Infinitely many solutions for three classes of

self-similar equations, with the p-Laplace operator:
Gelfand, Joseph-Lundgren and MEMS problems

Philip Korman
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025
kormanp@ucmail.uc.edu

Abstract

We study the global solution curves, and prove the existence of
infinitely many positive solutions for three classes of self-similar equa-
tions, with p-Laplace operator. In case p = 2, these are well-known
problems involving the Gelfand equation, the equation modeling elec-
trostatic micro-electromechanical systems (MEMS), and a polynomial
nonlinearity. We extend the classical results of D.D. Joseph and T.S.
Lundgren [11] to the case p # 2, and we generalize the main result of
Z. Guo and J. Wei [9] on the equation modeling MEMS.
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1 Introduction

We consider radial solutions on a ball in R™ for three special classes of equa-
tions, involving the p-Laplace operator, the ones self-similar under scal-
ing. We now explain our approach for one of the classes, involving the
p-Laplace version of the equation which arises in modeling of electrostatic
micro-electromechanical systems (MEMS), see [16], [8], [9] (with p > 1,
a>0,g>0,u=u(z),z€ R", n>1)

(1.1) div (|Vu|p_2Vu) —I—/\L =0, for || <1 w =0, when |z| =1.
(1 —w)



Here M\ is a positive parameter. We are looking for solutions satisfying
0 < u < 1. Radial solutions of this equation satisfy

n—1 re

90(u)+/\m

(1.2) o(u) + =0 for0<r<1,

W (0)=u(l)=0, 0<u(r) <1,

with ¢(v) = v|v|P~2. Tt is easy to see that u/(r) < 0 for all 0 < r < 1, which
implies that the value of u(0) gives the maximum value (or the L> norm) of
our solution. Moreover, u(0) is a global parameter, i.e., it uniquely identifies
the solution pair (A, u(r)), see e.g., P. Korman [13]. It follows that a two-
dimensional curve in the (A, u(0)) plane completely describes the solution
set of (1.2). The self-similarity of this equation allows one to parameterize
the global solution curve, using the solution of a single initial value problem:

(1.3) plwy + 2 r~

Its solution w(t) is a positive and increasing function, which can be easily
computed numerically. Following J.A. Pelesko [16], we show that the global
solution curve of (1.2) is given by

o= (g1 k)

parameterized by t € (0,00). In particular, A\ = A(¢) = wp%tﬁ(t), and

N(t) =t~ ™7 [(a + p)w — t(p + ¢ — Dw']

so that the solution curve travels to the right (left) in the (A, u(0)) plane if
(o +pw—t(p+q—1)w >0 (< 0). This makes us interested in the roots
of the function (o + p)w — t(p + ¢ — 1)w’. If we set this function to zero

(a+p)w—tp+q-1uw =0,
then the general solution of this equation is

a—+p
wt:ctﬁ, = —
®) & p+qg—1

1
p+q—1

Quite remarkably, if we choose the constant ¢ = ¢y = [
then

1
AP =1 (B-1)+n—-1]

wo (t) = Cotﬁ



also solves the equation in (1.3), along with w(¢). We show that w(t) tends
to wy(t) as t — oo, and the solution curve of (1.2) makes infinitely many
turns if and only if w(t) and wy(¢) intersect infinitely many times. We give
a sharp condition for that to happen, thus generalizing the main result in
Z. Guo and J. Wei [9] to the case of p # 2 (with a simpler proof). In [12]
we called w(t) the generating solution, and wq(t) the guiding solution.

We apply a similar approach to a class of equations with polynomial
f(r,u) generalizing the well-known results of D.D. Joseph and T.S. Lundgren
[11], and to the p-Laplace version of the generalized Gelfand equation, where
we easily recover the corresponding result of J. Jacobsen and K. Schmitt [10].

For each of the three classes of equations we show that along the solution
curves (as u(0) — o0), the solutions tend to a singular solution (for which
u(r) — oo, or v (r) — oo, as r — 0). Moreover, one can calculate the sin-
gular solutions explicitly, which is truly a remarkable feature of self-similar
equations. Singular solutions were studied previously by many authors, in-
cluding C. Budd and J. Norbury [3], F. Merle and L. A. Peletier [15], and
I. Flores [6].

