Exact multiplicity of solutions for some semilinear Dirichlet problems

Philip Korman
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025

Abstract

The classical result of A. Ambrosetti and G. Prodi [1], in the form of M.S. Berger and E. Podolak [4], gives the exact number of solutions for the problem $$
\Delta u+g(u)=\mu \phi_{1}(x)+e(x) \text { in } D, \quad u=0 \text { on } \partial D,
$$ depending on the real parameter μ, for a class of convex $g(u)$, and $\int_{D} e(x) \phi_{1}(x) d x=0$ (where $\phi_{1}(x)>0$ is the principal eigenfunction of the Laplacian on D, and $D \subset R^{n}$ is a smooth domain). By considering generalized harmonics, we give a similar result for the problem $$
\Delta u+g(u)=\mu f(x) \text { in } D, u=0 \text { on } \partial D,
$$ with $f(x)>0$. Such problems occur, for example, in "fishing" applications that we discuss, and propose a new model.

Our approach also produces a very simple proof of the anti-maximum principle of Ph. Clément and L.A. Peletier [5].

Key words: Global solution curves, exact number of solutions, the anti-maximum principle.

AMS subject classification: 35J61, 35J25, 92D25.

1 Introduction

Consider the problem

$$
\begin{equation*}
\Delta u+g(u)=f(x) \text { in } D, u=0 \text { on } \partial D, \tag{1.1}
\end{equation*}
$$

where D is a smooth domain in R^{n}, and the functions $g(u)$ and $f(x)$ are given. Decompose $f(x)=\mu \phi_{1}(x)+e(x)$, where $\phi_{1}(x)>0$ is the principal eigenfunction of the Laplacian on D with zero boundary condition, and $\int_{D} e(x) \phi_{1}(x) d x=0$. The classical result of A. Ambrosetti and G. Prodi [1], in the form of M.S. Berger and E. Podolak [4], says that if $g(u)$ is convex and asymptotically linear at $\pm \infty$, then (under an additional restriction on the slopes of $g(u)$ at $\pm \infty)$ there exists a critical $\mu_{0}=\mu_{0}(e(x))$, such that the problem (1.1) has exactly two solutions for $\mu>\mu_{0}$, exactly one solution if $\mu=\mu_{0}$, and no solutions for $\mu<\mu_{0}$. However, sometimes it is desirable to have the parameter μ in front of the entire right hand side, and to consider the problem

$$
\begin{equation*}
\Delta u+g(u)=\mu f(x) \text { in } D, u=0 \text { on } \partial D . \tag{1.2}
\end{equation*}
$$

Such problems occur e.g., when one considers "fishing" applications, see S. Oruganti et al [15], D.G. Costa et al [6], P. Girão, and H. Tehrani [8], P.M. Girão and M. Pérez-Llanos [7]. We present an exact multiplicity result of Berger-Podolak type for the problem (1.2), provided that $f(x)>0$ on D. Throughout the paper, one can easily replace the Laplacian by any uniformly elliptic operator.

Similar result holds for the problem

$$
\Delta u+g(u)=\mu f(x)+e(x) \text { in } D, \quad u=0 \text { on } \partial D
$$

with $f(x)>0$ on D, and $\int_{D} e(x) f(x) d x=0$, providing a generalization of the above mentioned result of M.S. Berger and E. Podolak [4].

Our approach involves applying the implicit function theorem for continuation of solutions in a special way. We restrict the space of solutions by keeping the generalized first harmonic fixed, but in return allow μ to vary. Then we compute the direction of the turn of the solution curve, similarly to P. Korman [9]. We show that there is at most one turn in case $g(u)$ is either convex or concave.

The well-known anti-maximum principle of Ph . Clément and L.A. Peletier [5] follows easily with this approach.

We apply our results to a population model with fishing. We suggest a modification of the logistic model, to admit sign-changing solutions. We argue that one needs to consider sign-changing solutions to get complete bifurcation diagrams.

2 The global solution curves

We assume that D is a smooth domain in R^{n}, and denote by λ_{k} the eigenvalues of the Laplacian on D, with zero boundary conditions, and by $\varphi_{k}(x)$ the corresponding eigenfunctions, normalized so that $\int_{D} \varphi_{k}^{2}(x) d x=1$. It is known that $\varphi_{1}(x)>0$ is simple, and $0<\lambda_{1}<\lambda_{2} \leq \lambda_{3} \leq \cdots$. We denote by $H^{k}(D)$ the Sobolev spaces $W^{k, 2}(D)$. We shall need the following generalization of Poincare's inequality.

Lemma 2.1 Let $u(x) \in H_{0}^{1}(D)$ be such that $\int_{D} u(x) f(x) d x=0$, for some $f(x) \in L^{2}(D), f(x) \not \equiv 0$. Denote $f_{1}=\int_{D} f(x) \varphi_{1}(x) d x$, and

$$
\nu=\lambda_{1}+\left(\lambda_{2}-\lambda_{1}\right) \frac{f_{1}^{2}}{\|f\|_{L^{2}}^{2}} .
$$

Then

$$
\begin{equation*}
\int_{D}|\nabla u|^{2} d x \geq \nu \int_{D} u^{2} d x . \tag{2.1}
\end{equation*}
$$

Proof: By scaling of $u(x)$, we may assume that $\int_{D} u^{2}(x) d x=1$. Writing $u(x)=\sum_{k=1}^{\infty} u_{k} \varphi_{k}(x), f(x)=\sum_{k=1}^{\infty} f_{k} \varphi_{k}(x)$, we then have

$$
\begin{gather*}
\sum_{k=1}^{\infty} u_{k}^{2}=1 \tag{2.2}\\
\sum_{k=1}^{\infty} u_{k} f_{k}=0 \tag{2.3}
\end{gather*}
$$

