Infinitely many solutions for three classes of self-similar equations, with the p-Laplace operator: Gelfand, Joseph-Lundgren and MEMS problems

Philip Korman
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025
kormanp@ucmail.uc.edu

Abstract

We study the global solution curves, and prove the existence of infinitely many positive solutions for three classes of self-similar equations, with p-Laplace operator. In case $p=2$, these are well-known problems involving the Gelfand equation, the equation modeling electrostatic micro-electromechanical systems (MEMS), and a polynomial nonlinearity. We extend the classical results of D.D. Joseph and T.S. Lundgren [11] to the case $p \neq 2$, and we generalize the main result of Z. Guo and J. Wei [9] on the equation modeling MEMS.

Key words: Parameterization of the global solution curves, infinitely many solutions.

AMS subject classification: 35J60, 35B40.

1 Introduction

We consider radial solutions on a ball in R^{n} for three special classes of equations, involving the p-Laplace operator, the ones self-similar under scaling. We now explain our approach for one of the classes, involving the p-Laplace version of the equation which arises in modeling of electrostatic micro-electromechanical systems (MEMS), see [16], [8], [9] (with $p>1$, $\left.\alpha>0, q>0, u=u(x), x \in R^{n}, n \geq 1\right)$
(1.1) $\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)+\lambda \frac{|x|^{\alpha}}{(1-u)^{q}}=0$, for $|x|<1 u=0$, when $|x|=1$.

Here λ is a positive parameter. We are looking for solutions satisfying $0<u<1$. Radial solutions of this equation satisfy

$$
\begin{gather*}
\varphi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}\right)+\lambda \frac{r^{\alpha}}{(1-u)^{q}}=0 \quad \text { for } 0<r<1, \tag{1.2}\\
u^{\prime}(0)=u(1)=0, \quad 0<u(r)<1,
\end{gather*}
$$

with $\varphi(v)=v|v|^{p-2}$. It is easy to see that $u^{\prime}(r)<0$ for all $0<r<1$, which implies that the value of $u(0)$ gives the maximum value (or the L^{∞} norm) of our solution. Moreover, $u(0)$ is a global parameter, i.e., it uniquely identifies the solution pair $(\lambda, u(r))$, see e.g., P. Korman [13]. It follows that a twodimensional curve in the $(\lambda, u(0))$ plane completely describes the solution set of (1.2). The self-similarity of this equation allows one to parameterize the global solution curve, using the solution of a single initial value problem:

$$
\begin{equation*}
\varphi\left(w^{\prime}\right)^{\prime}+\frac{n-1}{t} \varphi\left(w^{\prime}\right)=\frac{t^{\alpha}}{w^{q}}, \quad w(0)=1, \quad w^{\prime}(0)=0 . \tag{1.3}
\end{equation*}
$$

Its solution $w(t)$ is a positive and increasing function, which can be easily computed numerically. Following J.A. Pelesko [16], we show that the global solution curve of (1.2) is given by

$$
(\lambda, u(0))=\left(\frac{t^{\alpha+p}}{w^{p+q-1}(t)}, 1-\frac{1}{w(t)}\right),
$$

parameterized by $t \in(0, \infty)$. In particular, $\lambda=\lambda(t)=\frac{t^{\alpha+p}}{w^{p+q-1}(t)}$, and

$$
\lambda^{\prime}(t)=t^{\alpha+p-1} w^{-p-q}\left[(\alpha+p) w-t(p+q-1) w^{\prime}\right],
$$

so that the solution curve travels to the right (left) in the $(\lambda, u(0))$ plane if $(\alpha+p) w-t(p+q-1) w^{\prime}>0(<0)$. This makes us interested in the roots of the function $(\alpha+p) w-t(p+q-1) w^{\prime}$. If we set this function to zero

$$
(\alpha+p) w-t(p+q-1) w^{\prime}=0,
$$

then the general solution of this equation is

$$
w(t)=c t^{\beta}, \quad \beta=\frac{\alpha+p}{p+q-1} .
$$

Quite remarkably, if we choose the constant $c=c_{0}=\left[\frac{1}{\beta^{p-1}[(p-1)(\beta-1)+n-1]}\right]^{\frac{1}{p+q-1}}$ then

$$
w_{0}(t)=c_{0} t^{\beta}
$$

also solves the equation in (1.3), along with $w(t)$. We show that $w(t)$ tends to $w_{0}(t)$ as $t \rightarrow \infty$, and the solution curve of (1.2) makes infinitely many turns if and only if $w(t)$ and $w_{0}(t)$ intersect infinitely many times. We give a sharp condition for that to happen, thus generalizing the main result in Z. Guo and J. Wei [9] to the case of $p \neq 2$ (with a simpler proof). In [12] we called $w(t)$ the generating solution, and $w_{0}(t)$ the guiding solution.

We apply a similar approach to a class of equations with polynomial $f(r, u)$ generalizing the well-known results of D.D. Joseph and T.S. Lundgren [11], and to the p-Laplace version of the generalized Gelfand equation, where we easily recover the corresponding result of J. Jacobsen and K. Schmitt [10].

For each of the three classes of equations we show that along the solution curves (as $u(0) \rightarrow \infty$), the solutions tend to a singular solution (for which $u(r) \rightarrow \infty$, or $u^{\prime}(r) \rightarrow \infty$, as $r \rightarrow 0$). Moreover, one can calculate the singular solutions explicitly, which is truly a remarkable feature of self-similar equations. Singular solutions were studied previously by many authors, including C. Budd and J. Norbury [3], F. Merle and L. A. Peletier [15], and I. Flores [6].

2 Parameterization of the solution curves

We begin with the p-Laplace version of the generalized Gelfand equation

$$
\begin{equation*}
\text { 1) } \varphi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}\right)+\lambda r^{\alpha} e^{u}=0 \text { for } 0<r<1, u^{\prime}(0)=0, u(1)=0 \tag{2.1}
\end{equation*}
$$

where $\varphi(v)=v|v|^{p-2}, p>1$. Observe that $\varphi(s v)=s^{p-1} \varphi(v)$ for any constant $s>0$. Assume that $u(0)=a>0$. We set $u=w+a, t=b r$. The constants a and b are assumed to satisfy

$$
\lambda=b^{\alpha+p} e^{-a}
$$

Then (2.1) becomes

$$
\begin{equation*}
\varphi\left(w^{\prime}\right)^{\prime}+\frac{n-1}{t} \varphi\left(w^{\prime}\right)+t^{\alpha} e^{w}=0, \quad w(0)=0, \quad w^{\prime}(0)=0 . \tag{2.2}
\end{equation*}
$$

The solution of this problem $w(t)$, which is a negative and decreasing function, is defined for all $t>0$, and it may be easily computed numerically. (Write this equation as $\left[t^{n-1} \varphi\left(w^{\prime}\right)\right]^{\prime}=-t^{n+\alpha-1} e^{w}<0$, and conclude that $t^{n-1} \varphi\left(w^{\prime}\right)<0$, and then $w^{\prime}(t)<0$ for all t.) We have

$$
0=u(1)=a+w(b),
$$

so that $a=-w(b)$, and then $\lambda=b^{\alpha+p} e^{w(b)}$. The solution curve for (2.1) is

$$
(\lambda, u(0))=\left(b^{\alpha+p} e^{w(b)},-w(b)\right),
$$

parameterized by $b \in(0, \infty)$. The solution of (2.1) at b is $u(r)=w(b r)-$ $w(b)$. It will be convenient to write the solution curve as

$$
\begin{equation*}
(\lambda, u(0))=\left(t^{\alpha+p} e^{w(t)},-w(t)\right), \tag{2.3}
\end{equation*}
$$

parameterized by $t \in(0, \infty)$, and $w(t)$ is the solution of (2.2). The solution of (2.1) at the parameter value t is $u(r)=w(t r)-w(t)$.