2 Parameterization of the solution curves

We begin with the p-Laplace version of the generalized Gelfand equation

—1
(2.1)p(u') + nTgo(u/) +Ar%e =0 for0<r <1, ¥/(0)=0, u(1)=0,

where p(v) = v[v[P72, p > 1. Observe that p(sv) = sP~lp(v) for any
constant s > 0. Assume that u(0) =a > 0. We set u =w + a, t = br. The
constants a and b are assumed to satisfy

A= bp¥TPem
Then (2.1) becomes

n—1

(2.2) o) + o)+t =0, w(0)=0, w'(0)=0.

The solution of this problem w(t), which is a negative and decreasing func-
tion, is defined for all ¢ > 0, and it may be easily computed numerically.
(Write this equation as [t"'p(w')]" = —#"t*"1e® < 0, and conclude that
t"~Lp(w') < 0, and then w'(t) < 0 for all t.) We have

0=u(l) =a+w(),



so that a = —w(b), and then A = b*+Pe?(®) The solution curve for (2.1) is
(A u(0) = (b7 ®), —w(b)) ,

parameterized by b € (0,00). The solution of (2.1) at b is u(r) = w(br) —
w(b). It will be convenient to write the solution curve as

(2.3) (A u(0) = (142 ™ —w(t)) ,
parameterized by t € (0, 00), and w(t) is the solution of (2.2). The solution

of (2.1) at the parameter value ¢ is u(r) = w(tr) — w(t).

We consider next the problem

(2.4) o(u) + nT_lgo(u’) + A a iau)q

=0 forO<r<1i,

W (0)=u(l)=0, 0<u(r) <1,

which arises in modeling of electrostatic micro-electromechanical systems
(MEMS), see [16], [8], [9]. Here A is a positive parameter, ¢ > 0 and o > 0
are constants, and as before ¢(v) = v|v[P~2, p > 1. Any solution u(r) of
(2.4) is a positive and decreasing function (by the maximum principle), so
that «(0) gives its maximum value. Our goal is to compute the solution
curve (A, u(0)). Let 1 —u = v. Then v(r) satisfies

(2.5) p(v') + 2= !

go(v/):/\:)—q for 0 <r <1, '(0)=0, v(1)=1.

Assume that v(0) = a. We scale v(r) = aw(r), and t = br. The constants a
and b are assumed to satisfy

(2.6) = gl petr,
Then (2.5) becomes

(2.7) plwy + 2 ~

The solution of this problem is a positive increasing function, which is de-
fined for all ¢ > 0. We have

1=v(1) = aw(b),



and so a = ﬁ, and then \ = wp%j(b). The solution curve (A, u(0)) is

w
write the solution curve in the form

a+p
(2.8) (A u(0)) = (wpiq_l el w%) ,

parameterized by ¢ € (0,00). In case p = 2, this parameterization was first
derived by J.A. Pelesko [16], and was then used in [8]. The solution of (2.4)

. _ 1 _ w(tr)
at tis u(r) =1 MOR

(Wﬁi% ,1— Lb)), parameterized by b € (0, 00). It will be convenient to

Finally, we consider the problem (with the constantsp > 1, ¢ > 1, a > 0)
—1
(2.9) o(u') + n—go(u') +Ar*(1+uw)?=0 for0<r<1,
r
u'(0) =u(1) =0,

which was analyzed in case p = 2 and o« = 0 by D.D. Joseph and T.S.
Lundgren [11]. If we set 1 + u = v, then v(r) satisfies

n—1

(2.10) (V) + (V) + Ar*? =0, v'(0)=0, v(1)=1.

Assuming that v(0) = a, we scale v(r) = aw(r), and t = br. The constants

a and b are assumed to satisfy
prre

Then (2.10) becomes
n—1
t

The solution of (2.12) satisfies w'(t) < 0, so long as w(t) > 0 (the function
t"Lp(w'(t)) is zero at t = 0, and its derivative is negative). It follows that
either there is a tg, so that w(tg) = 0 and w(t) > 0 on (0, ty), or w(t) > 0 on
(0,00) and lim; ., w(t) = a > 0. It is easy to see that a = 0 in the second
case. Indeed, assuming that a > 0, we have [t”_lgo(w')]/ < —qdgrto—l,
and integrating we conclude that w(t) < 1 — ¢t?, with some ¢ > 0, and
v = ;‘—i’f > 0, contradicting that w(t) > 0 on (0, 00).