We need to show that $\int_{D}|\nabla u|^{2} d x \geq \nu$. Using (2.2), we estimate

$$
\begin{gather*}
\int_{D}|\nabla u|^{2} d x=-\int_{D} u \Delta u d x=\sum_{k=1}^{\infty} \lambda_{k} u_{k}^{2} \tag{2.4}\\
=\lambda_{1}+\sum_{k=2}^{\infty}\left(\lambda_{k}-\lambda_{1}\right) u_{k}^{2} \geq \lambda_{1}+\left(\lambda_{2}-\lambda_{1}\right) \sum_{k=2}^{\infty} u_{k}^{2} .
\end{gather*}
$$

From (2.3)

$$
\begin{equation*}
\left(\sum_{k=2}^{\infty} u_{k}^{2}\right)^{1 / 2}\left(\sum_{k=2}^{\infty} f_{k}^{2}\right)^{1 / 2} \geq \sum_{k=2}^{\infty} u_{k} f_{k}=\left|-u_{1} f_{1}\right|=\left|u_{1}\right|\left|f_{1}\right| . \tag{2.5}
\end{equation*}
$$

Set $x=\left(\sum_{k=2}^{\infty} u_{k}^{2}\right)^{1 / 2}, f=\left(\sum_{k=2}^{\infty} f_{k}^{2}\right)^{1 / 2}$. In view of (2.2), we get from (2.5)

$$
x f \geq\left|f_{1}\right| \sqrt{1-x^{2}},
$$

or

$$
x^{2} \geq \frac{f_{1}^{2}}{f^{2}+f_{1}^{2}}=\frac{f_{1}^{2}}{\|f\|_{L^{2}}^{2}},
$$

and the proof follows from (2.4).
The inequality (2.1) is sharp in the following sense: when $f=\varphi_{1}$, we have $\nu=\lambda_{2}$, and one has an equal sign in (2.1) at $u=\varphi_{2}$. Clearly, $\nu \leq \lambda_{2}$, and $\nu>\lambda_{1}$ if $f(x)>0$.

Lemma 2.2 Let $(w(x), \mu) \in H^{2}(D) \times R$ solve the problem

$$
\begin{gather*}
\Delta w+a(x) w=\mu f(x) \text { in } D, w=0 \text { on } \partial D \tag{2.6}\\
\int_{D} w(x) f(x) d x=0,
\end{gather*}
$$

with some $f(x) \in L^{2}(D), f(x) \not \equiv 0$. Assume that $a(x) \in C(D)$ satisfies $a(x)<\nu$ for all $x \in D$. Then $w(x) \equiv 0$, and $\mu=0$.

Proof: Multiply the equation in (2.6) by w, and integrate. By Lemma 2.1, we have

$$
\nu \int_{D} w^{2} d x \leq \int_{D}|\nabla w|^{2} d x=\int_{D} a(x) w^{2} d x<\nu \int_{D} w^{2} d x .
$$

Hence, $w(x) \equiv 0$, and from (2.6), $\mu=0$.

Lemma 2.3 Consider the problem (to find $z(x)$ and μ^{*})

$$
\begin{gather*}
\Delta z+a(x) z=\mu^{*} f(x)+e(x) \text { in } D, \quad w=0 \text { on } \partial D \tag{2.7}\\
\int_{D} z(x) f(x) d x=\xi,
\end{gather*}
$$

where $f(x) \in L^{2}(D)$ satisfies $f(x)>0$ a.e., and $a(x) \in C(D)$ satisfies $a(x)<\nu$ for all $x \in D$. Then for any $e(x) \in L^{2}(D)$, and any $\xi \in R$, the problem has a solution $\left(z(x), \mu^{*}\right) \in\left(H^{2}(D) \cap H_{0}^{1}(D)\right) \times R$.

Proof: Case 1. Assume that the operator

$$
L[z] \equiv \Delta z+a(x) z: H^{2}(D) \cap H_{0}^{1}(D) \rightarrow L^{2}(D)
$$

is invertible. We claim that

$$
\begin{equation*}
\int_{D} L^{-1}(f(x)) f(x) d x \neq 0 \tag{2.8}
\end{equation*}
$$

where L^{-1} denotes the the inverse operator of $L[z]$. Indeed, assuming otherwise, $w(x) \equiv L^{-1}(f(x))$ is not identically zero, and it satisfies (2.6), with $\mu=1$, which contradicts Lemma 2.2. Then the solution of (2.7) is

$$
z(x)=\mu^{*} L^{-1}(f(x))+L^{-1}(e(x))
$$

and μ^{*} is chosen so that $\int_{D} z(x) f(x) d x=\xi$, which we can accomplish, in view of (2.8).