We consider next the problem

$$
\begin{gather*}
\varphi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}\right)+\lambda \frac{r^{\alpha}}{(1-u)^{q}}=0 \quad \text { for } 0<r<1, \tag{2.4}\\
u^{\prime}(0)=u(1)=0, \quad 0<u(r)<1,
\end{gather*}
$$

which arises in modeling of electrostatic micro-electromechanical systems (MEMS), see [16], [8], [9]. Here λ is a positive parameter, $q>0$ and $\alpha>0$ are constants, and as before $\varphi(v)=v|v|^{p-2}, p>1$. Any solution $u(r)$ of (2.4) is a positive and decreasing function (by the maximum principle), so that $u(0)$ gives its maximum value. Our goal is to compute the solution curve $(\lambda, u(0))$. Let $1-u=v$. Then $v(r)$ satisfies

$$
\begin{equation*}
\varphi\left(v^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(v^{\prime}\right)=\lambda \frac{r^{\alpha}}{v^{q}} \quad \text { for } 0<r<1, \quad v^{\prime}(0)=0, \quad v(1)=1 \tag{2.5}
\end{equation*}
$$

Assume that $v(0)=a$. We scale $v(r)=a w(r)$, and $t=b r$. The constants a and b are assumed to satisfy

$$
\begin{equation*}
\lambda=a^{p+q-1} b^{\alpha+p} . \tag{2.6}
\end{equation*}
$$

Then (2.5) becomes

$$
\begin{equation*}
\varphi\left(w^{\prime}\right)^{\prime}+\frac{n-1}{t} \varphi\left(w^{\prime}\right)=\frac{t^{\alpha}}{w^{q}}, \quad w(0)=1, \quad w^{\prime}(0)=0 . \tag{2.7}
\end{equation*}
$$

The solution of this problem is a positive increasing function, which is defined for all $t>0$. We have

$$
1=v(1)=a w(b),
$$

and so $a=\frac{1}{w(b)}$, and then $\lambda=\frac{b^{\alpha+p}}{w^{p+q-1}(b)}$. The solution curve $(\lambda, u(0))$ is $\left(\frac{b^{\alpha+p}}{w^{p+q-1}(b)}, 1-\frac{1}{w(b)}\right)$, parameterized by $b \in(0, \infty)$. It will be convenient to write the solution curve in the form

$$
\begin{equation*}
(\lambda, u(0))=\left(\frac{t^{\alpha+p}}{w^{p+q-1}(t)}, 1-\frac{1}{w(t)}\right), \tag{2.8}
\end{equation*}
$$

parameterized by $t \in(0, \infty)$. In case $p=2$, this parameterization was first derived by J.A. Pelesko [16], and was then used in [8]. The solution of (2.4) at t is $u(r)=1-\frac{w(t r)}{w(t)}$.

Finally, we consider the problem (with the constants $p>1, q>1, \alpha \geq 0$)

$$
\begin{gather*}
\varphi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}\right)+\lambda r^{\alpha}(1+u)^{q}=0 \text { for } 0<r<1, \tag{2.9}\\
u^{\prime}(0)=u(1)=0,
\end{gather*}
$$

which was analyzed in case $p=2$ and $\alpha=0$ by D.D. Joseph and T.S. Lundgren [11]. If we set $1+u=v$, then $v(r)$ satisfies

$$
\begin{equation*}
\varphi\left(v^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(v^{\prime}\right)+\lambda r^{\alpha} v^{q}=0, \quad v^{\prime}(0)=0, \quad v(1)=1 . \tag{2.10}
\end{equation*}
$$

Assuming that $v(0)=a$, we scale $v(r)=a w(r)$, and $t=b r$. The constants a and b are assumed to satisfy

$$
\begin{equation*}
\lambda=\frac{b^{p+\alpha}}{a^{q-p+1}} . \tag{2.11}
\end{equation*}
$$

Then (2.10) becomes

$$
\begin{equation*}
\varphi\left(w^{\prime}\right)^{\prime}+\frac{n-1}{t} \varphi\left(w^{\prime}\right)+t^{\alpha} w^{q}=0, \quad w(0)=1, \quad w^{\prime}(0)=0 . \tag{2.12}
\end{equation*}
$$

The solution of (2.12) satisfies $w^{\prime}(t)<0$, so long as $w(t)>0$ (the function $t^{n-1} \varphi\left(w^{\prime}(t)\right)$ is zero at $t=0$, and its derivative is negative). It follows that either there is a t_{0}, so that $w\left(t_{0}\right)=0$ and $w(t)>0$ on $\left(0, t_{0}\right)$, or $w(t)>0$ on $(0, \infty)$ and $\lim _{t \rightarrow \infty} w(t)=a \geq 0$. It is easy to see that $a=0$ in the second case. Indeed, assuming that $a>0$, we have $\left[t^{n-1} \varphi\left(w^{\prime}\right)\right]^{\prime} \leq-a^{q} t^{n+\alpha-1}$, and integrating we conclude that $w(t) \leq 1-c t^{\gamma}$, with some $c>0$, and $\gamma=\frac{\alpha+p}{p-1}>0$, contradicting that $w(t)>0$ on $(0, \infty)$.

Lemma 2.1 Assume that

$$
\begin{equation*}
q>\frac{n p-n+p+p \alpha}{n-p} . \tag{2.13}
\end{equation*}
$$

Then $w(t)>0$, and $w^{\prime}(t)<0$ on $(0, \infty)$, with $\lim _{t \rightarrow \infty} w(t)=0$.

