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Chapter 14

Section 1.15

1. d. Set z = t, an arbitrary number. From the second equation y = t + 3.6

Substitute these expressions into the first equation7

x − (t + 3) + 2t = 0 ,

so that x = −t + 3.8

1. e. From the last equation u = 0. Update the system:9

x + y − z = 2

3y − 3z = 3 .

Set z = t. From the second equation y = t+1. Then from the first equation10

x = 1.11

2. f. From the second equation subtract the first one, and from the third12

equation subtract twice the first one:13

x − y + 2z = 0

y − z = 3

y − z = 3 .

Discard the third equation. Set z = t. From the second equation y = t + 3.14

Then from the first equation x = −t + 3.15

3. The point (1, 0, 2) lying on the plane ax + by + cz = d implies that16

a + 2c = d. Similarly for the other two points, giving the following three17

equations for the unknowns a, b, c, d18

a + 2c = d

b + 5c = d

2a + b + c = d .
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From the second equation subtract twice the first one:1

a + 2c = d

b + 5c = d

b − 3c = −d .

From the third equation subtract the second one:2

a + 2c = d

b + 5c = d

−8c = −2d .

While the plane through three points is unique, the equation of the plane3

is not. One can multiply the equation by an arbitrary number p to obtain4

pax + pby + pcz = pd. By choosing p one can make the right side of this5

equation to be an arbitrary number. In other words, in the equation ax +6

by+cz = d, d can be taken to be an arbitrary number. In the last system we7

choose a convenient d = 4, and obtain by back substitution c = 1, b = −18

and a = 2. Obtain the plane 2x − y + z = 4.9

4. Multiply the first equation by a, and the second one by 2:10

2ax − 3ay = −a

2ax − 12y = 10 .

From the second equation subtract the first one:11

2ax − 3ay = −a

(3a − 12)y = 10 + a .

If 3a−12 6= 0, or a 6= 4, by back substitution one produces a unique solution.12

In case a = 4, the second equation becomes13

0 = 14 ,

and the system has no solutions.14

For the system to have infinitely many solutions, the second equation15

would need to be16

0 = 0 ,
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which does not happen for any a.1

5. Solve for y: y = 5x−1
3 = 2x − x+1

3 . Since x and y are integers, x+1
3 is an2

integer too. Set x+1
3 = n, an integer. Then x = 3n−1, leading to y = 5n−2,3

where n is an arbitrary integer.4

Section 1.25

Let us consider one equation with two unknowns6

x − y = 1 .

It has infinitely many solutions: x = 2 and y = 1, x = 3 and y = 2, x = 3
27

and y = 1
2 , and so on (and on). One way to represent all solutions is to let8

y be arbitrary and solve for x, x = y + 1. A slightly different way is to let9

y = t, an arbitrary number and solve for x, x = t + 1.10

1(a). The pivots are circled:11

[

2© −1 0
0 3© 6

]

.

Restore the system:12

2x1 − x2 = 0

3x2 = 6 .

From the second equation x2 = 1. Using that in the first equation gives13

2x1 − 2 = 0 ,

so that x1 = 1.14

1.(b). The pivot is circled:15

[

2© −2 4

0 0 0

]

.

Discard the second equation. Restore the first equation16

2x1 − 2x2 = 4 .

Set x2 = t, an arbitrary number and solve for x2: x1 = t + 2.17
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1(e). The pivots are circled:1

[

1© −1 1 3

0 1© 2 −1

]

.

Restore the system:2

x1 − x2 + x3 = 3

x2 + 2x3 = −1 .

The variable x3 is free. Set x3 = t and arbitrary number. Then x2 = −2t−13

and then x1 = −3t + 2.4

1(f). The pivots are circled:5

[

2© −1 0 2
0 0 1© −4

]

.

Restore the system:6

2x1 − x2 = 2

x3 = −4 .

Answer. x1 =
1

2
x2 + 1, x3 = −4, x2 is free.7

2(d). Write down the augmented matrix, then apply R1 ↔ R2 (i.e., switch8

the first and second rows to avoid fractions) to get9





1 2 1 −1

3 −2 −1 0
1 −6 −3 2



 .

Apply R2 − 3R1 and R3 − R1:10





1 2 1 −1
3 −2 −1 0

1 −6 −3 2



⇒





1 2 1 −1
0 −8 −4 3

0 −8 −4 3



 .

Apply R3 − R2:11





1 2 1 −1

0 −8 −4 3
0 −8 −4 3



⇒





1© 2 1 −1

0 -8© −4 3
0 0 0 0



 .
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Pivot variables are x1 and x2, while x3 is free. The second equation becomes1

−8x2 − 4t = 3 ,

giving x2 = −1
2 t − 3

8 . Then from the first equation2

x1 = −2x2 − x3 − 1 = −2

(

−1

2
t − 3

8

)

− t − 1 = −1

4
.

3

2(e). Apply R2 − 2R1, followed by R3 − R24





1 −1 0 1 1

2 −1 1 1 −3
0 1 1 −1 −5



⇒





1 −1 0 1 1

0 1 1 −1 −5
0 1 1 −1 −5



⇒





1© −1 0 1 1

0 1© 1 −1 −5
0 0 0 0 0



 .

Pivot variables are x1 and x2, while x3 and x4 are free. Set x3 = t, x4 = s,5

and solve for x2 = −t + s − 5, x1 = x2 − x4 + 1 = −t − 4.6

3(a). Apply R2 − 2R1 and R3 − R1, followed by R3 − R27





1 −2 0 2
2 3 1 −4

1 5 1 −5



⇒





1 −2 0 2
0 7 1 −8

0 7 1 −7



⇒





1 −2 0 2
0 7 1 −8

0 0 0 1



 .

The last equation is8

0 = 1 .

The system is inconsistent.9

3(c). Apply R2 − 2R1 and R3 − R1:10





1 −2 −1 3 1

2 −4 1 0 5
1 −2 2 −3 4



⇒





1 −2 −1 3 1

0 0 3 −6 3
1 −2 2 −3 4



⇒





1© −2 −1 3 1

0 0 3© −6 3
0 0 3 −6 3



 .

The second column has no pivot, but the third one does. Then R3 − R211

gives12




1© −2 −1 3 1

0 0 3© −6 3
0 0 0 0 0



 .
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The third row is discarded. The pivot variables are x1 and x3, while x2 and1

x4 are free. Restore the system, take x2 and x4 to the right, then set x2 = s,2

x4 = t:3

x1 − 2x2 − x3 + 3x4 = 1

3x3 − 6x4 = 3 ,

4

x1 − x3 = 2x2 − 3x4 + 1 = 2s − 3t + 1

3x3 = 6x4 + 3 = 6t + 3 .

Then x3 = 2t + 1, and x1 = x3 + 2x2 − 3x4 + 1 = −t + 2s + 2.5

d. Apply R2 − 2R1 and R3 − 3R1:6





1 −1 0 1 0
2 −2 1 −1 1

3 −3 2 0 2



⇒





1 −1 0 1 0
0 0 1 −3 1

0 0 2 −3 2



 .

The second column has no pivot, but the third one does. Then R3 − 2R27

gives8




1© −1 0 1 0
0 0 1© −3 1

0 0 0 3© 0



 .

The last equation reads9

3x4 = 0 ,

so that x4 = 0. Then the second equation gives x3 = 1, and from the first10

equation x1 = x2.11

5. In case a = 1, the augmented matrix is12





1 −1 2 3

0 1 −1 −2
1 0 1 1



 .

Apply R3 − R1 to get13





1 −1 2 3

0 1 −1 −2
0 1 −1 −2



 .
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Then R3 − R2 gives1




1© −1 2 3
0 1© −1 −2

0 0 0 0



 .

Pivot variables: x1 and x2. Free variable x3. From the second equation2

x2 = x3 − 2, and from the first equation x1 = −x3 + 1.3

In case a 6= 0, the same process leads to4





1© −1 2 3

0 1© −1 −2
0 0 a − 1 0



 .

Since a − 1 6= 0, the system is inconsistent.5

6. Each pivot occupies its own row and its own column. Therefore the6

maximal possible number of pivots for a m×n matrix is equal to the smaller7

of the numbers m and n. So that for a 5 × 6 matrix, the maximal possible8

number of pivots is 5. For a 11 × 3 matrix, it is 3.9

Section 1.310

1. Form a system of equations with the augmented matrix [C1 C2 C3 |b]:11





1 0 1 1

0 −1 2 0
1 1 3 4



 .

Apply R3 − R1:12




1 0 1 1

0 −1 2 0
0 1 2 3



 .

Apply R3 + R2:13




1 0 1 1

0 −1 2 0
0 0 4 3



 .

Perform back-substitution: x3 = 3
4 , x2 = 3

2 , x1 = 1
4 .14

2. Form a system of equations with the augmented matrix [C1 C2 C3 |b].15

Solve it to get x1 = 0, x2 = 1 and x3 = 1. It follows that b = C2 + C3.16

3. Any linear combination of C1, C2, C3 has the first component equal to 0,17

and hence it cannot be equal to b, which has the first component 5.18
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5. a. Form a system of equations with the augmented matrix [C1 C2 |b], and1

determine x1 = 1, x2 = −2. It follows that b = C1 − 2C2, so that the vector2

b lies in the plane spanned by C1 and C2.3

5. b. The system of equations with the augmented matrix [C1 C2 |b] is4

inconsistent. It follows that the vector b does not lie in the plane spanned5

by C1 and C2.6

6. a. Span of C1, C2, C3 has the third component zero, while the third7

component of b is 1.8

6. b. b = C1 + C2 + C3, hence b is in span of C1, C2, C3.9

7. Vector x ∈ R4 is a 4× 1 matrix. Since A is of size 4× 5, the product Ax10

is not defined.11

8. x ∈ R8 is an 8× 1 matrix. Hence, Ax is defined, and Ax is of size 7 × 1,12

or Ax ∈ R7.13

Section 1.414

1. All three systems have the same matrix. The same sequence of row oper-15

ations is used in each case. Therefore we form a “long” augmented matrix16
[

A 0 b1 b2

]

and perform the Gaussian elimination on the entire long17

rows. When A is reduced to the row echelon form, one restores separately18

each system, to perfom back substitution on each one.19

Apply R2 − R1 and R3 − R1:20





1 2 −1 0 2 −1

1 2 0 0 3 0
1 2 −1 0 2 2



⇒





1© 2 −1 0 2 −1

0 0 1© 0 1 1
0 0 0 0 0 3



 .

Restore separately each system. The variable x2 is free, therefore Ax = 021

and Ax = b1 have each infinitely many solutions. For Ax = b2 the third22

equation says 0 = 3, and the system is inconsistent. Indeed, the restored23

system for Ax = 0 is24

x1 + 2x2 − x3 = 0

x3 = 0 .(0.1)

Then x3 = 0, x1 = −2x2 and x2 is free. (x2 is pivot variable.) For the25

system Ax = b1 get26

x1 + 2x2 − x3 = 2

x3 = 1 .(0.2)
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Then x3 = 1, x1 = −2x2 + 3 and x2 is free. The system Ax = b2 is1

inconsistent.2

2. A has at most 4 pivots, and hence at least one free variable. There are3

infinitely many solutions.4

3. No free variables. There is only the trivial solution.5

4. Solutions of non-homogeneous system Ax = b can be written as x = p+y,6

where p is any particular solution of that system, and y is the general solution7

of the corresponding homogeneous system Ax = 0. We are given that y is8

the line of slope −3 through the origin (or a set of vectors t

[

1
−3

]

), and9

p =

[

2
1

]

. It follows that x =

[

2
1

]

+ t

[

1
−3

]

, or the line of slope −310

through the point (2, 1).11

5. If x1 and x2 are two solutions of Ax = b, then Ax1 = b and Ax2 = b.12

Subtracting13

A (x1 − x2) = 0 .

It follows that x1−x2 is a solution of the corresponding homogeneous equa-14

tion. Since the homogeneous system has only the trivial solution, conclude15

that x1 −x2 = 0, or x1 = x2, so that Ax = b can have at most one solution.16

17

6. a. Since x1 and x2 are solutions of homogeneous system, Ax1 = 0 and18

Ax2 = 0. Then19

A(x1 + x2) = Ax1 + Ax2 = 0 + 0 = 0.

20

6. b. Similarly,21

A(c1x1 + c2x2) = c1Ax1 + c2Ax2 = 0 + 0 = 0 ,

so that c1x1 + c2x2 is also solution of Ax = 0.22

7. If x and y are two solutions, Ax = b and Ay = b. Adding:23

A(x + y) = 2b .

Since 2b 6= b for b 6= 0, it follows that x + y is not a solution of the system24

Ax = b.25
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8. a. True. If Ax = b has trivial solution, then A0 = b or b = 0 and the1

system is homegeneous.2

b. True. There is one free variable.3

c. False. There are two pivots. The solution set involves two arbitrary4

constants.5

d. False. To show that a statement is false, it is enough to provide one6

example to the contrary. We now exhibit a system of 5 equations with 67

unknowns that is inconsistent. The first two equations are:8

x1 + x2 + x3 + x4 + x5 + x6 = 0

x1 + x2 + x3 + x4 + x5 + x6 = 5 .

This system is inconsistent, since the same sum on the left cannot be equal9

to both 0 and 5. Add to this system three more arbitrary equations in10

x1, . . . , x6. Obtain an inconsistent 5 × 6 system.11

Section 1.512

1. a. The second vector is twice the first one. Dependent.13

1. b. The second vector is not a constant multiple of the first one. Indepen-14

dent.15

1. c. One of the vectors is the zero vector. Dependent.16

1. f. Any 3 vectors in R2 are linearly dependent.17

1. k. Form a matrix using these vectors as columns, and then apply R2−R1,18

R3 − R1, R4 − R1:19









1 −1 2
1 −1 2

1 −2 0
1 3 1









⇒









1 −1 2
0 0 0

0 −1 −2
0 4 −1









.

Perform R2 ↔ R4. (R2 ↔ R3 is also possible, but that will require another20

row exchange down the road.) Obtain:21









1 −1 2
0 4 −1

0 −1 −2
0 0 0









.
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Finally, apply R3 + 1
4R2:1









1© −1 2
0 4© −1

0 0 −9
4

0 0 0









.

There are three pivots (the third one is −9
4 ), so that the vectors are linearly2

independent.3

2. a. Set a linear combination of these vectors to zero4

x1(u1 + u2) + x2(u1 − u2) = 0 .

Rearrange:5

(x1 + x2)u1 + (x1 − x2)u2 = 0 .

Since u1 and u2 are linearly independent, it follows that6

x1 + x2 = 0

x1 − x2 = 0 .

The only solution of the last system is x1 = x2 = 0. The vectors u1 + u27

and u1 − u2 are linearly independent.8

3. Since the vectors u1 +u2 and u1−u2 are linearly dependent, one of them9

is a scalar multiple of the other, so that10

u1 + u2 = a (u1 − u2) ,

for some number a. Rearrange:11

(1 − a)u1 + (1 + a)u2 = 0 .

Since the coefficients 1 − a and 1 + a cannot be both zero, it follows that12

the vectors u1 and u2 are also linearly dependent.13

4. Take a linear combination of these vectors, and set it equal to the zero14

vector15

(∗) x1u1+x2 (u1 + u2)+x3 (u1 + u2 + u3)+x4 (u1 + u2 + u3 + u4) = 0 .

Rearrange:16

(x1 + x2 + x3 + x4) u1 + (x2 + x3 + x4)u2 + (x3 + x4)u3 + x4u4 = 0 .
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Since the vectors u1, u2, u3, u4 are linearly independent the coefficients of1

the last linear combination must be all zero:2

x1 + x2 + x3 + x4 = 0

x2 + x3 + x4 = 0

x3 + x4 = 0

x4 = 0 .