Case 2. Assume that the operator $L[z]$ is not invertible. Since $a(x)<$ $\nu \leq \lambda_{2}$, the kernel of $L[z]$ is one-dimensional, spanned by some $\varphi(x)>$ 0 . Since $L[z]$ is a Fredholm operator of index zero, the first equation in (2.7) is solvable if and only if its right hand side is orthogonal to $\varphi(x)$. We now obtain the solution $\left(z(x), \mu^{*}\right)$ of (2.7) as follows. Choose μ^{*}, so that $\int_{D}\left(\mu^{*} f(x)+e(x)\right) \varphi(x) d x=0$. Then the first equation in (2.7) has infinitely many solutions of the form

$$
z(x)=z_{0}(x)+c \varphi(x)
$$

with some $z_{0}(x)$. We choose the constant c, so that $\int_{D} z(x) f(x) d x=\xi$. \diamond
We consider next the nonlinear problem

$$
\begin{equation*}
\Delta u+g(u)=\mu f(x) \text { in } D, u=0 \text { on } \partial D \tag{2.9}
\end{equation*}
$$

We shall assume that $g(u) \in C^{1}(R)$, and

$$
g(u)= \begin{cases}\gamma_{1} u+b_{1}(u) & \text { if } u<0 \tag{2.10}\\ \gamma_{2} u+b_{2}(u) & \text { if } u \geq 0\end{cases}
$$

with real constants γ_{1}, γ_{2}, and $b_{1}(u), b_{2}(u)$ bounded for all $u \in R$. Notice that we admit the case of $\gamma_{2}=\gamma_{1}$, and in particular we allow bounded $g(u)$, in case $\gamma_{2}=\gamma_{1}=0$. We shall consider strong solutions of (2.9), $u(x) \in H^{2}(D) \cap H_{0}^{1}(D)$.

Any function $u(x) \in L^{2}(D)$ can be decomposed as

$$
\begin{equation*}
u(x)=\xi f(x)+U(x), \text { with } \int_{D} U(x) f(x) d x=0 \tag{2.11}
\end{equation*}
$$

for any $f(x) \in L^{2}(D)$. If $f(x)>0$ a.e., we call the constant ξ the generalized first harmonic of $u(x)$.

We shall need the following a priori estimate.

Lemma 2.4 Assume that $f(x) \in H^{2}(D), f(x)>0$ a.e., and $g(u) \in C^{1}(R)$ satisfies the condition (2.10), and $g^{\prime}(u) \leq \nu_{1}$, for some constant $\nu_{1}<\nu$. Let $u(x) \in H^{2}(D) \cap H_{0}^{1}(D)$ be a solution of (2.9), decomposed as in (2.11). Then for some positive constants c_{1} and c_{2}

$$
\begin{equation*}
|\mu|+\|U\|_{H^{2}(D)} \leq c_{1}|\xi|+c_{2} . \tag{2.12}
\end{equation*}
$$

Proof: Using the ansatz (2.11) in (2.9), we have

$$
\begin{equation*}
\Delta U+\xi \Delta f+g(\xi f(x)+U)=\mu f(x) \text { in } D, \quad U=0 \text { on } \partial D . \tag{2.13}
\end{equation*}
$$

Multiplying by U and integrating, we write the result as

$$
\begin{gather*}
\int_{D}|\nabla U|^{2} d x-\int_{D}(\xi \Delta f) U d x \tag{2.14}\\
-\int_{D}[g(\xi f(x)+U)-g(\xi f(x))] U d x-\int_{D} g(\xi f(x)) U d x=0 .
\end{gather*}
$$

Using the mean value theorem, we estimate from below the third term on the left by $-\nu_{1} \int_{D} U^{2} d x$. If $\xi \geq 0$, then

$$
\int_{D} g(\xi f(x)) U d x=\int_{D}\left(\gamma_{2} \xi f(x)+b_{2}(\xi f(x))\right) U d x=\int_{D} b_{2}(\xi f(x)) U d x .
$$

Using Lemma 2.1, we have from (2.14), for any small $\epsilon>0$,

$$
\begin{aligned}
& \left(\nu-\nu_{1}\right) \int_{D} U^{2} d x \leq \int_{D}(\xi \Delta f) U d x+\int_{D} b_{2}(\xi f(x)) U d x \\
& \leq \epsilon \int_{D} U^{2} d x+c(\epsilon) \xi^{2} \int_{D}(\Delta f)^{2} d x+\epsilon \int_{D} U^{2} d x+c(\epsilon)
\end{aligned}
$$

which gives us an estimate of $\int_{D} U^{2} d x$

$$
\int_{D} U^{2} d x \leq c_{1} \xi^{2}+c_{2}, \text { uniformly in } \mu
$$

with some positive constants c_{1}, c_{2}. In case $\xi<0$, the same estimate follows similarly. Returning to (2.14), and using (2.10), we have

$$
\begin{equation*}
\int_{D}\left(|\nabla U|^{2}+U^{2}\right) d x \leq c_{1} \xi^{2}+c_{2}, \text { uniformly in } \mu \tag{2.15}
\end{equation*}
$$

(Here and later on, c_{1}, c_{2} denote possibly new positive constants.) Then

$$
\begin{equation*}
\int_{D}\left(|\nabla u|^{2}+u^{2}\right) d x \leq c_{1} \xi^{2}+c_{2}, \quad \text { uniformly in } \mu . \tag{2.16}
\end{equation*}
$$

To get an estimate of μ, we now multiply (2.9) by $u=\xi f+U$, and integrate

$$
\xi \mu \int_{D} f^{2} d x=-\int_{D}|\nabla u|^{2} d x+\int_{D} g(u) u d x
$$

which in view of (2.16) implies that

$$
\begin{equation*}
|\xi||\mu| \leq c_{1} \xi^{2}+c_{2} \tag{2.17}
\end{equation*}
$$

(Observe that $|g(u)| \leq A|u|+B$, for some positive constants A, B, and for all u.) Fix some $\xi_{0}>0$. Then for $|\xi| \geq \xi_{0}$, we conclude from (2.17)

$$
\begin{equation*}
|\mu| \leq c_{1}|\xi|+c_{2} \tag{2.18}
\end{equation*}
$$

In case $|\xi| \leq \xi_{0}$, we multiply (2.9) by φ_{1}, and integrate to show that $|\mu| \leq c_{3}$, for some $c_{3}>0$. We conclude that the bound (2.18) holds for all $\xi \in R$.