(2.12)  pw) + o(w') +t*w? =0, w(0)=1, w'(0)=0.

Lemma 2.1 Assume that

S np—n-—+p-—+ po '
n—p
Then w(t) > 0, and w'(t) < 0 on (0,00), with lim;_, w(t) = 0.

(2.13) q



Proof: In view of the above remarks, we need to exclude the possibility
that w(tg) =0 and w(t) > 0 on (0,%). Recall that for the equation

n—1

— () + f(t,w) =0,

p(w) +

the Pohozhaev function
P(t) =" [(p — Do(w)w' +pF(t,w)] + (n = p)t"p(w)w
is easily seen to satisfy
P/(t) = "L [npF(t,w) — (n — phwf(t,w) + ptF(t, w)] |
where F(t,w) = [," f(t, z) dz, see e.g., [13], p. 136. Here
P'(t) = v 1te qn% —(n—p)+ qi—al witt < 0.

Since P(0) =0, and P(ty) > 0, we have a contradiction. O

As before, we have
1=v(1) = aw(b),

and so a = w%b) and then \ = bPTa=P+L(p). Under the condition (2.13),

(
the solution curve (A, u(0)) is (bp+awq P

b € (0,00). The solution at b is u(r) = ((bg)) — 1. Tt will be convenient to

write the solution curve in the form

(2.14) O\, u(0)) = (tp+awq_p+1(t) L 1) ,

w(t)

b), w(b ) parameterized by

parameterized by ¢ € (0,00). The solution of (2.9) at ¢ is u(r) = TU%) -1

3 The equation modeling MEMS

We consider the problem (2.4), whose solution curve is given by (2.8), where
w(t) is the solution of (2.7). We have A(t) = M%ti(t)’ where w(t) is the
solution of (2.7), and so

N(t) =t P~ [(a+ p)w —t(p+ g — '] .

We are interested in the roots of the function (a+ p)w — t(p + ¢ — 1)w’. If
we set this function to zero

(a+pw—tlp+qg—1)w' =0,



then the general solution of this equation is

a+p

w(t) = ct’, - .
® o=t

. . _ _ 1
Quite remarkably, if we choose the constant ¢ = ¢y = [ﬁp,l[(p_l)(ﬁ_lHn_l]

under the condition that
(3.1) p-1)(@B-1)+n-1>0,

then

wo(t) = Cotﬁ
also solves the equation in (2.7), along with w(t). We shall show that w(t),
the solution of the initial value problem (2.7), tends to wy(t) as t — oo, and
the issue turns out to be whether w(t) and wg(t) cross infinitely many times
as t — oo.

Lemma 3.1 Assume that w(t) and wo(t) intersect infinitely many times.
Then the solution curve of (2.4) makes infinitely many turns.

Proof: Assuming that w(t) and wo(t) intersect infinitely many times, let
{tn} denote the points of intersection. At {¢,}’s, w(t) and wo(t) have differ-
ent slopes (by uniqueness for initial value problems). Since (a4 p)wo(t,) —
tn(p+q—1)wi(ty) = 0, it follows that (a+p)w(t,) —t,(p+q—1)w'(t,) <0
(> 0) if w(t) intersects wy(t) from below (above) at ¢,,. Hence, on any inter-
val (tp, tn41) there is a point ¢, where (a+p)w(ty) —to(p+qg—1)w'(ty) =0,
i.e., N(tp) = 0, and ¢ty gives a critical point. Since A'(¢,) and X (t,4+1) have
different signs, the solution curve changes its direction over (¢,,tp,4+1). <

We shall need the following well-known Sturm-Picone’s comparison the-
orem, see e.g., p. 5 in [14].

Lemma 3.2 Let u(t) and v(t) be respectively classical solutions of
(3.2) (a(t)u) +b(t)u =0,
(3.3) (a1 (t)0")" + b1 (t)v = 0.

Assume that the given differentiable functions a(t), ai(t), and continuous
functions b(t) and bi(t), satisfy

(3.4) bi(t) > b(t), and 0 < ay(t) < a(t) fort>ty> 0.

In case a1(t) = a(t) and bi(t) = b(t) for all t, assume additionally that u(t)
and v(t) are not constant multiples of one another. Then, for t > tg, v(t)
has a root between any two consecutive roots of u(t).

