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Abstract

We study the global solution curves, and prove the existence of
infinitely many positive solutions for three classes of self-similar equa-
tions, with p-Laplace operator. In case p = 2, these are well-known
problems involving the Gelfand equation, the equation modeling elec-
trostatic micro-electromechanical systems (MEMS), and a polynomial
nonlinearity. We extend the classical results of D.D. Joseph and T.S.
Lundgren [11] to the case p 6= 2, and we generalize the main result of
Z. Guo and J. Wei [9] on the equation modeling MEMS.
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1 Introduction

We consider radial solutions on a ball in Rn for three special classes of equa-

tions, involving the p-Laplace operator, the ones self-similar under scal-
ing. We now explain our approach for one of the classes, involving the
p-Laplace version of the equation which arises in modeling of electrostatic

micro-electromechanical systems (MEMS), see [16], [8], [9] (with p > 1,
α > 0, q > 0, u = u(x), x ∈ Rn, n ≥ 1)

div
(

|∇u|p−2∇u
)

+ λ
|x|α

(1− u)q
= 0, for |x| < 1 u = 0, when |x| = 1 .(1.1)
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Here λ is a positive parameter. We are looking for solutions satisfying

0 < u < 1. Radial solutions of this equation satisfy

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ

rα

(1− u)q
= 0 for 0 < r < 1 ,(1.2)

u′(0) = u(1) = 0 , 0 < u(r) < 1 ,

with ϕ(v) = v|v|p−2. It is easy to see that u′(r) < 0 for all 0 < r < 1, which

implies that the value of u(0) gives the maximum value (or the L∞ norm) of
our solution. Moreover, u(0) is a global parameter, i.e., it uniquely identifies

the solution pair (λ, u(r)), see e.g., P. Korman [13]. It follows that a two-
dimensional curve in the (λ, u(0)) plane completely describes the solution

set of (1.2). The self-similarity of this equation allows one to parameterize
the global solution curve, using the solution of a single initial value problem:

ϕ(w′)′ +
n − 1

t
ϕ(w′) =

tα

wq
, w(0) = 1, w′(0) = 0 .(1.3)

Its solution w(t) is a positive and increasing function, which can be easily
computed numerically. Following J.A. Pelesko [16], we show that the global
solution curve of (1.2) is given by

(λ, u(0)) =

(

tα+p

wp+q−1(t)
, 1−

1

w(t)

)

,

parameterized by t ∈ (0,∞). In particular, λ = λ(t) = tα+p

wp+q−1(t)
, and

λ′(t) = tα+p−1w−p−q
[

(α + p)w − t(p + q − 1)w′] ,

so that the solution curve travels to the right (left) in the (λ, u(0)) plane if

(α + p)w − t(p + q − 1)w′ > 0 (< 0). This makes us interested in the roots
of the function (α + p)w − t(p + q − 1)w′. If we set this function to zero

(α + p)w − t(p + q − 1)w′ = 0 ,

then the general solution of this equation is

w(t) = ctβ , β =
α + p

p + q − 1
.

Quite remarkably, if we choose the constant c = c0 =
[

1
βp−1[(p−1)(β−1)+n−1]

]
1

p+q−1

then
w0(t) = c0t

β
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also solves the equation in (1.3), along with w(t). We show that w(t) tends

to w0(t) as t → ∞, and the solution curve of (1.2) makes infinitely many
turns if and only if w(t) and w0(t) intersect infinitely many times. We give

a sharp condition for that to happen, thus generalizing the main result in
Z. Guo and J. Wei [9] to the case of p 6= 2 (with a simpler proof). In [12]

we called w(t) the generating solution, and w0(t) the guiding solution.

We apply a similar approach to a class of equations with polynomial
f(r, u) generalizing the well-known results of D.D. Joseph and T.S. Lundgren

[11], and to the p-Laplace version of the generalized Gelfand equation, where
we easily recover the corresponding result of J. Jacobsen and K. Schmitt [10].

For each of the three classes of equations we show that along the solution

curves (as u(0) → ∞), the solutions tend to a singular solution (for which
u(r) → ∞, or u′(r) → ∞, as r → 0). Moreover, one can calculate the sin-
gular solutions explicitly, which is truly a remarkable feature of self-similar

equations. Singular solutions were studied previously by many authors, in-
cluding C. Budd and J. Norbury [3], F. Merle and L. A. Peletier [15], and

I. Flores [6].

2 Parameterization of the solution curves

We begin with the p-Laplace version of the generalized Gelfand equation

ϕ(u′)′ +
n − 1

r
ϕ(u′)+λ rαeu = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0 ,(2.1)

where ϕ(v) = v|v|p−2, p > 1. Observe that ϕ(sv) = sp−1ϕ(v) for any

constant s > 0. Assume that u(0) = a > 0. We set u = w + a, t = br. The
constants a and b are assumed to satisfy

λ = bα+pe−a .