We multiply (2.9) by Δu, and integrate. Obtain

$$
\int_{D}(\Delta u)^{2} d x+\int_{D} \Delta u g(u) d x=-\mu \int_{D} \nabla f \cdot \nabla u d x
$$

Using the estimates (2.16) and (2.18), we get

$$
\int_{D}(\Delta u)^{2} d x \leq c_{1} \xi^{2}+c_{2}
$$

Since $\Delta u=\Delta U+\xi \Delta f$, we conclude that

$$
\int_{D}(\Delta U)^{2} d x \leq c_{1} \xi^{2}+c_{2}
$$

By the elliptic estimates we obtain the desired bound on $\|U\|_{H^{2}(D)}$.

Corollary 1 In case $f(x)=\varphi_{1}(x)$, the second term on the left in (2.14) vanishes, and we conclude that

$$
\|U\|_{H^{1}(D)} \leq c, \quad \text { uniformly in } \xi \text { and } \mu
$$

for some constant $c>0$.
Theorem 2.1 Assume that $f(x) \in H^{2}(D), f(x)>0$ a.e., and $g(u) \in$ $C^{1}(R)$ satisfies the condition (2.10), and we have $g^{\prime}(u) \leq \nu_{1}<\nu$ for all $u \in R$. Then for each $\xi \in(-\infty, \infty)$, there exists a unique μ, for which the problem (2.9) has a unique solution $u(x) \in H^{2}(D) \cap H_{0}^{1}(D)$, with the generalized first harmonic equal to ξ. The function $\mu=\phi(\xi)$ is smooth.

Proof: We embed (2.9) into a family of problems

$$
\begin{equation*}
\Delta u+\lambda_{1} u+k\left(g(u)-\lambda_{1} u\right)-\mu f(x)=0 \text { in } D, \quad u=0 \text { on } \partial D \tag{2.19}
\end{equation*}
$$

with $0 \leq k \leq 1(k=1$ corresponds to (2.9)). When $(k=0, \mu=0)$ the problem has solutions $u=a \varphi_{1}$, where a is any constant. By choosing $a=a_{0}$, we can get the solution $u=a_{0} \varphi_{1}$ of any generalized first harmonic ξ^{0}. We now continue in k the solutions of

$$
F(u, \mu, k) \equiv \Delta u+\lambda_{1} u+k\left(g(u)-\lambda_{1} u\right)-\mu f(x)=0 \text { in } D, \quad u=0 \text { on } \partial D
$$

$$
\begin{equation*}
\int_{D} u f d x=\xi^{0}, \tag{2.20}
\end{equation*}
$$

with the operator $F(u, \mu, k): H^{2}(D) \times R \times R \rightarrow L^{2}(D)$. We will show that the implicit function theorem applies, allowing us to continue (u, μ) as a function of k. Compute the Frechet derivative

$$
\begin{gathered}
F_{(u, \mu)}(u, \mu, k)\left(w, \mu^{*}\right)=\Delta w+\lambda_{1} w+k\left(g^{\prime}(u)-\lambda_{1}\right) w-\mu^{*} f(x), \\
\int_{D} w f d x=0 .
\end{gathered}
$$

By Lemma 2.2, the map $F_{(u, \mu)}(u, \mu, k)\left(w, \mu^{*}\right)$ is injective, and by Lemma 2.3 this map is surjective. Hence, the implicit function theorem applies, and we have a solution curve $(u, \mu)(k)$. By the a priori estimate of Lemma 2.4, this curve continues for all $0 \leq k \leq 1$, and at $k=1$, we obtain a solution of the problem (2.9) with the generalized first harmonic equal to ξ^{0}.

Turning to the uniqueness, let ($\bar{\mu}, \bar{u}(x)$) be another solution of (2.9), and $\bar{u}(x)$ has the generalized first harmonic equal to ξ^{0}. Then $(\bar{\mu}, \bar{u}(x))$ is solution of (2.20) at $k=1$. We continue this solution backward in k, until $k=0$, using the implicit function theorem. By the Fredholm alternative, we have $\mu=0$, when $k=0$. Then $u=a_{1} \varphi_{1}$, with $a_{1} \neq a_{0}$ (since the solution curves do not intersect), and $\bar{u}(x)$ has the generalized first harmonic equal to ξ^{0}, a contradiction.

Finally, we show that solutions of (2.9) can be continued in ξ, by using the implicit function theorem. Decomposing $u(x)=\xi f(x)+U(x)$, with $\int_{D} U f d x=0$, we see that $U(x)$ satisfies

$$
\begin{gathered}
F(U, \mu, \xi) \equiv \Delta U+g(\xi f(x)+U(x))=\mu f(x)-\xi \Delta f \text { in } D, \quad U=0 \text { on } \partial D \\
\int_{D} U f d x=0 .
\end{gathered}
$$

Compute the Frechet derivative

$$
\begin{aligned}
& F_{(U, \mu)}(U, \mu, \xi)\left(w, \mu^{*}\right)=\Delta w+g^{\prime}(\xi f(x)+U(x)) w-\mu^{*} f(x), \\
& \int_{D} w f d x=0 .
\end{aligned}
$$

As before, we see that the implicit function theorem applies, and we have a smooth solution curve $(u, \mu)(\xi)$ for the problem (2.9). By Lemma 2.4, this curve continues for all $\xi \in R$.
Remark The theorem implies that the value of ξ is a global parameter, uniquely identifying the solution pair $(\mu, u(x))$.

