (23)
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where g is a locally Lipschitzian function on I7(Q), 1 < p < oo and does not
cover the present situation.

However, a payoff of the form (18) represents a more realistic model for
penalizing the deviation of the system response y from a given state yg.

Throughout in the sequel we shall denote by M (Q) the space of all bounded
Radon measures on { i.e., the dual space of C(@), and by [z, @],

1
[z, 90].+ = 1}\{51 N (z + Nellca — 1zl (24)

for all z, ¢ € C(Q).

We set #(y) = ||y — Yol c@ and denote by d¢(y) C M (Q) the subdifferential
of p aty,i.e.,

36(y) = {p e M@; ple) = [y — o, ¢l+ V 0 € C)} (25)
We have (see [9])

[z, ¢]. = max{p(xo) sign z2(xo); o € M;}  ifz £ 0

where M, = {x, € &; |z(x0)| = ||z]c@}. Hence
9 (y) = {n € MD); ple) = max{p(xo) sign(y — yo)(x0); Xo € My}
Ve e C@} @7

- Theorem 1: Let (y*, u*) be any optimal pair in problem (18). Then there
exist p € Wy(Q), 1 < q < 3, Ap € M(Q) and pu € 3¢ (y*) such that

Ap = pin {x € Q; y*(x) > ¥(x)} (28)
pE(AY*(x) + Bu*(x) + f(x)) =0 a.e. x el 29)
B*p € oh(u) (30)

Here dh is the subdifferential of 4. v
According to (27), equation (28) reduces to

- S[ ; Vp » Ve dx < max{e(xo) sign(y*(xg) — Yolx0)); Xo € Mys_y }
y>

Veelo(y* >4) G

We note that if My«_,, = {xo} then pu = sign(y* — yo)(x0)0(xo) and so equation
(28) becomes

Ap = sign(y* — y)(x0)6(xo) in {x € & y*(x) > ¥ (0} (32)

where 6(x,) is the Dirac measure concentrated at x;.
Proof of Theorem 1: We shall use the method developed in [1] and [2]. If
(y*, u*) is optimal in problem (18), consider the approximating control problem

min {%(y) + h(u) + % fu — M*HZ} (33)

subject to (y, u) € (Hy(Q) N HX(Q)) x U and
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—Ay + B8y —V¥)=Bu+f inQ (34)

where 3¢ is a smooth approximation of 8, i.e.,

B() = —e-! S ((r — €6)~ —e6-)p(6) db

= ¢! Sm (r — €?8)p(6) db + € gl 0p(0) d (35
r 0

€

Here p € C5(f2) is such that p(r) = O for |r| > 1, p(r) = p(—r)and [ p(r) dr = 1.
The function ¢.:L*(Q) — R is defined by

; 1 _
¢(y) = inf {5; Iy = zlb@ + ¢@);z € L°°<sz))} (36)

where ¢(2) = ||z — yol|=@. It is well known that ¢, is Fréchet differentiable and
Vo (y) = ey — (1 + €d¢)~'y) (37)
where 8¢ : LX(2) — L*(Q) is the subdifferential of &.
Let (y,, u.) be optimal in problem (33). Then arguing as in [2], p. 68, it
follows that
u, — u* strongly in U
ye = y* strongly in Hy(Q) N HXQ)

B(ye — ¥) = Bu* + Ay* + f weakly in LX(Q) (38)

Moreover, there are p, € H)(Q) N HQ) such that
ap. — (B)'(ye — ¥)p. = Vo.(y) in (39)
B¥p, € 3h(w) + u, — u* (40)

On the other hand, by (37) we see that,

VoYl = ¢ VYe>0 41)
because

sup{||€llzi; £ € 00(3)} =< 1

Now we multiply equation (39) by sign p, (or more exactly by {(p.) where { is a
smooth approximation of sign such that {(0) = 0). We get the estimate

Sn [(B)Y (e —¥pldx =1 Vve>0 (42)

Hence
lAplig < c Ve>0 (43)

Nowlet b, e L*(Q), i = 0, 1, o > 3. According to a well-known result due to
G. Stampacchia [11] the boundary value problem

2 8h;, |
— 40 = hy + ™ in Q, f# = 0 onoQ (44)
i=1 0X%;
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has a unique solution § € Hy(®) N L=(Q) and