Then (2.1) becomes

ϕ(w′)′ +
n − 1

t
ϕ(w′) + tαew = 0, w(0) = 0, w′(0) = 0 .(2.2)

The solution of this problem w(t), which is a negative and decreasing func-

tion, is defined for all t > 0, and it may be easily computed numerically.
(Write this equation as

[

tn−1ϕ(w′)
]′

= −tn+α−1ew < 0, and conclude that
tn−1ϕ(w′) < 0, and then w′(t) < 0 for all t.) We have

0 = u(1) = a + w(b) ,
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so that a = −w(b), and then λ = bα+pew(b). The solution curve for (2.1) is

(λ, u(0)) =
(

bα+pew(b) ,−w(b)
)

,

parameterized by b ∈ (0,∞). The solution of (2.1) at b is u(r) = w(br) −

w(b). It will be convenient to write the solution curve as

(λ, u(0)) =
(

tα+pew(t) ,−w(t)
)

,(2.3)

parameterized by t ∈ (0,∞), and w(t) is the solution of (2.2). The solution

of (2.1) at the parameter value t is u(r) = w(tr) − w(t).

We consider next the problem

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ

rα

(1− u)q
= 0 for 0 < r < 1 ,(2.4)

u′(0) = u(1) = 0 , 0 < u(r) < 1 ,

which arises in modeling of electrostatic micro-electromechanical systems
(MEMS), see [16], [8], [9]. Here λ is a positive parameter, q > 0 and α > 0
are constants, and as before ϕ(v) = v|v|p−2, p > 1. Any solution u(r) of

(2.4) is a positive and decreasing function (by the maximum principle), so
that u(0) gives its maximum value. Our goal is to compute the solution

curve (λ, u(0)). Let 1 − u = v. Then v(r) satisfies

ϕ(v′)′ +
n − 1

r
ϕ(v′) = λ

rα

vq
for 0 < r < 1, v′(0) = 0, v(1) = 1 .(2.5)

Assume that v(0) = a. We scale v(r) = aw(r), and t = br. The constants a

and b are assumed to satisfy

λ = ap+q−1bα+p .(2.6)

Then (2.5) becomes

ϕ(w′)′ +
n − 1

t
ϕ(w′) =

tα

wq
, w(0) = 1, w′(0) = 0 .(2.7)

The solution of this problem is a positive increasing function, which is de-
fined for all t > 0. We have

1 = v(1) = aw(b) ,
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and so a = 1
w(b) , and then λ = bα+p

wp+q−1(b)
. The solution curve (λ, u(0)) is

(

bα+p

wp+q−1(b)
, 1− 1

w(b)

)

, parameterized by b ∈ (0,∞). It will be convenient to

write the solution curve in the form

(λ, u(0)) =

(

tα+p

wp+q−1(t)
, 1−

1

w(t)

)

,(2.8)

parameterized by t ∈ (0,∞). In case p = 2, this parameterization was first
derived by J.A. Pelesko [16], and was then used in [8]. The solution of (2.4)

at t is u(r) = 1 − w(tr)
w(t) .

Finally, we consider the problem (with the constants p > 1, q > 1, α ≥ 0)

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ rα(1 + u)q = 0 for 0 < r < 1 ,(2.9)

u′(0) = u(1) = 0 ,

which was analyzed in case p = 2 and α = 0 by D.D. Joseph and T.S.

Lundgren [11]. If we set 1 + u = v, then v(r) satisfies

ϕ(v′)′ +
n − 1

r
ϕ(v′) + λrαvq = 0, v′(0) = 0, v(1) = 1 .(2.10)

Assuming that v(0) = a, we scale v(r) = aw(r), and t = br. The constants
a and b are assumed to satisfy

λ =
bp+α

aq−p+1
.(2.11)

Then (2.10) becomes

ϕ(w′)′ +
n − 1

t
ϕ(w′) + tαwq = 0, w(0) = 1, w′(0) = 0 .(2.12)

The solution of (2.12) satisfies w′(t) < 0, so long as w(t) > 0 (the function

tn−1ϕ(w′(t)) is zero at t = 0, and its derivative is negative). It follows that
either there is a t0, so that w(t0) = 0 and w(t) > 0 on (0, t0), or w(t) > 0 on
(0,∞) and limt→∞ w(t) = a ≥ 0. It is easy to see that a = 0 in the second

case. Indeed, assuming that a > 0, we have
[

tn−1ϕ(w′)
]′

≤ −aqtn+α−1,
and integrating we conclude that w(t) ≤ 1 − ctγ , with some c > 0, and

γ = α+p
p−1 > 0, contradicting that w(t) > 0 on (0,∞).