The well-known anti-maximum principle is easily proved by a similar argument. As in J. Shi [17], we state it along with the classical maximum principle. We present a self-contained proof, since the a priori estimate of Lemma 2.4 is not needed for this local result.

Theorem 2.2 Consider the following problem, with $f(x) \in L^{2}(D)$, and $f(x)>0$ a.e. in D,

$$
\begin{equation*}
\Delta u+\lambda u=f(x) \text { in } D, u=0 \text { on } \partial D . \tag{2.21}
\end{equation*}
$$

Then there exists a constant δ_{f}, which depends on f, such that if $\lambda_{1}<\lambda<$ $\lambda_{1}+\delta_{f}$, then

$$
\begin{equation*}
u(x)>0, x \in D, \frac{\partial u}{\partial n}<0, x \in \partial D \tag{2.22}
\end{equation*}
$$

and if $\lambda<\lambda_{1}$, then

$$
u(x)<0, x \in D, \frac{\partial u}{\partial n}>0, x \in \partial D .
$$

Proof: We prove the first part. Consider the problem

$$
\begin{equation*}
\Delta u+\lambda_{1} u+k u=\mu f(x) \text { in } D, u=0 \text { on } \partial D . \tag{2.23}
\end{equation*}
$$

When $k=0$, and $\mu=0$, this problem has a solution $u=\varphi_{1}$. Decompose $\varphi_{1}=\xi^{0} f(x)+e(x)$, with $\int_{D} f(x) e(x) d x=0$. We now continue in $k, k \geq 0$ the solution $(u, \mu) \in\left(H^{2}(D) \cap H_{0}^{1}(D)\right) \times R$ of

$$
\begin{gathered}
\Delta u+\lambda_{1} u+k u=\mu f(x) \text { in } D, u=0 \text { on } \partial D \\
\int_{D} u f d x=\xi^{0},
\end{gathered}
$$

beginning with $\left(\varphi_{1}, 0\right)$ at $k=0$. By Lemmas 2.2 and 2.3, the implicit function theorem applies, and we have a solution curve $(u, \mu)(k)$, at least
for small k. If $k>0$ is small, then $u(x)$ is close to $\varphi_{1}(x)$, and we have $u(x)>0$ in D, and $\frac{\partial u}{\partial n}<0$ on ∂D (a.e.). Multiplying (2.23) by $\varphi_{1}(x)$, and integrating over D, we conclude that $\mu=\mu(k)>0$. Then $\frac{u(x)}{\mu}$ is the solution of (2.21), satisfying (2.22) (a.e.).

We now study the global solution curve $\mu=\phi(\xi)$ for the problem (2.9), with $u(x) \in H^{2}(D) \cap H_{0}^{1}(D)$, in case $g(u)$ is either convex or concave.

Theorem 2.3 Assume that $f(x) \in H^{2}(D), f(x)>0$ a.e., and $g(u) \in$ $C^{2}(R)$ satisfies the condition (2.10), and we have $g^{\prime}(u) \leq \nu_{1}<\nu$ for all $u \in R$. Assume that either $g^{\prime \prime}(u)>0$, or $g^{\prime \prime}(u)<0$ holds for all $u \in R$. Then the solution curve of the problem (2.9) $\mu=\phi(\xi)$ is either monotone, or it has exactly one critical point, which is the point of global minimum in case $g^{\prime \prime}(u)>0$ for all $u \in R$, and the point of global maximum in case $g^{\prime \prime}(u)<0$ for all $u \in R$.

Proof: By the Theorem 2.1, the problem (2.9) has a solution curve $(u, \mu)(\xi)$, where ξ is the generalized first harmonic of $u(\xi)$. Differentiate the equation (2.9) in ξ

$$
\begin{equation*}
\Delta u_{\xi}+g^{\prime}(u) u_{\xi}=\mu^{\prime}(\xi) f(x) \text { in } D, u_{\xi}=0 \text { on } \partial D \tag{2.24}
\end{equation*}
$$

We claim that $u_{\xi}(x) \not \equiv 0$ for all $\xi \in R$. Indeed, since $u(x)=\xi f(x)+U(x)$, we have $u_{\xi}(x)=f(x)+U_{\xi}(x)$. If $u_{\xi}(x) \equiv 0$, then $U_{\xi}(x)=-f(x)$, but $\int_{D} U_{\xi}(x) f(x) d x=0$, a contradiction.

Assume that $\mu^{\prime}\left(\xi_{0}\right)=0$ at some ξ_{0}. Denoting $w(x)=u_{\xi}$ at $\xi=\xi_{0}$, we see that $w(x)$ is a non-trivial solution of

$$
\begin{equation*}
\Delta w+g^{\prime}(u) w=0 \text { in } D, w=0 \text { on } \partial D . \tag{2.25}
\end{equation*}
$$

Since $g^{\prime}(u)<\lambda_{2}$, it follows that $w(x)>0$ in D. In the spirit of [13] and [16], we differentiate the equation (2.24) once more in ξ, and set $\xi=\xi_{0}$:
(2.26) $\Delta u_{\xi \xi}+g^{\prime}(u) u_{\xi \xi}+g^{\prime \prime}(u) w^{2}=\mu^{\prime \prime}\left(\xi_{0}\right) f(x)$ in $D, u_{\xi \xi}=0$ on ∂D.