1
p+q—1

9



Lemma 3.3 Consider the equation

n_
t

1
(3.5) (ao(t) (1 + f()) ) + ao(t) (1+ f(t))v" +bo(t) (1 +g(t)) v =0,
with given differentiable functions ag(t) > 0 and f(t), and continuous func-
tions bo(t) > 0 and g(t). Assume that limy_,o f(t) = limy_ g(t) = 0, and
there is an € > 0 such that any solution of

(36)  (ao(t) (1 +e)') +

ap(t) (1 +¢)v' +bo(t) (1 —€)v =0

has infinitely many roots. Then any solution of (3.5) has infinitely many
T001S.

Proof: We rewrite (3.5) in the form (3.2), with a(t) = " tag(t) (1 + £(t)),
and b(t) = t"1bo(t) (1 + g(t)), and we rewrite (3.6) in the form (3.3), with
ar(t) = t"Lag(t) (14 €), and bi(t) = t"Lbo(t) (1 —¢). For large t, the
inequalities in (3.4) hold, and the Lemma 3.2 applies. &

The linearized equation for (2.7) is

n—1
t

(¢' (")) + ——¢/(W)z = —qt®w ™"z,
At the solution w = w(t), this becomes

n—1
t

(3.7) (ao(t)2') + ao(t)z' +bo(t)z =0,

with ao(t) = @'(wh) = (p — VE-2F=24E2G-D, and bo(t) = gioug ™ =
qCaq_lto‘_ﬁ(qH). One simplifies (3.7) to read

[(p—2)(ﬁ—1)+n—1]z/+qﬁ[(p—l)(ﬁ—l)Jrn—l]

1
=0
e t (p—1)¢2 ? ’
which is an Euler equation! The roots of its characteristic equation,
—1 -1)4+n-1
=1+ o= (- 1) -1 PEZDEZI TR g

are complex valued, provided that

2 _44Blp—1)(-1) +n—1]
p—1 '

[(p=2)(B-1)+n—2



We write this inequality in the form
(3.8) A2+ BB —-C >0,

with A = 4(p—1)g—(p—1)(p—2)% B =4q(n—p) —2(p—1)(p—2)(n—p),
and C = (p — 1)(n — p)?. We shall have A > 0, provided that

(3.9) 49— (p—2)*>0.

For (3.8) to hold, we need 8 = pij;f’ 7 to be greater than the larger root of

this quadratic, i.e., § > =BHVB4+44C ijw (assuming (3.9)), which gives

(3.10) 2P L (p=n)(2g—p"+3p—2) +2n—p|Valp+g-1)
S Upta-1 (p—1)[dg—(p—2)7 '

Theorem 3.1 Assume that ¢ > 0, p > 1, with

(3.11) P-DB-1)+n-1>4,

and the conditions (3.9) and (3.10) hold. Then the solution curve of

Ty

n—1

(3.12) o) + o) + A

=0 forO<r<1,

W(0)=u(l)=0, 0<u(r)<l1

makes infinitely many turns. Moreover, along this curve (as u(0) — 00),
A= X= 1 =P (p—1)(B—1)+n—1], and u(r) tends to 1 —rP for

c?

0
r # 0, which is a solution of the equation in (3.12).

Proof: In view of Lemma 3.1, we need to show that w(t) and wo(t)
intersect infinitely many times. Let P(t) = w(t) —wo(t). Then P(t) satisfies

(3.13) (@O P +"—La)P' +66)P =0,
where .

(3.14) alt) = [ ¢ (su'(6) + (1= s)uf(n) ds,
(3.15) b(t) = qt /0 R TRl



We claim that it is impossible for P(t) to keep the same sign over some
infinite interval (¢p, 00), and tend to a constant as ¢ — oo. Assuming the
contrary, write

/\p—2 ! w/(t) P
o) = (p=1) (wh) ™ [ 2D+ (-9 ds = aolt) 1+ 0(1)
o | wp(t)
bt) = qro—2 [ ! ds = bo(t) (1 + o(1))
At / w g1 45 = D0 o
Wo 0 [sw(ffﬁ) +(1- 3)]
as t — oo. (Observe that % — 1, since P(t) tends to a constant, and

w'(t)
wy(t)
infinitely many roots on (tp, o0), we conclude by Lemma 3.3 that P(¢) must
vanish on that interval too, a contradiction.