Solving this system of equations gives x1 = x2 = x3 = x4 = 0. Since the3

formula (*) holds true only when all coefficients are zero, it follows that the4

vectors u1, u1+u2, u1+u2+u3 and u1+u2+u3+u4 are linearly independent.5

6

5. No. Consider three vectors that lie in the same plane, but no pair of7

them lies on the same line. Then they are linearly dependent, but linearly8

independent pairwise.9

6. Clearly10

1 · u1 + 1 · u2 + (−1) · (u1 + u2) + 0 · u4 = 0 ,

and the coefficients 1, 1, (−1), 0 are not all zero.11

7. Since u1, u2, u3 are linearly dependent12

x1u1 + x2u2 + x3u3 = 0 ,

with a non-trivial combination of the coefficients x1, x2, x3 (at least one of13

them is non-zero). Then for any u414

x1u1 + x2u2 + x3u3 + 0 · u4 = 0 ,

with a non-trivial combination of the coefficients x1, x2, x3, 0 (at least one15

of them is non-zero).16

8. Suppose that, on the contrary, the vectors u1, u2, u3 are linearly depen-17

dent. Then18

x1u1 + x2u2 + x3u3 = 0 ,

with at least one of the coefficients non-zero. But then19

x1u1 + x2u2 + x3u3 + 0 · u4 = 0 ,

with at least one of the coefficients non-zero. It follows that the vectors20

u1, u2, u3, u4 are linearly dependent, contrary to what is given.21

12



9. Since u2 = 0, obtain1

0 · u1 + 1 · u2 + 0 · u3 + 0 · u4 = 0 ,

and one of the coefficients (the second one) is non-zero. (Remark: the2

vectors are considered to be in R5 to make this problem non-trivial. For3

example, in R3 four vectors would be automatically linearly dependent.)4

10. The formula5

n2 = n + n + · · ·+ n

holds only at integer values of n, while the definition of differentiation re-6

quires that functions be defined on some interval. Hence, it is not admissible7

to differentiate this formula.8

Chapter 29

Section 2.110

2. 3X = −I , X = −1
3I .11

3. e. and f. The matrices B are diagonal. Multiply the columns of A by12

the diagonal entries of B. (The first column of A is multiplied by b11, the13

second column of A is multiplied by b22, etc.)14

3. g. Since B is diagonal, multiply the first column of A by 2, the second15

column by −1, the third column by 0 to get16

AB =





2 −1 0
2 −1 0

2 −1 0



 .

4. All three formulas are not true in general. The correct formulas are:17

a. (A− B)(A + B) = (A− B)A + (A− B)B = A2 − BA + AB + B2.18

b. (A + B)2 = (A + B)(A + B) = A2 + AB + BA + B2.19

c. (AB)2 = ABAB.20

If the matrices A and B commute (BA = AB), then indeed we have:21

a. (A − B)(A + B) = A2 − B2.22

b. (A + B)2 = A2 + 2AB + B2.23

c. (AB)2 = A2B2.24
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5. Apply the formula (AB)T = BT AT to two matrices at a time:1

(ABC)T = (A (BC))T = (BC)T AT = CT BT AT .

6. Apply the formula (AB)T = BT AT :2

(

A2
)T

= (AA)T = ATAT =
(

AT
)2

.

8. A2 =





0 0 1

0 0 0
0 0 0



, A3 = A2A = O.3

10 a. Vectors in Rn are n × 1 matrices. Hence xT is a 1 × n matrix, or a4

row vector.5

10. b. If x 6= 0, then at least one of its components is non-zero. Hence,6

xT x = x2
1 + x2

2 + · · ·+ x2
n > 0.7

Section 2.28

2. It is E3(−5) =





1 0 0
0 1 0
0 0 −5



.9

4. a., b., c. Let B be any matrix of the same size as A. Show that AB 6= I .10

11

5. All of the matrices in parts a.-e. are either elementary or diagonal ones,12

for which we have formulas to write down inverse matrices.13

5. g. Use the formula for the inverse of a 2 × 2 matrix to obtain14

A−1 =

[

−2 1

−3 1

]

.

6. a. Apply R3 − R1:15





1 2 0 1 0 0

0 −1 1 0 1 0
1 −2 1 0 0 1



⇒





1 2 0 1 0 0

0 −1 1 0 1 0
0 −4 1 −1 0 1



 .

Apply R3 − 4R2 to get16





1 2 0 1 0 0

0 −1 1 0 1 0
0 0 −3 −1 −4 1



 .
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Apply −R2 and −1
3R3 to get1





1 2 0 1 0 0

0 1 −1 0 −1 0
0 0 1 1

3
4
3 −1

3



 .

Apply R2 + R3 to get2





1 2 0 1 0 0

0 1 0 1
3

1
3 −1

3
0 0 1 1

3
4
3 −1

3



 .

Apply R1 − 2R2 to get3





1 0 0 1
3 −2

3
2
3

0 1 0 1
3

1
3 −1

3
0 0 1 1

3
4
3 −1

3



 .

7. The columns of this matrix are linearly dependent. By Theorem 2.2.2,4

this matrix is not invertible.5

8. By the definition of the square of a matrix, (AB)2 = ABAB. We are6

given that7

ABAB = AABB .

Multiply both sides by A−1 from the left:8

BAB = ABB .

Multiply both sides by B−1 from the right:9

BA = AB .

9. c. Observe that10

E13E24 = E24E13 ,

because it does not matter if one switches rows 1 and 3 first, and rows 2 and11

4 second, or the other way around. Then12

P 2 = E13E24E24E13 = E13IE13 = I ,

because both matrices E24 and E13 are their own inverses.13

11. Since Ak = O,14

(

I + A + A2 + · · ·+ Ak−1
)

(I − A) = I − Ak = I ,
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so that the matrix I + A + A2 + · · ·+ Ak−1 gives the inverse of I − A.1

Section 2.32

1. a. B (AB)−1 A = BB−1A−1A = IA−1A = I .3

1. b. (2A)−1 A2 =
1

2
A−1AA =

1

2
A.4

1. c.
[

4 (AB)−1 A
]−1

=
1

4

[

(AB)−1 A
]−1

=
1

4
A−1AB =

1

4
B.5

2. Inverses of elementary matrices are elementary matrices of the same type.6

7

a. E13(2)−1 = E13(−2).8

c. E−1
13 = E13.9

3. a. The matrix A is obtained from I by switching row 2 and row 4.10

Therefore, A = E24.11

3. b. The matrix B is obtained from I by applying R4 − 5R3. Therefore,12

B = E34(−5).13

3. c. The matrix C is obtained from I by multiplying row 4 by 7. Therefore,14

C = E4(7), and C−1 = E4(
1
7).15

4. a. Restore the elementary matrices and perform multiplication from right16

to left: E12(−3)E13(−1)E23(4) = E12(−3) [E13(−1)E23(4)]. Obtain17

E13(−1)E23(4) =





1 0 0
0 1 0

−1 0 1









1 0 0
0 1 0

0 4 1



 =





1 0 0
0 1 0

−1 4 1



 ,

by applying R3 − R1 to the second matrix. Then18

E12(−3) [E13(−1)E23(4)] =





1 0 0
−3 1 0

0 0 1









1 0 0
0 1 0

−1 4 1



 =





1 0 0
−3 1 0

−1 4 1



 ,

obtained by by applying R2 − 3R1 to the second matrix.19

4. b. Spell out the elementary matrices, and perform multiplication from20

right to left: E12E13(−1)E23(4) = E12 [E13(−1)E23(4)]. The product of the21

last two matrices22

E13(−1)E23(4) =





1 0 0

0 1 0
−1 0 1









1 0 0

0 1 0
0 4 1



 =





1 0 0

0 1 0
−1 4 1





16



is obtained by applying R3 − R1 to the second matrix. Then1

E12 [E13(−1)E23(4)] = E12





1 0 0

0 1 0
−1 4 1



 =





0 1 0

1 0 0
−1 4 1





is obtained by switching rows 1 and 2 of the second matrix.2

4. e. Again, E3(3)E13(−1)E12 = E3(3) [E13(−1)E12].3

E13(−1)E12 =





1 0 0
0 1 0

−1 0 1









0 1 0
1 0 0
0 0 1



 =





0 1 0
1 0 0
0 −1 1



 ,

applying R3 − R1 to the second matrix. Then4

E3(3) [E13(−1)E12] =





1 0 0
0 1 0

0 0 3









0 1 0
1 0 0

0 −1 1



 =





0 1 0
1 0 0

0 −3 3



 ,

applying 3R3 to the second matrix.5

5. a. R2 − 3R1 takes this matrix into U , while L =

[

1 0

3 4

]

.6

5. b. Apply R2 − R1 and R3 − R1. Then7





1 1 1

1 2 2
1 2 3



⇒





1 1 1

0 1 1
0 1 2



 .

Apply Apply R3 − R28





1 1 1

0 1 1
0 1 2



⇒





1 1 1

0 1 1
0 0 1



 = U.

Forward elimination gave U , while9

L =





1 0 0
1 1 0
1 1 1



 .

5. e. Apply R3 − 2R110









1 2 1 0
0 2 1 −1

2 4 3 1
0 −2 0 2









⇒









1 2 1 0
0 2 1 −1

0 0 1 1
0 −2 0 2









.

17



Apply R4 + R21









1 2 1 0
0 2 1 −1

0 0 1 1
0 −2 0 2









⇒









1 2 1 0
0 2 1 −1

0 0 1 1
0 0 1 1









.

Finally, R4 − R3 gives2









1 2 1 0

0 2 1 −1
0 0 1 1

0 0 1 1









⇒









1 2 1 0

0 2 1 −1
0 0 1 1

0 0 0 0









= U.

The last matrix is U , while3

L =









1 0 0 0

0 1 0 0
2 0 1 0

0 −1 1 1









.

Observe that zeroes under the diagonal correspond to row operations that4

were not used.5

6. a. Row exchange is needed for Gaussian elimination, therefore the LU6

decomposition is not possible.7

6. b. The multiplication by permutation matrix PA interchanges the rows8

of A so that no row exchanges are needed in forward elimination.9

7. a. A−1 = E−1
23 E3(−2)−1E12(3)−1 = E23E3(−

1

2
)E12(−3).10

7. b. Restore the 3 × 3 elementary matrices, and perform multiplication11

from right to left: E23

(

E3(−1
2 )E12(−3)

)

. Begin with12

E3(−
1

2
)E12(−3) =





1 0 0
0 1 0

0 0 −1
2









1 0 0
−3 1 0

0 0 1



 =





1 0 0
−3 1 0

0 0 −1
2



 ,

obtained by performing −1
2R3 on the second matrix. Then13

E23





1 0 0
−3 1 0

0 0 −1
2



 =





1 0 0
0 0 −1

2
−3 1 0 ,





18



obtained by performing R2 ↔ R3 on the second matrix.1

9. Taking inverses of both sides, we get an equivalent statement to prove2

A−1 + B−1 = B−1(A + B)A−1 .

Distributing B−1, and then distributing A−1 on the right3

B−1(A + B)A−1 = (B−1A + I)A−1 = B−1 + A−1 = A−1 + B−1 .

Section 2.44

1. a. Not a subspace, because the zero vector, with x1 = x2 = 0, does not5

belong to this subset of R2.6

1. b. Multiplying a vector of say length 1
2 lying inside the unit sphere by7

say 5, produces a vector of length 5
2 lying outside of the unit sphere. The8

subset is not closed under multiplication by a scalar. Not a subspace.9

1. c. Yes, a subspace. For x =













x1

x2

x3

x4

x5













we are given that x1 + x4 = 0.10

Any y =













y1

y2

y3

y4

y5













belonging to this subset satisfies y1 + y4 = 0. Their sum11

x+y =













x1 + y1

x2 + y2

x3 + y3

x4 + y4

x5 + y5













also has the sum of the first and the fourth components12

zero:13

x1 + y1 + x4 + y4 = x1 + x4 + y1 + y4 = 0 + 0 = 0 .

Similarly for cx =













cx1

cx2

cx3

cx4

cx5













one has the sum of the first and the fourth14

components:15

cx1 + cx4 = c (x1 + x4) = 0 .

19



1

1. f. Vectors

[

1
0

]

and

[

0
1

]

belong to this subset, but their sum

[

1
1

]

2

does not. The subset is not closed under addition. Not a subspace.3

1. g. The subset is a line through the origin, or the span of any vector going4

along this line. A subspace.5

1. h. Zero vector belongs to the set x =





0

x2

x2
2



 (when x2 = 0, x = 0), so6

that we cannot quickly conclude that this set is not a subspace. However,7

this set is indeed not a subspace, because 2x does not belong to this set if8

x 6= 0.9

4. a. The vectors b1 and b2 are linearly independent. Therefore they form10

a basis of R2. To find the coordinates of e1, solve the system with the11

augmented matrix12
[

1 −1 1
2 1 0

]

to get x1 = 1
3 , x2 = −2

3 .13

4. b. 1b1 + 3b2 =

[

−2
5

]

.14

5. Three linearly independent vectors b1, b2, b3 form a basis of R3. The15

coordinates of v1 and v2 with respect to this basis can be calculated in16

parallel by working with the augmented matrix17

[

b1 b2 b3 v1 v2

]

.

6. a. Solve the system with the augmented matrix18

[

b1 b2 b3

]

to get x1 = −1, x2 = 1.19

7. x = x1e1 + x2e2 + x3e3.20

8. c. Draw the vector x in the first quadrant of the x1x2-plane, for simplicity.21

Rotate x by the angle θ and reflect the result with respect to the x1 axis.22

Then rotate just obtained result by the angle θ and reflect the last result23

with respect to the x1 axis. Obtain x. So that PPx = x for any x.24

20



Section 2.51

1. g. To solve the system Ax = 0, perform R2 − R1 and R3 + R12





2 1 3 0 0

2 0 4 1 0
−2 −1 −3 1 0



⇒





2© 1 3 0 0

0 -1© 1 1 0
0 0 0 1© 0



 .

The variable x3 is free, so set x3 = t. Back substitution gives: x4 = 0,3

x2 = t, x1 = −2t, so that x = t









−2
1

1
0









. The null space N (A) is spanned4

by the vector









−2
1

1
0









, dimN (A) = 1.5

1. h. Hx = 0 gives one equation with four unknowns6

−x1 + x2 + 3x3 = 0 .

x1 is the pivot variable, while x2, x3, x4 are free. Express x1 = x2 +3x3, and7

the solution is8

x =









x2 + 3x3

x2

x3

x4









= x2









1

1
0

0









+ x3









3

0
1

0









+ x4









0

0
0

1









.

9

2. If a 4×5 matrix has two pivots, it has three free variables. The dimension10

of its null space is 3.11

3. Since the rank is 3, there are 3 pivots. There are 4 free variables, and12

the dimension of the null space is 4.13

4. a. The system Ax = 0 has only the trivial solution, so that the null space14

is the trivial subspace.15

b. The column space is R4 because the system Ax = b has a (unique)16

solution for any vector b ∈ R4.17

5. There is one free variable. The null space consists of multiples of a three18

dimensional vector. The column space is a span of two of the columns.19
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6. The matrix A has at most 3 pivots (each pivot occupies its own row).1

Therefore, there is at least 2 free variables.2

7. There are no pivots. Only the zero matrix O has this property.3

8. a. The matrix is already in the row echelon form. Columns one and two4

have pivots, so C1 and C2 form a basis of the column space C(A). The rank5

of A is 2. To express C3, do back-substitution on6

[

-1© 1 −1
0 2© 4

]

to obtain x2 = 2 and x1 = 3. Conclusion: C3 = 3C1 + 2C2.7

8. c. R2 + 3R1 gives8
[

1© 1 2
0 0 0

]

.

Only column one has pivot, and hence C1 spans C(A). Indeed, C2 = C1,9

and C3 = 3C1.10

8. d. Apply R2 − R1 and R3 + 2R1. Obtain:11

A =





−1 2 5
−1 2 5

2 0 −2



⇒





−1 2 5
0 0 0

0 4 8



 .

Apply R2 ↔ R3.12





−1 2 5

0 0 0
0 4 8



⇒





-1© 2 5

0 4© 8
0 0 0



 .

Span of C1 and C2 gives the basis of C(A). To express C3 through C1 and13

C2, do back-substitution on14





-1© 2 5

0 4© 8
0 0 0



 .

Obtain x2 = 2 and x1 = −1, so that C3 = −C1 + 2C2.15

8. e. Perform R1 ↔ R3:16





0 0 1

0 2 5
−1 0 −3



⇒





-1© 0 −3

0 2© 5
0 0 1©



 .

22



The columns of this matrix are linearly independent. Since any three linearly1

independent vectors in R3 form a basis in R3, it follows that C(A) = R3.2

8. f. Perform R2 − R1 and R3 + R13





2 1 3 0

2 0 4 1
−2 −1 −3 1



⇒





2© 1 3 0

0 -1© 1 1
0 0 0 1©



 .

The column space is spanned by C1, C2 and C4. To express C3 through C1,4

C2 and C4, do a back substitution on5





2© 1 0 3
0 -1© 1 1

0 0 1© 0



 .

Obtain x3 = 0, x2 = −1, x1 = 2. Conclude C3 = 2C1 − C2.6

10. b. Both N (A) and C(A) have dimension 1, and therefore both are7

arbitrary multiples of the vector

[

1
−1

]

, which belongs to both spaces.8

10. c. Observe that A2 = O. All x ∈ R2 satisfy Ox = 0. Hence N (A2) = R2.9

10

11. b. Try the matrix A =

[

−1 −1

1 1

]

from the preceding exercise.11

12. a. The difference of any two solutions satisfies the homogeneous system12

Ax = 0. If C1, C2, . . . , Cn are the columns of A, and x1, x2, . . . , xn are13

the components of x, then x1C1 + x2C2 + . . . + xnCn = 0. By the linear14

independence of the columns, x = 0, and hence any two solutions of Ax = b15

are identical.16

Chapter 317

Section 3.118

1. Evaluation of both determinants gives19

2x + 3 = −x ,

so that x = −1.20

3. b. Determinant of a diagonal matrix matrix is equal to the product of21

the diagonal entries: 1(−2)(−3)(−4) = −24.22

23



3. g. Expand in the first row to get1

a

∣

∣

∣

∣

0 b
c −2

∣

∣

∣

∣

= −abc .