Combining the equations (2.25) and (2.26), we have

$$
\mu^{\prime \prime}\left(\xi_{0}\right) \int_{D} w f(x) d x=\int_{D} g^{\prime \prime}(u) w^{3} d x
$$

It follows that $\mu^{\prime \prime}\left(\xi_{0}\right)>0\left(\mu^{\prime \prime}\left(\xi_{0}\right)<0\right)$ in case $g^{\prime \prime}(u)>0$ for all $u \in R$ ($g^{\prime \prime}(u)<0$ for all $u \in R$), so that any critical point of $\mu(\xi)$ is a local minimum (maximum), and hence at most one critical point is possible. \diamond

It is now easy to classify all of the possibilities.

Theorem 2.4 Assume that $f(x) \in H^{2}(D), f(x)>0$ a.e., and $g(u) \in$ $C^{2}(R)$ satisfies the condition (2.10), and we have $g^{\prime}(u) \leq \nu_{1}<\nu$ for all $u \in R$. Assume also that $g^{\prime \prime}(u)>0$ for all $u \in R$.
(i) If $\gamma_{1}, \gamma_{2}<\lambda_{1}$, then the problem (2.9) has a unique solution for any $\mu \in R$. Moreover, the solution curve $\mu=\phi(\xi)$ is defined, and monotone decreasing for all $\xi \in R$.
(ii) If $\lambda_{1}<\gamma_{1}, \gamma_{2}<\nu$, then the problem (2.9) has a unique solution for any $\mu \in R$. Moreover, the solution curve $\mu=\phi(\xi)$ is defined, and monotone increasing for all $\xi \in R$.
(iii) If $\gamma_{1}<\lambda_{1}<\gamma_{2}<\nu$, then there is a critical μ_{0}, so that the problem (2.9) has exactly two solutions for $\mu>\mu_{0}$, it has a unique solution at $\mu=\mu_{0}$, and no solutions for $\mu<\mu_{0}$. Moreover, the solution curve $\mu=\phi(\xi)$ is defined for all $\xi \in R$, it is parabola-like, and μ_{0} is its global minimum value.

Proof: The convexity of $g(u)$ implies that $\gamma_{1}<\gamma_{2}$. By the Theorem 2.3, the problem (2.9) has a solution curve $\mu=\phi(\xi)$, defined for all $\xi \in$ R, which is either monotone, or it has exactly one critical point, which is the point of global minimum. Decompose $u(x)=\bar{\xi} \varphi_{1}(x)+\bar{U}(x)$, where $\int_{D} \bar{U}(x) \varphi_{1}(x) d x=0$, and $\bar{\xi}$ is the first harmonic. We have

$$
u(x)=\xi f(x)+U(x)=\bar{\xi} \varphi_{1}(x)+\bar{U}(x) .
$$

Multiplying this by $f(x)$, and integrating

$$
\xi \int_{D} f^{2}(x) d x=\bar{\xi} \int_{D} f(x) \varphi_{1}(x) d x+\int_{D} \bar{U}(x) f(x) d x
$$

By the Corollary 1 of Lemma 2.4, $\int_{D} \bar{U}(x) f(x) d x$ is uniformly bounded. It follows that $\bar{\xi} \rightarrow \infty(-\infty)$ if an only if $\xi \rightarrow \infty(-\infty)$, providing us with a "bridge" between ξ and $\bar{\xi}$.

Multiply the equation in (2.9) by ϕ_{1}, and integrate:

$$
\begin{equation*}
\mu \int_{D} f(x) \phi_{1}(x) d x=-\lambda_{1} \bar{\xi}+\int_{D} g(u) \phi_{1}(x) d x \tag{2.27}
\end{equation*}
$$

with $\int_{D} f(x) \phi_{1}(x) d x>0$. If $\bar{\xi}>0$ and large, then $u(x)=\bar{\xi} \varphi_{1}(x)+\bar{U}(x)>0$ a.e. in D, and we have $u(x)<0$ a.e. in D if $\bar{\xi}<0$ and $|\bar{\xi}|$ is large. By the condition (2.10),

$$
\begin{gathered}
\mu \sim\left(\gamma_{2}-\lambda_{1}\right) \bar{\xi}, \text { when } \bar{\xi}>0 \text { and large }, \\
\mu \sim\left(\gamma_{1}-\lambda_{1}\right) \bar{\xi}, \text { when } \bar{\xi}<0 \text { and }|\bar{\xi}| \text { is large. }
\end{gathered}
$$

These formulas give us the behavior of $\mu=\phi(\xi)$, as $\xi \rightarrow \pm \infty$, and the theorem follows.

The following result is proved similarly (the concavity of $g(u)$ implies that $\gamma_{2}<\gamma_{1}$).
Theorem 2.5 Assume that $f(x) \in H^{2}(D), f(x)>0$ a.e., and $g(u) \in$ $C^{2}(R)$ satisfies the condition (2.10), and we have $g^{\prime}(u) \leq \nu_{1}<\nu$ for all $u \in R$. Assume also that $g^{\prime \prime}(u)<0$ for all $u \in R$.
(i) If $\gamma_{1}, \gamma_{2}<\lambda_{1}$, then the problem (2.9) has a unique solution for any $\mu \in R$. Moreover, the solution curve $\mu=\phi(\xi)$ is monotone decreasing for all $\xi \in R$.
(ii) If $\lambda_{1}<\gamma_{1}, \gamma_{2}<\nu$, then the problem (2.9) has a unique solution for any $\mu \in R$. Moreover, the solution curve $\mu=\phi(\xi)$ is monotone increasing for all $\xi \in R$.
(iii) If $\gamma_{2}<\lambda_{1}<\gamma_{1}<\nu$, then there is a critical μ_{0}, so that the problem (2.9) has exactly two solutions for $\mu<\mu_{0}$, it has a unique solution at $\mu=\mu_{0}$, and no solutions for $\mu>\mu_{0}$. Moreover, the solution curve $\mu=\phi(\xi)$ is parabola-like, and μ_{0} is its global maximum value.