Lemma 2.1 Assume that

q >
np − n + p + pα

n − p
.(2.13)

Then w(t) > 0, and w′(t) < 0 on (0,∞), with limt→∞ w(t) = 0.
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Proof: In view of the above remarks, we need to exclude the possibility

that w(t0) = 0 and w(t) > 0 on (0, t0). Recall that for the equation

ϕ(w′)′ +
n − 1

t
ϕ(w′) + f(t, w) = 0 ,

the Pohozhaev function

P (t) = tn
[

(p − 1)ϕ(w′)w′ + pF (t, w)
]

+ (n − p)tn−1ϕ(w′)w

is easily seen to satisfy

P ′(t) = tn−1 [npF (t, w)− (n − p)wf(t, w) + ptFt(t, w)] ,

where F (t, w) =
∫ w
0 f(t, z) dz, see e.g., [13], p. 136. Here

P ′(t) = tn−1+α

[

np

q + 1
− (n − p) +

pα

q + 1

]

wq+1 < 0 .

Since P (0) = 0, and P (t0) > 0, we have a contradiction. ♦

As before, we have
1 = v(1) = aw(b) ,

and so a = 1
w(b) , and then λ = bp+αwq−p+1(b). Under the condition (2.13),

the solution curve (λ, u(0)) is
(

bp+αwq−p+1(b) , 1
w(b) − 1

)

, parameterized by

b ∈ (0,∞). The solution at b is u(r) =
w(br)
w(b) − 1. It will be convenient to

write the solution curve in the form

(λ, u(0)) =

(

tp+αwq−p+1(t) ,
1

w(t)
− 1

)

,(2.14)

parameterized by t ∈ (0,∞). The solution of (2.9) at t is u(r) =
w(tr)
w(t) − 1.

3 The equation modeling MEMS

We consider the problem (2.4), whose solution curve is given by (2.8), where

w(t) is the solution of (2.7). We have λ(t) = tα+p

wp+q−1(t)
, where w(t) is the

solution of (2.7), and so

λ′(t) = tα+p−1w−p−q
[

(α + p)w − t(p + q − 1)w′] .

We are interested in the roots of the function (α + p)w − t(p + q − 1)w′. If
we set this function to zero

(α + p)w − t(p + q − 1)w′ = 0 ,
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then the general solution of this equation is

w(t) = ctβ , β =
α + p

p + q − 1
.

Quite remarkably, if we choose the constant c = c0 =
[

1
βp−1[(p−1)(β−1)+n−1]

]
1

p+q−1
,

under the condition that

(p − 1)(β − 1) + n − 1 > 0 ,(3.1)

then

w0(t) = c0t
β

also solves the equation in (2.7), along with w(t). We shall show that w(t),

the solution of the initial value problem (2.7), tends to w0(t) as t → ∞, and
the issue turns out to be whether w(t) and w0(t) cross infinitely many times

as t → ∞.

Lemma 3.1 Assume that w(t) and w0(t) intersect infinitely many times.

Then the solution curve of (2.4) makes infinitely many turns.

Proof: Assuming that w(t) and w0(t) intersect infinitely many times, let
{tn} denote the points of intersection. At {tn}’s, w(t) and w0(t) have differ-
ent slopes (by uniqueness for initial value problems). Since (α + p)w0(tn)−

tn(p+q−1)w′
0(tn) = 0, it follows that (α+p)w(tn)− tn(p+q−1)w′(tn) < 0

(> 0) if w(t) intersects w0(t) from below (above) at tn. Hence, on any inter-

val (tn, tn+1) there is a point t0, where (α+p)w(t0)− t0(p+q−1)w′(t0) = 0,
i.e., λ′(t0) = 0, and t0 gives a critical point. Since λ′(tn) and λ′(tn+1) have

different signs, the solution curve changes its direction over (tn, tn+1). ♦

We shall need the following well-known Sturm-Picone’s comparison the-
orem, see e.g., p. 5 in [14].

Lemma 3.2 Let u(t) and v(t) be respectively classical solutions of
(

a(t)u′)′ + b(t)u = 0 ,(3.2)
(

a1(t)v
′)′ + b1(t)v = 0 .(3.3)

Assume that the given differentiable functions a(t), a1(t), and continuous

functions b(t) and b1(t), satisfy

b1(t) ≥ b(t), and 0 < a1(t) ≤ a(t) for t ≥ t0 > 0.(3.4)

In case a1(t) = a(t) and b1(t) = b(t) for all t, assume additionally that u(t)

and v(t) are not constant multiples of one another. Then, for t ≥ t0, v(t)
has a root between any two consecutive roots of u(t).
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Lemma 3.3 Consider the equation

(

a0(t) (1 + f(t)) v′
)′

+
n − 1

t
a0(t) (1 + f(t)) v′ + b0(t) (1 + g(t)) v = 0 ,(3.5)

with given differentiable functions a0(t) > 0 and f(t), and continuous func-

tions b0(t) > 0 and g(t). Assume that limt→∞ f(t) = limt→∞ g(t) = 0, and
there is an ε > 0 such that any solution of

(

a0(t) (1 + ε) v′
)′

+
n − 1

t
a0(t) (1 + ε) v′ + b0(t) (1 − ε) v = 0(3.6)

has infinitely many roots. Then any solution of (3.5) has infinitely many
roots.