3. i. Expand in the third column, to take advantage of the two zeros it2

contains.3

3. l. All entries of the third column are zero. Expanding in the third column4

one shows that the determinant is zero.5

4. In both cases |A2| = |A|2, which is a general fact, which will be justified6

in the next section.7

5. Expansion in the first column gives8

|A| = (−1)n−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

0 . . . 0 1
1 . . . 0 0
...

...
. . .

...

0 . . . 1 0

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

The new (n − 1)× (n − 1) determinant is expanded in the first row to get9

|A| = (−1)n−1(−1)n−2|I | = (−1)2n−3 = −1 ,

since the number 2n − 3 is odd.10

7. All elements of the third row are zero, since aij = 0 for i = 3. Then11

|A| = 0.12

8. When computing a determinant, one performs multiplications, additions,13

and subtractions that turn integers into integers. If all entries of the matrix14

are integers, its determinant is an integer. The converse statement is “if the15

determinant is an integer then all entries of the matrix are integers”. An16

example of17
∣

∣

∣

∣

3
2

1
2

5
2 −1

2

∣

∣

∣

∣

= −2

proves it wrong.18

Section 3.219

1. b. Perform R1 ↔ R3, followed by R2 − 3R1. After that expand in the20

first column.21
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1. g. Perform R2 − aR1 and R3 − a2R1, then expand in the first column.1

Obtain2

∣

∣

∣

∣

∣

∣

1 1 1

0 b − a c − a
0 b2 − a2 c2 − a2

∣

∣

∣

∣

∣

∣

= (b − a)(c− a)(c + a)− (b − a)(b + a)(c− a) .

Factoring (b − a)(c− a) out, this simplifies to (b − a)(c− a)(c− b).3

2. a. Apply R2 − 3R1 to obtain4

∣

∣

∣

∣

∣

∣

a b c

d + 3a e + 3b f + 3c
g h k

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a b c

d e f
g h k

∣

∣

∣

∣

∣

∣

= 5 .

5

2. b. Factor 2 out of the second row to obtain6

∣

∣

∣

∣

∣

∣

a b c

2d 2e 2f
g h k

∣

∣

∣

∣

∣

∣

= 2

∣

∣

∣

∣

∣

∣

a b c

d e f
g h k

∣

∣

∣

∣

∣

∣

= 10 .

2. c. Factor 3 out of the first row, and 2 out of the second row to obtain7

∣

∣

∣

∣

∣

∣

3a 3b 3c

2d 2e 2f
g h k

∣

∣

∣

∣

∣

∣

= 6

∣

∣

∣

∣

∣

∣

a b c

d e f
g h k

∣

∣

∣

∣

∣

∣

= 30 .

2. d. Apply R2 − 3R1 to obtain the determinant in part b. Answer. 10.8

2. e. Perform R1 ↔ R2 to obtain9

∣

∣

∣

∣

∣

∣

d e f

a b c
g h k

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

a b c

d e f
g h k

∣

∣

∣

∣

∣

∣

= −5 .

10

2. f. Perform R2 ↔ R3, followed by R1 ↔ R2 to obtain11

∣

∣

∣

∣

∣

∣

d e f

g h k
a b c

∣

∣

∣

∣

∣

∣

= −

∣

∣

∣

∣

∣

∣

d e f

a b c
g h k

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

a b c

d e f
g h k

∣

∣

∣

∣

∣

∣

= 5 .

2. g. Factor −1 out of the third column.12

2. h. A column of zeros makes the determinant zero.13
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3. a. Adding all rows to the last one, produces all entries equal to zero in1

the last row. The new determinant is equal to zero, and it is equal to the2

original one.3

4. b. Since A is 4 × 4, |2A| = 24|A| = 16 · 3 = 48.4

4. c. |B2| = |B|2 =
1

4
.5

4. f. |2AB−1| = 24|A||B−1| = 16|A| 1

|B| = 96.6

4. g. |A2(−B)T | = |A2| |(−B)T | = |A|2 |(−B)| = 32(−1)4|B| =
9

2
.7

5. | − A| = (−1)7|A| = −|A|, so that |A| = −|A|, and then |A| = 0.8

7. Expanding the determinant in the first column obtain a linear equation9

of the type10

A + Bx + Cy = 0 ,

with some numbers A, B, C. This line passes through the point (a, b), be-11

cause when x = a and y = b the determinant is zero, since the columns one12

and two are identical.13

8. Expanding the determinant in the first column obtain a linear equation14

of the type15

A + Bx + Cy + Dz = 0 ,

with some numbers A, B, C, D. This equation represents a plane. The point16

(a1, a2, a3) lies on this plane, because when x = a1, y = a2, z = a3 the17

determinant is zero (its first two columns are identical).18

9. For B one has R2 = 2R1 (also, columns one and three are identical), so19

that |B| = 0. Then |A3B| = |A3| |B| = 0.20

10. Apply R2 − 2R1, R3 − 2R1, . . . , Rn − 2R1. Obtain an upper triangular21

determinant, with the diagonal entries 1, 1, 2, 3, . . . , n− 1. Their product is22

(n − 1)!.23

11. It takes n − 1 row exchanges to put the last row back into the first24

position. Then use n − 2 row exchanges to put the next to last row back25

into the second position. The total number of row exchanges26

1 + 2 + 3 + · · ·+ n − 1 =
n(n − 1)

2

is equal to the number of sign changes of the determinant, as |B| is trans-27

26



formed into |A|.1

12. |AT | = | − A|, implies that |A| = (−1)n|A|, giving |A| = −|A| since n is2

odd, so that |A| = 0.3

13. b. Apply Rn−Rn−1, then Rn−1−Rn−2, and so on ending with R2−R1,4

obtain determinant of an upper triangular matrix with all diagonal entries5

equal to 1.6

14. If A2 = −I for some matrix A, then7

|A2| = | − I | .

But |A2| = |A|2 ≥ 0, while for n odd, | − I | = (−1)n = −1 < 0, a contradic-8

tion.9

15. If rows are linearly dependent, one of them is a linear combination of10

the others. Suppose that the matrix is 4 × 4, and11

R4 = aR1 + bR2 + cR3 .

Perform the elementary operations R4 − aR1, R4 − bR2, R4 − cR3. On one12

hand the determinant is unchanged, and on the other hand the row 4 has13

all zeros, so that |A| = 0.14

Section 3.315

1. b. |A| = 0, no inverse matrix exists.16

1. g. Expand |A| in the third row.17

1. h. Use Gaussian elimination on the first column of |A|.18

2. c. Determinant of the system is zero, so that Cramer’s rule does not19

apply. Gaussian elimination shows that this system is inconsistent.20

2. d. The second row can be discarded. The variable x2 is free, there are21

infinitely many solutions.22

3. a. Recall that A AdjA = |A|I , and then23

|A AdjA| = det (|A|I) .

On the left one has determinant of a product of two matrices, on the right24

determinant of a constant |A| times the unit matrix I . Then25

|A| |AdjA| = |A|n ,
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1

|Adj A| = |A|n−1 .

3. b. By part (a), |Adj A| = 0 if and only if |A| = 0. So that either both2

matrices are singular, or both are non-singular.3

4. a. Determinant of a lower triangular matrix equals to the product of the4

diagonal entries. If one of the diagonal entries is zero, the determinant is5

zero, and the matrix is not invertible.6

4. b. In the adjugate matrix C21, C31, . . . (all cofactors below the main7

diagonal) are determinants of triangular matrices, with one of the diagonal8

entries zero. It follows that C21 = 0, C31 = 0, . . ., so that A−1 is lower9

triangular.10

6. Since detA = 0, the matrix A has fewer than n pivots. So that either11

the system Ax = b is inconsistent, or it has infinitely many solutions, since12

there are free variables.13

7. Write all three vectors in components, and show that both sides of each14

identity contain the same expressions. For Part b. observe that vector15

product is not associative, with a× (b× c) being different from (a× b)×c,16

in general. Part c. is rather long.17

8. a. A is a block-diagonal matrix, with blocks of dimensions 2 × 2, 2 × 2,18

and the scalar 4. Invert each block separately to obtain A−1.19

8. b. The first two components of the vector Ay are obtained by multi-20

plying

[

4 3

1 1

] [

x1

x2

]

, and the last three components of the vector Ay are21

zero. The vector Az has zeros in the first, second and and fifth compo-22

nents, while the third and fourth components are calculated by multiplying23

[

cos θ − sin θ
sin θ cos θ

] [

x3

x4

]

. Similarly, Aw =













0

0
0

0
5x5













.24

This example shows how the three blocks of A act separately on vectors in25

R5. Other block matrices act similarly.26

Chapter 427

Section 4.128
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2. a. b. c. d. If a matrix is upper or lower triangular, or diagonal, then its1

diagonal entries give the eigenvalues.2

2. e. Expand3
∣

∣

∣

∣

3 − λ 2
4 1 − λ

∣

∣

∣

∣

= 0

to get4

(3 − λ)(1− λ) − 8 = 0 ,
5

λ2 − 4λ − 5 = 0 ,
6

(λ + 1)(λ − 5) = 0 .

The roots (the eigenvalues) are λ1 = −1, λ2 = 5.7

2. g. Expand8
∣

∣

∣

∣

∣

∣

−2 − λ −1 4
3 2 − λ −5

0 0 1 − λ

∣

∣

∣

∣

∣

∣

= 0

in the third row to get9

(1 − λ) [(−2 − λ)(2− λ) + 3] = 0 ,

10

(1− λ)(λ2 − 1) = 0 .

Setting the first factor to zero gives λ1 = 1. Setting the second factor to11

zero gives λ2 = 1, λ3 = −1.12

2. h. This example is covered in the text, in Section 4.2.13

3. a. The eigenvalues are λ1 = −3 and λ2 = 3.14

To find eigenvectors corresponding to λ1 = −3 we need to solve the15

system (A + 3I)x = 0, or16

5x1 + x2 = 0

5x1 + x2 = 0 .

Discard the second equation:17

5x1 + x2 = 0 .

Set x2 = 5, to avoid fractions, and then x1 = −1. Obtained an eigenvector18
[

−1
5

]

, or any of its multiples c

[

−1
5

]

.19
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To find eigenvectors corresponding to λ1 = 3 we need to solve the system1

(A − 3I)x = 0, or2

−x1 + x2 = 0

5x1 − 5x2 = 0 .

Discard the second equation:3

−x1 + x2 = 0 .

Set x2 = 1, and then x1 = 1. Obtained an eigenvector

[

1
1

]

, or any of its4

multiples c

[

1
1

]

.5

3. e. The eigenvalues are 2,−3, 0, 5, the diagonal entries. The eigenvec-6

tors are e1, e2, e3, e4 the coordinate vectors. Indeed, to find eigenvectors7

corresponding to λ1 = 2, one needs to solve (A − 2I)x = 0. Since8

A − 2I =









0 0 0 0

0 −5 0 0
0 0 −2 0

0 0 0 3









,

the corresponding system is9

0 = 0

−5x2 = 0

−2x3 = 0

3x4 = 0 .

The solution is x2 = x3 = x4 = 0, while x1 = c, arbitrary. In the vector10

form x = ce1. Proceed similarly to find other eigenvectors.11

3. f. Building on the solution to 3. e., it follows that the eigenvalues of12

any n × n diagonal matrix are its diagonal entries. The eigenvectors are13

e1, e2, . . . , en the coordinate vectors.14

3. g. The characteristic equation is15

∣

∣

∣

∣

∣

∣

2− λ 1 1

−1 −2 − λ 1
3 3 −λ

∣

∣

∣

∣

∣

∣

= 0 .
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Expand in the third row1

3

∣

∣

∣

∣

1 1
−2 − λ 1

∣

∣

∣

∣

− 3

∣

∣

∣

∣

2 − λ 1
−1 1

∣

∣

∣

∣

− λ

∣

∣

∣

∣

2 − λ 1
−1 −2 − λ

∣

∣

∣

∣

= 0 ,

2

3(3 + λ)− 3(3− λ)− λ [(2 − λ)(−2− λ) + 1] = 0 ,
3

6λ − λ(λ2 − 3) = 0 .

Factor λ:4

λ(9− λ2) = 0 .

The roots (or the eigenvalues) are λ = 0 and λ = ±3.5

4. Sum of the eigenvalues is equal to the trace:6

λ1 + λ2 = 6 .

Given that λ1 = −1, it follows that λ2 = 7, and then7

|A| = λ1 λ2 = −7 .

5. You may begin with, say

∣

∣

∣

∣

2 a
b 3

∣

∣

∣

∣

, which has trace 5, and then choose8

the numbers a and b, so that the determinant is 4.9

6. a. The eigenvalues of A3 are (−2)3 = −8, 13 = 1, ( 1
4)3 = 1

64 . The10

determinant |A3| is their product,11

|A3| = (−2) × 1 × 1

64
= −1

8
.

6. b. |A| = −1
2 , the product of its eigenvalues. Then12

|A−1| =
1

|A| = −2 .

7. If A is invertible, so is A−1 (its inverse is A). Hence, A−1 cannot have13

zero eigenvalues.14

8. Since A has zero eigenvalue, |A| = 0 (|A| is the product of eigenvalues).15

Then |AB| = |A||B| = 0, therefore AB is not invertible.16

9. If Ax = λx, then (kA)x = kλx, so that x is an eigenvector of kA, and kλ17

is the corresponding eigenvalue.18

10. a. Since A and AT have identical characteristic polynomials (by the19

Hint), all of the eigenvalues are the same.20
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11. b. If Ax = λx, then1

(3A2 + 5I)x = (3λ2 + 5)x .

12. b. tr (AB) =
n
∑

i,j=1

aijbji =
n
∑

i,j=1

bjiaij .2

Here i and j are “dummy” variables of summation. Rename i to be j, and3

j to be i. Then4

n
∑

i,j=1

bjiaij =

n
∑

i,j=1

bijaji = tr (BA) .

12. c. Use part (b) of this problem:5

tr (AB − BA) = tr I ,
6

0 = n ,

a contradiction, proving that the equality AB − BA = I is not possible for7

any two matrices A and B.8

13. Similar matrices have the same eigenvalues. Therefore they have the9

same trace, since the trace equals to the sum of eigenvalues.10

14. Assume that Ax = λx and Bx = µx. Then11

(AB − BA) x = ABx − BAx = µAx − λBx = µλx − λµx = 0 .

It follows that x is an eigenvector of AB −BA, corresponding to zero eigen-12

value. Hence, |AB − BA| = 0.13

15. Add to the last row all other rows. The last row will consist of zeroes,14

so that |A− bI | = 0. Then λ = b is a root of the characteristic equation, or15

an eigenvalue of A.16

Section 4.217

2. b. The characteristic equation is18

∣

∣

∣

∣

∣

∣

3 − λ 3 2

1 1− λ −2
−3 −1 −λ

∣

∣

∣

∣

∣

∣

= 0 .

Expand in the third column and simplify the first two terms:19

2(2− 3λ) + 2(λ + 6) − λ [(3 − λ)(1− λ) − 3] = 0 ,
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1

−4λ + 16 − λ [(3− λ)(1− λ)− 3] = 0 .

Now expand the expression in the square bracket2

−4λ + 16− λ(λ2 − 4λ) = 0 ,
3

−4(λ − 4) − λ2(λ − 4) = 0 ,
4

(λ − 4)(λ2 + 4) = 0 .

The roots, or the eigenvalues, are λ1 = −2i, λ2 = 2i, λ3 = 4.5

To find the eigenvectors corresponding to λ1 = −2i, need to solve6

(A + 2iI)x = 0 ,

with7

A + 2iI =





3 + 2i 3 2
1 1 + 2i −2

−3 −1 2i



 .

We know that the rows of this matrix are linearly dependent. The second row8

is not a multiple of the first, therefore the third row is a linear combination9

of the first two, although the exact complex coefficients are not easy to find.10

Therefore, discard the third equation to obtain11

(3 + 2i)x1 + 3x2 + 2x3 = 0

x1 + (1 + 2i)x2 − 2x3 = 0 .

Setting x3 = 1 gives12

(3 + 2i)x1 + 3x2 = −2

x1 + (1 + 2i)x2 = 2 .