— 1, by L’Hospital’s rule, as t — oco.) Since Euler’s equation (3.7) has

Next we show that if P(t9) = 0, then P(t) remains bounded for all
t > to. Assume that P'(tp) < 0, and the case when P'(tp) > 0 is similar.
Then P(t) < 0 for t > tg, with t — tg small. From (3.13), " la(t)P'(t) is
increasing for ¢t > tg, so that

ag

P'(t) > Tae T

for t > to (with ag = —t§ ta(te) P (to) > 0).
Since solutions of the linear equation (3.13) cannot go to infinity over a
bounded interval, we may assume that tg is large, and then by the above
a(t) ~ ag(t) ~ a;t®=2B=1 for t > ty, and some a; > 0. It follows that for
some as > 0

/ az 2
(3.16) P'(t) > T — e for t > 1,

withe =n—24 (p—2)(—1) > 0, in view of (3.11). Integrating over
(to,t), and using that n > 3, we conclude the boundness of P(t), so long as
P(t) < 0. If another root of P(t) is encountered, we repeat the argument.
Hence, P(t) remains bounded for all ¢ > .

From the equation (3.13), we see that P(t) cannot have points of positive
minimum or points of negative maximum. We claim that if P(¢) has one
root, it has infinitely many roots. Indeed, assume that P(¢;) = 0, and say
P'(t1) > 0. For t > t1, P(t) remains bounded, but cannot tend to a constant.
Hence, P(t) will have to turn back and become decreasing, but it cannot
have a positive local minimum, or tend to a constant. Hence, P(t2) = 0 at
some to > t1, and so on.

10



We have P(0) = 1, so that (t* 'a(t)P'(t))’ < 0 for small ¢t > 0. The
function q(t) = " a(t) P'(t) satisfies ¢(0) = 0 and ¢/(t) < 0, and so q(t) < 0.
It follows that P’(t) < 0 for small ¢ > 0. Since P(t) cannot turn around,
or tend to a constant, we conclude the existence of the first root ¢; of P(t),
implying the existence of infinitely many roots.

We show next that w(t) — wo(t) as t — oo. Let t; and tx41 be two
consecutive roots of P(t), and P'(t;) < 0, so that P(t) < 0 on (t,tx+1).
Let 74 be the unique point of minimum of P(¢) on (¢, tx+1). For negative
P(t) we have the inequality (3.16), with ¢; in place of ¢y. Integrating this
inequality over (tg, %), we get

P(ry) > ¢ (Tk_E - t,;e) ( with some ¢ > 0),

which implies that |P(7x)| — 0, as k — oo. The case when P'(tx) > 0 is

similar, so that w(t) — wo(t) along the solution curve. Since u(r) = 1— witr)

w(t) ?
it follows that along the solution curve u(r) tends to 1 — %)O%) =1-17P,

while A(¢) tends to Cq%l &

0

Observe that in case 8 € (0, 1), the limiting solution 1 — r? is singular,
because u/(0) is not defined. Notice also that the condition (3.11) implies
(3.1). Finally, observe that in case 5 € (0,1) the condition (3.11) implies
that n > 2. Indeed, we can rewrite (3.11) as n > 23 + p(1 — [3), which is a
point between p > 1, and 2.

One special case when this theorem applies is the following. Assume
that n > p, so that (3.10) becomes

a+p 2/qlp+q—1)+p?>-3p+2—-2¢
> (n - p) 2 .
p+q—1 (p—1)[4q— (p—2)?
Then (3.10) holds, provided that

(3.17) 24/qp+q—1)+p*—3p+2—-2¢>0,

4q > (p - 2)2 ’

(a+p)(p—1) [4g— (p— 2)°]
@+q—l)@vﬂp+q—1%ﬂﬁ—3p+2—2®
Observe that the third inequality (n > p) implies that the condition (3.1)
holds, and the second inequality is just (3.9). Hence, the three inequalties in
(3.17) imply the theorem. In case p = 2, the first and the second inequalities

hold automatically, while the third one gives the condition in Z. Guo and J.
Wei [9].

p<n<p+

11



4 The generalized Joseph-Lundgren problem

We now study the problem (2.9). Its solution curve is represented by (2.14),
under the condition (2.13), where w(t) is the solution of (2.12). In particular,
A(t) = tPrea=PHL(t) and we wish to know how many times this function
changes the direction of monotonicity for ¢t € (0,00). (Here w(t) is the
solution of (2.12), the generating solution.) Compute

