Chapter 1

Section 1.1

1. d. Set $z=t$, an arbitrary number. From the second equation $y=t+3$.

7 Substitute these expressions into the first equation

$$
x-(t+3)+2 t=0,
$$

8 so that $x=-t+3$.

1. e. From the last equation $u=0$. Update the system:

$$
\begin{gathered}
x+y-z=2 \\
3 y-3 z=3 .
\end{gathered}
$$

Set $z=t$. From the second equation $y=t+1$. Then from the first equation $x=1$.
2. f. From the second equation subtract the first one, and from the third equation subtract twice the first one:

$$
\begin{gathered}
x-y+2 z=0 \\
y-z=3 \\
y-z=3 .
\end{gathered}
$$

Discard the third equation. Set $z=t$. From the second equation $y=t+3$. Then from the first equation $x=-t+3$.
3. The point $(1,0,2)$ lying on the plane $a x+b y+c z=d$ implies that $a+2 c=d$. Similarly for the other two points, giving the following three equations for the unknowns a, b, c, d

$$
\begin{aligned}
a+2 c & =d \\
b+5 c & =d \\
2 a+b+c & =d .
\end{aligned}
$$

From the second equation subtract twice the first one:

$$
\begin{gathered}
a \quad+2 c=d \\
b+5 c=d \\
b-3 c=-d .
\end{gathered}
$$

2 From the third equation subtract the second one:

$$
\begin{gathered}
a \quad+2 c=d \\
b+5 c=d \\
-8 c=-2 d .
\end{gathered}
$$

While the plane through three points is unique, the equation of the plane is not. One can multiply the equation by an arbitrary number p to obtain $p a x+p b y+p c z=p d$. By choosing p one can make the right side of this equation to be an arbitrary number. In other words, in the equation $a x+$ $b y+c z=d, d$ can be taken to be an arbitrary number. In the last system we choose a convenient $d=4$, and obtain by back substitution $c=1, b=-1$ and $a=2$. Obtain the plane $2 x-y+z=4$.
4. Multiply the first equation by a, and the second one by 2 :

$$
\begin{aligned}
& 2 a x-3 a y=-a \\
& 2 a x-12 y=10 .
\end{aligned}
$$

From the second equation subtract the first one:

$$
\begin{gathered}
2 a x-3 a y=-a \\
(3 a-12) y=10+a
\end{gathered}
$$

If $3 a-12 \neq 0$, or $a \neq 4$, by back substitution one produces a unique solution. In case $a=4$, the second equation becomes

$$
0=14,
$$

and the system has no solutions.
For the system to have infinitely many solutions, the second equation would need to be

$$
0=0,
$$

1 which does not happen for any a.
2 5. Solve for $y: y=\frac{5 x-1}{3}=2 x-\frac{x+1}{3}$. Since x and y are integers, $\frac{x+1}{3}$ is an integer too. Set $\frac{x+1}{3}=n$, an integer. Then $x=3 n-1$, leading to $y=5 n-2$, ${ }_{4}$ where n is an arbitrary integer.

5 Section 1.2

Let us consider one equation with two unknowns

$$
x-y=1 .
$$

7 It has infinitely many solutions: $x=2$ and $y=1, x=3$ and $y=2, x=\frac{3}{2}$ and $y=\frac{1}{2}$, and so on (and on). One way to represent all solutions is to let y be arbitrary and solve for $x, x=y+1$. A slightly different way is to let $y=t$, an arbitrary number and solve for $x, x=t+1$.

1(a). The pivots are circled:

$$
\left[\begin{array}{rr:r}
(2) & -1 & 0 \\
0 & (3) & 6
\end{array}\right] .
$$

Restore the system:

$$
\begin{gathered}
2 x_{1}-x_{2}=0 \\
3 x_{2}=6 .
\end{gathered}
$$

${ }_{13}$ From the second equation $x_{2}=1$. Using that in the first equation gives

$$
2 x_{1}-2=0,
$$

1.(b). The pivot is circled:

$$
\left[\begin{array}{rr:r}
(2) & -2 & 4 \\
0 & 0 & 0
\end{array}\right] .
$$

Discard the second equation. Restore the first equation

$$
2 x_{1}-2 x_{2}=4 .
$$

Set $x_{2}=t$, an arbitrary number and solve for $x_{2}: x_{1}=t+2$.

1 1(e). The pivots are circled:

$$
\left[\begin{array}{rrr:r}
(1) & -1 & 1 & 3 \\
0 & (1) & 2 & -1
\end{array}\right] .
$$

2 Restore the system:

$$
\begin{gathered}
x_{1}-x_{2}+x_{3} \quad=3 \\
x_{2}+2 x_{3}=-1
\end{gathered}
$$

${ }_{3}$ The variable x_{3} is free. Set $x_{3}=t$ and arbitrary number. Then $x_{2}=-2 t-1$
4 and then $x_{1}=-3 t+2$.
${ }_{5}$ 1(f). The pivots are circled:

$$
\left[\begin{array}{rrr:r}
(2) & -1 & 0 & 2 \\
0 & 0 & (1) & -4
\end{array}\right]
$$

6 Restore the system:

$$
\begin{gathered}
2 x_{1}-x_{2}=2 \\
x_{3}=-4
\end{gathered}
$$

${ }_{7}$ Answer. $x_{1}=\frac{1}{2} x_{2}+1, x_{3}=-4, x_{2}$ is free.
$82(\mathrm{~d})$. Write down the augmented matrix, then apply $R_{1} \leftrightarrow R_{2}$ (i.e., switch
9 the first and second rows to avoid fractions) to get

$$
\left[\begin{array}{rrr:r}
1 & 2 & 1 & -1 \\
3 & -2 & -1 & 0 \\
1 & -6 & -3 & 2
\end{array}\right]
$$

10 Apply $R_{2}-3 R_{1}$ and $R_{3}-R_{1}$:

$$
\left[\begin{array}{rrr:r}
1 & 2 & 1 & -1 \\
3 & -2 & -1 & 0 \\
1 & -6 & -3 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{rrr:r}
1 & 2 & 1 & -1 \\
0 & -8 & -4 & 3 \\
0 & -8 & -4 & 3
\end{array}\right]
$$

${ }_{11}$ Apply $R_{3}-R_{2}$:

$$
\left[\begin{array}{rrr:r}
1 & 2 & 1 & -1 \\
0 & -8 & -4 & 3 \\
0 & -8 & -4 & 3
\end{array}\right] \Rightarrow\left[\begin{array}{rrr:r}
(1) & 2 & 1 & -1 \\
0 & -8 & -4 & 3 \\
0 & 0 & 0 & 0
\end{array}\right] .
$$

${ }_{1}$ Pivot variables are x_{1} and x_{2}, while x_{3} is free. The second equation becomes

$$
-8 x_{2}-4 t=3,
$$

2 giving $x_{2}=-\frac{1}{2} t-\frac{3}{8}$. Then from the first equation

$$
x_{1}=-2 x_{2}-x_{3}-1=-2\left(-\frac{1}{2} t-\frac{3}{8}\right)-t-1=-\frac{1}{4} .
$$

3
4 2(e). Apply $R_{2}-2 R_{1}$, followed by $R_{3}-R_{2}$

$$
\left[\begin{array}{rrrr:r}
1 & -1 & 0 & 1 & 1 \\
2 & -1 & 1 & 1 & -3 \\
0 & 1 & 1 & -1 & -5
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr:r}
1 & -1 & 0 & 1 & 1 \\
0 & 1 & 1 & -1 & -5 \\
0 & 1 & 1 & -1 & -5
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr:r}
(1) & -1 & 0 & 1 & 1 \\
0 & (1) & 1 & -1 & -5 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

5 Pivot variables are x_{1} and x_{2}, while x_{3} and x_{4} are free. Set $x_{3}=t, x_{4}=s$,
and solve for $x_{2}=-t+s-5, x_{1}=x_{2}-x_{4}+1=-t-4$.
3(a). Apply $R_{2}-2 R_{1}$ and $R_{3}-R_{1}$, followed by $R_{3}-R_{2}$

$$
\left[\begin{array}{rrr:r}
1 & -2 & 0 & 2 \\
2 & 3 & 1 & -4 \\
1 & 5 & 1 & -5
\end{array}\right] \Rightarrow\left[\begin{array}{rrr:r}
1 & -2 & 0 & 2 \\
0 & 7 & 1 & -8 \\
0 & 7 & 1 & -7
\end{array}\right] \Rightarrow\left[\begin{array}{rrr:r}
1 & -2 & 0 & 2 \\
0 & 7 & 1 & -8 \\
0 & 0 & 0 & 1
\end{array}\right] .
$$

8 The last equation is

$$
0=1 .
$$

9 The system is inconsistent.
$103(\mathrm{c})$. Apply $R_{2}-2 R_{1}$ and $R_{3}-R_{1}$:

$$
\left[\begin{array}{rrrr:r}
1 & -2 & -1 & 3 & 1 \\
2 & -4 & 1 & 0 & 5 \\
1 & -2 & 2 & -3 & 4
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr:r}
1 & -2 & -1 & 3 & 1 \\
0 & 0 & 3 & -6 & 3 \\
1 & -2 & 2 & -3 & 4
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr:r}
(1) & -2 & -1 & 3 & 1 \\
0 & 0 & 3 & -6 & 3 \\
0 & 0 & 3 & -6 & 3
\end{array}\right] .
$$

${ }_{11}$ The second column has no pivot, but the third one does. Then $R_{3}-R_{2}$ gives

$$
\left[\begin{array}{rrrr:r}
(1) & -2 & -1 & 3 & 1 \\
0 & 0 & (3) & -6 & 3 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

1 The third row is discarded. The pivot variables are x_{1} and x_{3}, while x_{2} and ${ }_{2} x_{4}$ are free. Restore the system, take x_{2} and x_{4} to the right, then set $x_{2}=s$, $x_{4}=t$:

$$
\begin{array}{r}
x_{1}-2 x_{2}-x_{3}+3 x_{4}=1 \\
3 x_{3}-6 x_{4}=3,
\end{array}
$$

4

$$
\begin{gathered}
x_{1}-x_{3}=2 x_{2}-3 x_{4}+1=2 s-3 t+1 \\
3 x_{3}=6 x_{4}+3=6 t+3
\end{gathered}
$$

5 Then $x_{3}=2 t+1$, and $x_{1}=x_{3}+2 x_{2}-3 x_{4}+1=-t+2 s+2$.
${ }_{6}$ d. Apply $R_{2}-2 R_{1}$ and $R_{3}-3 R_{1}$:

$$
\left[\begin{array}{rrrr:r}
1 & -1 & 0 & 1 & 0 \\
2 & -2 & 1 & -1 & 1 \\
3 & -3 & 2 & 0 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr:r}
1 & -1 & 0 & 1 & 0 \\
0 & 0 & 1 & -3 & 1 \\
0 & 0 & 2 & -3 & 2
\end{array}\right] .
$$

${ }_{7}$ The second column has no pivot, but the third one does. Then $R_{3}-2 R_{2}$ gives

$$
\left[\begin{array}{rrrr:r}
(1) & -1 & 0 & 1 & 0 \\
0 & 0 & (1) & -3 & 1 \\
0 & 0 & 0 & (3) & 0
\end{array}\right] .
$$

9 The last equation reads

$$
3 x_{4}=0,
$$

10 so that $x_{4}=0$. Then the second equation gives $x_{3}=1$, and from the first
11 equation $x_{1}=x_{2}$.
12 5. In case $a=1$, the augmented matrix is

$$
\left[\begin{array}{rrr:r}
1 & -1 & 2 & 3 \\
0 & 1 & -1 & -2 \\
1 & 0 & 1 & 1
\end{array}\right] .
$$

${ }_{13}$ Apply $R_{3}-R_{1}$ to get

$$
\left[\begin{array}{rrr:r}
1 & -1 & 2 & 3 \\
0 & 1 & -1 & -2 \\
0 & 1 & -1 & -2
\end{array}\right] .
$$

Apply $R_{3}-R_{1}$:

$$
\left[\begin{array}{rrr:r}
1 & 0 & 1 & 1 \\
0 & -1 & 2 & 0 \\
0 & 1 & 2 & 3
\end{array}\right]
$$

Apply $R_{3}+R_{2}$:

$$
\left[\begin{array}{rrr:r}
1 & 0 & 1 & 1 \\
0 & -1 & 2 & 0 \\
0 & 0 & 4 & 3
\end{array}\right]
$$

$$
\left[\begin{array}{rrr:r}
(1) & -1 & 2 & 3 \\
0 & (1) & -1 & -2 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Pivot variables: x_{1} and x_{2}. Free variable x_{3}. From the second equation $x_{2}=x_{3}-2$, and from the first equation $x_{1}=-x_{3}+1$.