Use Cramer’s rule: x1 = −8−4i
−4+8i = i, x2 = 8+4i

−4+8i = −i. The eigenvectors13

are





i
−i

1



, and any of its multiples. The eigenvectors corresponding to14

λ2 = 2i are the complex conjugates: c





−i
i
1



.15
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3. The characteristic polynomial |A − λI | is a polynomial of degree n. If n1

is odd, this polynomial has at least one real root by the intermediate value2

theorem. (If this polynomial tends to −∞ as λ → −∞, then it tends to ∞3

as λ → ∞.)4

5. Since λ1 + λ2 = trA = 2 and λ1λ2 = det(A) = 2, it follows that the5

eigenvalues are 1 ± i.6

6. The matrix A has eigenvalues ±i and ±2i. Hence the size of A is at least7

4 × 4.8

Section 4.39

1. a. A has eigenvalues λ1 = 3 with an eigenvector

[

2

1

]

, and λ2 = 2 with an10

eigenvector

[

1

1

]

. Use these eigenvectors as columns to get P =

[

2 1

1 1

]

.11

Use the eigenvalues to form D =

[

3 0

0 2

]

.12

1. b. λ = 2 is a double eigenvalue, but it has only one linearly inde-13

pendent eigenvector, namely e1 =

[

1
0

]

, the first coordinate vector in R2.14

This matrix does not have a full set of eigenvectors, and therefore it is not15

diagonalizable.16

1. d. λ = 2 is a triple eigenvalue, but it has only one linearly independent17

eigenvector, which is e1 =





1

0
0



 ∈ R3. This matrix is not diagonalizable.18

1. f. Verify that the columns of P , given in the answer, are the eigenvectors19

of A, corresponding to the eigenvalues λ1 = 0, λ2 = 1, and λ3 = 3.20

1. g. This matrix has a double eigenvalue λ1 = λ2 = 0 with two linearly21

independent eigenvectors





−1

0
1



 and





−1

1
0



, and eigenvalue λ3 = 3 cor-22

responding to





1
1

1



. This matrix is diagonalizable. Use the eigenvectors as23

columns to produce the diagonalizing matrix P =





−1 −1 1

0 1 1
1 0 1



. Then24
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D =





0 0 0

0 0 0
0 0 3



.1

1. h. λ = 1 is an eigenvalue of multiplicity four, but it has only one linearly2

independent eigenvector, which is e1 =









1
0

0
0









∈ R4. This matrix is not3

diagonalizable.4

1. i. The eigenvalues are λ1 = a corresponding to an eigenvector

[

1
0

]

, and5

λ1 = b corresponding to an eigenvector

[

1
1

]

. Hence, P =

[

1 1
0 1

]

and6

D =

[

a 0
0 b

]

.7

2. We have A = PDP−1, with P and D from the preceding exercise. Then8

Ak = PDkP−1 =

[

1 1

0 1

][

ak 0

0 bk

][

1 −1

0 1

]

=

[

ak bk − ak

0 bk

]

.

3. a. Since the eigenvalues are different, the corresponding eigenvectors are9

linearly independent, and the matrix is diagonalizable.10

3. b.
(√

A
)2

= P

[ √
λ1 0

0
√

λ2

]2

P−1 = P

[

λ1 0

0 λ2

]

P−1 = A.11

3. c. Diagonalize B, then
√

B = P

[ √
λ1 0
0

√
λ2

]

P−1.12

3. d. As in 3. a., one shows that C2 = A,13

4. The eigenvalues of A are 0 and 1. They are different so that A is diago-14

nalizable. Write15

A = P

[

1 0
0 0

]

P−1 ,

with an appropriate diagonalizing matrix P and its inverse P−1. Then16

Ak = P

[

1k 0

0 0k

]

P−1 = P

[

1 0

0 0

]

P−1 = A .

5. The eigenvalues of A are −1
2 and 1

2 . They are different so that A is17

diagonalizable. Write18

A = P

[

−1
2 0
0 1

2

]

P−1 ,
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with an appropriate diagonalizing matrix P and its inverse P−1. Then1

Ak = P

[

(−1
2 )k 0

0 ( 1
2 )k

]

P−1 → POP−1 = O ,

as k → ∞.2

6. The eigenvalues of A are distinct so that A is diagonalizable. Write3

A = P





0 0 0

0 −1 0
0 0 1



P−1 ,

with an appropriate diagonalizing matrix P and its inverse P−1. Then4

A7 = P





07 0 0

0 (−1)7 0
0 0 17



P−1 = P





0 0 0

0 −1 0
0 0 1



P−1 = I .

5

7. The eigenvalues of A are distinct so that A is diagonalizable. Write6

A = P









−i 0 0 0
0 i 0 0

0 0 −1 0
0 0 0 1









P−1 ,

with an appropriate diagonalizing matrix P and its inverse P−1. Then7

A4 = P









(−i)4 0 0 0

0 i4 0 0
0 0 (−1)4 0

0 0 0 14









P−1 = PIP−1 = I .

9. In the 2 × 2 case A = P

[

λ1 0

0 λ2

]

P−1. Then8

q(A) = P

[

q(λ1) 0
0 q(λ2)

]

P−1 = POP−1 = O ,

since eigenvalues are roots of the characteristic equation q(λ) = 0.9

Chapter 510
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Section 5.11

1. e. Between any two non-parallel vectors there is an acute angle (less than2

π/2) and an obtuse angle (greater than π/2), and these angles add up to3

π. Recall also that the range of the arc cosine function is [0, π], so that arc4

cosine of a negative number is an obtuse angle. Here ||y1|| = 3, ||y3|| = 2,5

y1 · y3 = −1, cos θ = −1
6 . The acute angle is π − arccos

(

−1
6

)

≈ π − 1.738 ≈6

1.403 in radian measure.7

1. g. Proj x1
x3 = x1·x3

||x1||2 x1 = −x1, since x1 · x3 = −9 and ||x1|| = 3.8

1. i. The vectors v1 and v2 are orthogonal, hence the projection of v2 on v19

is the zero vector.10

2. (x + y) · (x − y) = x · x − x · y + y · x − y · y = ||x||2 − ||y||2.11

3. Vectors x+y and x−y give the diagonals of the parallelogram with sides12

x and y. If the sides are equal, ||x|| = ||y||, then13

(x + y) · (x − y) = ||x||2 − ||y||2 = 0 ,

and the diagonals are orthogonal. Conversely, if the diagonals are orthogo-14

nal, it follows from the same formula that the sides are equal.15

4. ||x+y||2 = (x+y) ·(x+y) = x ·x+x ·y+y ·x+y ·y = ||x||2+2x ·y+||y||2 =16

16 − 2 + 9 = 23.17

5. a. Since cos θi = x·ei

||x||||ei|| = xi

||x|| , obtain18

cos2 θ1 + cos2 θ2 + · · ·+ cos2 θn =
x2

1 + x2
2 + · · ·+ x2

n

||x||2 = 1 .

5. b. In case n = 2, θ2 = π
2 − θ1, so that cos θ2 = sin θ1, and the formula19

becomes20

cos2 θ1 + sin2 θ1 = 1 .

6. Consider the triangle formed by the vectors x, y and x + y for the21

geometrical interpretation.22

8. Aej equals to the column j of A. Taking the inner product with ei picks23

out the element i of this column, which is aij.24

9. a. Using the Cauchy-Schwarz inequality25

||Proj ab|| = || a · b
||a||2 a|| =

|a · b|
||a||2 ||a|| ≤

||a||||b||
||a||2 ||a|| = ||b|| .
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9. c. True:1

Proj 2a b =
2a · b
||2a||2 2a =

a · b
||a||2 a = Proj a b .

9. b. Part 9. c. shows that Proj a b does not change if vector a is multiplied2

by any number. If this number c is chosen small, then ||Proj ca b|| > ||ca||.3

10. Just observe the derivation in the text works for rectangular matrices4

as well.5

Section 5.26

1. u1 · u2 = 0, hence the vectors are orthogonal. They are orthonormal7

because ||u1|| = 1 and ||u2|| = 1. Two linearly independent vectors form a8

basis of R2. To find the coordinates of e1 and e2 with respect to the basis9

B = {u1, u2}, form the augmented matrix10

[

u1 u2 e1 e2

]

,

and do Gaussian elimination on the entire long matrix. Obtain e1 = 1√
2
u1 +11

1√
2
u2, and e2 = − 1√

2
u1+

1√
2
u2, so that [e1]B =

[

1/
√

2

1/
√

2

]

, [e2]B =

[

−1/
√

2

1/
√

2

]

.12

2. Since the vectors u1, u2, u3 are orthonormal, can use the following formu-13

las to the coordinates with respect to the basis B = {u1, u2, u3}:14

[w1]B =





w1 · u1

w1 · u2

w1 · u3



 =





√
3

0

0



 ,

15

[w2]B =





w2 · u1

w2 · u2

w2 · u3



 =





0
0

− 6√
2



 ,

16

[e2]B =





e2 · u1

e2 · u2

e2 · u3



 =







1√
3

− 2√
6

0






.

3. a. Any set of linearly independent vectors form a basis in the subspace17

that they span.18

3. b. Since the vectors v1 and v2 are orthogonal19

Proj
W

b =
b · v1

||v1||2
v1 +

b · v2

||v2||2
v2 =

3

9
v1 +

0

2
v2 =





2/3

−1/3
2/3



 .
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Since Proj
W

b 6= b, b does not belong to W .1

3. c. Before calculating the coordinates of w, we need to make sure that w2

belongs to W (so that w can be expressed through the basis of W ). To this3

end, calcluate the projection4

Proj
W

w =
w · v1

||v1||2
v1 +

w · v2

||v1||2
v2 = −3v1 + v2 = w ,

and hence w ∈ W . The same calculation shows that [w]B =

[

−3

1

]

.5

3. d. There is a misprint in the book. The correct statement is “ Calculate6

ProjW w. Does w belong to W?”7

Solution. Since w belongs to W (by part c.), Proj
W

w = w.8

3. e. W is the plane passing through the vectors v1 and v2.9

f. W⊥ is the straight line perpendicular to the plane W .10

4. a. Since u1, u2, u3 are orthonormal, they are linearly independent, and11

hence they form a basis of their span.12

4. b. Proj
W

b = (b · u1)u1 + (b · u2)u2 + (b · u3)u3 = −1
2u1 + 3

2u2 + 1
2u3.13

5. Let w1, w2, . . . , wk be some basis of W . Observe that k ≤ n. A vector14

x ∈ Rn belongs to W⊥ when w1 ·x = 0, w2 ·x = 0, . . . , wk ·x = 0. So that we15

have a system of k equations with n unknowns to determine x. The matrix16

of this homogeneous system has rows wT
1 , wT

2 , . . . , wT
k . Since the rows are17

linearly independent, there are k pivots, and the the solution space (which18

is W⊥) has dimension n − k.19

6. We will show that every vector in
(

W⊥)⊥ belongs also to W , and con-20

versely that any vector in W is in
(

W⊥)⊥.21

Assume that x ∈ W . Then x is orthogonal to any vector in W⊥, by the22

definition of W⊥. Hence, x ∈
(

W⊥)⊥.23

Conversely, assume that x ∈
(

W⊥)⊥. Decompose24

x = Proj
W

x + z ,

with z ∈ W⊥. Since x is orthogonal to W⊥, z = 0. Then x = Proj
W

x,25

which implies that x ∈ W .26
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7. Since the vectors q1, q2, . . . , qk are orthonormal1

||a||2 = a · a = (a1 q1 + a2 q2 + · · ·+ ak qk) · (a1 q1 + a2 q2 + · · ·+ ak qk)

2

= a2
1 + a2

2 + · · ·+ a2
k .

9. AT is of size n × m, and so AT A is a square n × n matrix. AT A is3

symmetric because4

(

AT A
)T

= AT A .

To show that AT A is invertible, follow the Hint in the book to show that5

AT Ax = 0 implies that x = 0. This means that AT A has n pivots, and6

therefore is invertible.7

10. Assume that w1, w2, w3 are linearly dependent, so that x1w1 + x2w2 +8

x3w3 = 0 with some numbers x1, x2, x3 that are not all zero. Then9

x1x2x3G =

∣

∣

∣

∣

∣

∣

x1w1 ·w1 x1w1 · w2 x1w1 ·w3

x2w2 ·w1 x2w2 · w2 x2w2 ·w3

x3w3 ·w1 x3w3 · w2 x3w3 ·w3

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

x1w1 · w1 x1w1 ·w2 x1w1 · w3

x2w2 · w1 x2w2 ·w2 x2w2 · w3

0 0 0

∣

∣

∣

∣

∣

∣

= 0 .

On the second step we added the first and the second row to the third row,10

producing a row of zeroes. Indeed,11

x1w1 ·w1 + x2w2 · w1 + x3w3 ·w1 = (x1w1 + x2w2 + x3w3) ·w1 = 0 ,

and similarly the other two sums are zero.12

Conversely, assume that the Gramian G = 0. Then its columns C1, C2, C313

are linearly dependent, so that14

(1) x1C1 + x2C2 + x3C3 = 0 ,

with some numbers x1, x2, x3 that are not all zero. The first component of15

(1) is16

x1w1 ·w1 + x2w1 · w2 + x3w1 ·w3 = 0 ,

or17

(2) w1 · (x1w1 + x2w2 + x3w3) = 0 .

Express similarly the second and the third components of (1):18

(3) w2 · (x1w1 + x2w2 + x3w3) = 0 ,

19

(4) w3 · (x1w1 + x2w2 + x3w3) = 0 .
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Multiply the equation (2) by x1, the equation (3) by x2, the equation (4) by1

x3 and add the results:2

(x1w1 + x2w2 + x3w3) · (x1w1 + x2w2 + x3w3) = 0 ,

so that ||x1w1 + x2w2 + x3w3|| = 0, or x1w1 + x2w2 + x3w3 = 0, proving3

that the vectors w1, w2, w3 are linearly dependent.4

The proof is similar for the general case of n vectors.5

11. b. Here A =





2 1

1 −2
2 −1



, b =





3

4
−5



, and a calculation gives the least6

squares solution7

x̄ =
(

AT A
)−1

AT b =
1

50

[

6 2

2 9

][

2 1 2

1 −2 −1

]





3

4
−5



 =

[

0

0

]

,

since AT b =

[

0

0

]

.8

11. c. p = Ax̄ =





0

0
0



. Hence b is orthogonal to C(A).9

Section 5.310

1. a. v1 = w1 =





1

0
1



, and11

v2 = w2 −
w2 · v1

v1 · v1
v1 =





1

1
1



 − 2

2





1

0
1



 =





0

1
0



 .

Normalize:12

u1 =
1

||v1||
v1 =

1√
2





1

0
1



 ,

13

u2 =
1

||v2||
v2 =





0
1

1



 .
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1. c. Here v1 = w1 =









2

1
−1

0









,1

v2 = w2 −
w2 · v1

v1 · v1
v1 =









3
2

−4
1









− 12

6









2
1

−1
0









=









−1
0

−2
1









,

2

v3 = w3−
w3 · v1

v1 · v1
v1−

w3 · v2

v2 · v2
v2 =









1
1
0

−2









−3

6









2
1

−1

0









−−3

6









−1
0

−2

1









=
1

2









−1
1

−1

−3









.

Normalize:3

u1 =
1

||v1||
v1 =

1√
6









2

1
−1

0









,

4

u2 =
1

||v2||
v2 =

1√
6









−1

0
−2

1









,

5

u2 =
1

||v2||
v2 =

1√
12









−1

1
−1

−3









.

6

1. e. This example is similar to 1.b., only vectors have more components.7

Here v1 = w1 =













3

−2
1

1
−1













,8

v2 = w2 −
w2 · v1

v1 · v1
v1 =













−1

0
0

0
1













− −4

16













3

−2
1

1
−1













=
1

4













−1

−2
1

1
3













.

42



Normalize v1, v2 to obtain u1, u2.1

1. f. Since the vectors u1 and u2 form an orthonormal basis of the subspace2

W ,3

Proj
W

b = Proj u1
b + Proj u2

b = (b · u1)u1 + (b · u2)u2 = u1 − u2 .

2. a. The null-space N (A) is spanned by the vectors w1 =









1
0
0

2









and w2 =4









5
2
4

0









. Apply the Gram-Schmidt process to these vectors to produce an or-5

thogonal basis for the null-space N (A): u1 = 1√
5









1
0
0

2









, u2 = 1√
10









2
1
2

−1









.6

7

2. c. The null-space N (A) is spanned by the vectors8

w1 =









−1
0

0
1









, w2 =









0
0

1
0









, w3 =









1
1

0
0









.

Apply the Gram-Schmidt process to these vectors to produce an orthogonal9

basis for the null-space N (A):10

u1 =
1√
2









−1

0
0

1









, u2 =









0

0
1

0









, u3 =
1√
6









1

2
0

1









.

3. Any m × n matrix A with linearly independent columns can be factored11

as A = QR, where Q is an m× n matrix with orthonormal columns, and R12

is a square n × n upper triangular matrix. If A is a square n× n matrix, so13

is Q.14

3. a. |A| = |Q||R|. If |A| 6= 0, then |R| 6= 0, so that R is non-singular. The15

diagonal entries of R are positive because they contain the magnitudes of16

the vectors v1, v2, . . ..17
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3. b. Multiply A = QR from the left by AT : QTA = QTQR = Q−1QR = R.1

2

4. a. The columns of the matrix A are w1 =

[

3
4

]

, w2 =

[

−1
0

]

. Apply3

Gram-Schmidt: v1 = w1,4

v2 = w2 +
3

25
w1 =

1

25

[

−16

12

]

=
4

25

[

−4

3

]

.