Proof: We rewrite (3.5) in the form (3.2), with a(t) = tn−1a0(t) (1 + f(t)),
and b(t) = tn−1b0(t) (1 + g(t)), and we rewrite (3.6) in the form (3.3), with

a1(t) = tn−1a0(t) (1 + ε), and b1(t) = tn−1b0(t) (1 − ε). For large t, the
inequalities in (3.4) hold, and the Lemma 3.2 applies. ♦

The linearized equation for (2.7) is

(

ϕ′(w′)z′
)′

+
n − 1

t
ϕ′(w′)z′ = −qtαw−q−1z .

At the solution w = w0(t), this becomes

(

a0(t)z
′)′ +

n − 1

t
a0(t)z

′ + b0(t)z = 0 ,(3.7)

with a0(t) = ϕ′(w′
0) = (p − 1)cp−2

0 βp−2t(p−2)(β−1), and b0(t) = qtαw
−q−1
0 =

qc
−q−1
0 tα−β(q+1). One simplifies (3.7) to read

z′′ +
[(p − 2)(β − 1) + n − 1]

t
z′ +

qβ [(p− 1)(β − 1) + n − 1]

(p − 1)t2
z = 0 ,

which is an Euler equation! The roots of its characteristic equation,

r(r − 1) + [(p− 2)(β − 1) + n − 1] r +
qβ [(p− 1)(β − 1) + n − 1]

(p − 1)
= 0 ,

are complex valued, provided that

[(p − 2)(β − 1) + n − 2]2 <
4qβ [(p − 1)(β − 1) + n − 1]

p − 1
.
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We write this inequality in the form

Aβ2 + Bβ − C > 0 ,(3.8)

with A = 4(p− 1)q− (p− 1)(p− 2)2, B = 4q(n− p)− 2(p− 1)(p− 2)(n−p),
and C = (p − 1)(n− p)2. We shall have A > 0, provided that

4q − (p− 2)2 > 0 .(3.9)

For (3.8) to hold, we need β = α+p
p+q−1 to be greater than the larger root of

this quadratic, i.e., β > −B+
√

B2+4AC
2A

(assuming (3.9)), which gives

α + p

p + q − 1
>

(p − n)
(

2q − p2 + 3p − 2
)

+ 2|n − p|
√

q(p + q − 1)

(p − 1) [4q − (p− 2)2]
.(3.10)

Theorem 3.1 Assume that q > 0, p > 1, with

(p − 1)(β − 1) + n − 1 > β ,(3.11)

and the conditions (3.9) and (3.10) hold. Then the solution curve of

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ

rα

(1 − u)q
= 0 for 0 < r < 1 ,(3.12)

u′(0) = u(1) = 0 , 0 < u(r) < 1

makes infinitely many turns. Moreover, along this curve (as u(0) → ∞),

λ → λ0 = 1
c
q−1

0

= βp−1 [(p− 1)(β − 1) + n − 1], and u(r) tends to 1− rβ for

r 6= 0, which is a solution of the equation in (3.12).

Proof: In view of Lemma 3.1, we need to show that w(t) and w0(t)
intersect infinitely many times. Let P (t) = w(t)−w0(t). Then P (t) satisfies

(

a(t)P ′)′ +
n − 1

t
a(t)P ′ + b(t)P = 0 ,(3.13)

where

a(t) =

∫ 1

0
ϕ′ (sw′(t) + (1− s)w′

0(t)
)

ds ,(3.14)

b(t) = q tα
∫ 1

0

1

[sw(t) + (1 − s)w0(t)]
q+1 ds .(3.15)
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We claim that it is impossible for P (t) to keep the same sign over some

infinite interval (t0,∞), and tend to a constant as t → ∞. Assuming the
contrary, write

a(t) = (p− 1)
(

w′
0

)p−2
∫ 1

0

∣

∣

∣

∣

s
w′(t)

w′
0(t)

+ (1 − s)

∣

∣

∣

∣

p−2

ds = a0(t) (1 + o(1)) ,

b(t) = q tα
1

w
q+1
0

∫ 1

0

1
[

s
w(t)
w0(t) + (1 − s)

]q+1 ds = b0(t) (1 + o(1)) .

as t → ∞. (Observe that w(t)
w0(t)

→ 1, since P (t) tends to a constant, and
w′(t)
w′

0
(t) → 1, by L’Hospital’s rule, as t → ∞.) Since Euler’s equation (3.7) has

infinitely many roots on (t0,∞), we conclude by Lemma 3.3 that P (t) must
vanish on that interval too, a contradiction.