In case $a \neq 0$, the same process leads to

$$
\left[\begin{array}{rrc:r}
(1) & -1 & 2 & 3 \\
0 & (1) & -1 & -2 \\
0 & 0 & a-1 & 0
\end{array}\right]
$$

Since $a-1 \neq 0$, the system is inconsistent.
6. Each pivot occupies its own row and its own column. Therefore the maximal possible number of pivots for a $m \times n$ matrix is equal to the smaller of the numbers m and n. So that for a 5×6 matrix, the maximal possible number of pivots is 5 . For a 11×3 matrix, it is 3 .

Section 1.3

1. Form a system of equations with the augmented matrix $\left[C_{1} C_{2} C_{3} \mid b\right]$:

$$
\left[\begin{array}{rrr:r}
1 & 0 & 1 & 1 \\
0 & -1 & 2 & 0 \\
1 & 1 & 3 & 4
\end{array}\right]
$$

$$
+\ln +\ln
$$

Perform back-substitution: $x_{3}=\frac{3}{4}, x_{2}=\frac{3}{2}, x_{1}=\frac{1}{4}$.
2. Form a system of equations with the augmented matrix $\left[C_{1} C_{2} C_{3} \mid b\right]$. Solve it to get $x_{1}=0, x_{2}=1$ and $x_{3}=1$. It follows that $b=C_{2}+C_{3}$.
3. Any linear combination of C_{1}, C_{2}, C_{3} has the first component equal to 0 , and hence it cannot be equal to b, which has the first component 5 .
5. a. Form a system of equations with the augmented matrix $\left[C_{1} C_{2} \mid b\right]$, and determine $x_{1}=1, x_{2}=-2$. It follows that $b=C_{1}-2 C_{2}$, so that the vector b lies in the plane spanned by C_{1} and C_{2}.
5. b. The system of equations with the augmented matrix $\left[C_{1} C_{2} \mid b\right]$ is inconsistent. It follows that the vector b does not lie in the plane spanned by C_{1} and C_{2}.
6. a. Span of C_{1}, C_{2}, C_{3} has the third component zero, while the third component of b is 1 .
6. b. $b=C_{1}+C_{2}+C_{3}$, hence b is in span of C_{1}, C_{2}, C_{3}.
7. Vector $x \in R^{4}$ is a 4×1 matrix. Since A is of size 4×5, the product $A x$ is not defined.
8. $x \in R^{8}$ is an 8×1 matrix. Hence, $A x$ is defined, and $A x$ is of size 7×1, or $A x \in R^{7}$.

Section 1.4

1. All three systems have the same matrix. The same sequence of row operations is used in each case. Therefore we form a "long" augmented matrix [$A^{\prime}, 0^{\prime}, b_{1}^{\prime}, b_{2}$] and perform the Gaussian elimination on the entire long rows. When A is reduced to the row echelon form, one restores separately each system, to perfom back substitution on each one.

Apply $R_{2}-R_{1}$ and $R_{3}-R_{1}$:

Restore separately each system. The variable x_{2} is free, therefore $A x=0$ and $A x=b_{1}$ have each infinitely many solutions. For $A x=b_{2}$ the third equation says $0=3$, and the system is inconsistent. Indeed, the restored system for $A x=0$ is

$$
\begin{gather*}
x_{1}+2 x_{2}-x_{3}=0 \\
x_{3}=0 . \tag{0.1}
\end{gather*}
$$

Then $x_{3}=0, x_{1}=-2 x_{2}$ and x_{2} is free. (x_{2} is pivot variable.) For the system $A x=b_{1}$ get

$$
\begin{gather*}
x_{1}+2 x_{2}-x_{3}=2 \\
x_{3}=1 . \tag{0.2}
\end{gather*}
$$

Then $x_{3}=1, x_{1}=-2 x_{2}+3$ and x_{2} is free. The system $A x=b_{2}$ is inconsistent.
2. A has at most 4 pivots, and hence at least one free variable. There are infinitely many solutions.
3. No free variables. There is only the trivial solution.
4. Solutions of non-homogeneous system $A x=b$ can be written as $x=p+y$, where p is any particular solution of that system, and y is the general solution of the corresponding homogeneous system $A x=0$. We are given that y is the line of slope -3 through the origin (or a set of vectors $t\left[\begin{array}{r}1 \\ -3\end{array}\right]$), and $p=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. It follows that $x=\left[\begin{array}{l}2 \\ 1\end{array}\right]+t\left[\begin{array}{r}1 \\ -3\end{array}\right]$, or the line of slope -3 through the point $(2,1)$.
5. If x_{1} and x_{2} are two solutions of $A x=b$, then $A x_{1}=b$ and $A x_{2}=b$. Subtracting

$$
A\left(x_{1}-x_{2}\right)=0
$$

It follows that $x_{1}-x_{2}$ is a solution of the corresponding homogeneous equation. Since the homogeneous system has only the trivial solution, conclude that $x_{1}-x_{2}=0$, or $x_{1}=x_{2}$, so that $A x=b$ can have at most one solution.
6. a. Since x_{1} and x_{2} are solutions of homogeneous system, $A x_{1}=0$ and $A x_{2}=0$. Then

$$
A\left(x_{1}+x_{2}\right)=A x_{1}+A x_{2}=0+0=0 .
$$

7. If x and y are two solutions, $A x=b$ and $A y=b$. Adding:

$$
A(x+y)=2 b .
$$

Since $2 b \neq b$ for $b \neq 0$, it follows that $x+y$ is not a solution of the system $A x=b$.

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
1 & -1 & 2 \\
1 & -2 & 0 \\
1 & 3 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 0 & 0 \\
0 & -1 & -2 \\
0 & 4 & -1
\end{array}\right]
$$

Perform $R_{2} \leftrightarrow R_{4} . \quad\left(R_{2} \leftrightarrow R_{3}\right.$ is also possible, but that will require another row exchange down the road.) Obtain:

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
0 & 4 & -1 \\
0 & -1 & -2 \\
0 & 0 & 0
\end{array}\right]
$$

${ }_{1}$ Finally, apply $R_{3}+\frac{1}{4} R_{2}$:

$$
\left[\begin{array}{rrr}
(1) & -1 & 2 \\
0 & (4) & -1 \\
0 & 0 & -\frac{9}{4} \\
0 & 0 & 0
\end{array}\right] .
$$

2 There are three pivots (the third one is $-\frac{9}{4}$), so that the vectors are linearly independent.

4 2. a. Set a linear combination of these vectors to zero

$$
x_{1}\left(u_{1}+u_{2}\right)+x_{2}\left(u_{1}-u_{2}\right)=0 .
$$

5
Rearrange:

$$
\left(x_{1}+x_{2}\right) u_{1}+\left(x_{1}-x_{2}\right) u_{2}=0 .
$$

Since u_{1} and u_{2} are linearly independent, it follows that

$$
\begin{gathered}
x_{1}+x_{2}=0 \\
x_{1}-x_{2}=0 .
\end{gathered}
$$

8
The only solution of the last system is $x_{1}=x_{2}=0$. The vectors $u_{1}+u_{2}$ and $u_{1}-u_{2}$ are linearly independent.
3. Since the vectors $u_{1}+u_{2}$ and $u_{1}-u_{2}$ are linearly dependent, one of them is a scalar multiple of the other, so that

$$
u_{1}+u_{2}=a\left(u_{1}-u_{2}\right)
$$

for some number a. Rearrange:

$$
(1-a) u_{1}+(1+a) u_{2}=0
$$

12 Since the coefficients $1-a$ and $1+a$ cannot be both zero, it follows that the vectors u_{1} and u_{2} are also linearly dependent.
4. Take a linear combination of these vectors, and set it equal to the zero vector
$(*) \quad x_{1} u_{1}+x_{2}\left(u_{1}+u_{2}\right)+x_{3}\left(u_{1}+u_{2}+u_{3}\right)+x_{4}\left(u_{1}+u_{2}+u_{3}+u_{4}\right)=0$.
Rearrange:

$$
\left(x_{1}+x_{2}+x_{3}+x_{4}\right) u_{1}+\left(x_{2}+x_{3}+x_{4}\right) u_{2}+\left(x_{3}+x_{4}\right) u_{3}+x_{4} u_{4}=0
$$

Since the vectors $u_{1}, u_{2}, u_{3}, u_{4}$ are linearly independent the coefficients of the last linear combination must be all zero:

$$
\begin{aligned}
x_{1}+x_{2}+x_{3}+x_{4} & =0 \\
x_{2}+x_{3}+x_{4} & =0 \\
x_{3}+x_{4} & =0 \\
x_{4} & =0 .
\end{aligned}
$$

Solving this system of equations gives $x_{1}=x_{2}=x_{3}=x_{4}=0$. Since the formula $\left(^{*}\right)$ holds true only when all coefficients are zero, it follows that the vectors $u_{1}, u_{1}+u_{2}, u_{1}+u_{2}+u_{3}$ and $u_{1}+u_{2}+u_{3}+u_{4}$ are linearly independent.
5. No. Consider three vectors that lie in the same plane, but no pair of them lies on the same line. Then they are linearly dependent, but linearly independent pairwise.
6. Clearly

$$
1 \cdot u_{1}+1 \cdot u_{2}+(-1) \cdot\left(u_{1}+u_{2}\right)+0 \cdot u_{4}=\mathbf{0}
$$

and the coefficients $1,1,(-1), 0$ are not all zero.
7. Since u_{1}, u_{2}, u_{3} are linearly dependent

$$
x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}=0
$$

with a non-trivial combination of the coefficients x_{1}, x_{2}, x_{3} (at least one of them is non-zero). Then for any u_{4}

$$
x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}+0 \cdot u_{4}=0
$$

with a non-trivial combination of the coefficients $x_{1}, x_{2}, x_{3}, 0$ (at least one of them is non-zero).
8. Suppose that, on the contrary, the vectors u_{1}, u_{2}, u_{3} are linearly dependent. Then

$$
x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}=0
$$

with at least one of the coefficients non-zero. But then

$$
x_{1} u_{1}+x_{2} u_{2}+x_{3} u_{3}+0 \cdot u_{4}=0
$$

with at least one of the coefficients non-zero. It follows that the vectors $u_{1}, u_{2}, u_{3}, u_{4}$ are linearly dependent, contrary to what is given.
holds only at integer values of n, while the definition of differentiation requires that functions be defined on some interval. Hence, it is not admissible to differentiate this formula.

Chapter 2

Section 2.1

2. $3 X=-I, X=-\frac{1}{3} I$.
3. e. and f. The matrices B are diagonal. Multiply the columns of A by the diagonal entries of B. (The first column of A is multiplied by b_{11}, the second column of A is multiplied by b_{22}, etc.)
4. g. Since B is diagonal, multiply the first column of A by 2 , the second column by -1 , the third column by 0 to get

$$
A B=\left[\begin{array}{lll}
2 & -1 & 0 \\
2 & -1 & 0 \\
2 & -1 & 0
\end{array}\right]
$$

$$
(A-B)(A+B)=(A-B) A+(A-B) B=A^{2}-B A+A B+B^{2}
$$

b. $\quad(A+B)^{2}=(A+B)(A+B)=A^{2}+A B+B A+B^{2}$.
c. $\quad(A B)^{2}=A B A B$.

If the matrices A and B commute $(B A=A B)$, then indeed we have:
a. $\quad(A-B)(A+B)=A^{2}-B^{2}$.
b. $\quad(A+B)^{2}=A^{2}+2 A B+B^{2}$.
c. $\quad(A B)^{2}=A^{2} B^{2}$.

1
5. Apply the formula $(A B)^{T}=B^{T} A^{T}$ to two matrices at a time:

$$
(A B C)^{T}=(A(B C))^{T}=(B C)^{T} A^{T}=C^{T} B^{T} A^{T}
$$

2 6. Apply the formula $(A B)^{T}=B^{T} A^{T}$:

$$
\left(A^{2}\right)^{T}=(A A)^{T}=A^{T} A^{T}=\left(A^{T}\right)^{2} .
$$

8. $A^{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], A^{3}=A^{2} A=O$.

410 a. Vectors in R^{n} are $n \times 1$ matrices. Hence x^{T} is a $1 \times n$ matrix, or a row vector.

6 10. b. If $x \neq 0$, then at least one of its components is non-zero. Hence, $x^{T} x=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}>0$.

\& Section 2.2

2. It is $E_{3}(-5)=\left[\begin{array}{rrr}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -5\end{array}\right]$.
3. a., b., c. Let B be any matrix of the same size as A. Show that $A B \neq I$.