Proof: In view of the above remarks, we need to exclude the possibility that $w\left(t_{0}\right)=0$ and $w(t)>0$ on $\left(0, t_{0}\right)$. Recall that for the equation

$$
\varphi\left(w^{\prime}\right)^{\prime}+\frac{n-1}{t} \varphi\left(w^{\prime}\right)+f(t, w)=0
$$

the Pohozhaev function

$$
P(t)=t^{n}\left[(p-1) \varphi\left(w^{\prime}\right) w^{\prime}+p F(t, w)\right]+(n-p) t^{n-1} \varphi\left(w^{\prime}\right) w
$$

is easily seen to satisfy

$$
P^{\prime}(t)=t^{n-1}\left[n p F(t, w)-(n-p) w f(t, w)+p t F_{t}(t, w)\right],
$$

where $F(t, w)=\int_{0}^{w} f(t, z) d z$, see e.g., [13], p. 136. Here

$$
P^{\prime}(t)=t^{n-1+\alpha}\left[\frac{n p}{q+1}-(n-p)+\frac{p \alpha}{q+1}\right] w^{q+1}<0
$$

Since $P(0)=0$, and $P\left(t_{0}\right)>0$, we have a contradiction.
As before, we have

$$
1=v(1)=a w(b),
$$

and so $a=\frac{1}{w(b)}$, and then $\lambda=b^{p+\alpha} w^{q-p+1}(b)$. Under the condition (2.13), the solution curve $(\lambda, u(0))$ is $\left(b^{p+\alpha} w^{q-p+1}(b), \frac{1}{w(b)}-1\right)$, parameterized by $b \in(0, \infty)$. The solution at b is $u(r)=\frac{w(b r)}{w(b)}-1$. It will be convenient to write the solution curve in the form

$$
\begin{equation*}
(\lambda, u(0))=\left(t^{p+\alpha} w^{q-p+1}(t), \frac{1}{w(t)}-1\right), \tag{2.14}
\end{equation*}
$$

parameterized by $t \in(0, \infty)$. The solution of (2.9) at t is $u(r)=\frac{w(t r)}{w(t)}-1$.

3 The equation modeling MEMS

We consider the problem (2.4), whose solution curve is given by (2.8), where $w(t)$ is the solution of (2.7). We have $\lambda(t)=\frac{t^{\alpha+p}}{w^{p+q-1}(t)}$, where $w(t)$ is the solution of (2.7), and so

$$
\lambda^{\prime}(t)=t^{\alpha+p-1} w^{-p-q}\left[(\alpha+p) w-t(p+q-1) w^{\prime}\right] .
$$

We are interested in the roots of the function $(\alpha+p) w-t(p+q-1) w^{\prime}$. If we set this function to zero

$$
(\alpha+p) w-t(p+q-1) w^{\prime}=0
$$

then the general solution of this equation is

$$
w(t)=c t^{\beta}, \quad \beta=\frac{\alpha+p}{p+q-1} .
$$

Quite remarkably, if we choose the constant $c=c_{0}=\left[\frac{1}{\beta^{p-1}[(p-1)(\beta-1)+n-1]}\right]^{\frac{1}{p+q-1}}$, under the condition that

$$
\begin{equation*}
(p-1)(\beta-1)+n-1>0, \tag{3.1}
\end{equation*}
$$

then

$$
w_{0}(t)=c_{0} t^{\beta}
$$

also solves the equation in (2.7), along with $w(t)$. We shall show that $w(t)$, the solution of the initial value problem (2.7), tends to $w_{0}(t)$ as $t \rightarrow \infty$, and the issue turns out to be whether $w(t)$ and $w_{0}(t)$ cross infinitely many times as $t \rightarrow \infty$.

Lemma 3.1 Assume that $w(t)$ and $w_{0}(t)$ intersect infinitely many times. Then the solution curve of (2.4) makes infinitely many turns.
Proof: Assuming that $w(t)$ and $w_{0}(t)$ intersect infinitely many times, let $\left\{t_{n}\right\}$ denote the points of intersection. At $\left\{t_{n}\right\}$'s, $w(t)$ and $w_{0}(t)$ have different slopes (by uniqueness for initial value problems). Since $(\alpha+p) w_{0}\left(t_{n}\right)-$ $t_{n}(p+q-1) w_{0}^{\prime}\left(t_{n}\right)=0$, it follows that $(\alpha+p) w\left(t_{n}\right)-t_{n}(p+q-1) w^{\prime}\left(t_{n}\right)<0$ (>0) if $w(t)$ intersects $w_{0}(t)$ from below (above) at t_{n}. Hence, on any inter$\operatorname{val}\left(t_{n}, t_{n+1}\right)$ there is a point t_{0}, where $(\alpha+p) w\left(t_{0}\right)-t_{0}(p+q-1) w^{\prime}\left(t_{0}\right)=0$, i.e., $\lambda^{\prime}\left(t_{0}\right)=0$, and t_{0} gives a critical point. Since $\lambda^{\prime}\left(t_{n}\right)$ and $\lambda^{\prime}\left(t_{n+1}\right)$ have different signs, the solution curve changes its direction over $\left(t_{n}, t_{n+1}\right)$. \diamond

We shall need the following well-known Sturm-Picone's comparison theorem, see e.g., p. 5 in [14].

Lemma 3.2 Let $u(t)$ and $v(t)$ be respectively classical solutions of

$$
\begin{gather*}
\left(a(t) u^{\prime}\right)^{\prime}+b(t) u=0, \tag{3.2}\\
\left(a_{1}(t) v^{\prime}\right)^{\prime}+b_{1}(t) v=0 . \tag{3.3}
\end{gather*}
$$

Assume that the given differentiable functions $a(t), a_{1}(t)$, and continuous functions $b(t)$ and $b_{1}(t)$, satisfy

$$
\begin{equation*}
b_{1}(t) \geq b(t), \text { and } 0<a_{1}(t) \leq a(t) \quad \text { for } t \geq t_{0}>0 \tag{3.4}
\end{equation*}
$$

In case $a_{1}(t)=a(t)$ and $b_{1}(t)=b(t)$ for all t, assume additionally that $u(t)$ and $v(t)$ are not constant multiples of one another. Then, for $t \geq t_{0}, v(t)$ has a root between any two consecutive roots of $u(t)$.

Lemma 3.3 Consider the equation

$$
\begin{equation*}
\left(a_{0}(t)(1+f(t)) v^{\prime}\right)^{\prime}+\frac{n-1}{t} a_{0}(t)(1+f(t)) v^{\prime}+b_{0}(t)(1+g(t)) v=0 \tag{3.5}
\end{equation*}
$$

with given differentiable functions $a_{0}(t)>0$ and $f(t)$, and continuous functions $b_{0}(t)>0$ and $g(t)$. Assume that $\lim _{t \rightarrow \infty} f(t)=\lim _{t \rightarrow \infty} g(t)=0$, and there is an $\epsilon>0$ such that any solution of

$$
\begin{equation*}
\left(a_{0}(t)(1+\epsilon) v^{\prime}\right)^{\prime}+\frac{n-1}{t} a_{0}(t)(1+\epsilon) v^{\prime}+b_{0}(t)(1-\epsilon) v=0 \tag{3.6}
\end{equation*}
$$

has infinitely many roots. Then any solution of (3.5) has infinitely many roots.

Proof: We rewrite (3.5) in the form (3.2), with $a(t)=t^{n-1} a_{0}(t)(1+f(t))$, and $b(t)=t^{n-1} b_{0}(t)(1+g(t))$, and we rewrite (3.6) in the form (3.3), with $a_{1}(t)=t^{n-1} a_{0}(t)(1+\epsilon)$, and $b_{1}(t)=t^{n-1} b_{0}(t)(1-\epsilon)$. For large t, the inequalities in (3.4) hold, and the Lemma 3.2 applies.