Next we show that if P (t0) = 0, then P (t) remains bounded for all
t > t0. Assume that P ′(t0) < 0, and the case when P ′(t0) > 0 is similar.
Then P (t) < 0 for t > t0, with t − t0 small. From (3.13), tn−1a(t)P ′(t) is

increasing for t > t0, so that

P ′(t) > −
a0

a(t)tn−1
, for t > t0 (with a0 = −tn−1

0 a(t0)P
′(t0) > 0) .

Since solutions of the linear equation (3.13) cannot go to infinity over a

bounded interval, we may assume that t0 is large, and then by the above
a(t) ∼ a0(t) ∼ a1t

(p−2)(β−1) for t > t0, and some a1 > 0. It follows that for

some a2 > 0

P ′(t) > −
a2

tn−1+(p−2)(β−1)
= −

a2

t1+ε
, for t > t0 ,(3.16)

with ε = n − 2 + (p − 2)(β − 1) > 0, in view of (3.11). Integrating over
(t0, t), and using that n ≥ 3, we conclude the boundness of P (t), so long as

P (t) < 0. If another root of P (t) is encountered, we repeat the argument.
Hence, P (t) remains bounded for all t > t0.

From the equation (3.13), we see that P (t) cannot have points of positive

minimum or points of negative maximum. We claim that if P (t) has one
root, it has infinitely many roots. Indeed, assume that P (t1) = 0, and say

P ′(t1) > 0. For t > t1, P (t) remains bounded, but cannot tend to a constant.
Hence, P (t) will have to turn back and become decreasing, but it cannot

have a positive local minimum, or tend to a constant. Hence, P (t2) = 0 at
some t2 > t1, and so on.
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We have P (0) = 1, so that
(

tn−1a(t)P ′(t)
)′

< 0 for small t > 0. The

function q(t) ≡ tn−1a(t)P ′(t) satisfies q(0) = 0 and q′(t) < 0, and so q(t) < 0.
It follows that P ′(t) < 0 for small t > 0. Since P (t) cannot turn around,

or tend to a constant, we conclude the existence of the first root t1 of P (t),
implying the existence of infinitely many roots.

We show next that w(t) → w0(t) as t → ∞. Let tk and tk+1 be two
consecutive roots of P (t), and P ′(tk) < 0, so that P (t) < 0 on (tk, tk+1).

Let τk be the unique point of minimum of P (t) on (tk, tk+1). For negative
P (t) we have the inequality (3.16), with tk in place of t0. Integrating this

inequality over (tk, τk), we get

P (τk) > c̄
(

τ−ε
k − t−ε

k

)

( with some c̄ > 0) ,

which implies that |P (τk)| → 0, as k → ∞. The case when P ′(tk) > 0 is

similar, so that w(t) → w0(t) along the solution curve. Since u(r) = 1−
w(tr)
w(t) ,

it follows that along the solution curve u(r) tends to 1 − w0(tr)
w0(t) = 1 − rβ,

while λ(t) tends to 1
c
q−1

0

. ♦

Observe that in case β ∈ (0, 1), the limiting solution 1 − rβ is singular,
because u′(0) is not defined. Notice also that the condition (3.11) implies

(3.1). Finally, observe that in case β ∈ (0, 1) the condition (3.11) implies
that n ≥ 2. Indeed, we can rewrite (3.11) as n > 2β + p(1− β), which is a

point between p > 1, and 2.

One special case when this theorem applies is the following. Assume

that n ≥ p, so that (3.10) becomes

α + p

p + q − 1
> (n − p)

2
√

q(p + q − 1) + p2 − 3p + 2 − 2q

(p − 1) [4q − (p − 2)2]
.

Then (3.10) holds, provided that

2
√

q(p + q − 1) + p2 − 3p + 2− 2q > 0 ,(3.17)

4q > (p− 2)2 ,

p ≤ n < p +
(α + p)(p− 1)

[

4q − (p− 2)2
]

(p + q − 1)
(

2
√

q(p + q − 1) + p2 − 3p + 2 − 2q
) .

Observe that the third inequality (n ≥ p) implies that the condition (3.1)

holds, and the second inequality is just (3.9). Hence, the three inequalties in
(3.17) imply the theorem. In case p = 2, the first and the second inequalities

hold automatically, while the third one gives the condition in Z. Guo and J.
Wei [9].
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4 The generalized Joseph-Lundgren problem

We now study the problem (2.9). Its solution curve is represented by (2.14),
under the condition (2.13), where w(t) is the solution of (2.12). In particular,

λ(t) = tp+αwq−p+1(t), and we wish to know how many times this function
changes the direction of monotonicity for t ∈ (0,∞). (Here w(t) is the

solution of (2.12), the generating solution.) Compute

λ′(t) = tp+α−1wq−p(t)
[

(p + α)w(t) + (q − p + 1)tw′(t)
]

,

so that we are interested in the roots of the function (p+α)w+(q−p+1)tw′.
If we set this function to zero

(p + α)w + (q − p + 1)tw′ = 0 ,

then the general solution of this equation is w(t) = at−β , with β = p+α
q−p+1 .