It appears that there is less interest in concave nonlinearities, compared with the convex ones. This may be due to the fact that if one considers positive solutions of

$$
\Delta u+g(u)=0 \text { in } D, \quad u=0 \text { on } \partial D,
$$

and $g(0) \geq 0$, then the case of concave $g(u)$ is easy, and the convex case is interesting. However, if $g(0)<0$, the situation may be reversed even for positive solutions, see e.g., [10]. For sign-changing solutions, it seems that the convex and concave cases are of equal complexity.

Examining the proofs, we see that the Theorems 2.4 and 2.5 hold verbatim for the problem

$$
\Delta u+g(u)=\mu f(x)+e(x) \text { in } D, u=0 \text { on } \partial D
$$

with $e(x) \in H^{2}(D)$ satisfying $\int_{D} e(x) f(x) d x=0$, giving a generalization of the classical results of A. Ambrosetti and G. Prodi [1], and of M.S. Berger and E. Podolak [4].

3 A population model with fishing

One usually begins population modeling with a logistic model

$$
\begin{equation*}
u^{\prime}(t)=a u(t)-b u^{2}(t) . \tag{3.1}
\end{equation*}
$$

Here $u(t)$ can be thought of as the number of fish in a lake at time $t ; a$ and b are positive constants. When $u(t)$ is small, $u^{2}(t)$ is negligible, and the population grows exponentially, but after some time the growth rate decreases. Now suppose the lake occupies some region $D \subset R^{n}$, and $u=$ $u(x, t)$, with $x \in D$. Suppose that fish diffuses around the lake, and the population is near zero at the banks. Assume also there is time-independent fishing, accounted by the term $\mu f(x)$, where $f(x)$ is a positive function, and μ is a parameter. Then the model is

$$
u_{t}(x, t)=a u(x, t)-b u^{2}(x, t)+\Delta u(x, t)-\mu f(x) \text { in } D, u=0 \text { on } \partial D .
$$

We shall consider its steady state $u=u(x)$, satisfying

$$
\begin{equation*}
\Delta u(x)+a u(x)-b u^{2}(x)-\mu f(x)=0 \text { in } D, u=0 \text { on } \partial D . \tag{3.2}
\end{equation*}
$$

It is customary in the population modeling to look for positive solutions. However one does not expect the solutions of (3.2) to remain positive, when the parameter $\mu>0$ is varied (since $f(x)>0$). Therefore, we shall admit sign-changing solutions, with the interpretation that some re-stocking of fish is necessary when $u(x)<0$ (which presumably occurs near the banks, i.e., $\partial D)$, to avoid the algae growth or other negative consequences. However, there is no reason to use the logistic model (3.1) for sign-changing u. When $u<0$, it is still reasonable to assume that $u^{\prime}(t) \approx a u(t)<0$, which corresponds to the assumption that the situation further deteriorates without re-stocking, but there seems to be no justification for the $-b u^{2}$ term.

We consider the following model $(f(x)>0)$

$$
\begin{equation*}
\Delta u(x)+g(u(x))-\mu f(x)=0 \text { in } D, \quad u=0 \text { on } \partial D \tag{3.3}
\end{equation*}
$$

where $g(u)$ is an extension of the logistic model to $u<0$, which we describe next. Namely, we assume that $g(u) \in C^{2}(R)$, and it satisfies

$$
\begin{gather*}
g(u)=a u-b u^{2} \text { for } u \geq 0, \text { with } \lambda_{1}<a<\nu, \text { and } b>0, \tag{3.4}\\
g^{\prime}(u)<\nu, \text { and } g^{\prime \prime}(u)<0 \text { for } u \in R, \tag{3.5}
\end{gather*}
$$

where $\lambda_{1}<\nu \leq \lambda_{2}$ was defined in Lemma 2.1. Our conditions imply that $g(u) \sim c u+d$ as $u \rightarrow-\infty$, for some constants $0<c<\nu$, and $d>0$.

When $\mu=0$ (no fishing), the problem (3.3) has the trivial solution $u(x) \equiv 0$, and a unique positive solution $u_{0}(x)$, see e.g., P. Korman and A. Leung [12]. When $\mu>0$ is varied these two solutions turn out to be
connected by a smooth solution curve. To prove this result, we shall need the following consequence of Lemma 3.3 in [2].

Figure 1. The solution curve for the fishing model

Lemma 3.1 Let $u(x, \mu)$ denote the classical solution of (3.3), depending on a parameter $\mu \in R$. Assume that $\mu_{2}>\mu_{1}$, and $u\left(x, \mu_{1}\right)>0, u\left(x, \mu_{2}\right)>0$ for all $x \in D$. Then $u\left(x, \mu_{2}\right)>u\left(x, \mu_{1}\right)$ for all $x \in D$.

Let $\xi_{0}=\int_{D} u_{0}(x) f(x) d x>0$ denote the first generalized harmonic of $u_{0}(x)$. We have the following result, for possibly sign-changing solutions.