11
12 5. All of the matrices in parts a.-e. are either elementary or diagonal ones, 13 14
5. g. Use the formula for the inverse of a 2×2 matrix to obtain

$$
A^{-1}=\left[\begin{array}{ll}
-2 & 1 \\
-3 & 1
\end{array}\right]
$$

15
6. a. Apply $R_{3}-R_{1}$:

$$
\left[\begin{array}{rrr:rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 \\
1 & -2 & 1 & 0 & 0 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{rrr:rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 \\
0 & -4 & 1 & -1 & 0 & 1
\end{array}\right]
$$

16
Apply $R_{3}-4 R_{2}$ to get

$$
\left[\begin{array}{rrr:rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 & 1 & 0 \\
0 & 0 & -3 & -1 & -4 & 1
\end{array}\right] .
$$

1
Apply $-R_{2}$ and $-\frac{1}{3} R_{3}$ to get

$$
\left[\begin{array}{rrr:rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & -1 & 0 & -1 & 0 \\
0 & 0 & 1 & \frac{1}{3} & \frac{4}{3} & -\frac{1}{3}
\end{array}\right] .
$$

2 Apply $R_{2}+R_{3}$ to get

$$
\left[\begin{array}{rrr:rrr}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 1 & \frac{1}{3} & \frac{4}{3} & -\frac{1}{3}
\end{array}\right] .
$$

${ }_{3}$ Apply $R_{1}-2 R_{2}$ to get

$$
\left[\begin{array}{rrr:rrr}
1 & 0 & 0 & \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
0 & 1 & 0 & \frac{1}{3} & \frac{1}{3} & -\frac{1}{3} \\
0 & 0 & 1 & \frac{1}{3} & \frac{4}{3} & -\frac{1}{3}
\end{array}\right] .
$$

4 7. The columns of this matrix are linearly dependent. By Theorem 2.2.2, 5 this matrix is not invertible.
8. By the definition of the square of a matrix, $(A B)^{2}=A B A B$. We are given that

$$
A B A B=A A B B
$$

8
Multiply both sides by A^{-1} from the left:

$$
B A B=A B B
$$

9 Multiply both sides by B^{-1} from the right:

$$
B A=A B
$$

9. c. Observe that

$$
E_{13} E_{24}=E_{24} E_{13},
$$

${ }_{11}$ because it does not matter if one switches rows 1 and 3 first, and rows 2 and ${ }_{12} 4$ second, or the other way around. Then

$$
P^{2}=E_{13} E_{24} E_{24} E_{13}=E_{13} I E_{13}=I,
$$

13 because both matrices E_{24} and E_{13} are their own inverses.
14 11. Since $A^{k}=O$,

$$
\left(I+A+A^{2}+\cdots+A^{k-1}\right)(I-A)=I-A^{k}=I
$$

so that the matrix $I+A+A^{2}+\cdots+A^{k-1}$ gives the inverse of $I-A$.

Section 2.3

1. a. $B(A B)^{-1} A=B B^{-1} A^{-1} A=I A^{-1} A=I$.
2. b. $(2 A)^{-1} A^{2}=\frac{1}{2} A^{-1} A A=\frac{1}{2} A$.
3. c. $\left[4(A B)^{-1} A\right]^{-1}=\frac{1}{4}\left[(A B)^{-1} A\right]^{-1}=\frac{1}{4} A^{-1} A B=\frac{1}{4} B$.
4. Inverses of elementary matrices are elementary matrices of the same type.
a. $E_{13}(2)^{-1}=E_{13}(-2)$.
c. $E_{13}^{-1}=E_{13}$.
5. a. The matrix A is obtained from I by switching row 2 and row 4 . Therefore, $A=E_{24}$.
6. b. The matrix B is obtained from I by applying $R_{4}-5 R_{3}$. Therefore, $B=E_{34}(-5)$.
7. c. The matrix C is obtained from I by multiplying row 4 by 7 . Therefore, $C=E_{4}(7)$, and $C^{-1}=E_{4}\left(\frac{1}{7}\right)$.
8. a. Restore the elementary matrices and perform multiplication from right to left: $E_{12}(-3) E_{13}(-1) E_{23}(4)=E_{12}(-3)\left[E_{13}(-1) E_{23}(4)\right]$. Obtain

$$
E_{13}(-1) E_{23}(4)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right],
$$

by applying $R_{3}-R_{1}$ to the second matrix. Then

$$
E_{12}(-3)\left[E_{13}(-1) E_{23}(4)\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right],
$$

obtained by by applying $R_{2}-3 R_{1}$ to the second matrix.
4. b. Spell out the elementary matrices, and perform multiplication from right to left: $E_{12} E_{13}(-1) E_{23}(4)=E_{12}\left[E_{13}(-1) E_{23}(4)\right]$. The product of the last two matrices

$$
E_{13}(-1) E_{23}(4)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 4 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]
$$

1 is obtained by applying $R_{3}-R_{1}$ to the second matrix. Then

$$
E_{12}\left[E_{13}(-1) E_{23}(4)\right]=E_{12}\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 4 & 1
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
-1 & 4 & 1
\end{array}\right]
$$

2 is obtained by switching rows 1 and 2 of the second matrix.
3 4. e. Again, $E_{3}(3) E_{13}(-1) E_{12}=E_{3}(3)\left[E_{13}(-1) E_{12}\right]$.

$$
E_{13}(-1) E_{12}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & -1 & 1
\end{array}\right],
$$

${ }_{4}$ applying $R_{3}-R_{1}$ to the second matrix. Then

$$
E_{3}(3)\left[E_{13}(-1) E_{12}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right]\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & -1 & 1
\end{array}\right]=\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & -3 & 3
\end{array}\right],
$$

applying $3 R_{3}$ to the second matrix.
6 5. a. $R_{2}-3 R_{1}$ takes this matrix into U, while $L=\left[\begin{array}{ll}1 & 0 \\ 3 & 4\end{array}\right]$.
5. b. Apply $R_{2}-R_{1}$ and $R_{3}-R_{1}$. Then

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 2 & 2 \\
1 & 2 & 3
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{array}\right]
$$

8

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 1 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]=U .
$$

9 Forward elimination gave U, while

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right]
$$

10 5. e. Apply $R_{3}-2 R_{1}$

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & -1 \\
2 & 4 & 3 & 1 \\
0 & -2 & 0 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & -1 \\
0 & 0 & 1 & 1 \\
0 & -2 & 0 & 2
\end{array}\right] .
$$

1
Apply $R_{4}+R_{2}$

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & -1 \\
0 & 0 & 1 & 1 \\
0 & -2 & 0 & 2
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

2
Finally, $R_{4}-R_{3}$ gives

$$
\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr}
1 & 2 & 1 & 0 \\
0 & 2 & 1 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]=U .
$$

${ }_{3}$ The last matrix is U, while

$$
L=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
2 & 0 & 1 & 0 \\
0 & -1 & 1 & 1
\end{array}\right]
$$

4 Observe that zeroes under the diagonal correspond to row operations that 5 were not used.
6 6. a. Row exchange is needed for Gaussian elimination, therefore the $L U$ 7 decomposition is not possible.

8 6. b. The multiplication by permutation matrix $P A$ interchanges the rows
9 of A so that no row exchanges are needed in forward elimination.

10
7. a. $A^{-1}=E_{23}^{-1} E_{3}(-2)^{-1} E_{12}(3)^{-1}=E_{23} E_{3}\left(-\frac{1}{2}\right) E_{12}(-3)$.

11
7. b. Restore the 3×3 elementary matrices, and perform multiplication from right to left: $E_{23}\left(E_{3}\left(-\frac{1}{2}\right) E_{12}(-3)\right)$. Begin with

$$
E_{3}\left(-\frac{1}{2}\right) E_{12}(-3)=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right]\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right]
$$

${ }_{13}$ obtained by performing $-\frac{1}{2} R_{3}$ on the second matrix. Then

$$
E_{23}\left[\begin{array}{rrr}
1 & 0 & 0 \\
-3 & 1 & 0 \\
0 & 0 & -\frac{1}{2}
\end{array}\right]=\left[\begin{array}{rrr}
1 & 0 & 0 \\
0 & 0 & -\frac{1}{2} \\
-3 & 1 & 0,
\end{array}\right]
$$

1
9. Taking inverses of both sides, we get an equivalent statement to prove

$$
A^{-1}+B^{-1}=B^{-1}(A+B) A^{-1}
$$

${ }_{3}$ Distributing B^{-1}, and then distributing A^{-1} on the right

$$
B^{-1}(A+B) A^{-1}=\left(B^{-1} A+I\right) A^{-1}=B^{-1}+A^{-1}=A^{-1}+B^{-1}
$$

4 Section 2.4

1. a. Not a subspace, because the zero vector, with $x_{1}=x_{2}=0$, does not belong to this subset of R^{2}.
2. b. Multiplying a vector of say length $\frac{1}{2}$ lying inside the unit sphere by say 5 , produces a vector of length $\frac{5}{2}$ lying outside of the unit sphere. The subset is not closed under multiplication by a scalar. Not a subspace.
3. c. Yes, a subspace. For $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4} \\ x_{5}\end{array}\right]$ we are given that $x_{1}+x_{4}=0$.
${ }_{11}$ Any $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4} \\ y_{5}\end{array}\right]$ belonging to this subset satisfies $y_{1}+y_{4}=0$. Their sum ${ }_{12} \quad x+y=\left[\begin{array}{l}x_{1}+y_{1} \\ x_{2}+y_{2} \\ x_{3}+y_{3} \\ x_{4}+y_{4} \\ x_{5}+y_{5}\end{array}\right]$ al
also has the sum of the first and the fourth components zero:

$$
x_{1}+y_{1}+x_{4}+y_{4}=x_{1}+x_{4}+y_{1}+y_{4}=0+0=0
$$

14 Similarly for $c x=\left[\begin{array}{c}c x_{1} \\ c x_{2} \\ c x_{3} \\ c x_{4} \\ c x_{5}\end{array}\right]$ one has the sum of the first and the fourth
15 components:

$$
c x_{1}+c x_{4}=c\left(x_{1}+x_{4}\right)=0
$$

1. f. Vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ belong to this subset, but their sum $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ does not. The subset is not closed under addition. Not a subspace.
2. g. The subset is a line through the origin, or the span of any vector going along this line. A subspace.
3. h. Zero vector belongs to the set $x=\left[\begin{array}{c}0 \\ x_{2} \\ x_{2}^{2}\end{array}\right]$ (when $x_{2}=0, x=\mathbf{0}$), so that we cannot quickly conclude that this set is not a subspace. However, this set is indeed not a subspace, because $2 x$ does not belong to this set if $x \neq 0$.
4. a. The vectors b_{1} and b_{2} are linearly independent. Therefore they form a basis of R^{2}. To find the coordinates of e_{1}, solve the system with the augmented matrix

$$
\left[\begin{array}{rr:r}
1 & -1 & 1 \\
2 & 1 & 0
\end{array}\right]
$$

to get $x_{1}=\frac{1}{3}, x_{2}=-\frac{2}{3}$.
4. b. $1 b_{1}+3 b_{2}=\left[\begin{array}{r}-2 \\ 5\end{array}\right]$.
5. Three linearly independent vectors b_{1}, b_{2}, b_{3} form a basis of R^{3}. The coordinates of v_{1} and v_{2} with respect to this basis can be calculated in parallel by working with the augmented matrix

$$
\left[\begin{array}{lll}
b_{1} & b_{2} & b_{3}
\end{array}, v_{1}^{\prime}, v_{2}\right] .
$$

6. a. Solve the system with the augmented matrix

$$
\left[\begin{array}{ll}
b_{1} & b_{2}, b_{3}
\end{array}\right]
$$

to get $x_{1}=-1, x_{2}=1$.
7. $x=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$.
8. c. Draw the vector x in the first quadrant of the $x_{1} x_{2}$-plane, for simplicity. Rotate x by the angle θ and reflect the result with respect to the x_{1} axis. Then rotate just obtained result by the angle θ and reflect the last result with respect to the x_{1} axis. Obtain x. So that $P P x=x$ for any x.

Section 2.5

1. g. To solve the system $A x=0$, perform $R_{2}-R_{1}$ and $R_{3}+R_{1}$

$$
\left[\begin{array}{rrrr:r}
2 & 1 & 3 & 0 & 0 \\
2 & 0 & 4 & 1 & 0 \\
-2 & -1 & -3 & 1 & 0
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr:r}
(2) & 1 & 3 & 0 & 0 \\
0 & (1) & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] .
$$

3 The variable x_{3} is free, so set $x_{3}=t$. Back substitution gives: $x_{4}=0$,
$x_{2}=t, x_{1}=-2 t$, so that $x=t\left[\begin{array}{r}-2 \\ 1 \\ 1 \\ 0\end{array}\right]$. The null space $N(A)$ is spanned
by the vector $\left[\begin{array}{r}-2 \\ 1 \\ 1 \\ 0\end{array}\right], \operatorname{dim} N(A)=1$. the solution is

$$
x=\left[\begin{array}{c}
x_{2}+3 x_{3} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=x_{2}\left[\begin{array}{c}
1 \\
1 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{l}
3 \\
0 \\
1 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

2. If a 4×5 matrix has two pivots, it has three free variables. The dimension of its null space is 3 .
3. Since the rank is 3 , there are 3 pivots. There are 4 free variables, and the dimension of the null space is 4 .
4. a. The system $A x=0$ has only the trivial solution, so that the null space is the trivial subspace.
b. The column space is R^{4} because the system $A x=b$ has a (unique) solution for any vector $b \in R^{4}$.
5. There is one free variable. The null space consists of multiples of a three dimensional vector. The column space is a span of two of the columns.