If we choose the constant a as

a = a0 =
[

(n − p)βp−1 − (p− 1)βp
]

1

q−p+1

then w0(t) = a0t
−β is a solution of (2.12), the guiding solution (we have

(n − p)βp−1 − (p− 1)βp > 0, under the condition (2.13), if n > p).

Lemma 4.1 Assume that w(t) and w0(t) intersect infinitely many times.

Then the solution curve of (2.9) makes infinitely many turns.

Proof: Indeed, assuming that w(t) and w0(t) intersect infinitely many

times, let {tn} denote their points of intersection. At {tn}’s, w(t) and w0(t)
have different slopes (by uniqueness for initial value problems). Since (p +

α)w0(tn) + (q − p + 1)tnw′
0(tn) = 0, it follows that (p + α)w(tn) + (q −

p + 1)tnw′(tn) > 0 (< 0) if w(t) intersects w0(t) from below (above) at tn.

Hence, on any interval (tn, tn+1) there is a point t0, where (p + α)w(t0) +
(q−p+1)t0w

′(t0) = 0, i.e., λ′(t0) = 0, and t0 is a critical point. Since λ′(tn)
and λ′(tn+1) have different signs, the solution curve changes its direction

over (tn, tn+1). ♦

The linearized equation for (2.12) is

(

ϕ′(w′)z′
)′

+
n − 1

t
ϕ′(w′)z′ + qtαwq−1z = 0 .

At the solution w = w0(t), this becomes

(

a0(t)z
′)′ +

n − 1

t
a0(t)z

′ + b0(t)z = 0 ,(4.1)

12



with a0(t) = ϕ′(w′
0), and b0(t) = qtαw

q−1
0 . One simplifies (4.1) to Euler’s

equation

z′′ +
[−(β + 1)(p− 2) + n − 1]

t
z′ +

qa
q−p+1
0

(p − 1)βp−2t2
z = 0 .(4.2)

Let us consider first the case when p = 2 and α = 0, and n > 2. Then

β = 2
q−1 , a0 = [β(n − β − 2)]

1

q−1 , and the equation (4.2) becomes

t2z′′ + (n − 1)tz′ + qβ(n − β − 2)z = 0 .

Its characteristic equation

r(r − 1) + (n − 1)r + qβ(n − β − 2) = 0

has the roots

r =
−(n − 2)±

√

(n − 2)2 − 4qβ(n− β − 2)

2
.

These roots are complex if

(n − 2)2 − 4qβ(n − 2) + 4qβ2 < 0 .

On the left we have a quadratic in n−2, with two positive roots. The largest
value of n−2, for which this inequality holds, corresponds to the larger root

of this quadratic, i.e.,

n − 2 <
4q

q − 1
+ 4

√

q

q − 1
.(4.3)

We shall show that infinitely many solutions occur if (4.3) holds, and

q >
n + 2

n − 2
.(4.4)

(The last condition ensures that the generating solution w(t) is defined for

all t > 0, by Lemma 2.1.) In terms of n, the conditions (4.3) and (4.4) imply

2 + 2q

q − 1
< n < 2 +

4q

q − 1
+ 4

√

q

q − 1
,(4.5)

which is the condition from [11] (it implies that n > 2). Thus we shall

recover the following classical theorem of D.D. Joseph and T.S. Lundgren
[11].
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Theorem 4.1 Assume that the conditions (4.3) and (4.4) hold (or (4.5)

holds). Then the solution curve of (2.9) makes infinitely many turns. More-
over, along this curve (as u(0) → ∞), λ → λ0 = a

q−1
0 , and u(r) tends to

r−β − 1 for r 6= 0, which is a singular solution of the equation in (2.9).

We shall give a proof of more general result below.

For general p and α, the characteristic equation for (4.2) is

r(r − 1) + Ar + B = 0 ,(4.6)

with A = −β(p− 2) + n− p + 1, and B = q(n−p)
p−1 β − qβ2. The roots of (4.6)

r =
−(A − 1)±

√

(A − 1)2 − 4B

2

are complex, provided that

(A − 1)2 − 4B < 0 ,

which simplifies to

(n − p)2 − θ(n − p) + γ < 0 ,(4.7)

with

θ = 2β(p− 2) +
4qβ

p − 1
, γ = (p− 2)2β2 + 4qβ2 .(4.8)

On the left in (4.7) we have a quadratic in n − p, with two positive roots.
The largest value of n− p, for which the inequality (4.7) holds, corresponds

to the larger root of this quadratic, i.e.,

n − p <
θ +

√

θ2 − 4γ

2
.(4.9)

We shall show that infinitely many solutions occur if the conditions (2.13)
and (4.9) hold. In terms of n, the conditions (2.13) and (4.9) imply that

pq + p + pα

q − p + 1
< n < p +

θ +
√

θ2 − 4γ

2
.(4.10)

The first inequality in (4.10) implies that

(β + 1)(p− 2) < n − 2 ,(4.11)

which in turn gives that n > p.