The linearized equation for (2.7) is

$$
\left(\varphi^{\prime}\left(w^{\prime}\right) z^{\prime}\right)^{\prime}+\frac{n-1}{t} \varphi^{\prime}\left(w^{\prime}\right) z^{\prime}=-q t^{\alpha} w^{-q-1} z
$$

At the solution $w=w_{0}(t)$, this becomes

$$
\begin{equation*}
\left(a_{0}(t) z^{\prime}\right)^{\prime}+\frac{n-1}{t} a_{0}(t) z^{\prime}+b_{0}(t) z=0 \tag{3.7}
\end{equation*}
$$

with $a_{0}(t)=\varphi^{\prime}\left(w_{0}^{\prime}\right)=(p-1) c_{0}^{p-2} \beta^{p-2} t^{(p-2)(\beta-1)}$, and $b_{0}(t)=q t^{\alpha} w_{0}^{-q-1}=$ $q c_{0}^{-q-1} t^{\alpha-\beta(q+1)}$. One simplifies (3.7) to read

$$
z^{\prime \prime}+\frac{[(p-2)(\beta-1)+n-1]}{t} z^{\prime}+\frac{q \beta[(p-1)(\beta-1)+n-1]}{(p-1) t^{2}} z=0
$$

which is an Euler equation! The roots of its characteristic equation,

$$
r(r-1)+[(p-2)(\beta-1)+n-1] r+\frac{q \beta[(p-1)(\beta-1)+n-1]}{(p-1)}=0
$$

are complex valued, provided that

$$
[(p-2)(\beta-1)+n-2]^{2}<\frac{4 q \beta[(p-1)(\beta-1)+n-1]}{p-1}
$$

We write this inequality in the form

$$
\begin{equation*}
A \beta^{2}+B \beta-C>0 \tag{3.8}
\end{equation*}
$$

with $A=4(p-1) q-(p-1)(p-2)^{2}, B=4 q(n-p)-2(p-1)(p-2)(n-p)$, and $C=(p-1)(n-p)^{2}$. We shall have $A>0$, provided that

$$
\begin{equation*}
4 q-(p-2)^{2}>0 \tag{3.9}
\end{equation*}
$$

For (3.8) to hold, we need $\beta=\frac{\alpha+p}{p+q-1}$ to be greater than the larger root of this quadratic, i.e., $\beta>\frac{-B+\sqrt{B^{2}+4 A C}}{2 A}$ (assuming (3.9)), which gives
(3.10) $\frac{\alpha+p}{p+q-1}>\frac{(p-n)\left(2 q-p^{2}+3 p-2\right)+2|n-p| \sqrt{q(p+q-1)}}{(p-1)\left[4 q-(p-2)^{2}\right]}$.

Theorem 3.1 Assume that $q>0, p>1$, with

$$
\begin{equation*}
(p-1)(\beta-1)+n-1>\beta, \tag{3.11}
\end{equation*}
$$

and the conditions (3.9) and (3.10) hold. Then the solution curve of

$$
\begin{gather*}
\varphi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}\right)+\lambda \frac{r^{\alpha}}{(1-u)^{q}}=0 \quad \text { for } 0<r<1 \tag{3.12}\\
u^{\prime}(0)=u(1)=0, \quad 0<u(r)<1
\end{gather*}
$$

makes infinitely many turns. Moreover, along this curve (as $u(0) \rightarrow \infty$), $\lambda \rightarrow \lambda_{0}=\frac{1}{c_{0}^{q-1}}=\beta^{p-1}[(p-1)(\beta-1)+n-1]$, and $u(r)$ tends to $1-r^{\beta}$ for $r \neq 0$, which is a solution of the equation in (3.12).

Proof: In view of Lemma 3.1, we need to show that $w(t)$ and $w_{0}(t)$ intersect infinitely many times. Let $P(t)=w(t)-w_{0}(t)$. Then $P(t)$ satisfies

$$
\begin{equation*}
\left(a(t) P^{\prime}\right)^{\prime}+\frac{n-1}{t} a(t) P^{\prime}+b(t) P=0 \tag{3.13}
\end{equation*}
$$

where

$$
\begin{gather*}
a(t)=\int_{0}^{1} \varphi^{\prime}\left(s w^{\prime}(t)+(1-s) w_{0}^{\prime}(t)\right) d s \tag{3.14}\\
b(t)=q t^{\alpha} \int_{0}^{1} \frac{1}{\left[s w(t)+(1-s) w_{0}(t)\right]^{q+1}} d s \tag{3.15}
\end{gather*}
$$

We claim that it is impossible for $P(t)$ to keep the same sign over some infinite interval $\left(t_{0}, \infty\right)$, and tend to a constant as $t \rightarrow \infty$. Assuming the contrary, write

$$
\begin{gathered}
a(t)=(p-1)\left(w_{0}^{\prime}\right)^{p-2} \int_{0}^{1}\left|s \frac{w^{\prime}(t)}{w_{0}^{\prime}(t)}+(1-s)\right|^{p-2} d s=a_{0}(t)(1+o(1)), \\
b(t)=q t^{\alpha} \frac{1}{w_{0}^{q+1}} \int_{0}^{1} \frac{1}{\left[s \frac{w(t)}{w_{0}(t)}+(1-s)\right]^{q+1}} d s=b_{0}(t)(1+o(1)) .
\end{gathered}
$$

as $t \rightarrow \infty$. (Observe that $\frac{w(t)}{w_{0}(t)} \rightarrow 1$, since $P(t)$ tends to a constant, and $\frac{w^{\prime}(t)}{w_{0}^{\prime}(t)} \rightarrow 1$, by L'Hospital's rule, as $t \rightarrow \infty$.) Since Euler's equation (3.7) has infinitely many roots on $\left(t_{0}, \infty\right)$, we conclude by Lemma 3.3 that $P(t)$ must vanish on that interval too, a contradiction.

Next we show that if $P\left(t_{0}\right)=0$, then $P(t)$ remains bounded for all $t>t_{0}$. Assume that $P^{\prime}\left(t_{0}\right)<0$, and the case when $P^{\prime}\left(t_{0}\right)>0$ is similar. Then $P(t)<0$ for $t>t_{0}$, with $t-t_{0}$ small. From (3.13), $t^{n-1} a(t) P^{\prime}(t)$ is increasing for $t>t_{0}$, so that

$$
P^{\prime}(t)>-\frac{a_{0}}{a(t) t^{n-1}}, \text { for } t>t_{0} \quad\left(\text { with } a_{0}=-t_{0}^{n-1} a\left(t_{0}\right) P^{\prime}\left(t_{0}\right)>0\right) .
$$

Since solutions of the linear equation (3.13) cannot go to infinity over a bounded interval, we may assume that t_{0} is large, and then by the above $a(t) \sim a_{0}(t) \sim a_{1} t^{(p-2)(\beta-1)}$ for $t>t_{0}$, and some $a_{1}>0$. It follows that for some $a_{2}>0$

$$
\begin{equation*}
P^{\prime}(t)>-\frac{a_{2}}{t^{n-1+(p-2)(\beta-1)}}=-\frac{a_{2}}{t^{1+\epsilon}}, \text { for } t>t_{0} \tag{3.16}
\end{equation*}
$$

with $\epsilon=n-2+(p-2)(\beta-1)>0$, in view of (3.11). Integrating over $\left(t_{0}, t\right)$, and using that $n \geq 3$, we conclude the boundness of $P(t)$, so long as $P(t)<0$. If another root of $P(t)$ is encountered, we repeat the argument. Hence, $P(t)$ remains bounded for all $t>t_{0}$.