1 6. The matrix A has at most 3 pivots (each pivot occupies its own row).
${ }_{2}$ Therefore, there is at least 2 free variables.
3 7. There are no pivots. Only the zero matrix O has this property.
4 8. a. The matrix is already in the row echelon form. Columns one and two 5 have pivots, so C_{1} and C_{2} form a basis of the column space $C(A)$. The rank
${ }_{6}$ of A is 2 . To express C_{3}, do back-substitution on

$$
\left[\begin{array}{rr:r}
(1) & 1 & -1 \\
0 & (2) & 4
\end{array}\right]
$$

7 to obtain $x_{2}=2$ and $x_{1}=3$. Conclusion: $C_{3}=3 C_{1}+2 C_{2}$.
8 8. c. $R_{2}+3 R_{1}$ gives

$$
\left[\begin{array}{rrr}
(1) & 1 & 2 \\
0 & 0 & 0
\end{array}\right] .
$$

9 Only column one has pivot, and hence C_{1} spans $C(A)$. Indeed, $C_{2}=C_{1}$, and $C_{3}=3 C_{1}$.
${ }_{11}$ 8. d. Apply $R_{2}-R_{1}$ and $R_{3}+2 R_{1}$. Obtain:

$$
A=\left[\begin{array}{rrr}
-1 & 2 & 5 \\
-1 & 2 & 5 \\
2 & 0 & -2
\end{array}\right] \Rightarrow\left[\begin{array}{rrr}
-1 & 2 & 5 \\
0 & 0 & 0 \\
0 & 4 & 8
\end{array}\right] .
$$

${ }_{12}$ Apply $R_{2} \leftrightarrow R_{3}$.

$$
\left[\begin{array}{rrr}
-1 & 2 & 5 \\
0 & 0 & 0 \\
0 & 4 & 8
\end{array}\right] \Rightarrow\left[\begin{array}{rrr}
\oplus(1) & 2 & 5 \\
0 & (4) & 8 \\
0 & 0 & 0
\end{array}\right]
$$

${ }_{13}$ Span of C_{1} and C_{2} gives the basis of $C(A)$. To express C_{3} through C_{1} and ${ }_{14} C_{2}$, do back-substitution on

$$
\left[\begin{array}{rr:r}
(1) & 2 & 5 \\
0 & (4) & 8 \\
0 & 0 & 0
\end{array}\right] .
$$

Obtain $x_{2}=2$ and $x_{1}=-1$, so that $C_{3}=-C_{1}+2 C_{2}$.
16 8. e. Perform $R_{1} \leftrightarrow R_{3}$:

$$
\left[\begin{array}{rrr}
0 & 0 & 1 \\
0 & 2 & 5 \\
-1 & 0 & -3
\end{array}\right] \Rightarrow\left[\begin{array}{rrr}
(1) & 0 & -3 \\
0 & (2) & 5 \\
0 & 0 & (1)
\end{array}\right] .
$$

The columns of this matrix are linearly independent. Since any three linearly independent vectors in R^{3} form a basis in R^{3}, it follows that $C(A)=R^{3}$.
8. f. Perform $R_{2}-R_{1}$ and $R_{3}+R_{1}$

$$
\left[\begin{array}{rrrr}
2 & 1 & 3 & 0 \\
2 & 0 & 4 & 1 \\
-2 & -1 & -3 & 1
\end{array}\right] \Rightarrow\left[\begin{array}{rrrr}
(2) & 1 & 3 & 0 \\
0 & (1) & 1 & 1 \\
0 & 0 & 0 & (1)
\end{array}\right] .
$$

The column space is spanned by C_{1}, C_{2} and C_{4}. To express C_{3} through C_{1}, C_{2} and C_{4}, do a back substitution on

$$
\left[\begin{array}{rrr:r}
(2) & 1 & 0 & 3 \\
0 & (1) & 1 & 1 \\
0 & 0 & (1) & 0
\end{array}\right] .
$$

Obtain $x_{3}=0, x_{2}=-1, x_{1}=2$. Conclude $C_{3}=2 C_{1}-C_{2}$.
10. b. Both $N(A)$ and $C(A)$ have dimension 1 , and therefore both are arbitrary multiples of the vector $\left[\begin{array}{r}1 \\ -1\end{array}\right]$, which belongs to both spaces.
10. c. Observe that $A^{2}=O$. All $x \in R^{2}$ satisfy $O x=0$. Hence $N\left(A^{2}\right)=R^{2}$.
11. b. Try the matrix $A=\left[\begin{array}{rr}-1 & -1 \\ 1 & 1\end{array}\right]$ from the preceding exercise.
12. a. The difference of any two solutions satisfies the homogeneous system $A x=0$. If $C_{1}, C_{2}, \ldots, C_{n}$ are the columns of A, and $x_{1}, x_{2}, \ldots, x_{n}$ are the components of x, then $x_{1} C_{1}+x_{2} C_{2}+\ldots+x_{n} C_{n}=0$. By the linear independence of the columns, $x=0$, and hence any two solutions of $A x=b$ are identical.

Chapter 3

Section 3.1

1. Evaluation of both determinants gives

$$
2 x+3=-x,
$$

so that $x=-1$.
3. b. Determinant of a diagonal matrix matrix is equal to the product of the diagonal entries: $1(-2)(-3)(-4)=-24$.
3. g. Expand in the first row to get

$$
a\left|\begin{array}{rr}
0 & b \\
c & -2
\end{array}\right|=-a b c
$$

3. i. Expand in the third column, to take advantage of the two zeros it contains.
4. l. All entries of the third column are zero. Expanding in the third column one shows that the determinant is zero.
5. In both cases $\left|A^{2}\right|=|A|^{2}$, which is a general fact, which will be justified in the next section.
6. Expansion in the first column gives

$$
|A|=(-1)^{n-1}\left|\begin{array}{cccc}
0 & \ldots & 0 & 1 \\
1 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & \ldots & 1 & 0
\end{array}\right|
$$

The new $(n-1) \times(n-1)$ determinant is expanded in the first row to get

$$
|A|=(-1)^{n-1}(-1)^{n-2}|I|=(-1)^{2 n-3}=-1
$$

since the number $2 n-3$ is odd.
7. All elements of the third row are zero, since $a_{i j}=0$ for $i=3$. Then $|A|=0$.
8. When computing a determinant, one performs multiplications, additions, and subtractions that turn integers into integers. If all entries of the matrix are integers, its determinant is an integer. The converse statement is "if the determinant is an integer then all entries of the matrix are integers". An example of

$$
\left|\begin{array}{rr}
\frac{3}{2} & \frac{1}{2} \\
\frac{5}{2} & -\frac{1}{2}
\end{array}\right|=-2
$$

proves it wrong.

Section 3.2

1. b. Perform $R_{1} \leftrightarrow R_{3}$, followed by $R_{2}-3 R_{1}$. After that expand in the first column.

1
2

Obtain

$$
\left|\begin{array}{ccc}
1 & 1 & 1 \\
0 & b-a & c-a \\
0 & b^{2}-a^{2} & c^{2}-a^{2}
\end{array}\right|=(b-a)(c-a)(c+a)-(b-a)(b+a)(c-a)
$$

3
4 2. a. Apply $R_{2}-3 R_{1}$ to obtain

$$
\left|\begin{array}{ccc}
a & b & c \\
d+3 a & e+3 b & f+3 c \\
g & h & k
\end{array}\right|=\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right|=5
$$

5
6 2. b. Factor 2 out of the second row to obtain

$$
\left|\begin{array}{ccc}
a & b & c \\
2 d & 2 e & 2 f \\
g & h & k
\end{array}\right|=2\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right|=10
$$

7 2. c. Factor 3 out of the first row, and 2 out of the second row to obtain

$$
\left|\begin{array}{ccc}
3 a & 3 b & 3 c \\
2 d & 2 e & 2 f \\
g & h & k
\end{array}\right|=6\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right|=30
$$

8
9
2. e. Perform $R_{1} \leftrightarrow R_{2}$ to obtain

$$
\left|\begin{array}{ccc}
d & e & f \\
a & b & c \\
g & h & k
\end{array}\right|=-\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right|=-5
$$

10
11 2. f. Perform $R_{2} \leftrightarrow R_{3}$, followed by $R_{1} \leftrightarrow R_{2}$ to obtain

$$
\left|\begin{array}{ccc}
d & e & f \\
g & h & k \\
a & b & c
\end{array}\right|=-\left|\begin{array}{ccc}
d & e & f \\
a & b & c \\
g & h & k
\end{array}\right|=\left|\begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & k
\end{array}\right|=5 .
$$

2. g. Factor -1 out of the third column.
3. h. A column of zeros makes the determinant zero.
formed into $|A|$.
4. $\left|A^{T}\right|=|-A|$, implies that $|A|=(-1)^{n}|A|$, giving $|A|=-|A|$ since n is odd, so that $|A|=0$.
5. b. Apply $R_{n}-R_{n-1}$, then $R_{n-1}-R_{n-2}$, and so on ending with $R_{2}-R_{1}$, obtain determinant of an upper triangular matrix with all diagonal entries equal to 1 .
6. If $A^{2}=-I$ for some matrix A, then

$$
\left|A^{2}\right|=|-I|
$$

But $\left|A^{2}\right|=|A|^{2} \geq 0$, while for n odd, $|-I|=(-1)^{n}=-1<0$, a contradiction.
15. If rows are linearly dependent, one of them is a linear combination of the others. Suppose that the matrix is 4×4, and

$$
R_{4}=a R_{1}+b R_{2}+c R_{3}
$$

Perform the elementary operations $R_{4}-a R_{1}, R_{4}-b R_{2}, R_{4}-c R_{3}$. On one hand the determinant is unchanged, and on the other hand the row 4 has all zeros, so that $|A|=0$.

Section 3.3

1. b. $|A|=0$, no inverse matrix exists.
2. g. Expand $|A|$ in the third row.
3. h. Use Gaussian elimination on the first column of $|A|$.
4. c. Determinant of the system is zero, so that Cramer's rule does not apply. Gaussian elimination shows that this system is inconsistent.
5. d. The second row can be discarded. The variable x_{2} is free, there are infinitely many solutions.
6. a. Recall that $A \operatorname{Adj} A=|A| I$, and then

$$
|A \operatorname{Adj} A|=\operatorname{det}(|A| I)
$$

On the left one has determinant of a product of two matrices, on the right determinant of a constant $|A|$ times the unit matrix I. Then

$$
|A||\operatorname{Adj} A|=|A|^{n}
$$

${ }^{24}\left[\begin{array}{rr}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x_{3} \\ x_{4}\end{array}\right]$. Similarly, $A w=\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ 5 x_{5}\end{array}\right]$.

$$
|\operatorname{Adj} \mathrm{A}|=|A|^{n-1}
$$

3. b. By part $(\mathrm{a}),|\operatorname{Adj} A|=0$ if and only if $|A|=0$. So that either both matrices are singular, or both are non-singular.
4. a. Determinant of a lower triangular matrix equals to the product of the diagonal entries. If one of the diagonal entries is zero, the determinant is zero, and the matrix is not invertible.
5. b. In the adjugate matrix C_{21}, C_{31}, \ldots (all cofactors below the main diagonal) are determinants of triangular matrices, with one of the diagonal entries zero. It follows that $C_{21}=0, C_{31}=0, \ldots$, so that A^{-1} is lower triangular.
6. Since $\operatorname{det} A=0$, the matrix A has fewer than n pivots. So that either the system $A x=b$ is inconsistent, or it has infinitely many solutions, since there are free variables.
7. Write all three vectors in components, and show that both sides of each identity contain the same expressions. For Part b. observe that vector product is not associative, with $\mathbf{a} \times(\mathbf{b} \times \mathbf{c})$ being different from $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$, in general. Part c. is rather long.
8. a. A is a block-diagonal matrix, with blocks of dimensions $2 \times 2,2 \times 2$, and the scalar 4. Invert each block separately to obtain A^{-1}.
9. b. The first two components of the vector $A y$ are obtained by multiplying $\left[\begin{array}{ll}4 & 3 \\ 1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, and the last three components of the vector $A y$ are zero. The vector $A z$ has zeros in the first, second and and fifth components, while the third and fourth components are calculated by multiplying

This example shows how the three blocks of A act separately on vectors in R^{5}. Other block matrices act similarly.