Hence, u1 = 1
5

[

3
4

]

, u2 = 1
5

[

−4
3

]

. Then Q =

[

3/5 −4/5
4/5 3/5

]

.5

Also, w1 = 5u1, and w2 = −3
5u1 + 4

5u2, giving R. Alternatively, R =6

[

w1 · u1 w2 · u1

0 w2 · u2

]

=

[

5 −3
5

0 4
5

]

.7

4. e. The columns of the matrix A are w1 =









1
−1

−1
1









, w2 =









1
0

−1
2









,8

w3 =









−1
−1

1
−1









. Apply Gram-Schmidt: v1 = w1,9

v2 = w2 −
w2 · v1

||v1||2
v1 = w2 −

4

4
v1 =









0
1
0

1









,

10

v3 = w3 −
w3 · v1

||v1||2
v1 −

w3 · v2

||v2||2
v2 = w3 −

−2

4
v1 −

−2

2
v2 =









−1/2

−1/2
1/2

1/2









.

Normalize u1 = 1
2v1, u2 = 1√

2
v2, u3 = v3. Hence, Q =











1
2 0 −1

2
−1

2
1√
2

−1
2

−1
2 0 1

2
1
2

1√
2

1
2











.11
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To calculate the matrix R we use the above computations to express1

w1, w2, w3 through u1, u2, u3. Obtain2

w1 = v1 = ||v1||u1 = 2u1 ,

3

w2 = v1 + v2 = ||v1||u1 + ||v2||u2 = 2u1 +
√

2u2 ,
4

w3 = −1

2
v1 − v2 + v3 = −1

2
||v1||u1 − ||v2||u2 + ||v3||u3 = −u1 −

√
2u2 + u3 .

Hence, R =





2 2 −1

0
√

2 −
√

2
0 0 1



.5

5. a. Q is orthogonal if and only if QT = Q−1. Then6

(

QT
)T

=
(

Q−1
)T

=
(

QT
)−1

.

It follows that QT is orthogonal.7

b. Since QT is orthogonal, the rows of Q are orthonormal.8

c. Since Q is orthogonal, QT = Q−1. To prove that Q−1 is orthogonal, need9

to show that10
(

Q−1
)T

=
(

Q−1
)−1

.

Both sides are equal to Q.11

6. Since columns of Q are unit vectors, the entries Q31 = Q32 = 0. Similarly,12

Q13 = Q23 = 0, because the rows of Q are unit vectors. The third column13

of Q is also a unit vector. Answer. Q =





cos θ − sin θ 0

sin θ cos θ 0
0 0 ±1



.14

7. a. Take inner product of Qx = λx with another copy of the same formula:15

Qx ·Qx = λx · λx ,

or16

λ2x · x = Qx · Qx = x · QTQx = x ·Q−1Qx = x · x ,

so that λ2 = 1, λ = ±1 (since the eigenvector x 6= 0).17

7. b. The matrix

[

0 −1
1 0

]

is an orthogonal matrix with the eigenvalues18

λ = ±i.19
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7. c. If Q is upper triangular then Q−1 is upper triangular, while QT is lower1

triangular. Since QT = Q−1, it follows that Q is diagonal. The diagonal2

entries of Q are ±1, because they are eigenvalues of an orthogonal matrix.3

8. The eigenspace of λ = −2 is spanned by w1 =





−1
0

1



 and w2 =4





−1

1
0



. Applying the Gram-Schmidt process to these vectors produces an5

orthonormal basis of this eigenspace: u1 = 1√
2





−1
0

1



 , u2 = 1√
6





−1
2

−1



.6

9. In case n = 3, this formula for R was developed in the text. Follow the7

same derivation.8

Section 5.49

1. a. T

([

0
0

])

=





0
1
0



, which is not the zero vector. The transformation10

T (x) is not linear.11

1. b. T (e1) = T

([

1
0

])

=





2
1
0



, giving the first column of A. Similarly,12

T (e2) = T

([

0

1

])

=





−1

1
0



 gives the second column of A.13

1. f. This transformation is neither homogeneous nor additive. It is easier14

to show that it is not homogeneous. For example, T (2x) = 4T (x) 6= 2T (x).15

16

Conclusion. If all components of T (x) are linear functions of x1, x2, . . . , xn,17

and T (0) = 0 holds, then T (x) is a linear transformation. Its matrix A can18

be found by inspection (just by looking), similarly to matrices of linear19

systems.20

2. a. T (e1) = T









0
0

0







 =









0
0

0
1









gives the first column of A, and so on.21
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The other three columns of A are given by T (e2), T (e3), T (e4). The matrix1

A can be also found by inspection, as explained in the Conclusion above.2

2. b.,c.,d. Try to use the short-cut from the Conclusion above.3

2. e. T (e1) = −2e1 =





−2
0

0



, giving the first column of the matrix4

A. (Indeed, projection of e1 on the x1x2-plane leaves e1 unchanged, then5

reflection with respect to the origin produces −e1, and finally doubling the6

length gives −2e1.) Similarly, T (e2) = −2e2 =





0
−2

0



, giving the second7

column of the matrix A. Since the projection of e3 on the x1x2-plane is8

the zero vector, T (e3) =





0
0

0



, which gives the third column. Obtain9

A =





−2 0 0

0 −2 0
0 0 0



.10

2. f. The projection of x ∈ R3 on the x1x2-plane is





x1

x2

0



. When this11

vector is rotated by the angle θ counterclockwise, the third component stays12

zero, while the first two components are rotated. For x = e1, the projec-13

tion on the x1x2-plane is





1

0
0



. The first two components of this vector14

represent the vector e1 in R2. Its rotation is

[

cos θ
sin θ

]

, as was established15

in our discussion of the rotation matrix. It follows that T (e1) =





cos θ
sin θ

0



.16

Similarly, T (e2) =





− sin θ

cos θ
0



. Finally, T (e3) = 3e3 =





0

0
3



. Hence,17

A =





cos θ − sin θ 0
sin θ cos θ 0

0 0 3



.18
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2. g. Here A =





2 0 0

0 −2 0
0 0 2



. Indeed,1

T (x) =





2x1

−2x2

2x3



 =





2 0 0
0 −2 0

0 0 2









x1

x2

x3



 .

2. h. Here ||a|| = 2. By (4.2) the projection matrix is2

P =
1

4
aaT =

1

4









1

−1
1

−1









[

1 −1 1 −1
]

=
1

4









1 −1 1 −1

−1 1 −1 1
1 −1 1 −1

−1 1 −1 1









.

(Use the first definition of matrix product.)3

3. Since4

T2 (T1(x1 + x2)) = T2 (T1(x1) + T1(x2)) = T2 (T1(x1)) + T2 (T1(x2)) ,

it follows that the composition T2 (T1(x)) is additive. Similarly,5

T2 (T1(cx)) = T2 (cT1(x)) = cT2 (T1(x)) ,

so that the composition T2 (T1(x)) is homogeneous.6

4. a. Assume that T (u) = 0 implies that u = 0. If now T (u1) = T (u2), then7

T (u1−u2) = 0 and hence u1 = u2, so that T (u) is one-to-one. The converse8

statement is proved similarly.9

4. b. Represent T (u) = Au with an m × n matrix A. The homogeneous10

system Au = 0 has non-trivial solutions. It follows that T (u) = 0 does not11

imply that u = 0. Hence T (u) is not one-to-one by the part a.12

5. If a linear transformation T (x) : Rn → Rm has a matrix representation13

T (x) = Ax, then the range of T (x) is the same as the column space C(A).14

Then T (x) is onto if and only if C(A) = Rm.15

5. a. One has rank A = m if and only if C(A) = Rm. Indeed, if C(A) is16

spanned by m linearly independent vectors, these vectors also span Rm.17

5. b. If n < m, the matrix A has fewer than m pivots. Hence dimension of18

C(A) is less than m, and then C(A) is a proper subspace of Rm (C(A) 6=19

Rm).20
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6. c. Let T (x1) = y1, T (x2) = y2. By linearity of T (x)1

T (c1x1 + c2x2) = c1T (x1) + c2T (x2) = c1y1 + c2y2 ,

for any scalars c1 and c2. It follows that2

T−1 (c1y1 + c2y2) = c1x1 + c2x2 = c1T
−1(y1) + c2T

−1(y2) ,

proving that T−1(y) is linear.3

7. a. There are infinitely many vectors that share the same projection.4

b. T (x) is not onto, its range consists of a line.5

8. b. The columns of P are T (e1) and T (e2).6

8. c. To see that PP = I , draw a vector x in the first quadrant of x1x2-7

plane. Px is obtained by rotating of x followed by reflection with respect8

to x1 axis. To get PPx one rotates Px and reflects the result with respect9

to x1 axis. This brings one back to x. Hence PPx = Ix for any x, so that10

PP = I .11

f. As in part c, two reflections and two rotations bring any x ∈ R2 back to12

the same x.13

Section 5.514

1. Matrix AAT is symmetric because15

(

AAT
)T

=
(

AT
)T

AT = AAT .

To see that AAT is positive definite, we shall show that AAT x · x > 0 for16

any x 6= 0. So assume that x 6= 0. We claim that AT x 6= 0. Indeed, if17

AT x = 0, then x =
(

AT
)−1

0 = 0, a contradiction. (AT is invertible because18

A is.) Conclude:19

AAT x · x = AT x ·AT x = ||ATx||2 > 0 .

2. a. Since BT = B, and
(

AT
)T

= A,20

(

AT BA
)T

= ATBT
(

AT
)T

= ATBA ,

and hence ATBA is symmetric.21

3. Eigenvalues of a positive definite matrix are all positive. Determinant is22

equal to the product of eigenvalues.23
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4. b. The eigenvalues are λ1 = −2, with the normalized eigenvector1

1√
5

[

−2

1

]

, and λ1 = 3, with the normalized eigenvector 1√
5

[

1

2

]

. These2

eigenvectors form an orthonormal set, and they are the columns of the or-3

thogonal diagonalizing matrix P .4

5. b. Since AT = −A,5

|AT | = | − A| .
Using that |AT | = |A|, and | − A| = (−1)n|A| = −|A| because n is odd,6

obtain7

|A| = −|A| ,
so that |A| = 0.8

5. c. By part a, the eigenvalues of A are of the form iq, with real q. The9

eigenvalues of I +A are 1+ iq. Since 1+ iq cannot be zero, the matrix I +A10

is non-singular.11

5. d. To justify that (I − A)(I + A)−1 is orthogonal, we show that its12

transpose is equal to its inverse. Indeed,13

[

(I − A)(I + A)−1
]T

= (I + AT )−1(I − AT ) = (I − A)−1(I + A) ,

14
[

(I − A)(I + A)−1
]−1

= (I + A)(I − A)−1 .

To see that15

(I − A)−1(I + A) = (I + A)(I − A)−1 ,

multiply from both the left and from the right by I−A, to get an equivalent16

and correct expression17

(I + A)(I − A) = (I − A)(I + A) .

(Both sides are equal to I − A2.)18

6. The matrix AT A + I is symmetric because19

(

AT A + I
)T

=
(

AT A
)T

+ IT = AT A + I .

This matrix is positive definite because20

(

AT A + I
)

x ·x = ATAx ·x+ Ix ·x = Ax ·Ax+ ||x||2 = ||Ax||2 + ||x||2 > 0 ,

for all x 6= 0.21
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7. Since AT = A, obtain1

(

A−1
)T

=
(

AT
)−1

= A−1 ,

and hence A−1 is symmetric.2

8. a. Since3
(

uiu
T
i

)T
=
(

uT
i

)T
uT

i = uiu
T
i ,

it follows that AT = A.4

8. b. Since uT
i uj = ui · uj = 0 for i 6= j, it follows that Auj = λjuj .5

9. a. Ae1 · e1 = −5 < 0, therefore A is not positive definite.6

10. For any non-zero vector x ∈ Rn, the vector y = Sx is also non-zero.7

Indeed, if y = 0, then x = S−10 = 0, a contradiction. Hence8

STASx · x = ASx · Sx = Ay · y > 0 ,

and hence the matrix STAS is positive definite. (This matrix is symmetric,9

since
(

STAS
)T

= STAS.)10

12. Calculate11

AT A =

[

9 0
0 144

]

.

We call λ1 = 144 and λ2 = 9, in order to arrange the singular values σ1 =12 √
λ1 = 12 and σ2 =

√
λ2 = 3 to be in decreasing order. The corresponding13

unit eigenvectors are x1 =

[

0
−1

]

and x2 =

[

1
0

]

(another possibility is14

x1 =

[

0
1

]

). Calculate Ax1 =





4
8

8



, Ax2 =





2
−2

1



, and then15

q1 =
Ax1

σ1
=





1/3
2/3

2/3



 ,

16

q2 =
Ax2

σ2
=





2/3

−2/3
1/3



 .
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Calculate q3 = q1×q2 =





2/3

1/3
−2/3



. All of the pieces are in place for singular1

value decomposition:2

A =





1/3 2/3 2/3
2/3 −2/3 1/3

2/3 1/3 −2/3









12 0
0 3

0 0





[

0 1

−1 0

]T

.

3

Section 5.64

2. c. Here the −2x1x2 term gives a12 = a21 = −1, the 8x2x3 term gives5

a23 = a32 = 4, while 3x2
1 produces a11 = 3, x2

2 produces a22 = 1, −5x2
36

produces a33 = −5. The quadratic form does not have a x1x3 term, therefore7

a13 = a31 = 0.8

3. b. Here a38 = a83 = 11. Therefore the coefficient in x3x8 is 22.9

3. c. The purely quadratic terms correspond to the diagonal entries of the10

n×n matrix A, while the xixj terms can be identified with the terms above11

the diagonal in A. There a total of
n(n+1)

2 of terms that lie on or above12

the diagonal. (Counting such terms from first, second and other columns:13

1 + 2 + 3 + · · ·+ n =
n(n+1)

2 .)14

4. a. The matrix of this quadratic form A =

[

3 1

1 3

]

has an eigenvalue15

λ1 = 2 with the normalized eigenvector 1√
2

[

−1

1

]

, and an eigenvalue λ2 =16

4 with the normalized eigenvector 1√
2

[

1

1

]

. Using these eigenvectors as17

columns, obtain the diagonalizing matrix P = 1√
2

[

−1 1

1 1

]

. The change18

of variables x = Py takes the form19

x1 = 1√
2
(−y1 + y2)

x2 = 1√
2
(y1 + y2) .

Substituting these expressions into our quadratic form 3x2
1 + 4x1x2 + 3x2

2,20

gives the diagonalized form 2y2
1 + 4y2

2 .21
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4. b. The matrix of this quadratic form A =

[

0 −2

−2 3

]

has an eigenvalue1

λ1 = −1 with the normalized eigenvector 1√
5

[

2

1

]

, and an eigenvalue λ2 = 42

with the normalized eigenvector 1√
5

[

−1

2

]

. Using these eigenvectors as3

columns, obtain the diagonalizing matrix P = 1√
5

[

2 −1

1 2

]

. The change4

of variables x = Py takes the form5

x1 = 1√
5
(2y1 − y2)

x2 = 1√
5
(y1 + 2y2) .

Substituting these expressions into our quadratic form −4x1x2 + 3x2
2, gives6

the diagonalized form −y2
1 + 4y2

2.7

4. d. The matrix of the quadratic form A =





−1 1 1
1 −1 1

1 1 −1



 has eigen-8

values λ1 = λ2 = −2 with the eigenspace spanned by w1 =





−1

0
1



 and9

w2 =





−1
1

0



, and λ3 = 1 with the eigenvector w3 =





1
1

1



. The vectors10

w1 and w2 are not orthogonal. Apply the Gram-Schmidt process: v1 = w1,11

v2 = w2 −
w2 · w1

w1 · w1
w1 = w2 −

1

2
w1 =

1

2





−1
2

1



 .

Normalize u1 = 1√
2
v1 = 1√

2





−1
0

1



, u2 = 2√
6
v2 = 1√

6





−1
2

1



. The vectors12

u1 and u2 give the first and the second columms of P . Since w3 is orthogonal13

to u1 and u2, its normanlzation 1√
3
w3 = 1√

3





1
1

1



 is the third column of P .14
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Conclude:1

P =







− 1√
2

− 1√
6

1√
3

0 2√
6

1√
3

1√
2

− 1√
6

1√
3






.