From the equation (3.13), we see that $P(t)$ cannot have points of positive minimum or points of negative maximum. We claim that if $P(t)$ has one root, it has infinitely many roots. Indeed, assume that $P\left(t_{1}\right)=0$, and say $P^{\prime}\left(t_{1}\right)>0$. For $t>t_{1}, P(t)$ remains bounded, but cannot tend to a constant. Hence, $P(t)$ will have to turn back and become decreasing, but it cannot have a positive local minimum, or tend to a constant. Hence, $P\left(t_{2}\right)=0$ at some $t_{2}>t_{1}$, and so on.

We have $P(0)=1$, so that $\left(t^{n-1} a(t) P^{\prime}(t)\right)^{\prime}<0$ for small $t>0$. The function $q(t) \equiv t^{n-1} a(t) P^{\prime}(t)$ satisfies $q(0)=0$ and $q^{\prime}(t)<0$, and so $q(t)<0$. It follows that $P^{\prime}(t)<0$ for small $t>0$. Since $P(t)$ cannot turn around, or tend to a constant, we conclude the existence of the first root t_{1} of $P(t)$, implying the existence of infinitely many roots.

We show next that $w(t) \rightarrow w_{0}(t)$ as $t \rightarrow \infty$. Let t_{k} and t_{k+1} be two consecutive roots of $P(t)$, and $P^{\prime}\left(t_{k}\right)<0$, so that $P(t)<0$ on $\left(t_{k}, t_{k+1}\right)$. Let τ_{k} be the unique point of minimum of $P(t)$ on $\left(t_{k}, t_{k+1}\right)$. For negative $P(t)$ we have the inequality (3.16), with t_{k} in place of t_{0}. Integrating this inequality over $\left(t_{k}, \tau_{k}\right)$, we get

$$
P\left(\tau_{k}\right)>\bar{c}\left(\tau_{k}^{-\epsilon}-t_{k}^{-\epsilon}\right) \quad(\text { with some } \bar{c}>0)
$$

which implies that $\left|P\left(\tau_{k}\right)\right| \rightarrow 0$, as $k \rightarrow \infty$. The case when $P^{\prime}\left(t_{k}\right)>0$ is similar, so that $w(t) \rightarrow w_{0}(t)$ along the solution curve. Since $u(r)=1-\frac{w(t r)}{w(t)}$, it follows that along the solution curve $u(r)$ tends to $1-\frac{w_{0}(t r)}{w_{0}(t)}=1-r^{\beta}$, while $\lambda(t)$ tends to $\frac{1}{c_{0}^{q-1}}$.

Observe that in case $\beta \in(0,1)$, the limiting solution $1-r^{\beta}$ is singular, because $u^{\prime}(0)$ is not defined. Notice also that the condition (3.11) implies (3.1). Finally, observe that in case $\beta \in(0,1)$ the condition (3.11) implies that $n \geq 2$. Indeed, we can rewrite (3.11) as $n>2 \beta+p(1-\beta)$, which is a point between $p>1$, and 2 .

One special case when this theorem applies is the following. Assume that $n \geq p$, so that (3.10) becomes

$$
\frac{\alpha+p}{p+q-1}>(n-p) \frac{2 \sqrt{q(p+q-1)}+p^{2}-3 p+2-2 q}{(p-1)\left[4 q-(p-2)^{2}\right]}
$$

Then (3.10) holds, provided that

$$
\begin{gather*}
2 \sqrt{q(p+q-1)}+p^{2}-3 p+2-2 q>0 \tag{3.17}\\
p \leq n<p+\frac{4 q>(p-2)^{2}}{(p+q-1)\left(2 \sqrt{q(p+q-1)}+p^{2}-3 p+2-2 q\right)}
\end{gather*}
$$

Observe that the third inequality ($n \geq p$) implies that the condition (3.1) holds, and the second inequality is just (3.9). Hence, the three inequalties in (3.17) imply the theorem. In case $p=2$, the first and the second inequalities hold automatically, while the third one gives the condition in Z. Guo and J. Wei [9].

4 The generalized Joseph-Lundgren problem

We now study the problem (2.9). Its solution curve is represented by (2.14), under the condition (2.13), where $w(t)$ is the solution of (2.12). In particular, $\lambda(t)=t^{p+\alpha} w^{q-p+1}(t)$, and we wish to know how many times this function changes the direction of monotonicity for $t \in(0, \infty)$. (Here $w(t)$ is the solution of (2.12), the generating solution.) Compute

$$
\lambda^{\prime}(t)=t^{p+\alpha-1} w^{q-p}(t)\left[(p+\alpha) w(t)+(q-p+1) t w^{\prime}(t)\right]
$$

so that we are interested in the roots of the function $(p+\alpha) w+(q-p+1) t w^{\prime}$. If we set this function to zero

$$
(p+\alpha) w+(q-p+1) t w^{\prime}=0
$$

then the general solution of this equation is $w(t)=a t^{-\beta}$, with $\beta=\frac{p+\alpha}{q-p+1}$. If we choose the constant a as

$$
a=a_{0}=\left[(n-p) \beta^{p-1}-(p-1) \beta^{p}\right]^{\frac{1}{q-p+1}}
$$

then $w_{0}(t)=a_{0} t^{-\beta}$ is a solution of (2.12), the guiding solution (we have $(n-p) \beta^{p-1}-(p-1) \beta^{p}>0$, under the condition (2.13), if $\left.n>p\right)$.

Lemma 4.1 Assume that $w(t)$ and $w_{0}(t)$ intersect infinitely many times. Then the solution curve of (2.9) makes infinitely many turns.

Proof: Indeed, assuming that $w(t)$ and $w_{0}(t)$ intersect infinitely many times, let $\left\{t_{n}\right\}$ denote their points of intersection. At $\left\{t_{n}\right\}$'s, $w(t)$ and $w_{0}(t)$ have different slopes (by uniqueness for initial value problems). Since ($p+$ $\alpha) w_{0}\left(t_{n}\right)+(q-p+1) t_{n} w_{0}^{\prime}\left(t_{n}\right)=0$, it follows that $(p+\alpha) w\left(t_{n}\right)+(q-$ $p+1) t_{n} w^{\prime}\left(t_{n}\right)>0(<0)$ if $w(t)$ intersects $w_{0}(t)$ from below (above) at t_{n}. Hence, on any interval $\left(t_{n}, t_{n+1}\right)$ there is a point t_{0}, where $(p+\alpha) w\left(t_{0}\right)+$ $(q-p+1) t_{0} w^{\prime}\left(t_{0}\right)=0$, i.e., $\lambda^{\prime}\left(t_{0}\right)=0$, and t_{0} is a critical point. Since $\lambda^{\prime}\left(t_{n}\right)$ and $\lambda^{\prime}\left(t_{n+1}\right)$ have different signs, the solution curve changes its direction over $\left(t_{n}, t_{n+1}\right)$.