Chapter 4

Section 4.1

1

2

3
2. g. Expand

$$
\left|\begin{array}{ccc}
-2-\lambda & -1 & 4 \\
3 & 2-\lambda & -5 \\
0 & 0 & 1-\lambda
\end{array}\right|=0
$$

in the third row to get

$$
(1-\lambda)[(-2-\lambda)(2-\lambda)+3]=0
$$

Setting the first factor to zero gives $\lambda_{1}=1$. Setting the second factor to zero gives $\lambda_{2}=1, \lambda_{3}=-1$.
2. h . This example is covered in the text, in Section 4.2.
3. a. The eigenvalues are $\lambda_{1}=-3$ and $\lambda_{2}=3$.

To find eigenvectors corresponding to $\lambda_{1}=-3$ we need to solve the system $(A+3 I) x=0$, or

$$
\begin{gathered}
5 x_{1}+x_{2}=0 \\
5 x_{1}+x_{2}=0
\end{gathered}
$$

17
Discard the second equation:

$$
5 x_{1}+x_{2}=0
$$

18 Set $x_{2}=5$, to avoid fractions, and then $x_{1}=-1$. Obtained an eigenvector ${ }_{19}\left[\begin{array}{r}-1 \\ 5\end{array}\right]$, or any of its multiples $c\left[\begin{array}{r}-1 \\ 5\end{array}\right]$.

$$
\begin{aligned}
-x_{1}+x_{2} & =0 \\
5 x_{1}-5 x_{2} & =0 .
\end{aligned}
$$

Discard the second equation:

$$
-x_{1}+x_{2}=0
$$

4 Set $x_{2}=1$, and then $x_{1}=1$. Obtained an eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$, or any of its multiples $c\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
6 3. e. The eigenvalues are $2,-3,0,5$, the diagonal entries. The eigenvectors are $e_{1}, e_{2}, e_{3}, e_{4}$ the coordinate vectors. Indeed, to find eigenvectors 8 corresponding to $\lambda_{1}=2$, one needs to solve $(A-2 I) x=0$. Since

$$
A-2 I=\left[\begin{array}{rrrr}
0 & 0 & 0 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & -2 & 0 \\
0 & 0 & 0 & 3
\end{array}\right],
$$

9

the corresponding system is

$$
\begin{gathered}
0=0 \\
-5 x_{2}=0 \\
-2 x_{3}=0 \\
3 x_{4}=0 .
\end{gathered}
$$

The solution is $x_{2}=x_{3}=x_{4}=0$, while $x_{1}=c$, arbitrary. In the vector form $x=c e_{1}$. Proceed similarly to find other eigenvectors.
3. f. Building on the solution to 3. e., it follows that the eigenvalues of any $n \times n$ diagonal matrix are its diagonal entries. The eigenvectors are $e_{1}, e_{2}, \ldots, e_{n}$ the coordinate vectors.
3. g. The characteristic equation is

$$
\left|\begin{array}{ccc}
2-\lambda & 1 & 1 \\
-1 & -2-\lambda & 1 \\
3 & 3 & -\lambda
\end{array}\right|=0 .
$$

4 Factor λ :

$$
\lambda\left(9-\lambda^{2}\right)=0 .
$$

5 The roots (or the eigenvalues) are $\lambda=0$ and $\lambda= \pm 3$.
6
4. Sum of the eigenvalues is equal to the trace:

$$
\lambda_{1}+\lambda_{2}=6
$$

${ }_{7}$ Given that $\lambda_{1}=-1$, it follows that $\lambda_{2}=7$, and then

$$
|A|=\lambda_{1} \lambda_{2}=-7 .
$$

8. You may begin with, say $\left|\begin{array}{ll}2 & a \\ b & 3\end{array}\right|$, which has trace 5 , and then choose 9 the numbers a and b, so that the determinant is 4 .

10 6. a. The eigenvalues of A^{3} are $(-2)^{3}=-8,1^{3}=1,\left(\frac{1}{4}\right)^{3}=\frac{1}{64}$. The 11 determinant $\left|A^{3}\right|$ is their product,

$$
\left|A^{3}\right|=(-2) \times 1 \times \frac{1}{64}=-\frac{1}{8} .
$$

6. b. $|A|=-\frac{1}{2}$, the product of its eigenvalues. Then

$$
\left|A^{-1}\right|=\frac{1}{|A|}=-2 .
$$

7. If A is invertible, so is A^{-1} (its inverse is A). Hence, A^{-1} cannot have zero eigenvalues.
8. Since A has zero eigenvalue, $|A|=0$ ($|A|$ is the product of eigenvalues). Then $|A B|=|A||B|=0$, therefore $A B$ is not invertible.
9. If $A x=\lambda x$, then $(k A) x=k \lambda x$, so that x is an eigenvector of $k A$, and $k \lambda$ is the corresponding eigenvalue.
10. a. Since A and A^{T} have identical characteristic polynomials (by the Hint), all of the eigenvalues are the same.
$4 j$ to be i. Then

$$
\sum_{i, j=1}^{n} b_{j i} a_{i j}=\sum_{i, j=1}^{n} b_{i j} a_{j i}=\operatorname{tr}(B A)
$$

12. c. Use part (b) of this problem:

$$
\begin{gathered}
\operatorname{tr}(A B-B A)=\operatorname{tr} I \\
0=n
\end{gathered}
$$

a contradiction, proving that the equality $A B-B A=I$ is not possible for any two matrices A and B.
13. Similar matrices have the same eigenvalues. Therefore they have the same trace, since the trace equals to the sum of eigenvalues.
14. Assume that $A x=\lambda x$ and $B x=\mu x$. Then

$$
(A B-B A) x=A B x-B A x=\mu A x-\lambda B x=\mu \lambda x-\lambda \mu x=0
$$

It follows that x is an eigenvector of $A B-B A$, corresponding to zero eigenvalue. Hence, $|A B-B A|=0$.
15. Add to the last row all other rows. The last row will consist of zeroes, so that $|A-b I|=0$. Then $\lambda=b$ is a root of the characteristic equation, or an eigenvalue of A.
${ }_{17}$ Section 4.2
2. b. The characteristic equation is

$$
\left|\begin{array}{ccr}
3-\lambda & 3 & 2 \\
1 & 1-\lambda & -2 \\
-3 & -1 & -\lambda
\end{array}\right|=0 .
$$

19 Expand in the third column and simplify the first two terms:

$$
2(2-3 \lambda)+2(\lambda+6)-\lambda[(3-\lambda)(1-\lambda)-3]=0
$$

7 with

$$
A+2 i I=\left[\begin{array}{ccc}
3+2 i & 3 & 2 \\
1 & 1+2 i & -2 \\
-3 & -1 & 2 i
\end{array}\right]
$$

We know that the rows of this matrix are linearly dependent. The second row is not a multiple of the first, therefore the third row is a linear combination of the first two, although the exact complex coefficients are not easy to find. Therefore, discard the third equation to obtain

$$
\begin{aligned}
& (3+2 i) x_{1}+3 x_{2}+2 x_{3}=0 \\
& x_{1}+(1+2 i) x_{2}-2 x_{3}=0 .
\end{aligned}
$$

Setting $x_{3}=1$ gives

$$
\begin{aligned}
(3+2 i) x_{1}+3 x_{2} & =-2 \\
x_{1}+(1+2 i) x_{2} & =2 .
\end{aligned}
$$

3 Use Cramer's rule: $x_{1}=\frac{-8-4 i}{-4+8 i}=i, x_{2}=\frac{8+4 i}{-4+8 i}=-i$. The eigenvectors 14 are $\left[\begin{array}{r}i \\ -i \\ 1\end{array}\right]$, and any of its multiples. The eigenvectors corresponding to ${ }^{15} \quad \lambda_{2}=2 i$ are the complex conjugates: $c\left[\begin{array}{r}-i \\ i \\ 1\end{array}\right]$.
3. The characteristic polynomial $|A-\lambda I|$ is a polynomial of degree n. If n is odd, this polynomial has at least one real root by the intermediate value theorem. (If this polynomial tends to $-\infty$ as $\lambda \rightarrow-\infty$, then it tends to ∞ as $\lambda \rightarrow \infty$.)
5. Since $\lambda_{1}+\lambda_{2}=\operatorname{tr} A=2$ and $\lambda_{1} \lambda_{2}=\operatorname{det}(A)=2$, it follows that the eigenvalues are $1 \pm i$.
6. The matrix A has eigenvalues $\pm i$ and $\pm 2 i$. Hence the size of A is at least 4×4.

Section 4.3

1. a. A has eigenvalues $\lambda_{1}=3$ with an eigenvector $\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and $\lambda_{2}=2$ with an eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Use these eigenvectors as columns to get $P=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$. Use the eigenvalues to form $D=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$.
2. b. $\lambda=2$ is a double eigenvalue, but it has only one linearly independent eigenvector, namely $e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, the first coordinate vector in R^{2}. This matrix does not have a full set of eigenvectors, and therefore it is not diagonalizable.
3. d. $\lambda=2$ is a triple eigenvalue, but it has only one linearly independent eigenvector, which is $e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \in R^{3}$. This matrix is not diagonalizable.
4. f. Verify that the columns of P, given in the answer, are the eigenvectors of A, corresponding to the eigenvalues $\lambda_{1}=0, \lambda_{2}=1$, and $\lambda_{3}=3$.
5. g. This matrix has a double eigenvalue $\lambda_{1}=\lambda_{2}=0$ with two linearly independent eigenvectors $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$, and eigenvalue $\lambda_{3}=3$ corresponding to $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. This matrix is diagonalizable. Use the eigenvectors as columns to produce the diagonalizing matrix $P=\left[\begin{array}{rrr}-1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1\end{array}\right]$. Then
${ }^{1} \quad D=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 3\end{array}\right]$.
6. h. $\lambda=1$ is an eigenvalue of multiplicity four, but it has only one linearly

3 independent eigenvector, which is $e_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right] \in R^{4}$. This matrix is not 4 diagonalizable.

1. i. The eigenvalues are $\lambda_{1}=a$ corresponding to an eigenvector $\left[\begin{array}{l}1 \\ 0\end{array}\right]$, and
$\lambda_{1}=b$ corresponding to an eigenvector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Hence, $P=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$.
2. We have $A=P D P^{-1}$, with P and D from the preceding exercise. Then

$$
A^{k}=P D^{k} P^{-1}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{rr}
a^{k} & 0 \\
0 & b^{k}
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
a^{k} & b^{k}-a^{k} \\
0 & b^{k}
\end{array}\right] .
$$

9
3. c. Diagonalize B, then $\sqrt{B}=P\left[\begin{array}{rr}\sqrt{\lambda_{1}} & 0 \\ 0 & \sqrt{\lambda_{2}}\end{array}\right] P^{-1}$.
3. d. As in 3. a., one shows that $C^{2}=A$,
4. The eigenvalues of A are 0 and 1 . They are different so that A is diagonalizable. Write

$$
A=P\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] P^{-1},
$$

16
with an appropriate diagonalizing matrix P and its inverse P^{-1}. Then

$$
A^{k}=P\left[\begin{array}{rr}
1^{k} & 0 \\
0 & 0^{k}
\end{array}\right] P^{-1}=P\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right] P^{-1}=A
$$

${ }_{17}$ 5. The eigenvalues of A are $-\frac{1}{2}$ and $\frac{1}{2}$. They are different so that A is 18

$$
A=P\left[\begin{array}{rr}
-\frac{1}{2} & 0 \\
0 & \frac{1}{2}
\end{array}\right] P^{-1},
$$

1
with an appropriate diagonalizing matrix P and its inverse P^{-1}. Then

$$
A^{k}=P\left[\begin{array}{rr}
\left(-\frac{1}{2}\right)^{k} & 0 \\
0 & \left(\frac{1}{2}\right)^{k}
\end{array}\right] P^{-1} \rightarrow P O P^{-1}=O,
$$

2 as $k \rightarrow \infty$.
6. The eigenvalues of A are distinct so that A is diagonalizable. Write

$$
A=P\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] P^{-1},
$$

${ }_{4}$ with an appropriate diagonalizing matrix P and its inverse P^{-1}. Then

$$
A^{7}=P\left[\begin{array}{ccc}
0^{7} & 0 & 0 \\
0 & (-1)^{7} & 0 \\
0 & 0 & 1^{7}
\end{array}\right] P^{-1}=P\left[\begin{array}{rrr}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] P^{-1}=I .
$$

5
6 7. The eigenvalues of A are distinct so that A is diagonalizable. Write

$$
A=P\left[\begin{array}{rrrr}
-i & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] P^{-1}
$$

7 with an appropriate diagonalizing matrix P and its inverse P^{-1}. Then

$$
A^{4}=P\left[\begin{array}{cccc}
(-i)^{4} & 0 & 0 & 0 \\
0 & i^{4} & 0 & 0 \\
0 & 0 & (-1)^{4} & 0 \\
0 & 0 & 0 & 1^{4}
\end{array}\right] P^{-1}=P I P^{-1}=I
$$

8 9. In the 2×2 case $A=P\left[\begin{array}{rr}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] P^{-1}$. Then

$$
q(A)=P\left[\begin{array}{cc}
q\left(\lambda_{1}\right) & 0 \\
0 & q\left(\lambda_{2}\right)
\end{array}\right] P^{-1}=P O P^{-1}=O
$$

since eigenvalues are roots of the characteristic equation $q(\lambda)=0$.