The change of variables2





x1

x2

x3



 = P





y1

y2

y3



 =







− 1√
2

− 1√
6

1√
3

0 2√
6

1√
3

1√
2

− 1√
6

1√
3











y1

y2

y3



 ,

or in coordinates, x1 = − 1√
2
y1 − 1√

6
y2 + 1√

3
y3, x2 = 2√

6
y2 + 1√

3
y3, x3 =3

1√
2
y1 − 1√

6
y2 + 1√

3
y3, produces −2y2

1 − 2y2
2 + y2

3 .4

5. Since A has zero eigenvalue, |A| = 0. It follows that |STAS| = |A||S|2 =5

0, and hence STAS also has zero eigenvalue. The multiplicity of zero eigen-6

value is the same for A and STAS, since by law of inertia both matrices7

have exactly the same number of non-zero eigenvalues.8

6. a. If x0 is an eigenvector corresponding to λ = 0, then Ax0 = 0x0 = 0,9

and then Ax0 · x0 = 0.10

6. b. Diagonalizing as in 6. a., conclude that all eigenvalues of a positive11

semidefinite matrix are nonnegative.12

6. c. Since determinant is nonzero, there is no zero eigenvalues. Hence, all13

eigenvalues are positive, and the matrix is positive definite.14

7. Following the Hint given in the text,15

Ax · x =

∫ 1

0

(

n
∑

i=1

xit
i−1

)2

dt ≥ 0 .

It remains to rule out the possibility that this integral is zero. This can16

happen only if
∑n

i=1 xit
i−1 = 0 for all t ∈ (0, 1), which in turn will require17

that all xi = 0. But the vector x, with components xi, is assumed to be18

non-zero. Hence, Ax · x > 0.19

Section 5.720

2. a. Consider the linear combination21

x1A1 + x2A2 + x3A3 = O .
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In components1

x1 + x2 + x3 = 0

2x2 + 2x3 = 0

3x3 = 0 ,

giving x1 = x2 = x3 = 0.2

2. b. To express D need to solve3

x1A1 + x2A2 + x3A3 = D .

In components4

x1 + x2 + x3 = 3

2x2 + 2x3 = 4

3x3 = 3 ,

giving x1 = x2 = x3 = 1.5

2. c. The vectors A1, A2, A3, A4 are linearly independent because6

x1A1 + x2A2 + x3A3 + x4A4 = O

implies that x1 = x2 = x3 = x4 = 0. Four linearly independent vectors form7

a basis of four dimensional space M2×2.8

2. d. The coordinates of F are the solutions9

x1A1 + x2A2 + x3A3 + x4A4 = F .

In components obtain a system of four equations with four unknowns, which10

is solved by back substitution:11

x1 + x2 + x3 = 3

2x2 + 2x3 = 4

3x3 = 0

x4 = −7 ,

giving x1 = 1, x2 = 2, x3 = 0, x4 = −7.12
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3. b. Obtain1

||x2 − 1||2 =
(

x2 − 1
)

·
(

x2 − 1
)

=

∫ 1

−1

(

x2 − 1
)2

dx =
16

15
.

3. c. Similarly2

||
√

2||2 =
√

2 ·
√

2 =

∫ 1

−1
2 dx = 4 .

4. Denote w1 = 1, w2 = x + 2, w3 = x2 − x. Then v1 = w1 = 1,3

v2 = w2 −
w2 · v1

||v1||2
v1 = x + 2 − 2 = x ,

since w2 · v1 =
∫ 1
−1(x + 2) dx = 4, and ||v1||2 =

∫ 1
−1 1 dx = 2. Then4

v3 = w3 −
w3 · v1

||v1||2
v1 −

w3 · v2

||v2||2
v2 = x2 − 1

3
,

because w3 · v1 =
∫ 1
−1(x

2 − x) dx = 2
3 , w3 · v2 =

∫ 1
−1(x

2 − x)x dx = −2
3 ,5

||v2||2 =
∫ 1
−1 x2 dx = 2

3 . Standardization produces u1 = 1, u2 = x, u3 =6

1
2 (3x2 − 1).7

5. a. The transformation I is integration I(p(x)) =
∫ x
0 p(t) dt, which is8

taking the antiderivative with c = 0. I is linear because the integration is9

linear.10

Let T (x) be a linear transformation T : V1 → V2. Assume that B1 =11

{w1, w2, . . . , wp} is a basis of V1, and B2 = {z1, z2, . . . , zs} is a basis of V2.12

Then the matrix of T (x) is A = [ [T (w1)]B2
[T (w2)]B2

. . . [T (wp)]B2
], of size13

s × p, obtained by using the vectors [T (wi)]B2
as its columns. (There is a14

misprint in the book on A.)15

5. b. The standard basis of P3 is 1, x, x2, x3, the standard basis of P4 is16

1, x, x2, x3, x4. Calculate17

I(1) = x = 0 × 1 + 1× x + 0 × x2 + 0 × x3 + 0 × x4 ,

so that the first column of the matrix of I is













0
1

0
0

0













. Proceed similarly with18
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I(x) = 1
2x2, so that the second column is













0

0
1
2
0
0













, I(x2) = 1
3x3, so that1

the third column is













0
0

0
1
3
0













, and I(x3) = 1
4x4, so that the fourth column is2













0

0
0
0
1
4













. The matrix of I(x) is3

A =













0 0 0 0

1 0 0 0
0 1

2 0 0

0 0 1
3 0

0 0 0 1
4













.

6. b. Using the standard basis in the vector space of 2 × 2 matrices4

T (E11) = E21 = 0 × E11 + 0 × E12 + 1× E21 + 0 × E22 ,

so that the first column is









0

0
1

0









. Similarly5

T (E12) = E22 = 0 × E11 + 0 × E12 + 0× E21 + 1 × E22 ,

so that the second column is









0

0
0
1









,6

T (E21) = 2E11 = 2× E11 + 0 × E12 + 0 × E21 + 0 × E22 ,
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so that the third column is









2

0
0

0









,1

T (E22) = 2E12 = 0× E11 + 2 × E12 + 0 × E21 + 0 × E22 ,

so that the fourth column is









0
2

0
0









. The matrix of T (x) is2

A =









0 0 2 0
0 0 0 2

1 0 0 0
0 1 0 0









.

7. The transformation is not linear because T (O) 6= O.3

8. Legendre polynomials are polynomials of degree n, satisfying Pn(1) = 14

(there is a misprint in the book on this condition), and orthogonal on (−1, 1).5

Differentiating n times a polynomial of degree 2n, Pn(x) = 1
2nn!

dn

dxn

[(

x2 − 1
)n]

,6

indeed produces a polynomial of degree n. Repeated differentiations pro-7

duce many terms, but all except one vanish when x = 1. That happens8

when all n derivatives “fall” on
(

x2 − 1
)n

, which produces a coefficient of9

2nn!. To prove orthogonality, follow the Hint in the book.10

Chapter 611

Section 6.112

1. a. The matrix

[

3 4

−1 −2

]

has an eigenvalue λ1 = −1, with the cor-13

responding eigenvector

[

−1

1

]

, and an eigenvalue λ2 = 2, with the corre-14

sponding eigenvector

[

−4

1

]

. The general solution is15

x(t) = c1e
−t

[

−1

1

]

+ c2e
2t

[

−4

1

]

.

1. b. The matrix

[

4 −2
−2 1

]

has an eigenvalue λ1 = 5, with the corre-16

sponding eigenvector

[

−2
1

]

, and an eigenvalue λ2 = 0, with the corre-17
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sponding eigenvector

[

1

2

]

. The general solution is1

x(t) = c1e
5t

[

−2
1

]

+ c2

[

1
2

]

.

1. d. To avoid a tedious calculation of eigenvalues and eigenvectors, one2

may enter the matrix A =





1 1 1

2 2 1
4 −2 1



 into Mathematica as the following3

“row of rows”: A = {{1, 1, 1}, {2, 2, 1}, {4,−2, 1}}. The command Eigensys-4

tem[A] produces the eigenvalues of A, and the corresponding eigenvectors.5

The eigenvalues are λ1 = −1, corresponding to ξ1 =





−1
0

2



, λ2 = 2, corre-6

sponding to ξ2 =





−1

−3
2



, and λ3 = 3, corresponding to ξ3 =





1

2
0



. The7

general solution is then8

x(t) = c1e
−t





−1

0
2



+ c2e
2t





−1

−3
2



 + c3e
3t





1

2
0



 .

1. (e) The eigenvalues are λ1 = −1, corresponding to ξ1 =





0

1
1



, λ2 = 3,9

corresponding to ξ2 =





−1
−1

1



, and λ3 = 0, corresponding to ξ3 =





1
1

2



.10

The general solution is then11

x(t) = c1e
−t





0
1
1



 + c2e
3t





−1
−1

1



 + c3





1
1
2



 .

1. (f) The eigenvalues are −1,−1, 1, 3. (This matrix is block diagonal.) The12

eigenvalue −1 is repeated, but it has two linearly independent eigenvectors13
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







0

0
1

1









and









−1

1
0

0









. The general solution is1

x(t) = c1e
−t









0
0

1
1









+ c2e
−t









−1
1

0
0









+ c3e
t









1
1

0
0









+ c4e
3t









0
0

5
1









,

where









1

1
0
0









is an eigevector corresponding to λ = 1, and









0

0
5
1









corresponds2

to λ = 3.3

2. (b) The eigenvalues are λ1 = 0 with an eigenvector





−1
0

1



, λ2 = 2 with4

an eigenvector





−1

4
3



, λ3 = 3 with an eigenvector





0

1
1



. The general5

solution is6

x(t) = c1





−1
0

1



 + c2e
2t





−1
4

3



+ c3e
3t





0
1

1



 .

The initial condition implies7

x(0) = c1





−1
0

1



+ c2





−1
4

3



 + c3





0
1

1



 =





0
−1

1



 .

Solving this system of three equations, c1 = 1, c2 = −1, c3 = 3.8

3. (a) The first component of the vector x(t+h)−x(t)
h is x1(t+h)−x1(t)

h → x′(t).9

10

3. (b) Differentiate the first component of x(t), and then other components.11

12

5. (a) The matrix of this system has a double eigenvalue λ1 = λ2 = −1, and13

only one linearly independent eigenvector ξ =

[

1
2

]

. We have one solution:14
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x1(t) = e−t

[

1

2

]

. The system (A−λ1I)η = ξ, or (A+I)η = ξ, to determine1

the generalized eigenvector η =

[

η1

η2

]

takes the form2

2η1 − η2 = 1

4η1 − 2η2 = 2 .

Discard the second equation, then set η1 = 0 in the first equation, to obtain3

a generalized eigenvector η =

[

0
−1

]

. The general solution is then4

x(t) = c1e
−t

[

1

2

]

+ c2e
−t

(

t

[

1

2

]

+

[

0

−1

])

.

5. (b) Using the initial conditions5

x(0) = c1

[

1
2

]

+ c2

[

0
−1

]

=

[

1
−1

]

.

Then c1 = 1, c2 = 3.6

6. Expanding |A−λI | in the second row shows that the characteristic equa-7

tion has a factor (−1 − λ), and hence λ = −1 is an eigenvalue. The second8

factor is a cubic polynomial, for which we guess a root λ2 = −1. Then the9

cubic can be factored as (λ+1) times a quadratic polynomial. The quadratic10

polynomial has roots λ3 = −2 and λ4 = −4. Calculation shows that the11

repeated eigenvalue λ = −1 has only one linearly independent eigenvector12

ξ =









0

0
1

1









. If η denotes the corresponding generalized eigenvector, and13

ξ3, ξ4 are eigenvectors correponding to λ3, λ4 respectively, then the general14

solution is15

x(t) = c1e
−tξ + c2e

−t (tξ + η) + c3e
−2tξ3 + c4e

−4tξ4 .

Using the L’Hospital rule, x(t) → 0 as t → ∞. Observe that the exact16

knowledge of vectors η, ξ3, ξ4 is not needed here.17

7. The eigenvalues satisfy λ1 λ2 = detA = −a2 − 2 < 0, λ1 + λ2 = trA = 0.18

Hence the eigenvalues are non-zero, and have opposite sign.19

8. (A − λI)(2η) = 2ξ 6= ξ, since the eigenvector ξ 6= 0.20
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9. Follows using that (A − λI)(cξ) = 0.1

10. If AT = A, Aξ = λξ, and η is a generalized eigenvector satisfying2

(A − λI)η = ξ, then3

ξ · ξ = (A − λI)η · ξ = η · (AT − λI)ξ = η · (Aξ − λx) = η · 0 = 0 ,

and hence ξ = 0, which is not possible for an eigenvector. It follows that a4

generalized eigenvector η does not exist.5

If A is symmetric there it has a complete set of eigenvectors, providing6

the general solution of x′ = Ax. Conclusion: symmetric matrices do not7

have generalized eigenvectors, but they are not needed for solving x′ = Ax.8

9

Section 6.210

1. a. The eigenvalues are λ = 1 ± i. An eigenvector corresponding to11

λ = 1 + i is

[

i

1

]

, leading to a complex valued solution12

eit

[

i
1

]

= (cos t + i sin t)

[

i
1

]

=

[

− sin t
cos t

]

+ i

[

cos t
sin t

]

.

Since both the real and the imaginary parts of the complex valued solution13

are also solutions, the general solution of our system is14

x(t) = c1

[

− sin t
cos t

]

+ c2

[

cos t
sin t

]

.

2. The general solution is15

x(t) = c1e
(−1+2i)tξ1 + c2e

(−1−2i)tξ2 ,

where ξ1, ξ2 the corresponding complex-valued eigenvectors. Observe that16

e(−1+2i)t = e−te2it = e−t (cos 2t + i sin2t) → 0 ,

as t → ∞. Similarly, e(−1−2i)t → 0, t → ∞. Hence x(t) tends to zero.17

3. The solution is18

x(t) =

[

cos t − sin t
sin t cos t

][

α
β

]

,
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which is rotation of the initial vector

[

α

β

]

.1

5. The eigenvalues of this system satisfy2

λ1 + λ2 = tr(A) = a + d < 0 ,
3

λ1λ2 = det(A) = ad− bc > 0 .

If the eigenvalues are real, they are of the same sign by the second formula,4

and therefore they are both negative by the first formula. If the eigenvalues5

are complex, p ± iq, their real part is negative, because λ1 + λ2 = 2p < 0.6

In either case, solution tends to zero as t → ∞.7

6. (a) The characteristic polynomial of a 3 × 3 matrix is a cubic, and8

hence one of its roots is real. That root λ must be zero, in order for eλt to9

remain bounded, as t → ±∞. The root λ = 0 must be simple, otherwise10

the solution contains an unbounded factor of t. The other two roots must11

be purely imaginary λ = ±i q, for the corresponding solutions to remain12

bounded as t → ±∞. Then the general solution has the form13

x(t) = c1ξ1 + c2 cos qt ξ2 + c3 sin qt ξ3 ,

where ξ1, ξ2 and ξ3 are constant, real valued three dimensional vectors. The14

solution is periodic, of period 2π
q .15

6. (b) Observe that aji = −aij , and then aii = 0 for any skew-symmetric ma-16

trix. Then any 3×3 skew-symmetric matrix is of the form





0 p q

−p 0 r
−q −r 0



,17

with some real p, q and r. Compute the eigenvalues λ = 0, λ = ±i
√

p2 + q2 + r2.18

19

6. (c) Use part (a) to show that all solutions have period 2π√
p2+q2+r2

.20

7. We are given that the eigenvalues of A satisfy λ1λ2 < 0, hence we may21

assume that λ1 < 0 and λ2 > 0. The general solution is22

x(t) = c1e
λ1tξ1 + c2e

λ2tξ2 ,

where ξ1, ξ2 the corresponding eigenvectors. The numbers c1, c2 depend on23

the initial conditions. If c2 6= 0, the solution tends to infinity, and if c2 = 0,24

x(t) → 0 as t → ∞. There are no periodic solutions.25

Section 6.326
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1. a. Here A2 = O, A3 = O, . . . , An = O for all n ≥ 2. Hence1

eAt = I + At =

[

1 0
0 1

]

+

[

0 −t
0 0

]

=

[

1 −t
0 1

]

.

1. c. The matrix Dt =





2t 0 0

0 0 0
0 0 −3t



 is diagonal. Just exponentiate the2

diagonal elements:3

eDt =





e2t 0 0

0 1 0
0 0 e−3t



 .

1. d. Here A2 =





0 0 1

0 0 0
0 0 0



, A3 = O, . . . , An = O for all n ≥ 3. Hence4

eAt = I+At+
1

2
A2t2 = I+





0 t 0

0 0 t
0 0 0



+





0 0 1
2 t2

0 0 0
0 0 0



 =





1 t 1
2 t2

0 1 t
0 0 1



 .

1. e. Write5

A = −2I + J ,

where J =





0 1 0
0 0 1

0 0 0



. Using 1. d.6

eAt = e−2tI+tJ = e−2tIeJt = e−2teJt = e−2t





1 t 1
2t2

0 1 t

0 0 1



 .

1. f. The matrix A is a block matrix, consisting of a 2× 2 and 1× 1 blocks.7

Calculate the exponentials of each block separately.8

2. Since the matrices A and −A commute9

eA e−A = eA−A = eO = I .