N(t) = 2T 1w P () [(p+ a)w(t) + (¢ — p + Dtw' ()]
so that we are interested in the roots of the function (p+a)w+(¢g—p+1)tw'.
If we set this function to zero
(p+a)w+(g—p+tw' =0,

pta
q—p+1°

then the general solution of this equation is w(t) = at™”, with 3 =
If we choose the constant a as

o= = [t - - 7]

then wo(t) = agt™ is a solution of (2.12), the guiding solution (we have
(n—p)BP~!t — (p—1)BP > 0, under the condition (2.13), if n > p).

Lemma 4.1 Assume that w(t) and wo(t) intersect infinitely many times.
Then the solution curve of (2.9) makes infinitely many turns.

Proof:  Indeed, assuming that w(t) and wy(t) intersect infinitely many
times, let {¢,} denote their points of intersection. At {t¢,,}’s, w(t) and w(¢)
have different slopes (by uniqueness for initial value problems). Since (p +
a)wo(ty) + (¢ — p + Ditpwy(t,) = 0, it follows that (p + a)w(t,) + (¢ —
p+ Dt,w'(t,) > 0 (< 0) if w(t) intersects wp(t) from below (above) at t,.
Hence, on any interval (¢,,t,+1) there is a point ty, where (p + a)w(tp) +
(g—p+1)tow'(to) =0, i.e., N(to) = 0, and ¢ is a critical point. Since X (t,)
and A'(t,+1) have different signs, the solution curve changes its direction
over (tn,tn+1). &

The linearized equation for (2.12) is

1
o' (w2 + gt w2 =0.

(¢' (")) + t
At the solution w = w(t), this becomes

n—1

(4.1) (ao(t)2') +

ao(t)2' +bo(t)z =0,

12



with ag(t) = ¢'(w(), and by(t) = qto‘wg_l.

equation

One simplifies (4.1) to Euler’s

B+ V- +n-1],, qf?"

=0.
t T -y’

(4.2) 2"+

Let us consider first the case when p = 2 and a = 0, and n > 2. Then

8= q_%, ap = [B(n— 06— 2)];_1, and the equation (4.2) becomes

t22" 4 (n— Dtz +q¢B(n— B —2)2=0.
Its characteristic equation
rr—1)4+n—-1)r+q¢8(n—03-2)=0

has the roots

I ) B ()l 7 e )

2

These roots are complex if
(n—2)% —4¢B(n —2) +4¢B% < 0.

On the left we have a quadratic in n— 2, with two positive roots. The largest
value of n — 2, for which this inequality holds, corresponds to the larger root
of this quadratic, i.e.,

q

4q
4. —2< — 44, /——.
(4.3) n <q—1+ 1

We shall show that infinitely many solutions occur if (4.3) holds, and

n-+ 2
n—2"

(4.4) q>

(The last condition ensures that the generating solution w(t) is defined for
allt > 0, by Lemma 2.1.) In terms of n, the conditions (4.3) and (4.4) imply

2+2 4
Tencar L qq /-2,
q—1 qg—1 qg—1

(4.5)

which is the condition from [11] (it implies that n > 2). Thus we shall
recover the following classical theorem of D.D. Joseph and T.S. Lundgren
[11].
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Theorem 4.1 Assume that the conditions (4.3) and (4.4) hold (or (4.5)
holds). Then the solution curve of (2.9) makes infinitely many turns. More-
over, along this curve (as u(0) — o0), A — Ao = ag_l, and u(r) tends to
=B —1 for v # 0, which is a singular solution of the equation in (2.9).

We shall give a proof of more general result below.

For general p and «, the characteristic equation for (4.2) is
(4.6) r(r—1)4+Ar+ B =0,
with A = —f(p—2)+n—p+1, and B = L2225 452 The roots of (4.6)

 —(A-1)+A-1)?—4B
2

are complex, provided that
(A-1)2-4B <0,

which simplifies to

(4.7) (n—p)* = 0(n—p)+~ <0,
with A
(@8)  0=20-2+ L0, 3= (o275 + 405",

On the left in (4.7) we have a quadratic in n — p, with two positive roots.
The largest value of n — p, for which the inequality (4.7) holds, corresponds
to the larger root of this quadratic, i.e.,

(4.9) n—p<

We shall show that infinitely many solutions occur if the conditions (2.13)
and (4.9) hold. In terms of n, the conditions (2.13) and (4.9) imply that

0 0% — 4
(4.10) patptpa 04V
g—p+1 2
The first inequality in (4.10) implies that
(4.11) B+1)(p—2)<n-—2,

which in turn gives that n > p.