${ }_{10}$ Chapter 5

Section 5.1

1. e. Between any two non-parallel vectors there is an acute angle (less than $\pi / 2$) and an obtuse angle (greater than $\pi / 2$), and these angles add up to π. Recall also that the range of the arc cosine function is $[0, \pi]$, so that arc cosine of a negative number is an obtuse angle. Here $\left\|y_{1}\right\|=3,\left\|y_{3}\right\|=2$, $y_{1} \cdot y_{3}=-1, \cos \theta=-\frac{1}{6}$. The acute angle is $\pi-\arccos \left(-\frac{1}{6}\right) \approx \pi-1.738 \approx$ 1.403 in radian measure.
2. g. $\operatorname{Proj}{ }_{x_{1}} x_{3}=\frac{x_{1} \cdot x_{3}}{\left\|x_{1}\right\|^{2}} x_{1}=-x_{1}$, since $x_{1} \cdot x_{3}=-9$ and $\left\|x_{1}\right\|=3$.
3. i. The vectors v_{1} and v_{2} are orthogonal, hence the projection of v_{2} on v_{1} is the zero vector.
4. $(x+y) \cdot(x-y)=x \cdot x-x \cdot y+y \cdot x-y \cdot y=\|x\|^{2}-\|y\|^{2}$.
5. Vectors $x+y$ and $x-y$ give the diagonals of the parallelogram with sides x and y. If the sides are equal, $\|x\|=\|y\|$, then

$$
(x+y) \cdot(x-y)=\|x\|^{2}-\|y\|^{2}=0
$$

and the diagonals are orthogonal. Conversely, if the diagonals are orthogonal, it follows from the same formula that the sides are equal.
4. $\|x+y\|^{2}=(x+y) \cdot(x+y)=x \cdot x+x \cdot y+y \cdot x+y \cdot y=\|x\|^{2}+2 x \cdot y+\|y\|^{2}=$ $16-2+9=23$.
5. a. Since $\cos \theta_{i}=\frac{x \cdot e_{i}}{\|x\|\left\|e_{i}\right\|}=\frac{x_{i}}{\|x\|}$, obtain

$$
\cos ^{2} \theta_{1}+\cos ^{2} \theta_{2}+\cdots+\cos ^{2} \theta_{n}=\frac{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}{\|x\|^{2}}=1
$$

5. b. In case $n=2, \theta_{2}=\frac{\pi}{2}-\theta_{1}$, so that $\cos \theta_{2}=\sin \theta_{1}$, and the formula becomes

$$
\cos ^{2} \theta_{1}+\sin ^{2} \theta_{1}=1
$$

6. Consider the triangle formed by the vectors x, y and $x+y$ for the geometrical interpretation.
7. $A e_{j}$ equals to the column j of A. Taking the inner product with e_{i} picks out the element i of this column, which is $a_{i j}$.
8. a. Using the Cauchy-Schwarz inequality

$$
\left\|\operatorname{Proj}_{a} b\right\|=\left\|\frac{a \cdot b}{\|a\|^{2}} a\right\|=\frac{|a \cdot b|}{\|a\|^{2}}\|a\| \leq \frac{\|a\|\||\||}{\|a\|^{2}}\|a\|=\|b\|
$$

9. c. True:

$$
\operatorname{Proj}_{2 a} b=\frac{2 a \cdot b}{\|2 a\|^{2}} 2 a=\frac{a \cdot b}{\|a\|^{2}} a=\operatorname{Proj}_{a} b
$$

9. b. Part 9. c. shows that $\operatorname{Proj}_{a} b$ does not change if vector a is multiplied by any number. If this number c is chosen small, then $\left\|\operatorname{Proj}_{c a} b\right\|>\|c a\|$.
10. Just observe the derivation in the text works for rectangular matrices as well.

Section 5.2

1. $u_{1} \cdot u_{2}=0$, hence the vectors are orthogonal. They are orthonormal because $\left\|u_{1}\right\|=1$ and $\left\|u_{2}\right\|=1$. Two linearly independent vectors form a basis of R^{2}. To find the coordinates of e_{1} and e_{2} with respect to the basis $B=\left\{u_{1}, u_{2}\right\}$, form the augmented matrix

$$
\left[\begin{array}{ll:}
u_{1} & u_{2}
\end{array}, e_{1}^{:}, e_{2}\right]
$$

and do Gaussian elimination on the entire long matrix. Obtain $e_{1}=\frac{1}{\sqrt{2}} u_{1}+$ $\frac{1}{\sqrt{2}} u_{2}$, and $e_{2}=-\frac{1}{\sqrt{2}} u_{1}+\frac{1}{\sqrt{2}} u_{2}$, so that $\left[e_{1}\right]_{B}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right],\left[e_{2}\right]_{B}=\left[\begin{array}{r}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$.
2. Since the vectors u_{1}, u_{2}, u_{3} are orthonormal, can use the following formulas to the coordinates with respect to the basis $B=\left\{u_{1}, u_{2}, u_{3}\right\}$:

$$
\left[w_{1}\right]_{B}=\left[\begin{array}{c}
w_{1} \cdot u_{1} \\
w_{1} \cdot u_{2} \\
w_{1} \cdot u_{3}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{3} \\
0 \\
0
\end{array}\right]
$$

3. a. Any set of linearly independent vectors form a basis in the subspace that they span.
4. b. Since the vectors v_{1} and v_{2} are orthogonal

$$
\operatorname{Proj}_{W} b=\frac{b \cdot v_{1}}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{b \cdot v_{2}}{\left\|v_{2}\right\|^{2}} v_{2}=\frac{3}{9} v_{1}+\frac{0}{2} v_{2}=\left[\begin{array}{r}
2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right]
$$

Since $\operatorname{Proj}_{W} b \neq b, b$ does not belong to W.
3. c. Before calculating the coordinates of w, we need to make sure that w belongs to W (so that w can be expressed through the basis of W). To this end, calcluate the projection

$$
\operatorname{Proj}_{W} w=\frac{w \cdot v_{1}}{\left\|v_{1}\right\|^{2}} v_{1}+\frac{w \cdot v_{2}}{\left\|v_{1}\right\|^{2}} v_{2}=-3 v_{1}+v_{2}=w
$$

and hence $w \in W$. The same calculation shows that $[w]_{B}=\left[\begin{array}{r}-3 \\ 1\end{array}\right]$.
3. d. There is a misprint in the book. The correct statement is " Calculate $\operatorname{Proj}_{W} w$. Does w belong to W ?"

Solution. Since w belongs to W (by part c.), $\operatorname{Proj}_{W} w=w$.
3. e. W is the plane passing through the vectors v_{1} and v_{2}.
f. W^{\perp} is the straight line perpendicular to the plane W.
4. a. Since u_{1}, u_{2}, u_{3} are orthonormal, they are linearly independent, and hence they form a basis of their span.
4. b. $\operatorname{Proj}_{W} b=\left(b \cdot u_{1}\right) u_{1}+\left(b \cdot u_{2}\right) u_{2}+\left(b \cdot u_{3}\right) u_{3}=-\frac{1}{2} u_{1}+\frac{3}{2} u_{2}+\frac{1}{2} u_{3}$.
5. Let $w_{1}, w_{2}, \ldots, w_{k}$ be some basis of W. Observe that $k \leq n$. A vector $x \in R^{n}$ belongs to W^{\perp} when $w_{1} \cdot x=0, w_{2} \cdot x=0, \ldots, w_{k} \cdot x=0$. So that we have a system of k equations with n unknowns to determine x. The matrix of this homogeneous system has rows $w_{1}^{T}, w_{2}^{T}, \ldots, w_{k}^{T}$. Since the rows are linearly independent, there are k pivots, and the the solution space (which is W^{\perp}) has dimension $n-k$.
6. We will show that every vector in $\left(W^{\perp}\right)^{\perp}$ belongs also to W, and conversely that any vector in W is in $\left(W^{\perp}\right)^{\perp}$.

Assume that $x \in W$. Then x is orthogonal to any vector in W^{\perp}, by the definition of W^{\perp}. Hence, $x \in\left(W^{\perp}\right)^{\perp}$.

Conversely, assume that $x \in\left(W^{\perp}\right)^{\perp}$. Decompose

$$
x=\operatorname{Proj}_{W} x+z,
$$

with $z \in W^{\perp}$. Since x is orthogonal to $W^{\perp}, z=0$. Then $x=\operatorname{Proj}_{W} x$, which implies that $x \in W$.
or

$$
\text { (2) } \quad w_{1} \cdot\left(x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}\right)=0
$$

Express similarly the second and the third components of (1):
7. Since the vectors $q_{1}, q_{2}, \ldots, q_{k}$ are orthonormal

$$
\|a\|^{2}=a \cdot a=\left(a_{1} q_{1}+a_{2} q_{2}+\cdots+a_{k} q_{k}\right) \cdot\left(a_{1} q_{1}+a_{2} q_{2}+\cdots+a_{k} q_{k}\right)
$$

$$
=a_{1}^{2}+a_{2}^{2}+\cdots+a_{k}^{2}
$$

9. A^{T} is of size $n \times m$, and so $A^{T} A$ is a square $n \times n$ matrix. $A^{T} A$ is symmetric because

$$
\left(A^{T} A\right)^{T}=A^{T} A
$$

To show that $A^{T} A$ is invertible, follow the Hint in the book to show that $A^{T} A x=0$ implies that $x=0$. This means that $A^{T} A$ has n pivots, and therefore is invertible.
10. Assume that w_{1}, w_{2}, w_{3} are linearly dependent, so that $x_{1} w_{1}+x_{2} w_{2}+$ $x_{3} w_{3}=0$ with some numbers x_{1}, x_{2}, x_{3} that are not all zero. Then

$$
x_{1} x_{2} x_{3} G=\left|\begin{array}{ccc}
x_{1} w_{1} \cdot w_{1} & x_{1} w_{1} \cdot w_{2} & x_{1} w_{1} \cdot w_{3} \\
x_{2} w_{2} \cdot w_{1} & x_{2} w_{2} \cdot w_{2} & x_{2} w_{2} \cdot w_{3} \\
x_{3} w_{3} \cdot w_{1} & x_{3} w_{3} \cdot w_{2} & x_{3} w_{3} \cdot w_{3}
\end{array}\right|=\left|\begin{array}{ccc}
x_{1} w_{1} \cdot w_{1} & x_{1} w_{1} \cdot w_{2} & x_{1} w_{1} \cdot w_{3} \\
x_{2} w_{2} \cdot w_{1} & x_{2} w_{2} \cdot w_{2} & x_{2} w_{2} \cdot w_{3} \\
0 & 0 & 0
\end{array}\right|=0
$$

On the second step we added the first and the second row to the third row, producing a row of zeroes. Indeed,

$$
x_{1} w_{1} \cdot w_{1}+x_{2} w_{2} \cdot w_{1}+x_{3} w_{3} \cdot w_{1}=\left(x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}\right) \cdot w_{1}=0
$$

and similarly the other two sums are zero.
Conversely, assume that the Gramian $G=0$. Then its columns C_{1}, C_{2}, C_{3} are linearly dependent, so that

$$
\begin{equation*}
x_{1} C_{1}+x_{2} C_{2}+x_{3} C_{3}=0 \tag{1}
\end{equation*}
$$

with some numbers x_{1}, x_{2}, x_{3} that are not all zero. The first component of (1) is

$$
x_{1} w_{1} \cdot w_{1}+x_{2} w_{1} \cdot w_{2}+x_{3} w_{1} \cdot w_{3}=0
$$

$$
\begin{align*}
& w_{2} \cdot\left(x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}\right)=0 \tag{3}\\
& w_{3} \cdot\left(x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}\right)=0
\end{align*}
$$

1
2
x_{3} and add the results:

$$
\left(x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}\right) \cdot\left(x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}\right)=0
$$

so that $\left\|x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}\right\|=0$, or $x_{1} w_{1}+x_{2} w_{2}+x_{3} w_{3}=0$, proving 4 that the vectors w_{1}, w_{2}, w_{3} are linearly dependent.
11. b. Here $A=\left[\begin{array}{rr}2 & 1 \\ 1 & -2 \\ 2 & -1\end{array}\right], b=\left[\begin{array}{r}3 \\ 4 \\ -5\end{array}\right]$, and a calculation gives the least squares solution

$$
\bar{x}=\left(A^{T} A\right)^{-1} A^{T} b=\frac{1}{50}\left[\begin{array}{ll}
6 & 2 \\
2 & 9
\end{array}\right]\left[\begin{array}{rrr}
2 & 1 & 2 \\
1 & -2 & -1
\end{array}\right]\left[\begin{array}{r}
3 \\
4 \\
-5
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

8 \quad since $A^{T} b=\left[\begin{array}{l}0 \\ 0\end{array}\right]$.
11. c. $p=A \bar{x}=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. Hence b is orthogonal to $C(A)$.