The linearized equation for (2.12) is

$$
\left(\varphi^{\prime}\left(w^{\prime}\right) z^{\prime}\right)^{\prime}+\frac{n-1}{t} \varphi^{\prime}\left(w^{\prime}\right) z^{\prime}+q t^{\alpha} w^{q-1} z=0
$$

At the solution $w=w_{0}(t)$, this becomes

$$
\begin{equation*}
\left(a_{0}(t) z^{\prime}\right)^{\prime}+\frac{n-1}{t} a_{0}(t) z^{\prime}+b_{0}(t) z=0 \tag{4.1}
\end{equation*}
$$

with $a_{0}(t)=\varphi^{\prime}\left(w_{0}^{\prime}\right)$, and $b_{0}(t)=q t^{\alpha} w_{0}^{q-1}$. One simplifies (4.1) to Euler's equation

$$
\begin{equation*}
z^{\prime \prime}+\frac{[-(\beta+1)(p-2)+n-1]}{t} z^{\prime}+\frac{q a_{0}^{q-p+1}}{(p-1) \beta^{p-2} t^{2}} z=0 . \tag{4.2}
\end{equation*}
$$

Let us consider first the case when $p=2$ and $\alpha=0$, and $n>2$. Then $\beta=\frac{2}{q-1}, a_{0}=[\beta(n-\beta-2)]^{\frac{1}{q-1}}$, and the equation (4.2) becomes

$$
t^{2} z^{\prime \prime}+(n-1) t z^{\prime}+q \beta(n-\beta-2) z=0 .
$$

Its characteristic equation

$$
r(r-1)+(n-1) r+q \beta(n-\beta-2)=0
$$

has the roots

$$
r=\frac{-(n-2) \pm \sqrt{(n-2)^{2}-4 q \beta(n-\beta-2)}}{2} .
$$

These roots are complex if

$$
(n-2)^{2}-4 q \beta(n-2)+4 q \beta^{2}<0 .
$$

On the left we have a quadratic in $n-2$, with two positive roots. The largest value of $n-2$, for which this inequality holds, corresponds to the larger root of this quadratic, i.e.,

$$
\begin{equation*}
n-2<\frac{4 q}{q-1}+4 \sqrt{\frac{q}{q-1}} . \tag{4.3}
\end{equation*}
$$

We shall show that infinitely many solutions occur if (4.3) holds, and

$$
\begin{equation*}
q>\frac{n+2}{n-2} \tag{4.4}
\end{equation*}
$$

(The last condition ensures that the generating solution $w(t)$ is defined for all $t>0$, by Lemma 2.1.) In terms of n, the conditions (4.3) and (4.4) imply

$$
\begin{equation*}
\frac{2+2 q}{q-1}<n<2+\frac{4 q}{q-1}+4 \sqrt{\frac{q}{q-1}}, \tag{4.5}
\end{equation*}
$$

which is the condition from [11] (it implies that $n>2$). Thus we shall recover the following classical theorem of D.D. Joseph and T.S. Lundgren [11].

Theorem 4.1 Assume that the conditions (4.3) and (4.4) hold (or (4.5) holds). Then the solution curve of (2.9) makes infinitely many turns. Moreover, along this curve (as $u(0) \rightarrow \infty), \lambda \rightarrow \lambda_{0}=a_{0}^{q-1}$, and $u(r)$ tends to $r^{-\beta}-1$ for $r \neq 0$, which is a singular solution of the equation in (2.9).

We shall give a proof of more general result below.
For general p and α, the characteristic equation for (4.2) is

$$
\begin{equation*}
r(r-1)+A r+B=0 \tag{4.6}
\end{equation*}
$$

with $A=-\beta(p-2)+n-p+1$, and $B=\frac{q(n-p)}{p-1} \beta-q \beta^{2}$. The roots of (4.6)

$$
r=\frac{-(A-1) \pm \sqrt{(A-1)^{2}-4 B}}{2}
$$

are complex, provided that

$$
(A-1)^{2}-4 B<0
$$

which simplifies to

$$
\begin{equation*}
(n-p)^{2}-\theta(n-p)+\gamma<0 \tag{4.7}
\end{equation*}
$$

with

$$
\begin{equation*}
\theta=2 \beta(p-2)+\frac{4 q \beta}{p-1}, \quad \gamma=(p-2)^{2} \beta^{2}+4 q \beta^{2} \tag{4.8}
\end{equation*}
$$

On the left in (4.7) we have a quadratic in $n-p$, with two positive roots. The largest value of $n-p$, for which the inequality (4.7) holds, corresponds to the larger root of this quadratic, i.e.,

$$
\begin{equation*}
n-p<\frac{\theta+\sqrt{\theta^{2}-4 \gamma}}{2} \tag{4.9}
\end{equation*}
$$

We shall show that infinitely many solutions occur if the conditions (2.13) and (4.9) hold. In terms of n, the conditions (2.13) and (4.9) imply that

$$
\begin{equation*}
\frac{p q+p+p \alpha}{q-p+1}<n<p+\frac{\theta+\sqrt{\theta^{2}-4 \gamma}}{2} . \tag{4.10}
\end{equation*}
$$

The first inequality in (4.10) implies that

$$
\begin{equation*}
(\beta+1)(p-2)<n-2, \tag{4.11}
\end{equation*}
$$

which in turn gives that $n>p$.
The critical exponent in (4.9) was computed earlier in X. Cabré and M. Sanchón [4] in the context of semi-stable and extremal solutions of p-Laplace equations. That paper considered equations on general domains, and more general $f(u)$, see also [2] and [5].

Theorem 4.2 Assume that $\lim _{t \rightarrow \infty} \frac{w(t)}{w_{0}(t)}=1$ (in case $p=2$, this follows by Lemma 2.2 in [2]). Assume also that the conditions (2.13) and (4.9) hold (or (4.10) holds). Then the solution curve of

$$
\begin{gather*}
\varphi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}\right)+\lambda r^{\alpha}(1+u)^{q}=0 \text { for } 0<r<1, \tag{4.12}\\
u^{\prime}(0)=u(1)=0
\end{gather*}
$$

makes infinitely many turns. Moreover, along this curve (as $u(0) \rightarrow \infty$), $\lambda \rightarrow \lambda_{0}=a_{0}^{q-1}$, and $u(r)$ tends to $r^{-\beta}-1$ for $r \neq 0$, which is a singular solution of the equation in (4.12).
Proof: In view of Lemma 4.1, we need to show that $w(t)$ and $w_{0}(t)$ intersect infinitely many times, and they tend to each other as $t \rightarrow \infty$. Let $P(t)=w(t)-w_{0}(t)$. Then $P(t)$ satisfies

$$
\begin{equation*}
\left(a(t) P^{\prime}\right)^{\prime}+\frac{n-1}{t} a(t) P^{\prime}+b(t) P=0 \tag{4.13}
\end{equation*}
$$

where

$$
\begin{gather*}
a(t)=\int_{0}^{1} \varphi^{\prime}\left(s w^{\prime}(t)+(1-s) w_{0}^{\prime}(t)\right) d s \tag{4.14}\\
b(t)=q t^{\alpha} \int_{0}^{1}\left[s w(t)+(1-s) w_{0}(t)\right]^{q-1} d s \tag{4.15}
\end{gather*}
$$