The critical exponent in (4.9) was computed earlier in X. Cabré and M.
Sanchén [4] in the context of semi-stable and extremal solutions of p-Laplace
equations. That paper considered equations on general domains, and more
general f(u), see also [2] and [5].
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Theorem 4.2 Assume that limy_. %tt)) =1 (in case p = 2, this follows by

Lemma 2.2 in [2]). Assume also that the conditions (2.13) and (4.9) hold
(or (4.10) holds). Then the solution curve of

n—1

(4.12) o(u) + o) +Ar*1+u)?=0 for0<r<1,

w'(0) =u(l)=0

makes infinitely many turns. Moreover, along this curve (as u(0) — o),
A— X = ag_l, and u(r) tends to r=° — 1 for r # 0, which is a singular
solution of the equation in (4.12).

Proof: In view of Lemma 4.1, we need to show that w(t) and wo(t)

intersect infinitely many times, and they tend to each other as t — oco. Let
P(t) = w(t) — wo(t). Then P(t) satisfies

(4.13) (@(®)P) +"—La)P' 1 66)P =0,
where 1

(4.14) a(t) = /0 ¢ (sw'(t) + (1 — s)wp(t)) ds,
(4.15) b(t) = qt® /01 [sw(t) + (1 — s)wo(t)]" " ds.

We claim that it is impossible for P(t) to keep the same sign over some
infinite interval (¢g, 00). Assuming the contrary, write (ao(t) and by(t) were
defined in (4.1))

oft) = (p—1) (- [

p—2

w'(t) ds =ap(t) (1 +o(1)) ,

wp(t)

q—1
b(t) = qt® wg_l /01 [s;;((% +(1-— s)] ds =bo(t) (1 +o0o(1)) .
(t) ()

as t — oco. We have ;)Do—(t) — 1, and then Zj{,)—é) — 1, by L’Hospital’s rule,
as t — o0o. Since Euler’s equation (3.7) has infinitely many solutions on
(tg, 00), we conclude by Lemma 3.3 that P(¢) must vanish on that interval
too, a contradiction. It follows that P(t) has infinitely many roots, which
implies that w(t) and w(¢) have infinitely many points of intersection, and
hence the solution curve makes infinitely many turns.

Since u(r) = u:v(g)) —1, it follows that along the solution curve u(r) tends

tou:l?o(ftr))_lzT_ﬁ—lforr#O- ¢

+(1—s)

15



5 The generalized Gelfand problem

We now use the representation (2.3) for the solution curve of (2.1). In
particular, \(t) = t*tPe¢*®) where w(t) is the solution of (2.2), and the
issue is how many times this function changes its direction of monotonicity
for t € (0, 00). Compute

N(t) =te” (a+p+itw),

so that we are interested in the roots of the function o + p + tw’. If we set
this function to zero
a+p+tw =0,

then the solution of this equation is of course w(t) = a — (o + p) Int. Quite
surprisingly, if we choose the constant @ = a9 = In[(n —p)(a+p)P~],
assuming that n > p, then

wo(t) =In|(n = p)(a+p)""| = (a+p)Int

is a solution of the equation in (2.2)! We shall show that w(t) (the solution
of the initial value problem (2.2)) tends to wg(t) as t — oo, and give a
condition for w(t) and wy(t) to cross infinitely many times as ¢t — oc.

Lemma 5.1 Assume that w(t) and wo(t) intersect infinitely many times.
Then the solution curve of (2.1) makes infinitely many turns.