Theorem 3.1 Assume that the conditions (3.4) and (3.5) hold, and $f(x) \in$ $C^{\alpha}(D), f(x)>0$ in $D, \alpha>0$. Then in the (ξ, μ) plane there is a smooth parabola-like solution curve $\mu=\varphi(\xi)$ of (3.3), connecting the points $(0,0)$ and $\left(\xi_{0}, 0\right)$. It has a unique point of maximum at some $\bar{\xi} \in\left(0, \xi_{0}\right)$, with $\bar{\mu}=\varphi(\bar{\xi})>0$. Equivalently, for $\mu \in[0, \bar{\mu})$ the problem (3.3) has exactly two solutions, it has exactly one solution at $\mu=\bar{\mu}$, and no solutions for $\mu>\bar{\mu}$. Moreover, all solutions lie on a parabola-like solution curve in the $(\mu,\|u\|)$ plane, with a turn to the left.

Proof: By Theorem 2.1, we continue the solution curve from the point $\left(\xi_{0}, 0\right)$ in the (ξ, μ) plane for decreasing ξ. By Lemma 3.1, it follows that $\mu>0$ for ξ near ξ_{0}, and $\xi<\xi_{0}$ (if $\mu<0$, then $\xi>\xi_{0}$). By Theorem 2.5, this curve $\mu=\mu(\xi)$ has a unique critical point on $\left(0, \xi_{0}\right)$, which a point of global maximum, and this curve links up to the point $(0,0)$. This implies that the solution curve in the $(\mu,\|u\|)$ plane is as in Figure 1, concluding the proof.
S. Oruganti et al [15] considered positive solutions of (3.2). They proved a similar result (as in Figure 1) for a sufficiently close to λ_{1}. In that case, ξ_{0} is small, and the entire solution curve is close to the point $(0,0)$. Working with positive solutions only narrows the class of solutions considerably, and the result of [15] is probably the best one can get (for the picture as in Figure 1). We showed in [11] that the picture is different when $a>\lambda_{2}$ (in case of positive solutions).

Figure 2. The fishing model with stocking of fish (when $\mu<0$)

We show next that the upper branch of the solution curve in Theorem 3.1 continues for $\xi \in(-\infty, 0)$, with $\mu=\varphi(\xi)$ monotone decreasing, and $u(x)>0$ in D. Moreover, $\left.\lim _{\xi \rightarrow-\infty} \varphi(\xi)\right)=+\infty$, implying that the solution curve in the ($\mu,\|u\|)$ plane is as in Figure 2. Indeed, let us return to the solution point $\left(\xi_{0}, 0\right)$ in the (ξ, μ) plane. For $\xi>\xi_{0}$, we have $\mu<0$ by Lemma 3.1. Then $u(x)>0$, by the minimum principle, so that $g^{\prime}(u)=a-2 u<\nu$, and Theorem 2.5 applies. One can interpret $\mu<0$ as stocking of fish.

References

[1] A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach spaces, Ann. Mat. Pura Appl. 93 (4), 231-246 (1972).
[2] A. Ambrosetti, H. Brezis and G. Cerami, Combined effects of concave and convex nonlinearities in some elliptic problems, J. Funct. Anal. 122, no. 2, 519-543 (1994).
[3] A. Ambrosetti and G. Prodi, A Primer of Nonlinear Analysis, Cambridge University Press (1993).
[4] M.S. Berger and E. Podolak, On the solutions of a nonlinear Dirichlet problem, Indiana Univ. Math. J. 24, 837-846 (1974/75).
[5] Ph. Clément and L.A. Peletier, An anti-maximum principle for secondorder elliptic operators, J. Differential Equations 34 (1979), no. 2, 218229.
[6] D.G. Costa, P. Drábek, and H. Tehrani, Positive solutions to semilinear elliptic equations with logistic type nonlinearities and constant yield harvesting in R^{n}, Comm. Partial Differential Equations 33, 1597-1610 (2008).
[7] P.M. Girão and M. Pérez-Llanos, Bifurcation curves of a diffusive logistic equation with harvesting orthogonal to the first eigenfunction, J. Math. Anal. Appl. 403, no. 2, 376-390 (2013).
[8] P. Girão, and H. Tehrani, Positive solutions to logistic type equations with harvesting, J. Differential Equations 247, no. 2, 574-595 (2009).
[9] P. Korman, Curves of equiharmonic solutions, and ranges of nonlinear equations, Adv. Differential Equations 14, no. 9-10, 963-984 (2009).
[10] P. Korman, Global Solution Curves for Semilinear Elliptic Equations, World Scientific, Hackensack, NJ (2012).
[11] P. Korman, Families of solution curves for some non-autonomous problems, Acta Applicandae Mathematicae 143, no. 1, 165-178 (2016).
[12] P. Korman and A. Leung, On the existence and uniqueness of positive steady states in the Volterra-Lotka ecological models with diffusion, Appl. Anal. 26, no. 2, 145-160 (1987).
[13] P. Korman, Y.Li and T. Ouyang, An exact multiplicity result for a class of semilinear equations, Commun. in PDE 22, 661-684 (1997).
[14] L. Nirenberg, Topics in Nonlinear Functional Analysis, Courant Institute Lecture Notes, Amer. Math. Soc. (1974).
[15] S. Oruganti, J. Shi, and R. Shivaji, Diffusive logistic equation with constant yield harvesting. I. Steady states, Trans. Amer. Math. Soc. 354, no. 9, 3601-3619 (2002).
[16] T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, II, J. Differential Equations 158, no. 1, 94-151 (1999).
[17] J. Shi, A new proof of anti-maximum principle via a bifurcation approach, Results Math. 48, no. 1-2, 162-167 (2005).