We claim that it is impossible for $P(t)$ to keep the same sign over some infinite interval $\left(t_{0}, \infty\right)$. Assuming the contrary, write $\left(a_{0}(t)\right.$ and $b_{0}(t)$ were defined in (4.1))

$$
\begin{gathered}
a(t)=(p-1)\left(-w_{0}^{\prime}\right)^{p-2} \int_{0}^{1}\left|s \frac{w^{\prime}(t)}{w_{0}^{\prime}(t)}+(1-s)\right|^{p-2} d s=a_{0}(t)(1+o(1)) \\
b(t)=q t^{\alpha} w_{0}^{q-1} \int_{0}^{1}\left[s \frac{w(t)}{w_{0}(t)}+(1-s)\right]^{q-1} d s=b_{0}(t)(1+o(1))
\end{gathered}
$$

as $t \rightarrow \infty$. We have $\frac{w(t)}{w_{0}(t)} \rightarrow 1$, and then $\frac{w^{\prime}(t)}{w_{0}^{\prime}(t)} \rightarrow 1$, by L'Hospital's rule, as $t \rightarrow \infty$. Since Euler's equation (3.7) has infinitely many solutions on $\left(t_{k}, \infty\right)$, we conclude by Lemma 3.3 that $P(t)$ must vanish on that interval too, a contradiction. It follows that $P(t)$ has infinitely many roots, which implies that $w(t)$ and $w_{0}(t)$ have infinitely many points of intersection, and hence the solution curve makes infinitely many turns.

Since $u(r)=\frac{w(t r)}{w(t)}-1$, it follows that along the solution curve $u(r)$ tends to $\frac{w_{0}(t r)}{w_{0}(t)}-1=r^{-\beta}-1$ for $r \neq 0$.

5 The generalized Gelfand problem

We now use the representation (2.3) for the solution curve of (2.1). In particular, $\lambda(t)=t^{\alpha+p} e^{w(t)}$, where $w(t)$ is the solution of (2.2), and the issue is how many times this function changes its direction of monotonicity for $t \in(0, \infty)$. Compute

$$
\lambda^{\prime}(t)=t e^{w}\left(\alpha+p+t w^{\prime}\right),
$$

so that we are interested in the roots of the function $\alpha+p+t w^{\prime}$. If we set this function to zero

$$
\alpha+p+t w^{\prime}=0
$$

then the solution of this equation is of course $w(t)=a-(\alpha+p) \ln t$. Quite surprisingly, if we choose the constant $a=a_{0}=\ln \left[(n-p)(\alpha+p)^{p-1}\right]$, assuming that $n>p$, then

$$
w_{0}(t)=\ln \left[(n-p)(\alpha+p)^{p-1}\right]-(\alpha+p) \ln t
$$

is a solution of the equation in (2.2)! We shall show that $w(t)$ (the solution of the initial value problem (2.2)) tends to $w_{0}(t)$ as $t \rightarrow \infty$, and give a condition for $w(t)$ and $w_{0}(t)$ to cross infinitely many times as $t \rightarrow \infty$.

Lemma 5.1 Assume that $w(t)$ and $w_{0}(t)$ intersect infinitely many times. Then the solution curve of (2.1) makes infinitely many turns.

Proof: Indeed, assuming that $w(t)$ and $w_{0}(t)$ intersect infinitely many times, let $\left\{t_{n}\right\}$ denote the points of intersection. At $\left\{t_{n}\right\}$'s, $w(t)$ and $w_{0}(t)$ have different slopes (by uniqueness for initial value problems). Since $\alpha+$ $p+t_{n} w_{0}^{\prime}\left(t_{n}\right)=0$, it follows that $\alpha+p+t_{n} w^{\prime}\left(t_{n}\right)>0(<0)$ if $w(t)$ intersects $w_{0}(t)$ from below (above) at t_{n}. Hence, on any interval $\left(t_{n}, t_{n+1}\right)$ there is a point t_{0}, where $\alpha+p+t_{0} w^{\prime}\left(t_{0}\right)=0$, i.e., $\lambda^{\prime}\left(t_{0}\right)=0$, and t_{0} is a critical point. Since $\lambda^{\prime}\left(t_{n}\right)$ and $\lambda^{\prime}\left(t_{n+1}\right)$ have different signs, the solution curve changes its direction over $\left(t_{n}, t_{n+1}\right)$.

The linearized equation for (2.2) is

$$
\left(\varphi^{\prime}\left(w^{\prime}\right) z^{\prime}\right)^{\prime}+\frac{n-1}{t} \varphi^{\prime}\left(w^{\prime}\right) z^{\prime}+t^{\alpha} e^{w} z=0 .
$$

At the solution $w=w_{0}(t)$, this becomes

$$
\begin{equation*}
\left(a_{0}(t) z^{\prime}\right)^{\prime}+\frac{n-1}{t} a_{0}(t) z^{\prime}+b_{0}(t) z=0, \tag{5.1}
\end{equation*}
$$

with $a_{0}(t)=\varphi^{\prime}\left(w_{0}^{\prime}\right)=\frac{(p-1)(p+\alpha)^{p-2}}{t^{p-2}}$, and $b_{0}(t)=t^{\alpha} e^{w_{0}}=\frac{(n-p)(p+\alpha)^{p-1}}{t^{p}}$. Simplifying (5.1) gives

$$
(p-1) t^{2} z^{\prime \prime}+(p-1)(n-p+1) t z^{\prime}+(n-p)(p+\alpha) z=0,
$$

which is Euler's equation! Its characteristic equation

$$
(p-1) r(r-1)+(p-1)(n-p+1) r+(n-p)(p+\alpha)=0
$$

has the roots

$$
r=\frac{-(p-1)(n-p) \pm \sqrt{((p-1)(n-p)[p-1)(n-p)-4(p+\alpha)]}}{2(p-1)} .
$$

The roots are complex if $n-p>0$, and the quantity in the square brackets is negative (the opposite inequalities lead to a vacuous condition), i.e., when

$$
\begin{equation*}
p<n<\frac{p^{2}+3 p+4 \alpha}{p-1} . \tag{5.2}
\end{equation*}
$$

We now easily recover the following result of J. Jacobsen and K. Schmitt [10], which was a generalization of the famous theorem of D.D. Joseph and T.S. Lundgren [11].

Theorem 5.1 Assume that the condition (5.2) holds. Then the solution curve of

$$
\varphi\left(u^{\prime}\right)^{\prime}+\frac{n-1}{r} \varphi\left(u^{\prime}\right)+\lambda r^{\alpha} e^{u}=0 \text { for } 0<r<1, u^{\prime}(0)=0, u(1)=0
$$

makes infinitely many turns. Moreover, along this curve (as $u(0) \rightarrow \infty$), $\lambda \rightarrow e^{a_{0}}=(n-p)(p+\alpha)^{p-1}$, and $u(r)$ tends to $-(p+\alpha) \ln r$ for $r \neq 0$, which is a singular solution of the equation in (5.3).