Proof:  Indeed, assuming that w(t) and wy(t) intersect infinitely many
times, let {¢,,} denote the points of intersection. At {t,}’s, w(t) and wy(t)
have different slopes (by uniqueness for initial value problems). Since o +
p+tawi(ty) = 0, it follows that a+p+t,w'(t,) > 0 (< 0) if w(t) intersects
wp(t) from below (above) at t,,. Hence, on any interval (t,, t,+1) there is a
point ¢y, where a+p+tow'(tg) = 0, i.e., N(tp) = 0, and ¢ is a critical point.
Since X (t,) and N'(t,41) have different signs, the solution curve changes its
direction over (t,,ty+1). O

The linearized equation for (2.2) is

At the solution w = w(t), this becomes

n —

(5.1) (ao() ) + " Lag(t)2" + bo(t)2 =0,

16



o (wh) = (P—l)t(fj-za)pfz’ and by(t) = t¥e™0 = (n—P)(iz’;'a)pfl‘
1

) gives

with ag(t) =
Simplifying (5

(p— D" +(p—1)(n—p+ 1)tz +(n—p)p+a)z=0,
which is Euler’s equation! Its characteristic equation

p=Drr=1D+@E-Dm-p+hr+@m-pp+a)=0
has the roots

—(p—D(n—p)=V(p—1n—p)[p—1)(n—p) —4p+ )]
2(p—1)

The roots are complex if n — p > 0, and the quantity in the square brackets

is negative (the opposite inequalities lead to a vacuous condition), i.e., when

24+ 3p+4
(52) p<n< w .
p—1
We now easily recover the following result of J. Jacobsen and K. Schmitt
[10], which was a generalization of the famous theorem of D.D. Joseph and
T.S. Lundgren [11].

Theorem 5.1 Assume that the condition (5.2) holds. Then the solution
curve of

—1
(5.3) p(u') + nTgo(u/) +Ar%t =0 for0<r <1, ¥'(0)=0, u(l)=0

makes infinitely many turns. Moreover, along this curve (as u(0) — 00),
A — e® = (n—p)(p+ )Pt and u(r) tends to —(p + a)Inr for r # 0,
which is a singular solution of the equation in (5.3).

Proof:  We follow the proof of the Theorem 3.1. In view of Lemma 5.1,

we need to show that w(t) and wq(t) intersect infinitely many times. Let
P(t) = w(t) — wp(t). Then P(t) satisfies

(5.4) (@®P) +"—La)P' +66)P =0,
where .
(5.5) alt) = [ (su/(t) + (1= 9yup(®) ds.
(5.6) by = [ O+ 080 g

0
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Compared with the proof of the Theorem 3.1, we have a complication here:
in case P(t) tends to a constant py as ¢ — oo, we cannot conclude that
b(t) = bo(t)(1 + o(1)), unless pg = 0.

We claim that it is impossible for P(t) to keep the same sign over some
infinite interval (p,o0), and tend to a constant py # 0 as t — oo. Assume,
on the contrary, that P(¢) > 0 on (o, 00), and lim; ., P(t) = po > 0. We
may assume that

(5.7) P(t) > %po >0 on (t1,00), with some t; > tg.
Write (5.4) as

(5.8) (t”_la(t)P')/ = " b)) P.

As before,

(5.9) a(t) =ao(t) (1 + f(¢)), with f(t) -0 ast— co.
Writing b(t) = t®e®o(®) fol esP) ds, we see that

(5.10) b(t) = bo(t) (91 + g(1))

with p; = fol e’Pods > 1, and g(t) — 0 as t — oco. By (5.8), (5.7), and (5.10)
1 ¥ 1
(t"_ a(t)P) < —c1t"7P77 on (t1,00),
for some constant ¢; > 0. Integrating this inequality over (t1,t), we get
(5.11) t" La(t)P' < cg — c3t™ P on (t1,00),
for some constants co > 0, and c¢3 > 0 (using that n > p). By (5.9)
a(t) > cqt P2 on (t3,00),
for some constants ¢4 > 0, and t3 > t1. Using this in (5.11), we have

P < 2yl 841 o (t2,00).
C4 C4

Integrating this over (t2,t), and using that n > p
2 Bt <o — B,
ca(—n +p) 4 cq
for some constant c¢; > 0. Hence, P(t) has to vanish at some t > to,
contradicting the assumption that P(t) > 0 on (tg,00). This proves that
po = 0. We conclude that p; = 1 in (5.10), and the rest of the proof is
similar to that of Theorem 3.1. &

If p =2 and o = 0, the condition (5.2) becomes 2 < n < 10, the classical
condition of D.D. Joseph and T.S. Lundgren [11].

P(t) < cy5+
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