The critical exponent in (4.9) was computed earlier in X. Cabré and M.
Sanchón [4] in the context of semi-stable and extremal solutions of p-Laplace

equations. That paper considered equations on general domains, and more
general f(u), see also [2] and [5].
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Theorem 4.2 Assume that limt→∞
w(t)
w0(t)

= 1 (in case p = 2, this follows by

Lemma 2.2 in [2]). Assume also that the conditions (2.13) and (4.9) hold

(or (4.10) holds). Then the solution curve of

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ rα(1 + u)q = 0 for 0 < r < 1 ,(4.12)

u′(0) = u(1) = 0

makes infinitely many turns. Moreover, along this curve (as u(0) → ∞),

λ → λ0 = a
q−1
0 , and u(r) tends to r−β − 1 for r 6= 0, which is a singular

solution of the equation in (4.12).

Proof: In view of Lemma 4.1, we need to show that w(t) and w0(t)

intersect infinitely many times, and they tend to each other as t → ∞. Let
P (t) = w(t) − w0(t). Then P (t) satisfies

(

a(t)P ′)′ +
n − 1

t
a(t)P ′ + b(t)P = 0 ,(4.13)

where

a(t) =

∫ 1

0
ϕ′ (sw′(t) + (1− s)w′

0(t)
)

ds ,(4.14)

b(t) = qtα
∫ 1

0
[sw(t) + (1 − s)w0(t)]

q−1 ds .(4.15)

We claim that it is impossible for P (t) to keep the same sign over some

infinite interval (t0,∞). Assuming the contrary, write (a0(t) and b0(t) were
defined in (4.1))

a(t) = (p − 1)
(

−w′
0

)p−2
∫ 1

0

∣

∣

∣

∣

s
w′(t)

w′
0(t)

+ (1− s)

∣

∣

∣

∣

p−2

ds = a0(t) (1 + o(1)) ,

b(t) = qtα w
q−1
0

∫ 1

0

[

s
w(t)

w0(t)
+ (1 − s)

]q−1

ds = b0(t) (1 + o(1)) .

as t → ∞. We have w(t)
w0(t) → 1, and then w′(t)

w′

0
(t) → 1, by L’Hospital’s rule,

as t → ∞. Since Euler’s equation (3.7) has infinitely many solutions on
(tk,∞), we conclude by Lemma 3.3 that P (t) must vanish on that interval

too, a contradiction. It follows that P (t) has infinitely many roots, which
implies that w(t) and w0(t) have infinitely many points of intersection, and
hence the solution curve makes infinitely many turns.

Since u(r) = w(tr)
w(t) −1, it follows that along the solution curve u(r) tends

to
w0(tr)
w0(t) − 1 = r−β − 1 for r 6= 0. ♦

15



5 The generalized Gelfand problem

We now use the representation (2.3) for the solution curve of (2.1). In
particular, λ(t) = tα+pew(t), where w(t) is the solution of (2.2), and the

issue is how many times this function changes its direction of monotonicity
for t ∈ (0,∞). Compute

λ′(t) = tew
(

α + p + tw′) ,

so that we are interested in the roots of the function α + p + tw′. If we set

this function to zero
α + p + tw′ = 0 ,

then the solution of this equation is of course w(t) = a− (α + p) ln t. Quite
surprisingly, if we choose the constant a = a0 = ln

[

(n − p)(α + p)p−1
]

,

assuming that n > p, then

w0(t) = ln
[

(n − p)(α + p)p−1
]

− (α + p) ln t

is a solution of the equation in (2.2)! We shall show that w(t) (the solution
of the initial value problem (2.2)) tends to w0(t) as t → ∞, and give a

condition for w(t) and w0(t) to cross infinitely many times as t → ∞.

Lemma 5.1 Assume that w(t) and w0(t) intersect infinitely many times.
Then the solution curve of (2.1) makes infinitely many turns.

Proof: Indeed, assuming that w(t) and w0(t) intersect infinitely many
times, let {tn} denote the points of intersection. At {tn}’s, w(t) and w0(t)

have different slopes (by uniqueness for initial value problems). Since α +
p+ tnw′

0(tn) = 0, it follows that α+p+ tnw′(tn) > 0 (< 0) if w(t) intersects

w0(t) from below (above) at tn. Hence, on any interval (tn, tn+1) there is a
point t0, where α+p+t0w′(t0) = 0, i.e., λ′(t0) = 0, and t0 is a critical point.