Proof: We follow the proof of the Theorem 3.1. In view of Lemma 5.1, we need to show that $w(t)$ and $w_{0}(t)$ intersect infinitely many times. Let $P(t)=w(t)-w_{0}(t)$. Then $P(t)$ satisfies

$$
\begin{equation*}
\left(a(t) P^{\prime}\right)^{\prime}+\frac{n-1}{t} a(t) P^{\prime}+b(t) P=0, \tag{5.4}
\end{equation*}
$$

where

$$
\begin{gather*}
a(t)=\int_{0}^{1} \varphi^{\prime}\left(s w^{\prime}(t)+(1-s) w_{0}^{\prime}(t)\right) d s \tag{5.5}\\
b(t)=t^{\alpha} \int_{0}^{1} e^{s w(t)+(1-s) w_{0}(t)} d s \tag{5.6}
\end{gather*}
$$

Compared with the proof of the Theorem 3.1, we have a complication here: in case $P(t)$ tends to a constant p_{0} as $t \rightarrow \infty$, we cannot conclude that $b(t)=b_{0}(t)(1+o(1))$, unless $p_{0}=0$.

We claim that it is impossible for $P(t)$ to keep the same sign over some infinite interval $\left(t_{0}, \infty\right)$, and tend to a constant $p_{0} \neq 0$ as $t \rightarrow \infty$. Assume, on the contrary, that $P(t)>0$ on $\left(t_{0}, \infty\right)$, and $\lim _{t \rightarrow \infty} P(t)=p_{0}>0$. We may assume that

$$
\begin{equation*}
P(t)>\frac{1}{2} p_{0}>0 \quad \text { on }\left(t_{1}, \infty\right), \text { with some } t_{1}>t_{0} \tag{5.7}
\end{equation*}
$$

Write (5.4) as

$$
\begin{equation*}
\left(t^{n-1} a(t) P^{\prime}\right)^{\prime}=-t^{n-1} b(t) P . \tag{5.8}
\end{equation*}
$$

As before,

$$
\begin{equation*}
a(t)=a_{0}(t)(1+f(t)), \quad \text { with } f(t) \rightarrow 0 \text { as } t \rightarrow \infty \tag{5.9}
\end{equation*}
$$

Writing $b(t)=t^{\alpha} e^{w_{0}(t)} \int_{0}^{1} e^{s P(t)} d s$, we see that

$$
\begin{equation*}
b(t)=b_{0}(t)\left(p_{1}+g(t)\right), \tag{5.10}
\end{equation*}
$$

with $p_{1}=\int_{0}^{1} e^{s p_{0}} d s>1$, and $g(t) \rightarrow 0$ as $t \rightarrow \infty$. By (5.8), (5.7), and (5.10)

$$
\left(t^{n-1} a(t) P^{\prime}\right)^{\prime}<-c_{1} t^{n-p-1} \text { on }\left(t_{1}, \infty\right),
$$

for some constant $c_{1}>0$. Integrating this inequality over $\left(t_{1}, t\right)$, we get

$$
\begin{equation*}
t^{n-1} a(t) P^{\prime}<c_{2}-c_{3} t^{n-p} \text { on }\left(t_{1}, \infty\right) \tag{5.11}
\end{equation*}
$$

for some constants $c_{2}>0$, and $c_{3}>0$ (using that $n>p$). By (5.9)

$$
a(t)>c_{4} t^{-p+2} \text { on }\left(t_{2}, \infty\right),
$$

for some constants $c_{4}>0$, and $t_{2}>t_{1}$. Using this in (5.11), we have

$$
P^{\prime}<\frac{c_{2}}{c_{4}} t^{-n+p-1}-\frac{c_{3}}{c_{4}} t^{-1} \text { on }\left(t_{2}, \infty\right) .
$$

Integrating this over $\left(t_{2}, t\right)$, and using that $n>p$

$$
P(t)<c_{5}+\frac{c_{2}}{c_{4}(-n+p)} t^{-n+p}-\frac{c_{3}}{c_{4}} \ln t<c_{5}-\frac{c_{3}}{c_{4}} \ln t
$$

for some constant $c_{5}>0$. Hence, $P(t)$ has to vanish at some $t>t_{2}$, contradicting the assumption that $P(t)>0$ on $\left(t_{0}, \infty\right)$. This proves that $p_{0}=0$. We conclude that $p_{1}=1$ in (5.10), and the rest of the proof is similar to that of Theorem 3.1.

If $p=2$ and $\alpha=0$, the condition (5.2) becomes $2<n<10$, the classical condition of D.D. Joseph and T.S. Lundgren [11].

References

[1] J. Bebernes and D. Eberly, Mathematical Problems from Combustion Theory, Springer-Verlag, New York (1989).
[2] F. Brock, L. Iturriaga, and P. Ubilla, A multiplicity result for the p Laplacian involving a parameter, Ann. Henri Poincaré 9, no. 7, 13711386 (2008).
[3] C. Budd and J. Norbury, Semilinear elliptic equations and supercritical growth, J. Differential Equations 68, no. 2, 169-197 (1987).
[4] X. Cabré and M. Sanchón, Semi-stable and extremal solutions of reaction equations involving the p-Laplacian, Commun. Pure Appl. Anal. 6, no. 1, 43-67 (2007).
[5] X. Cabré, A. Capella and M. Sanchón, Regularity of radial minimizers of reaction equations involving the p-Laplacian, Calc. Var. Partial Differential Equations 34 (2009), no. 4, 475-494.
[6] I. Flores, A resonance phenomenon for ground states of an elliptic equation of Emden-Fowler type, J. Differential Equations 198, no. 1, 1-15 (2004).
[7] B. Gidas, W.-M. Ni and L. Nirenberg, Symmetry and related properties via the maximum principle, Commun. Math. Phys. 68, 209-243 (1979).
[8] N. Ghoussoub and Y. Guo, On the partial differential equations of electrostatic MEMS devices: stationary case, SIAM J. Math. Anal. 38, no. 5, 1423-1449 (2007).
[9] Z. Guo and J. Wei, Infinitely many turning points for an elliptic problem with a singular non-linearity, J. Lond. Math. Soc. (2) 78, no. 1, 21-35 (2008).
[10] J. Jacobsen and K. Schmitt, The Liouville-Bratu-Gelfand problem for radial operators, J. Differential Equations 184, no. 1, 283-298 (2002).
[11] D.D. Joseph and T.S. Lundgren, Quasilinear Dirichlet problems driven by positive sources, Arch. Rational Mech. Anal. 49, 241-269 (1972/73).
[12] P. Korman, Global solution curves for self-similar equations, J. Differential Equations 257, no. 7, 2543-2564 (2014).
[13] P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific, Hackensack, NJ (2012).
[14] K. Kreith, Oscillation Theory, Lecture Notes in Mathematics, Vol. 324. Springer-Verlag, Berlin-New York (1973).
[15] F. Merle and L.A. Peletier, Positive solutions of elliptic equations involving supercritical growth, Proc. Roy. Soc. Edinburgh Sect. A 118, no. 1-2, 49-62 (1991).
[16] J.A. Pelesko, Mathematical modeling of electrostatic MEMS with tailored dielectric properties, SIAM J. Appl. Math. 62, no. 3, 888-908 (2002).
[17] L.A. Peletier and J. Serrin, Uniqueness of positive solutions of semilinear equations in R^{n}, Arch. Rational Mech. Anal. 81, no. 2, 181-197 (1983).