2
16lle@ = ¢ 25 Milley ¥ hi€ L) (45)
i=0

This yields

2

- Sn GAPE dx = SQ h()pe - Z SQ hi(pe)x,- dx

i=1
and by (43) and (45) we infer that

I pllwioey = ¢ ve>0 (46)

where 1/g + l/a = 1,1.e.,1 < g < 3/2.
Selecting a subsequence we may assume that

p. = p weakly in Wy¥(Q) (47)
Vé(y.) — p vaguely in M(Q) (48)
B(ye — ¥)pe — v vaguely in M(Q) 49)

on a generalized sequence {e} — 0.
By (39) we see that

Ap = v + pin D'(Q) (50)
B*p € oh(u*) (5D

Since y, = y* uniformly in C(0) (because H*(Q) C C(Q) compactly) we have
y = 0in {x € Q; y*(x) > ¥ ()} (52)

On the other hand, by a liitle calculation involving (35) we see that (see [2], p. 86)
|pBye — V)| = €lp(BY (e — W™ ye — Yl&

+ e Yy — ¥ln) + 2¢lp] ae. in( (53)
where
(0 |yx) — Y| > €
Sb) = {1 if [y — v = &
and

_ (0@ — ¥ > —¢
) = (11 < b = e

Since B(y. — ¥)1. = e~ X(y. — Y1 + cen. remains in a bounded set of L*(Q) and
ey — Y)|Ex) s e ae xel
we conclude by (42) and (53) that selecting further subsequence,
pB(x) — Yyx) >0 ae xel
whilst by (47)

p(x) = p(x) ae xe
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£

Dz
]

¥ (X)

Figure 2

Since B(y. — ¥) = Bu* + f + Ay* weakly in L*(Q) as € — 0 we infer by the
Egorov theorem that

pEYBu*x) + f(x) + Ay*x) =0 ae.xeQ
Next by the obvious inequality

(Vo (¥), ye — @) 2 ¢.(y) — o) Ve C@
we infer that

-~

p(Y* — @) = ¢(¥*) — d(p) V¢ € C@), lim inf ¢.(y,)

because ¢.(¢) < ¢(p) V ¢ € C(0) and lim inf..o ¢.(y) = ¢(y*). Hence pu €
d¢(y*) and this completes the proof of Theorem 1.

A model problem: Consider the model of an elastic plane membrane
charged along the boundary 09, which is inflated from above by a vertical field
of forces with density u and limited from below by a rigid obstacle y = y(x) < 0
V¥ x € {1 (See Figure 2) Assume we are given a desired shape of membrane defined
by the deflection distribution y = Yo(x). The problem consists of finding the
control parameter u subject to the constraint

lu@| =p ae.xe

such that the system response y has a minimum deviation from y,.
This leads to a problem of the form (18) where B = I U=L*Q),f= 0and

_f{o if lu(x)] < pa.e.xeQ
h) = z-{-m otherwise

This problem has of course at least one solution (y*, u*) and by Theorem 1 it
satisfies the system
Ay* +u* =0 inQ, ={xeQ y*x) > Y(x)}
Y=y, M) +u*r<0 inQ = Q\Q,
y¥ =0 ondQ (54)

IA
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Ap = p  in{,
pu* + Ay*) =0 inQ (55)
u* = psignp a.e. in Q. (56)
Here p € M(0) belongs to 3(||y — Yollc@)- Let us assume now that Ay # +pin Q.
Thenp = 0in (o, and sop € W54(Q) is the solution to problem
Ap = p  in
p=0 ondl, (7
and p = 0in Q.
Let us assume now that yo € Ho(Q) N HXQ) is such that
Ayo(x) = max{Ay(x), p} a.e. x€l

Then by equation (54) it follows that A(y* — yo =< 0 in Q, and so by the
maximum principle y* — yo = 0 in Q. This implies that the measure u is positive,
and so by (57) it follows that p < 0 in Q.. (We assume that Q. is connected.
Otherwise we shall argue on a connected component of {.,.) We may conclude
therefore that

u* = —pin Q,,

and so y* satisfies the variational inequality
Ay* = pin O, Ay* < pin Q
y¥ = ¢ in 0Q,; y* > ¢ in Q4
y* = ¢ in Qg; y* = 0 on 4{ (58)

from which one might determine .