Section 5.3

1. a. $v_{1}=w_{1}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$, and

$$
v_{2}=w_{2}-\frac{w_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]-\frac{2}{2}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

13
Normalize:

$$
u_{1}=\frac{1}{\left\|v_{1}\right\|} v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
$$

$$
u_{2}=\frac{1}{\left\|v_{2}\right\|} v_{2}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
$$

1

1. c. Here $v_{1}=w_{1}=\left[\begin{array}{r}2 \\ 1 \\ -1 \\ 0\end{array}\right]$,

$$
\begin{gathered}
v_{2}=w_{2}-\frac{w_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left[\begin{array}{r}
3 \\
2 \\
-4 \\
1
\end{array}\right]-\frac{12}{6}\left[\begin{array}{r}
2 \\
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{r}
-1 \\
0 \\
-2 \\
1
\end{array}\right], \\
v_{3}=w_{3}-\frac{w_{3} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}-\frac{w_{3} \cdot v_{2}}{v_{2} \cdot v_{2}} v_{2}=\left[\begin{array}{r}
1 \\
1 \\
0 \\
-2
\end{array}\right]-\frac{3}{6}\left[\begin{array}{r}
2 \\
1 \\
-1 \\
0
\end{array}\right]-\frac{-3}{6}\left[\begin{array}{r}
-1 \\
0 \\
-2 \\
1
\end{array}\right]=\frac{1}{2}\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
-3
\end{array}\right] .
\end{gathered}
$$

2

3 Normalize:

$$
\begin{aligned}
& u_{1}=\frac{1}{\left\|v_{1}\right\|} v_{1}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
2 \\
1 \\
-1 \\
0
\end{array}\right] \\
& u_{2}=\frac{1}{\left\|v_{2}\right\|} v_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}
-1 \\
0 \\
-2 \\
1
\end{array}\right] \\
& u_{2}=\frac{1}{\left\|v_{2}\right\|} v_{2}=\frac{1}{\sqrt{12}}\left[\begin{array}{r}
-1 \\
1 \\
-1 \\
-3
\end{array}\right]
\end{aligned}
$$

6

1. e. This example is similar to 1.b., only vectors have more components.

8 Here $v_{1}=w_{1}=\left[\begin{array}{r}3 \\ -2 \\ 1 \\ 1 \\ -1\end{array}\right]$,

$$
v_{2}=w_{2}-\frac{w_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
0 \\
1
\end{array}\right]-\frac{-4}{16}\left[\begin{array}{r}
3 \\
-2 \\
1 \\
1 \\
-1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{r}
-1 \\
-2 \\
1 \\
1 \\
3
\end{array}\right] .
$$

4 2. a. The null-space $N(A)$ is spanned by the vectors $w_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right]$ and $w_{2}=$
Normalize v_{1}, v_{2} to obtain u_{1}, u_{2}.

1. f. Since the vectors u_{1} and u_{2} form an orthonormal basis of the subspace W,

$$
\operatorname{Proj}_{W} b=\operatorname{Proj}_{u_{1}} b+\operatorname{Proj}_{u_{2}} b=\left(b \cdot u_{1}\right) u_{1}+\left(b \cdot u_{2}\right) u_{2}=u_{1}-u_{2} .
$$

$\left[\begin{array}{l}5 \\ 2 \\ 4 \\ 0\end{array}\right]$. Apply the Gram-Schmidt process to these vectors to produce an or-
thogonal basis for the null-space $N(A): u_{1}=\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 2\end{array}\right], u_{2}=\frac{1}{\sqrt{10}}\left[\begin{array}{r}2 \\ 1 \\ 2 \\ -1\end{array}\right]$.
2. c. The null-space $N(A)$ is spanned by the vectors

$$
w_{1}=\left[\begin{array}{r}
-1 \\
0 \\
0 \\
1
\end{array}\right], w_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], w_{3}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]
$$

Apply the Gram-Schmidt process to these vectors to produce an orthogonal basis for the null-space $N(A)$:

$$
u_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}
-1 \\
0 \\
0 \\
1
\end{array}\right], u_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right], u_{3}=\frac{1}{\sqrt{6}}\left[\begin{array}{l}
1 \\
2 \\
0 \\
1
\end{array}\right]
$$

3. Any $m \times n$ matrix A with linearly independent columns can be factored as $A=Q R$, where Q is an $m \times n$ matrix with orthonormal columns, and R is a square $n \times n$ upper triangular matrix. If A is a square $n \times n$ matrix, so is Q.
4. a. $|A|=|Q||R|$. If $|A| \neq 0$, then $|R| \neq 0$, so that R is non-singular. The diagonal entries of R are positive because they contain the magnitudes of the vectors v_{1}, v_{2}, \ldots.

1 3. b. Multiply $A=Q R$ from the left by $A^{T}: Q^{T} A=Q^{T} Q R=Q^{-1} Q R=R$.
3 4. a. The columns of the matrix A are $w_{1}=\left[\begin{array}{l}3 \\ 4\end{array}\right], w_{2}=\left[\begin{array}{r}-1 \\ 0\end{array}\right]$. Apply
${ }_{4}$ Gram-Schmidt: $v_{1}=w_{1}$,

$$
v_{2}=w_{2}+\frac{3}{25} w_{1}=\frac{1}{25}\left[\begin{array}{r}
-16 \\
12
\end{array}\right]=\frac{4}{25}\left[\begin{array}{r}
-4 \\
3
\end{array}\right] .
$$

${ }_{5}$ Hence, $u_{1}=\frac{1}{5}\left[\begin{array}{l}3 \\ 4\end{array}\right], u_{2}=\frac{1}{5}\left[\begin{array}{r}-4 \\ 3\end{array}\right]$. Then $Q=\left[\begin{array}{rr}3 / 5 & -4 / 5 \\ 4 / 5 & 3 / 5\end{array}\right]$.
6 Also, $w_{1}=5 u_{1}$, and $w_{2}=-\frac{3}{5} u_{1}+\frac{4}{5} u_{2}$, giving R. Alternatively, $R=$ $\rightarrow\left[\begin{array}{cc}w_{1} \cdot u_{1} & w_{2} \cdot u_{1} \\ 0 & w_{2} \cdot u_{2}\end{array}\right]=\left[\begin{array}{cc}5 & -\frac{3}{5} \\ 0 & \frac{4}{5}^{5}\end{array}\right]$.
8 4. e. The columns of the matrix A are $w_{1}=\left[\begin{array}{r}1 \\ -1 \\ -1 \\ 1\end{array}\right], w_{2}=\left[\begin{array}{r}1 \\ 0 \\ -1 \\ 2\end{array}\right]$,
g $w_{3}=\left[\begin{array}{r}-1 \\ -1 \\ 1 \\ -1\end{array}\right]$. Apply Gram-Schmidt: $v_{1}=w_{1}$,

$$
v_{2}=w_{2}-\frac{w_{2} \cdot v_{1}}{\left\|v_{1}\right\|^{2}} v_{1}=w_{2}-\frac{4}{4} v_{1}=\left[\begin{array}{l}
0 \\
1 \\
0 \\
1
\end{array}\right]
$$

10

$$
v_{3}=w_{3}-\frac{w_{3} \cdot v_{1}}{\left\|v_{1}\right\|^{2}} v_{1}-\frac{w_{3} \cdot v_{2}}{\left\|v_{2}\right\|^{2}} v_{2}=w_{3}-\frac{-2}{4} v_{1}-\frac{-2}{2} v_{2}=\left[\begin{array}{r}
-1 / 2 \\
-1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right] .
$$

${ }_{11}$ Normalize $u_{1}=\frac{1}{2} v_{1}, u_{2}=\frac{1}{\sqrt{2}} v_{2}, u_{3}=v_{3}$. Hence, $Q=\left[\begin{array}{rrr}\frac{1}{2} & 0 & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{\sqrt{2}} & -\frac{1}{2} \\ -\frac{1}{2} & 0 & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2}\end{array}\right]$.

$w_{3}=-\frac{1}{2} v_{1}-v_{2}+v_{3}=-\frac{1}{2}\left\|v_{1}\right\| u_{1}-\left\|v_{2}\right\| u_{2}+\left\|v_{3}\right\| u_{3}=-u_{1}-\sqrt{2} u_{2}+u_{3}$.

5ence, $R=\left[\begin{array}{rrr}2 & 2 & -1 \\ 0 & \sqrt{2} & -\sqrt{2} \\ 0 & 0 & 1\end{array}\right]$.

6 5. a. Q is orthogonal if and only if $Q^{T}=Q^{-1}$. Then

$$
\left(Q^{T}\right)^{T}=\left(Q^{-1}\right)^{T}=\left(Q^{T}\right)^{-1}
$$

It follows that Q^{T} is orthogonal.
b. Since Q^{T} is orthogonal, the rows of Q are orthonormal.
c. Since Q is orthogonal, $Q^{T}=Q^{-1}$. To prove that Q^{-1} is orthogonal, need to show that

$$
\left(Q^{-1}\right)^{T}=\left(Q^{-1}\right)^{-1}
$$

Both sides are equal to Q.
6. Since columns of Q are unit vectors, the entries $Q_{31}=Q_{32}=0$. Similarly, $Q_{13}=Q_{23}=0$, because the rows of Q are unit vectors. The third column of Q is also a unit vector. Answer. $Q=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & \pm 1\end{array}\right]$.
or

$$
\lambda^{2} x \cdot x=Q x \cdot Q x=x \cdot Q^{T} Q x=x \cdot Q^{-1} Q x=x \cdot x
$$

so that $\lambda^{2}=1, \lambda= \pm 1$ (since the eigenvector $x \neq 0$).
7. b. The matrix $\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$ is an orthogonal matrix with the eigenvalues $\lambda= \pm i$.

4

21 2. a. $T\left(e_{1}\right)=T\left(\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]\right)=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1\end{array}\right]$ gives the first column of A, and so on.

The other three columns of A are given by $T\left(e_{2}\right), T\left(e_{3}\right), T\left(e_{4}\right)$. The matrix A can be also found by inspection, as explained in the Conclusion above.
2. b.,c.,d. Try to use the short-cut from the Conclusion above.
2. e. $T\left(e_{1}\right)=-2 e_{1}=\left[\begin{array}{r}-2 \\ 0 \\ 0\end{array}\right]$, giving the first column of the matrix A. (Indeed, projection of e_{1} on the $x_{1} x_{2}$-plane leaves e_{1} unchanged, then reflection with respect to the origin produces $-e_{1}$, and finally doubling the length gives $-2 e_{1}$.) Similarly, $T\left(e_{2}\right)=-2 e_{2}=\left[\begin{array}{r}0 \\ -2 \\ 0\end{array}\right]$, giving the second column of the matrix A. Since the projection of e_{3} on the $x_{1} x_{2}$-plane is 9 the zero vector, $T\left(e_{3}\right)=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$, which gives the third column. Obtain $A=\left[\begin{array}{rrr}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 0\end{array}\right]$.
2. f. The projection of $x \in R^{3}$ on the $x_{1} x_{2}$-plane is $\left[\begin{array}{c}x_{1} \\ x_{2} \\ 0\end{array}\right]$. When this vector is rotated by the angle θ counterclockwise, the third component stays zero, while the first two components are rotated. For $x=e_{1}$, the projection on the $x_{1} x_{2}$-plane is $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$. The first two components of this vector represent the vector e_{1} in R^{2}. Its rotation is $\left[\begin{array}{c}\cos \theta \\ \sin \theta\end{array}\right]$, as was established in our discussion of the rotation matrix. It follows that $T\left(e_{1}\right)=\left[\begin{array}{c}\cos \theta \\ \sin \theta \\ 0\end{array}\right]$. ${ }^{17}$ Similarly, $T\left(e_{2}\right)=\left[\begin{array}{c}-\sin \theta \\ \cos \theta \\ 0\end{array}\right]$. Finally, $T\left(e_{3}\right)=3 e_{3}=\left[\begin{array}{l}0 \\ 0 \\ 3\end{array}\right]$. Hence, $A=\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 3\end{array}\right]$.