Hence, e−A is the inverse of eA.10

3. Since the matrices A and A commute11

(

eA
)2

= eAeA = e2A ,
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and similarly
(

eA
)m

= emA, for any integer m.1

5. a. If Ax = λx, then2

eAx =

∞
∑

k=0

Akx

k!
=

∞
∑

k=0

λk

k!
x = eλx .

It follows that eλ is an eigenvalue of eA corresponding to an eigenvector x.3

5. b. If λ1, λ2, . . . , λn are the eigenvalues of A, then eλ1, eλ2, . . . , eλn are the4

eigenvalues of eA, as follows by 5. a. Then5

det eA = eλ1eλ2 · · ·eλn = eλ1+λ2+···+λn = etrA .

5. c. By 5. b., det eA > 0, and hence eA is non-singular.6

6. The matrix eA is symmetric, as a sum of symmetric matrices. Similarly,7

the matrix eA/2 is symmetric. Then for any x 6= 0,8

eAx · x = eA/2eA/2x · x = eA/2x · eAT /2x = eA/2x · eA/2x = ||eA/2x||2 > 0 ,

because in case eA/2x = 0, it follows that x = 0, a contradiction. (Recall9

that eA/2 is non-singular, by the exercise 5. c.)10

8. b. With K =









0 1 0 0

0 0 1 0
0 0 0 1

0 0 0 0









, calculate K2 =









0 0 1 0

0 0 0 1
0 0 0 0

0 0 0 0









, K3 =11









0 0 0 1

0 0 0 0
0 0 0 0
0 0 0 0









, K4 = O. Since Km = O, for m ≥ 4,12

sinKt = Kt − 1

6
K3t3 .

11. By the definition, eA =

∞
∑

k=0

Ak

k!
. Apply the triangle inequality to a13

partial sum (the triangle inequality holds for arbitrary number of terms)14

||
N
∑

k=0

Ak

k!
|| ≤

N
∑

k=0

||A||k
k!

<

∞
∑

k=0

||A||k
k!

= e||A|| .
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The numerical sequence {||∑N
k=0

Ak

k! ||} converges to ||eA|| as N → ∞, and1

all terms of this sequence are less than e||A||. It follows that2

||eA|| ≤ e||A|| .

Section 6.43

1. d. The matrix of this system has an eigenvalue λ1 = −1 with correspond-4

ing eigenvector





−1
0

1



, and a repeated eigenvalue λ2 = λ3 = 1 with with5

two linearly independent eigenvectors





1
0
1



,





0
1
0



. The general solution6

is7

x(t) = c1e
−t





−1
0
1



 + c2e
t





1
0
1



+ c3e
t





0
1
0



 .

Using the initial conditions, obtain c1 = 1, c2 = 2, c3 = 2. The answer in8

the book is wrong (the second and the third components are switched in the9

book).10

2. a. The solution of this system with the initial condition x(0) =

[

1

0

]

11

is x(t) =

[

cos 2t
1
2 sin 2t

]

, and it gives the first column of the fundamental12

solution matrix X(t). The solution with the initial condition x(0) =

[

0
1

]

13

is x(t) =

[

−2 sin 2t
cos 2t

]

, and it gives the second column of X(t).14

3. a. Using that AT = −A, calculate15

d

dt
x(t) ·y(t) = x′(t) ·y(t)+x(t) ·y′(t) = Ax ·y +x ·Ay = x ·ATy +x ·Ay = 0 ,

so that x(t) · y(t) is independent of t, and hence x(t) · y(t) = x(0) · y(0).16

3. b. Letting y(t) = x(t) in the last formula, conclude that ||x(t)||2 =17

||x(0)||2 for all t.18

3. c. Column i of the fundamental matrix is the solution of x′ = A(t)x,19

x(0) = ei. Column j of the fundamental matrix is the solution of y′ = A(t)y,20

66



y(0) = ei. Since the coordinate vectors ei and ej are orthogonal, so are x(t)1

and y(t) for all t, by 3. a. All columns of the fundamental matrix are of2

unit length, by 3. b. Hence, the fundamental matrix is orthogonal.3

7. a. Write J0 = λI + J, with the matrix J satisfying J2 = O. Then the4

binomial formula simplifies:5

Jn
0 = (λI + J)n = λnI + nλn−1J +

n(n − 1)

2
λn−2J2 .

7. b. By L’Hospital rule, if |λ| < 1, then nλn → 0 as n → ∞. It follows6

that all elements of the matrix tend to zero, Jn
0 → O as n → ∞.7

7. c. To see that limn→∞ An = O, write A in the Jordan normal form, and8

apply part 7. b. to each block. Then9

(I − A)

n
∑

k=0

Ak = I − An+1 → I , as n → ∞,

so that I − A is the inverse matrix of
∑∞

k=0 Ak.10

Section 6.511

1. a. Search for a particular solution in the form x1(t) = Ae2t, x2(t) = Be2t.12

Substitution into the system gives (after dividing both equations by e2t)13

2A = B + 2

2B = A − 1 .

Solve this system: A = 1, B = 0. It follows that Y (t) =

[

e2t

0

]

is a par-14

ticular solution. The general solution is the sum of this particular solution15

and the general solution of the corresponding homogeneous system16

x′ =

[

0 1
1 0

]

x ,

which is17

c1e
−t

[

−1
1

]

+ c2e
t

[

1
1

]

.

1. b. Search for a particular solution in the form x1(t) = Ae2t, x2(t) = Be2t.18

Substitution into the system gives A = 2
3 , B = 1

3 . Add this particular19

solution and the general solution of the corresponding homogeneous system.20

21
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2. a. Search for a particular solution in the form Y (t) =

[

A

B

]

, and calcu-1

late Y (t) =

[

1

−1

]

. The general solution of the corresponding homogeneous2

system3

x′(t) =

[

1 2

4 3

]

x(t)

is x(t) = c1e
−t

[

−1

1

]

+ c2e
−t

[

1

2

]

. The general solution of the non-4

homogeneous system is5

x(t) =

[

1

−1

]

+ c1e
−t

[

−1

1

]

+ c2e
−t

[

1

2

]

.

Use the initial conditions to calculate c1 = c2 = 1
3 .6

6. b. Multiplication of block matrices gives JJ = −I , so that −J is the7

inverse of J.8

6. c. Let Jn denote the determinant of 2n×2n matrix J. Expanding J first9

in the first row, and then in the last row, gives10

Jn = (−1)2n · 1 · (−1)2n−1 · (−1) · Jn−1 = Jn−1 ,

so that Jn is independent of n. Since11

J1 =

∣

∣

∣

∣

0 −1
1 0

∣

∣

∣

∣

= 1 ,

it follows that Jn = 1, for all n.12

Section 6.613

1. The Fibonacci numbers are: odd,odd,even,odd,odd,even,odd,odd,even14

and so on. Every third number is even.15

2. The second term of the Binet’s formula tends to zero as n → ∞. Hence16

Fibonacci numbers are approximated by a geometric progression given by17

the first term of Binet’s formula, for large n.18

3. Search for solution in the form xn = rn. Substitution into the difference19

equation gives20

rn = 3rn−1 − 2rn−2 .
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Division by rn−2 gives a quadratic equation1

r2 − 3r + 2 = 0

with roots r1 = 1, r2 = 3. The general solution of the difference equation is2

xn = c1 + c23
n .

From the initial conditions c1 = c2 = 1.3

4. This approach to deriving Binet’s formula is explained in the book of G.4

Strang [16].5

6. a. Since the columns of A are linearly dependent, it follows that the6

determinant of A is zero, so that λ = 0 is one of the eigenvalues.7

6. c. Since A is Markov matrix, one of its eigenvalues is λ = 1. The third8

eigenvalue is λ = 1
6 , since the sum of eigenvalues is equal to the trace of A.9

8. a. The entry i of Ax is
∑n

j=1 aijxj and it is positive because all aij are10

positive while all xj are non-negative with at least one of them positive.11

8. b. Look for all numbers t > 0 such that Ax ≥ tx for some vector x ≥ 0,12

x 6= 0. The largest possible value of such t’s we call tmax. We claim that13

Ax = tmaxx ,

so that tmax is an eigenvalue of A. Assume, on the contrary, that14

Ax ≥ tmaxx , not an equality .

By part a:15

A (Ax − tmaxx) > 0 ,

giving16

A2x > tmaxAx .

Denoting Ax = y > 0 obtain17

Ay > tmaxy .

We can then choose ε > 0 small so that18

Ay > (tmax + ε) y ,

contradicting the maximality of tmax, proving that tmax is an eigenvalue of19

A.20
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Using part a again, the corresponding eigenvector satisfies x > 0.1

We claim that any other eigenvalue λ satisfies2

|λ| ≤ tmax .

Begin with3

Az = λz ,

and use the Cauchy-Schwarz inequality:4

|λ||z| = |Az| ≤ |A||z| = A|z| .

(Since A > 0, |A| = A.) Hence5

A|z| ≥ |λ||z| , |z| > 0 .

It follows that |λ| is one of the eligible t’s, and hence it cannot exceed tmax.6

7

To prove that the eigenvalue tmax is simple, one needs a strict inequality8

|λ| < tmax. Please find this remaining piece on the internet.9

9. The component i of Ax is
∑n

j=1 aijxj. The sum of all entries of Ax10

n
∑

i=1

n
∑

j=1

aijxj =

n
∑

j=1

n
∑

i=1

aijxj =

n
∑

j=1

xj

n
∑

i=1

aij =

n
∑

j=1

xj ,

after switching the order of summation, using that
∑n

i=1 aij = 1 by definition11

of Markov matrix. (Elements of a matrix can be added up by calculating12

either column totals first, or calculating row totals first.)13

10. a. Other terms in Anx0 tend to zero as n → ∞, by using (6.4) in the14

text.15

11. The matrix A is diagonally dominant. The second and the third Gersh-16

gorin’s circles are identical.17

Chapter 718

Section 7.119

Sylvester’s criterion provides a third way to determine if a symmetric20

matrix is positive definite (in addition to all eigenvalues being positive, and21

to Ax · x > 0 holding for all x 6= 0).22
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1. a. Since A is positive definite, Aei · ei > 0. Then aii = Aei · ei > 0.1

1. b. Denote B =

[

a22 a24

a42 a44

]

and z =

[

x2

x4

]

. Then for any x =













0

x2

0

x4

0













∈2

R5, by the positive difiniteness of A conclude:3

0 < Ax · x = Bz · z .

Since z is an arbitrary vector in R2, it follows that B is positive definite.4

2. a. Here a33 < 0, and hence Ae3 · e3 = a33 < 0.5

2. b. Here a33 = 0, and hence Ae3 · e3 = 0.6

2. c. The matrix is not symmetric (the notion of positive definiteness applies7

only to symmetric matrices).8

2. d. The second principal minor is zero. Use Sylvester’s criterion to9

conclude that the matrix is not is positive definite.10

3. d. Here Ax · x = 4x2
1 + 4x1x2 + x2

2 = (2x1 + x2)
2 ≥ 0, but Ax · x = 0 if11

x2 = 2x1. A is positive semidefinite.12

4. a. The first Gershgorin’s circle is centered at the point x = 4 on the13

x-axis of the complex plane. Its radius is 3, and so it does not include the14

origin, and stays in the right half of the complex plane. Similarly, with15

other Gershgorin’s circles. Hence all eigenvalues lie in the right half of the16

complex plane. Since A is symmetric, all of its eigenvalues are real, and17

hence positive. Then A is positive definite.18

5. a. To find the critical points one needs to solve the system19

fx = 3x2 + 30y = 0

fy = 30x + 6y = 0

fz = 2z = 0 .

From the third equation z = 0. From the second equation express y = −5x,20

and use this in the first equation to obtain21

x2 − 50x = 0 .
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Obtain x = 0 and x = 50, so that the critical points are (0, 0, 0) and1

(50,−250, 0). Calculate the Hessian at (0, 0, 0)2

H (0, 0, 0) =





0 30 0
30 6 0
0 0 2



 .

It has one negative eigenvalue λ1 = 3−3
√

101, and two positive eigenvalues3

λ2 = 3 + 3
√

101 and λ3 = 2. One has a saddle point at (0, 0, 0). Calculate4

the Hessian at (50,−250, 0)5

H (50,−250, 0) =





300 30 0

30 6 0
0 0 2



 .

By Sylvester’s criterion, this matrix is positive definite, and hence (50,−250, 0)6

is a point of minimum.7

5. b. To find the critical points one needs to solve the system8

fx = −2x + y + 2z = 0

fy = x − 4y = 0

fz = 2x − 2z = 0 .

This linear homogeneous system has only the trivial solution x = y = z = 0,9

so that (0, 0, 0) is the only critical point. Calculate the Hessian at the critical10

point:11

H (0, 0, 0) =





−2 1 2

1 −4 0
2 0 −2



 .

Mathematica approximately calculates the eigenvalues. Turns out that one12

of the eigenvalues is negative and two are positive, and hence (0, 0, 0) is a13

saddle point.14

Without computer assistance, one may proceed as follows. By Sylvester’s15

criterion H (0, 0, 0) is not positive definite, and not negative definite, so that16

it cannot have all eigenvalues of the same sign. This matrix is non-singular,17

so that it cannot have a zero eigenvalue. Hence, eigenvalues are non-zero,18

and of different signs. It follows that (0, 0, 0) is a saddle point.19
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5. c. Similarly to 5. b., (0, 0, 0) is the only critical point. Calculate the1

Hessian at the critical point:2

H (0, 0, 0) =





−2 1 2

1 −4 0
2 0 −8



 .

By Sylvester’s criterion H (0, 0, 0) is negative definite (−H (0, 0, 0) is positive3

definite), and hence (0, 0, 0) is a point of maximum.4

5. e. To find the critical points one needs to solve the system5

fx = 2− y2

2x2 = 0

fy = y
x − 2z2

y2 = 0

fz = 4z
y − 4

z2 = 0 .

From the first equation y
x = ±2. Using this relation, conclude from the6

second equation that y
x = 2. Then the second equation implies that z

y = ±1.7

The third equation implies that z
y = 1. Then the third equation gives8

z = ±1. Assume first that z = 1. Then the second equation takes the form9

2− 2

y2
= 0 .

Then y = ±1, and in view of the third equation, y = 1. Since y
x = 2, obtain10

x = 1
2 . So that

(

1
2 , 1, 1

)

is a critical point. Since f(x, y, z) is an odd function,11

it follows that
(

−1
2 ,−1,−1

)

is also a critical point. Calculate the Hessian12

at
(

1
2 , 1, 1

)

13

H

(

1

2
, 1, 1

)

=





8 −4 0
−4 6 −4

0 −4 12



 .

By Sylvester’s criterion, this matrix is positive definite, and hence
(

1
2 , 1, 1

)

14

is a point of minimum. Since f(x, y, z) is an odd function, it follows that15
(

−1
2 ,−1,−1

)

is a point of maximum.16

5. f. Set the first partials to zero. From17

fx1
= 1 − x2

x2
1

= 0

obtain x2 = x2
1. From18

fx2
=

1

x1
− x3

x2
2

= 0
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obtain x3 =
x2
2

x1
= x3

1. Continue, to get xi = xi
1, i = 2, 3, . . . , n. (The1

last relation, xn = xn
1 follows from fxn−1

= 0.) Using these relations in2

f(x1, x2, . . . , xn) obtain that3

f = f(x1) = nx1 +
2

xn
1

.

at any critical point. This function has a global minimum at x1 = 2
1

n+1 .4

6. Set the first partials to zero5

cosx − cos (x + y + z) = 0

cos y − cos (x + y + z) = 0

cos z − cos (x + y + z) = 0 .

It follows that6

cos x = cos y = cos z .

Since cosx is decreasing on (0, π), conclude that7

x = y = z ,

and then8

cos 3x − cosx = 0 .

Using the trig identity cosα − cosβ = −2 sin α+β
2 sin α−β

2 , write the last9

equation as10

−2 sin 2x sinx = 0 .

x = π
2 is the only solution inside (0, π). Hence the function f(x, y, z) =11

sin x+siny +sin z− sin (x + y + z) has only one critical point,
(

π
2 , π

2 , π
2

)

, on12

(0, π).13

Calculate the Hessian at the critical point14

H
(π

2
,
π

2
,
π

2

)

=





−2 −1 −1
−1 −2 −1

−1 −1 −2



 .

This matrix is negative definite, since its negative





2 1 1

1 2 1
1 1 2



 is positive15

definite by Sylvester’s criterion. Hence,
(

π
2 , π

2 , π
2

)

is a point of maximum of16

f(x, y, z).17
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7. a. The Hessian is positive definite.1

7. b. The Hessian is negative definite.2

7. c. The Hessian is indefinite.3

8. a. Apply R2 − 3R1:4

[

1 2
3 4

]

⇒
[

1 2
0 −2

]

.

So that L =

[

1 0

3 1

]

. Factor:5

[

1 2

0 −2

]

=

[

1 0

0 −2

][

1 2

0 1

]

.