Next we discuss a computational implementation of the above results. Letm
be the number of points where maxg|y — Yo is assumed, and let x;, . . . , X,, b€
these points. Define a measure u:

m

> sign(y — yo)x)8(x — %) 59)

1
w =
m =

Then clearly u € 9¢(y), since

m

1
ple) = — 2 sign(y = Yo e (s

k=1

= maX{Sign(}’ - yO)(-xO)(p(-xO)}ﬁ Xo € My-yg
We used both explicit and implicit schemes to solve the system of (54), (56), and
(57), with p as in (59).

(i) Explicit scheme. Starting with an arbitrary (»2, p%) compute:
If (% > ) or (¢ < fo) then y4*' := yh + 74} + 7o sign. p,
If y£ > ¥, then pi*' = p; + TApt — TR
If y% < ¥, then y% := ¢, and p}7' := 0

(ii) Implicit scheme. Starting with an arbitrary (y5, Py,
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(a) Solve the obstacle problem

( — TA)YYY = y* + 7p sign, pt when yET' >,
(I — 7A)Y:! = yh + 7p sign. pr
itz Y,
(b) Solve: (I — 7A,)pETY? = p* — 7.
(¢) If y&*! > o, then p*! := pk+12 else pi*! := 0.
The following approximation of the delta function was used in d dimensions
(d=1or2)

1 e =
B —x) = {hd U E T

0 at other mesh points

We had implemented the explicit scheme in one dimension (¢, = 2.5) and the
implicit scheme in two dimensions (using Guass-Seidel iterations with projection
to solve the obstacle problem, see [4]). Both schemes were convergent in the
cases where the optimal control is either u* = p or u* = —p for the entire
domain Q. For other controls, y% would oscillate slightly around the optimum
state, while the values of p* at some points would oscillate around zero. Actual
control u* at these mesh points can then be chosen by trial and error.

Table I Values at Mesh Point’s

0

y—Jy p
k = 880
0.016 0.005 0.005 0.012 —0.008 0.027 0.018 0.010
—0.006 0.007 0.007 0.006 0.022 0.022 0.019 0.013
0.614 0.012 0.010 0.014 0.013 0.020 0.020 0.014
0.001 0.013 -0.015 -0.010 0.014 0.013 0.040 0.011
k=920
—0.000 0.012 0.013 —0.009 0.015 0.018 0.015 0.033
0.607 0.009 0.010 0.011 0.015 0.020 0.018 0.012
0.007 0.012 0.008 —0.007 0.003 0.017 0.021 0.023
0.004 0.014 0.005 0.010 —0.005 —0.005 0.026 0.011
k = 960
—0.002 -0.010 -—0.006 0.012 —0.008 0.000 0.021 0.018
0.013 0.012 0.010 0.016 ~0.003 0.016 0.017 —0.000
0.014 0.010 0.010 0.009 0.006 0.015 0.019 0.015
0.004 —0.004 0.012 -0.017 0.008 0.019 0.017 -—0.008
k = 1000
—-0.001 0.005 0.008 —0.021 0.016 0.006 0.013 0.002
—0.007 0.008 0.010 -0.019 - 0.028 0.015 0.014 -0.003
—0.005 0.012 0.013 0.015 —0.005 0.014 0.016 0.012

—0.009 0.012 0.010 0.009 —0.006 0.013 —0.004 0.017
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Example: We had computed the solution of (54), (55), (56) for =
0,1)x0,1),p=8,¢y = ~landy, = 8x(1 — x)y(1 — ), taking h = 0.2 and
= 0.0002. In Table 1 we present the values of y — y, and p at the mesh points
after 880, 920, 960, and 1000 time steps. One sees that y oscillates slightly around
the target function (with considerably larger relative discrepancy near 9{)). The
control u* should be set equal to 8 at the points (0.4, 0.4), (0.4, 0.6), (0.6, 0.4)
and (0.6, 0.6), while at the other mesh points the values of u* should be chosen
between — 8 and 8 by trial and error, so that the solution of (54) is close to y,. The
output depended on the choice of y% and p?. However, all runs led to the same
conclusions as above.
Finally, we remark that it is quite feasible to do computations for the above
problem with 2 = 0.05.
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