Since λ′(tn) and λ′(tn+1) have different signs, the solution curve changes its
direction over (tn, tn+1). ♦

The linearized equation for (2.2) is

(

ϕ′(w′)z′
)′

+
n − 1

t
ϕ′(w′)z′ + tαewz = 0 .

At the solution w = w0(t), this becomes

(

a0(t)z
′)′ +

n − 1

t
a0(t)z

′ + b0(t)z = 0 ,(5.1)
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with a0(t) = ϕ′(w′
0) = (p−1)(p+α)p−2

tp−2 , and b0(t) = tαew0 = (n−p)(p+α)p−1

tp .
Simplifying (5.1) gives

(p − 1)t2z′′ + (p − 1)(n − p + 1)tz′ + (n − p)(p + α)z = 0 ,

which is Euler’s equation! Its characteristic equation

(p − 1) r(r − 1) + (p− 1)(n− p + 1) r + (n − p)(p + α) = 0

has the roots

r =
−(p − 1)(n − p) ±

√

((p− 1)(n− p) [p − 1)(n− p)− 4(p + α)]

2(p− 1)
.

The roots are complex if n− p > 0, and the quantity in the square brackets
is negative (the opposite inequalities lead to a vacuous condition), i.e., when

p < n <
p2 + 3p + 4α

p − 1
.(5.2)

We now easily recover the following result of J. Jacobsen and K. Schmitt

[10], which was a generalization of the famous theorem of D.D. Joseph and
T.S. Lundgren [11].

Theorem 5.1 Assume that the condition (5.2) holds. Then the solution
curve of

ϕ(u′)′ +
n − 1

r
ϕ(u′) + λ rαeu = 0 for 0 < r < 1, u′(0) = 0, u(1) = 0(5.3)

makes infinitely many turns. Moreover, along this curve (as u(0) → ∞),
λ → ea0 = (n − p)(p + α)p−1, and u(r) tends to −(p + α) ln r for r 6= 0,

which is a singular solution of the equation in (5.3).

Proof: We follow the proof of the Theorem 3.1. In view of Lemma 5.1,

we need to show that w(t) and w0(t) intersect infinitely many times. Let
P (t) = w(t) − w0(t). Then P (t) satisfies

(

a(t)P ′)′ +
n − 1

t
a(t)P ′ + b(t)P = 0 ,(5.4)

where

a(t) =

∫ 1

0
ϕ′ (sw′(t) + (1− s)w′

0(t)
)

ds ,(5.5)

b(t) = tα
∫ 1

0
esw(t)+(1−s)w0(t) ds .(5.6)
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Compared with the proof of the Theorem 3.1, we have a complication here:

in case P (t) tends to a constant p0 as t → ∞, we cannot conclude that
b(t) = b0(t)(1 + o(1)), unless p0 = 0.

We claim that it is impossible for P (t) to keep the same sign over some

infinite interval (t0,∞), and tend to a constant p0 6= 0 as t → ∞. Assume,
on the contrary, that P (t) > 0 on (t0,∞), and limt→∞ P (t) = p0 > 0. We

may assume that

P (t) >
1

2
p0 > 0 on (t1,∞), with some t1 > t0 .(5.7)

Write (5.4) as
(

tn−1a(t)P ′
)′

= −tn−1b(t)P .(5.8)

As before,

a(t) = a0(t) (1 + f(t)) , with f(t) → 0 as t → ∞ .(5.9)

Writing b(t) = tαew0(t)
∫ 1
0 esP (t) ds, we see that

b(t) = b0(t) (p1 + g(t)) ,(5.10)

with p1 =
∫ 1
0 esp0 ds > 1, and g(t) → 0 as t → ∞. By (5.8), (5.7), and (5.10)

(

tn−1a(t)P ′
)′

< −c1t
n−p−1 on (t1,∞) ,

for some constant c1 > 0. Integrating this inequality over (t1, t), we get

tn−1a(t)P ′ < c2 − c3t
n−p on (t1,∞) ,(5.11)

for some constants c2 > 0, and c3 > 0 (using that n > p). By (5.9)

a(t) > c4t
−p+2 on (t2,∞) ,

for some constants c4 > 0, and t2 > t1. Using this in (5.11), we have

P ′ <
c2

c4
t−n+p−1 −

c3

c4
t−1 on (t2,∞) .

Integrating this over (t2, t), and using that n > p

P (t) < c5 +
c2

c4(−n + p)
t−n+p −

c3

c4
ln t < c5 −

c3

c4
ln t ,

for some constant c5 > 0. Hence, P (t) has to vanish at some t > t2,

contradicting the assumption that P (t) > 0 on (t0,∞). This proves that
p0 = 0. We conclude that p1 = 1 in (5.10), and the rest of the proof is

similar to that of Theorem 3.1. ♦

If p = 2 and α = 0, the condition (5.2) becomes 2 < n < 10, the classical
condition of D.D. Joseph and T.S. Lundgren [11].
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