The first factor on the right is D, and the second one is U . (The A =6

LDU decomposition involves “a new U”, when compared with the A = LU7

decomposition.)8

9. Calculate the A = LDU decomposition, and just observe that U = LT ,9

since the matrix A is symmetric.10

Section 7.211

1. a. The Jacobian12

J(0, 0) =

∣

∣

∣

∣

ux(0, 0) uy(0, 0)

vx(0, 0) vy(0, 0)

∣

∣

∣

∣

=

∣

∣

∣

∣

0 0

0 1

∣

∣

∣

∣

= 0 .

The implicit function theorem does not apply.13

1. b. The Jacobian14

J(0, 1) =

∣

∣

∣

∣

ux(0, 1) uy(0, 1)
vx(0, 1) vy(0, 1)

∣

∣

∣

∣

=

∣

∣

∣

∣

0 2
1 1

∣

∣

∣

∣

= −2 6= 0 .

The implicit function theorem applies.15

1. c. The Jacobian16

J(1, 0) =

∣

∣

∣

∣

ux(1, 0) uy(1, 0)
vx(1, 0) vy(1, 0)

∣

∣

∣

∣

=

∣

∣

∣

∣

3 0
0 e

∣

∣

∣

∣

= 3e 6= 0 .

The implicit function theorem applies.17

75



2. a. To show that 1, 1 components are the same on the left and on the1

right, one needs2

xp = xuup + xvvp ,

which follows by the multivariable chain rule. Similarly, the other compo-3

nents are equal.4

3. b. Make a change of variables x = au, y = bv, z = cw. Instead of using5

the Jacobian, one may simply write dx = a du, dy = b dv, dz = c dw. Then6

∫∫∫

V

√

1 − x2

a2
− y2

b2
− z2

c2
dxdydz = abc

∫∫∫

B

√

1 − u2 − v2 − w2 dudvdw ,

where B is the unit ball u2 + v2 + w2 ≤ 1. Use spherical coordinates in the7

last integral to obtain8

abc

∫ 2π

0

∫ π

0

∫ 1

0

√

1− ρ2ρ2 sinϕ dρdϕdθ = 4πabc

∫ 1

0

√

1 − ρ2 ρ2 dρ =
π2

4
abc .

(The integral
∫ 1
0

√

1 − ρ2 ρ2 dρ is computed by a trig substitution x = sin θ.)9

10

2. c. The volume is given by
∫∫∫

V dxdydz. Proceeding as in part b, obtain11

∫∫∫

V
dxdydz = abc

∫ 2π

0

∫ π

0

∫ 1

0
ρ2 sin ϕ dρdϕdθ =

4

3
πabc .

Section 7.312

1. a. Here x = 2 cos t, y = 3 sin t, or13

x2

22
+

y2

32
= 1 .

2. With γ(t) = (x(t), y(t), 0), calculate γ ′(t) = (x′(t), y′(t), 0), γ ′′(t) =14

(x′′(t), y′′(t), 0), ||γ ′(t)|| =
(

x′2 + y′2
) 1

2

, and15

γ ′(t) × γ ′′(t) =
(

0, 0, x′(t)y′′(t) − x′′(t)y′(t)
)

.

By Theorem 7.3.216

κ(t) =
|x′(t)y′′(t) − x′′(t)y′(t)|
(

x′2(t) + y′2(t)
)

3

2

.
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1. b. If t is a polar angle, then t = π
4 is the line y = x. On the torus, t = π

41

gives the point
(

2 cos π
4 , 3 sin π

4

)

that is not on the line y = x.2

3. a. Since s is arc-length, x′2(s)+y′2(s) = 1 for all s. Then use the formula3

from exercise 2.4

4. With γ(x) = (x, f(x), 0), calculate γ ′(x) = (1, f ′(x), 0), γ ′′(x) = (0, f ′′(x), 0),5

||γ ′(x)|| =
(

1 + f ′2(x)
)

1

2

, and6

γ ′(x)× γ ′′(x) =
(

0, 0, f ′′(x)
)

.

By Theorem 7.3.27

κ(x) =
|f ′′(x)|

(

1 + f ′2(x)
)

3

2

.

5. d. Use the definitions of tanh u and sech u, and 5. b.8

6. a. Write the unit sphere as9

x2 + y2 = 1− z2 = 1 − sin2 ϕ .

When ϕ = π
4 , obtain the circle10

x2 + y2 =
1

2
,

which is a circle on the plane z =
√

2
2 .11

6. b. Once the curve σ(θ, π
4 ) has been identified as a circle, there is no need12

for integration to find its length. It is 2πr = 2π
√

2
2 =

√
2π.13

6. c. The point on the sphere is σ(π
4 , π

4 ) =
(

1
2 , 1

2 , 1√
2

)

. Calculate σθ =14

(− sin θ sin ϕ, cosθ sin ϕ, 0), σθ(
π
4 , π

4 ) =
(

−1
2 , 1

2 , 0
)

, σϕ = (cos θ cos ϕ, sinθ cos ϕ,− sinϕ),15

σϕ(π
4 , π

4 ) =
(

1
2 , 1

2 ,− 1√
2

)

. The normal to the tangent plane is16

N̄ = σθ(
π

4
,
π

4
)× σϕ(

π

4
,
π

4
) =

(

− 1

2
√

2
,− 1

2
√

2
,−1

2

)

.

The equation of the tangent plane at the point
(

1
2 , 1

2 , 1√
2

)

is17

− 1

2
√

2
(x− 1

2
) − 1

2
√

2
(y − 1

2
) − 1

2
(z − 1√

2
) = 0 .
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Section 7.42

1. a. Here x = u − v, y = u + v, so that3

x2 + y2 = (u − v)2 + (u + v)2 = 2(u2 + v2) = 2z .

Calculate4

σu = (1, 1, 2u) ,
5

σv = (−1, 1, 2v) ,
6

E = σu · σu = 2 + 4u2 ,
7

F = σu · σv = 4uv ,
8

G = σv · σv = 2 + 4v2 .

1. e. Here x2 + y2 = u2 = z2. Calculate9

σu = (cos v, sin v, 1) ,

10

σv = (−u sin v, u cosv, 0) ,
11

E = σu · σu = 2 ,
12

F = σu · σv = 0 ,
13

G = σv · σv = u2 .

2. The projection of this curve on the xy-plane is14

x2 + y2 = u2 = e4t .

Write this projection in polar coordinates:15

r = e2t ,

which is an expanding spiral. Since z = u = e2t, the curve is climbing. The16

curve is somewhat similar to helix (although expanding and climbing fast).17

18

Write this curve as19

γ(t) =
(

e2t cos t, e2t sin t, e2t
)

.
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Calculate ||γ ′(t)|| = 3e2t, and then the length is1

∫ 2π

0
||γ ′(t)|| dt =

∫ 2π

0
3e2t dt =

3

2

(

e4π − 1
)

.

3. Calculate2

σx = (1, 0, fx) ,
3

σy = (0, 1, fy) ,
4

E = σx · σx = 1 + f2
x ,

5

F = σx · σy = fxfy ,
6

G = σy · σy = 1 + f2
y .

4. The surface is z = x2 + y2 + 2x. Write this surface as7

z = (x− 1)2 + y2 − 1 ,

a paraboloid with the vertex at the point (1, 0,−1).8

Calculate9

σu = (1, 0, 2u+ 2) ,
10

σv = (0, 1, 2v) ,
11

E = σu · σu = 1 + 4(u + 1)2 ,
12

F = σu · σv = 4(u + 1)v ,
13

G = σv · σv = 1 + 4v2 .

Then14

cos θ =
4(u + 1)v

√

[1 + 4(u + 1)2] (1 + 4v2)
.

Here θ is the angle between the coordinate curves at the point σ(u, v).15

5. a. Write the vectors in components: a =





a1

a2

a3



, b =





b1

b2

b3



, c =16





c1

c2

c3



, d =





d1

d2

d3



. Then both sides of the vector identity are equal to17

a2b1c2d1−a1b2c2d1 +a3b1c3d1−a1b3c3d1−a2b1c1d2 +a1b2c1d2 +a3b2c3d2−18

a2b3c3d2 − a3b1c1d3 + a1b3c1d3 − a3b2c2d3 + a2b3c2d3.19
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I used Mathematica.1

5. d. Since the surface is regular, E = σu · σu > 0 (otherwise the vectors σu2

and σv are linearly dependent). By part c, EG − F 2 > 0. By Sylverster’s3

criterion, the matrix

[

E F
F G

]

of the first fundamental form is positive4

definite.5

6. a. Consider the surface σ(u, v) = (x(u, v), y(u, v), 0). Calculate6

σu = (xu(u, v), yu(u, v), 0) ,
7

σv = (xv(u, v), yv(u, v), 0) ,
8

E = σu · σu = x2
u + y2

u ,
9

G = σv · σv = x2
v + y2

v ,
10

F = σu · σv = xuxv + yuyv ,
11

EG− F 2 = (x2
u + y2

u)(x2
v + y2

v) − (xuxv + yuyv)
2 = (xuyv − yuxv)

2 ,
12

√

EG− F 2 = |xuyv − yuxv | = |
∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

| ,

the absolute value of the Jacobian. (Recall that
√

z2 = |z|.) Then the area13

of the region R is14

∫ ∫

D

√

EG− F 2 dudv =

∫∫

D
|
∣

∣

∣

∣

∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣

∣

∣

∣

| dudv .

7. a. Write σ(u(t), v(t)) = (x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t))). The15

derivative of the vector function σ(u(t), v(t)) is obtained by differentiation16

of each component, for which the “usual chain rule” applies.17

Section 7.518

1. a. With σ(u, v) = (f(u) cosv, f(u) sinv, g(u)), calculate19

σu(u, v) =
(

f ′(u) cosv, f ′(u) sinv, g′(u)
)

,

20

σv(u, v) = (−f(u) sin v, f(u) cosv, 0) ,
21

σuu(u, v) =
(

f ′′(u) cosv, f ′′(u) sinv, g′′(u)
)

,
22

σuv(u, v) =
(

−f ′(u) sin v, f ′(u) cos v, 0
)

,
23

σvv(u, v) = (−f(u) cos v,−f(u) sinv, 0) ,
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1

σu(u, v)× σv(u, v) =
(

−f(u)g′(u) cosv,−f(u)g′(u) sinv, f(u)f ′(u)
)

,
2

||σu(u, v)× σv(u, v)||2 = f2(u)
(

f ′2(u) + g′
2
(u)
)

= f2(u) ,
3

N̄ =
σu(u, v)× σv(u, v)

||σu(u, v)× σv(u, v)|| =
(

−g′(u) cos v,−g′(u) sinv, f ′(u)
)

,

4

L = σuu(u, v) · N̄ = f ′g′′ − f ′′g′,
5

M = σuv(u, v) · N̄ = 0,
6

N = σvv(u, v) · N̄ = fg′ .

The second fundamental form is
(

f ′g′′ − f ′′g′
)

du2 + fg′dv2.7

2. a. The characteristic equation |A − λB| = 0 takes the form8

∣

∣

∣

∣

−1 − 3λ 0
0 2 − 4λ

∣

∣

∣

∣

= 0 ,

or9

(1 + 3λ)(1− 2λ) = 0 .

The roots (the generalized eigenvalues) are λ1 = −1
3 and λ2 = 1

2 .10

The generalized eigenvectors corresponding to λ1 = −1
3 are solutions of11

(A − 1

3
B)x = 0 .

The first equation of this system is 0 = 0, and it is discarded. The second12

equation becomes13

10

3
x2 = 0 .

Then x2 = 0, while x1 is arbitrary. The generalized eigenvectors correspond-14

ing to λ1 = −1
3 are multiples of

[

1
0

]

.15

The generalized eigenvectors corresponding to λ2 = 1
2 are solutions of16

(A +
1

2
B)x = 0 .

The second equation of this system is 0 = 0, and it is discarded. The first17

equation becomes18

−5

2
x1 = 0 .
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Then x1 = 0, while x2 is arbitrary. The generalized eigenvectors correspond-1

ing to λ2 = 1
2 are multiples of

[

0
1

]

.2

In general if the matrices A and B are both diagonal, of the form A =3
[

a1 0

0 a2

]

, B =

[

b1 0

0 b2

]

, the characteristic equation |A− λB| = 0 takes4

the form5
∣

∣

∣

∣

a1 − λb1 0

0 a2 − λb2

∣

∣

∣

∣

= 0,

6

(a1 − λb1)(a2 − λb2) = 0.

Its roots, the generalized eigenvalues, are λ1 = a1

b1
, λ2 = a2

b2
. The corre-7

sponding generalized eigenvectors are the coordinate vectors e1 and e2.8

2. b. The characteristic equation |A − λB| = 0 takes the form9

∣

∣

∣

∣

1 − 2λ 2 − λ
2 − λ 1 − 2λ

∣

∣

∣

∣

= 0 ,

10

(1− 2λ)2 − (2− λ)2 = 0 ,
11

3(λ2 − 1) = 0 .

The roots (the generalized eigenvalues) are λ1 = −1 and λ2 = 1. The12

generalized eigenvectors corresponding to λ1 = −1 are solutions of13

(A + B)x = 0 ,

which are multiples of the vector

[

−1

1

]

. The generalized eigenvectors14

corresponding to λ2 = 1 are solutions of15

(A − B)x = 0 ,

which are multiples of the vector

[

1

1

]

.16

3. a. Obtain17

B

(

x√
Bx · x

)

· x√
Bx · x

=
Bx · x
Bx · x = 1 .

4. Multiply by B and divide by λ:18

BA−1x =
1

λ
x .
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Hence, 1
λ is an eigenvalue of BA−1.1

Section 7.62

1. If A and B are the matrices of the second and the first fundamental forms3

respectively, then the characteristic equation |A − kB| = 0 takes the form4

∣

∣

∣

∣

L − kE M − kF
M − kF N − kG

∣

∣

∣

∣

= 0 ,

5

(L − kE) (N − kG) − (M − kF )2 = 0 ,
6

(

EG− F 2
)

k2 + (−GL + 2FM − EN )k + LN − M2 = 0 .

If k1 and k2 are roots of the last quadratic equation, it can be factored as7

(

EG− F 2
)

(k − k1)(k − k2) = 0 .

Compare the constant terms of the last two equations8

(

EG− F 2
)

k1k2 = LN − M2 .

It follows that the Gaussian curvature satisfies K = k1k2 = LN−M2

EG−F 2 .9

2. For the torus σ(θ, ϕ) = ((a + b cosθ) cos ϕ, (a + b cosθ) sin ϕ, b sinθ), cal-10

culate11

σθ(θ, ϕ) = (−b sin θ cos ϕ,−b sinθ sinϕ, b cosθ) ,
12

σϕ(θ, ϕ) = (− (a + b cosθ) sin ϕ, (a + b cosθ) cos ϕ, 0) .
13

E = σθ · σθ = b2,
14

F = σθ · σϕ = 0,
15

G = σϕ · σϕ = (a + b cos θ)2 .

The first fundamental form is b2dθ2 + (a + b cos θ)2 dϕ2.16

Calculate further17

σθθ(θ, ϕ) = (−b cos θ cosϕ,−b cosθ sin ϕ,−b sinθ) ,
18

σθϕ(θ, ϕ) = (b sin θ sinϕ,−b sinθ cos ϕ, 0) ,
19

σϕϕ(θ, ϕ) = (− (a + b cosθ) cos ϕ,− (a + b cosθ) sin ϕ, 0) .
20

σθ×σϕ = (−b cos θ cos ϕ(a + b cosθ),−b cos θ sinϕ(a + b cos θ),−b sinθ(a + b cosθ)) ,
21

||σθ × σϕ|| =
√

(σθ × σϕ) · (σθ × σϕ) = b(a + b cos θ),
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1

N̄ =
σθ × σϕ

||σθ × σϕ||
= (− cos θ cosϕ,− cos θ sinϕ,−b sinθ) ,

2

L = σθθ · N̄ = b cos2 θ cos2 ϕ + b cos2 θ sin2 ϕ + b sin2 θ = b,
3

M = σθϕ · N̄ = 0,
4

N = σϕϕ · N̄ = (a + b cos θ) cos θ.

The second fundamental form is bdθ2 + (a + b cos θ) cos θdϕ2.5

The matrices of the first and the second fundamental form are both6

diagonal of the form A =

[

L 0

0 N

]

, B =

[

E 0

0 G

]

. The characteristic7

equation |A − kB| = 0 takes the form8

∣

∣

∣

∣

L − kE 0
0 N − kG

∣

∣

∣

∣

= 0,

9

(L − kE)(N − kG) = 0.

Its roots are the principal curvatures10

k1 =
L

E
=

1

b
,

11

k2 =
N

G
=

cos θ

a + b cosθ
.

When k2 > 0, or −π
2 < θ < π

2 , the points on the torus are elliptic12

(corresponding to the right half of the circle that is being rotated, when13

producing the torus). Hyperbolic points correspond to π
2 < θ < 3π

2 .14
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