1

2

3
4
3. Since

$$
T_{2}\left(T_{1}\left(x_{1}+x_{2}\right)\right)=T_{2}\left(T_{1}\left(x_{1}\right)+T_{1}\left(x_{2}\right)\right)=T_{2}\left(T_{1}\left(x_{1}\right)\right)+T_{2}\left(T_{1}\left(x_{2}\right)\right)
$$

5 it follows that the composition $T_{2}\left(T_{1}(x)\right)$ is additive. Similarly,

$$
T_{2}\left(T_{1}(c x)\right)=T_{2}\left(c T_{1}(x)\right)=c T_{2}\left(T_{1}(x)\right)
$$

so that the composition $T_{2}\left(T_{1}(x)\right)$ is homogeneous.
4. a. Assume that $T(u)=0$ implies that $u=0$. If now $T\left(u_{1}\right)=T\left(u_{2}\right)$, then ${ }_{8} T\left(u_{1}-u_{2}\right)=0$ and hence $u_{1}=u_{2}$, so that $T(u)$ is one-to-one. The converse statement is proved similarly.
4. b. Represent $T(u)=A u$ with an $m \times n$ matrix A. The homogeneous system $A u=0$ has non-trivial solutions. It follows that $T(u)=0$ does not imply that $u=0$. Hence $T(u)$ is not one-to-one by the part a.
5. If a linear transformation $T(x): R^{n} \rightarrow R^{m}$ has a matrix representation $T(x)=A x$, then the range of $T(x)$ is the same as the column space $C(A)$. Then $T(x)$ is onto if and only if $C(A)=R^{m}$.
5. a. One has rank $A=m$ if and only if $C(A)=R^{m}$. Indeed, if $C(A)$ is spanned by m linearly independent vectors, these vectors also span R^{m}.
5. b. If $n<m$, the matrix A has fewer than m pivots. Hence dimension of $C(A)$ is less than m, and then $C(A)$ is a proper subspace of $R^{m}(C(A) \neq$ $\left.R^{m}\right)$.
6. c. Let $T\left(x_{1}\right)=y_{1}, T\left(x_{2}\right)=y_{2}$. By linearity of $T(x)$

$$
T\left(c_{1} x_{1}+c_{2} x_{2}\right)=c_{1} T\left(x_{1}\right)+c_{2} T\left(x_{2}\right)=c_{1} y_{1}+c_{2} y_{2}
$$

for any scalars c_{1} and c_{2}. It follows that

$$
T^{-1}\left(c_{1} y_{1}+c_{2} y_{2}\right)=c_{1} x_{1}+c_{2} x_{2}=c_{1} T^{-1}\left(y_{1}\right)+c_{2} T^{-1}\left(y_{2}\right)
$$

proving that $T^{-1}(y)$ is linear.
7. a. There are infinitely many vectors that share the same projection.
b. $T(x)$ is not onto, its range consists of a line.
8. b. The columns of P are $T\left(e_{1}\right)$ and $T\left(e_{2}\right)$.
8. c. To see that $P P=I$, draw a vector x in the first quadrant of $x_{1} x_{2^{-}}$ plane. $P x$ is obtained by rotating of x followed by reflection with respect to x_{1} axis. To get $P P x$ one rotates $P x$ and reflects the result with respect to x_{1} axis. This brings one back to x. Hence $P P x=I x$ for any x, so that $P P=I$.
f. As in part c, two reflections and two rotations bring any $x \in R^{2}$ back to the same x.

Section 5.5

1. Matrix $A A^{T}$ is symmetric because

$$
\left(A A^{T}\right)^{T}=\left(A^{T}\right)^{T} A^{T}=A A^{T}
$$

To see that $A A^{T}$ is positive definite, we shall show that $A A^{T} x \cdot x>0$ for any $x \neq 0$. So assume that $x \neq 0$. We claim that $A^{T} x \neq 0$. Indeed, if $A^{T} x=0$, then $x=\left(A^{T}\right)^{-1} 0=0$, a contradiction. $\left(A^{T}\right.$ is invertible because A is.) Conclude:

$$
A A^{T} x \cdot x=A^{T} x \cdot A^{T} x=\left\|A^{T} x\right\|^{2}>0
$$

2. a. Since $B^{T}=B$, and $\left(A^{T}\right)^{T}=A$,

$$
\left(A^{T} B A\right)^{T}=A^{T} B^{T}\left(A^{T}\right)^{T}=A^{T} B A
$$

and hence $A^{T} B A$ is symmetric.
3. Eigenvalues of a positive definite matrix are all positive. Determinant is equal to the product of eigenvalues.
$2 \frac{1}{\sqrt{5}}\left[\begin{array}{r}-2 \\ 1\end{array}\right]$, and $\lambda_{1}=3$, with the normalized eigenvector $\frac{1}{\sqrt{5}}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. These eigenvectors form an orthonormal set, and they are the columns of the or4 thogonal diagonalizing matrix P.
5. b. Since $A^{T}=-A$,

$$
\left|A^{T}\right|=|-A| .
$$

6 Using that $\left|A^{T}\right|=|A|$, and $|-A|=(-1)^{n}|A|=-|A|$ because n is odd, obtain

$$
|A|=-|A|,
$$

so that $|A|=0$.
5. c. By part a, the eigenvalues of A are of the form $i q$, with real q. The eigenvalues of $I+A$ are $1+i q$. Since $1+i q$ cannot be zero, the matrix $I+A$ is non-singular.
5. d. To justify that $(I-A)(I+A)^{-1}$ is orthogonal, we show that its transpose is equal to its inverse. Indeed,

$$
\left[(I-A)(I+A)^{-1}\right]^{T}=\left(I+A^{T}\right)^{-1}\left(I-A^{T}\right)=(I-A)^{-1}(I+A),
$$

$$
\left[(I-A)(I+A)^{-1}\right]^{-1}=(I+A)(I-A)^{-1} .
$$

To see that

$$
(I-A)^{-1}(I+A)=(I+A)(I-A)^{-1}
$$

multiply from both the left and from the right by $I-A$, to get an equivalent and correct expression

$$
(I+A)(I-A)=(I-A)(I+A) .
$$

(Both sides are equal to $I-A^{2}$.)
6. The matrix $A^{T} A+I$ is symmetric because

$$
\left(A^{T} A+I\right)^{T}=\left(A^{T} A\right)^{T}+I^{T}=A^{T} A+I
$$

This matrix is positive definite because
$\left(A^{T} A+I\right) x \cdot x=A^{T} A x \cdot x+I x \cdot x=A x \cdot A x+\|x\|^{2}=\|A x\|^{2}+\|x\|^{2}>0$,
${ }_{21}$
for all $x \neq 0$.

1
7. Since $A^{T}=A$, obtain

$$
\left(A^{-1}\right)^{T}=\left(A^{T}\right)^{-1}=A^{-1}
$$

\qquad
8 I

$$
\begin{gathered}
15 x_{1}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \text {. Calculate } A x_{1}=\left[\begin{array}{l}
4 \\
8 \\
8
\end{array}\right], A x_{2}=\left[\begin{array}{r}
2 \\
-2 \\
1
\end{array}\right], \text { and then } \\
q_{1}=\frac{A x_{1}}{\sigma_{1}}=\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right],
\end{gathered}
$$

16
We call $\lambda_{1}=144$ and $\lambda_{2}=9$, in order to arrange the singular values $\sigma_{1}=$ $\sqrt{\lambda_{1}}=12$ and $\sigma_{2}=\sqrt{\lambda_{2}}=3$ to be in decreasing order. The corresponding unit eigenvectors are $x_{1}=\left[\begin{array}{r}0 \\ -1\end{array}\right]$ and $x_{2}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$ (another possibility is

$$
q_{2}=\frac{A x_{2}}{\sigma_{2}}=\left[\begin{array}{r}
2 / 3 \\
-2 / 3 \\
1 / 3
\end{array}\right]
$$

1
value decomposition:

$$
A=\left[\begin{array}{rrr}
1 / 3 & 2 / 3 & 2 / 3 \\
2 / 3 & -2 / 3 & 1 / 3 \\
2 / 3 & 1 / 3 & -2 / 3
\end{array}\right]\left[\begin{array}{rr}
12 & 0 \\
0 & 3 \\
0 & 0
\end{array}\right]\left[\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right]^{T}
$$

3

4

$$
5
$$

Section 5.6

2. c. Here the $-2 x_{1} x_{2}$ term gives $a_{12}=a_{21}=-1$, the $8 x_{2} x_{3}$ term gives $a_{23}=a_{32}=4$, while $3 x_{1}^{2}$ produces $a_{11}=3, x_{2}^{2}$ produces $a_{22}=1,-5 x_{3}^{2}$ produces $a_{33}=-5$. The quadratic form does not have a $x_{1} x_{3}$ term, therefore $a_{13}=a_{31}=0$.
3. b. Here $a_{38}=a_{83}=11$. Therefore the coefficient in $x_{3} x_{8}$ is 22 .
4. c. The purely quadratic terms correspond to the diagonal entries of the $n \times n$ matrix A, while the $x_{i} x_{j}$ terms can be identified with the terms above the diagonal in A. There a total of $\frac{n(n+1)}{2}$ of terms that lie on or above the diagonal. (Counting such terms from first, second and other columns: $\left.1+2+3+\cdots+n=\frac{n(n+1)}{2}.\right)$
5. a. The matrix of this quadratic form $A=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$ has an eigenvalue $\lambda_{1}=2$ with the normalized eigenvector $\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, and an eigenvalue $\lambda_{2}=$ 4 with the normalized eigenvector $\frac{1}{\sqrt{2}}\left[\begin{array}{l}1 \\ 1\end{array}\right]$. Using these eigenvectors as columns, obtain the diagonalizing matrix $P=\frac{1}{\sqrt{2}}\left[\begin{array}{rr}-1 & 1 \\ 1 & 1\end{array}\right]$. The change of variables $x=P y$ takes the form

$$
\begin{aligned}
& x_{1}=\frac{1}{\sqrt{2}}\left(-y_{1}+y_{2}\right) \\
& x_{2}=\frac{1}{\sqrt{2}}\left(y_{1}+y_{2}\right) .
\end{aligned}
$$

Substituting these expressions into our quadratic form $3 x_{1}^{2}+4 x_{1} x_{2}+3 x_{2}^{2}$, gives the diagonalized form $2 y_{1}^{2}+4 y_{2}^{2}$.

1 4. b. The matrix of this quadratic form $A=\left[\begin{array}{rr}0 & -2 \\ -2 & 3\end{array}\right]$ has an eigenvalue
$\lambda_{1}=-1$ with the normalized eigenvector $\frac{1}{\sqrt{5}}\left[\begin{array}{l}2 \\ 1\end{array}\right]$, and an eigenvalue $\lambda_{2}=4$ 3 with the normalized eigenvector $\frac{1}{\sqrt{5}}\left[\begin{array}{r}-1 \\ 2\end{array}\right]$. Using these eigenvectors as 4 columns, obtain the diagonalizing matrix $P=\frac{1}{\sqrt{5}}\left[\begin{array}{rr}2 & -1 \\ 1 & 2\end{array}\right]$. The change 5 of variables $x=P y$ takes the form

$$
\begin{aligned}
& x_{1}=\frac{1}{\sqrt{5}}\left(2 y_{1}-y_{2}\right) \\
& x_{2}=\frac{1}{\sqrt{5}}\left(y_{1}+2 y_{2}\right) .
\end{aligned}
$$

Substituting these expressions into our quadratic form $-4 x_{1} x_{2}+3 x_{2}^{2}$, gives the diagonalized form $-y_{1}^{2}+4 y_{2}^{2}$.
4. d. The matrix of the quadratic form $A=\left[\begin{array}{rrr}-1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1\end{array}\right]$ has eigen-

9 values $\lambda_{1}=\lambda_{2}=-2$ with the eigenspace spanned by $w_{1}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$ and ${ }^{10} w_{2}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$, and $\lambda_{3}=1$ with the eigenvector $w_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. The vectors ${ }_{11} w_{1}$ and w_{2} are not orthogonal. Apply the Gram-Schmidt process: $v_{1}=w_{1}$,

$$
v_{2}=w_{2}-\frac{w_{2} \cdot w_{1}}{w_{1} \cdot w_{1}} w_{1}=w_{2}-\frac{1}{2} w_{1}=\frac{1}{2}\left[\begin{array}{r}
-1 \\
2 \\
1
\end{array}\right] .
$$

12 Normalize $u_{1}=\frac{1}{\sqrt{2}} v_{1}=\frac{1}{\sqrt{2}}\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right], u_{2}=\frac{2}{\sqrt{6}} v_{2}=\frac{1}{\sqrt{6}}\left[\begin{array}{r}-1 \\ 2 \\ 1\end{array}\right]$. The vectors
${ }_{13} u_{1}$ and u_{2} give the first and the second columms of P. Since w_{3} is orthogonal
${ }^{14}$ to u_{1} and u_{2}, its normanlzation $\frac{1}{\sqrt{3}} w_{3}=\frac{1}{\sqrt{3}}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is the third column of P.

Conclude:

$$
P=\left[\begin{array}{rrr}
-\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] .
$$

2. a. Consider the linear combination

$$
x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}=O
$$

1 In components

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=0 \\
2 x_{2}+2 x_{3}=0 \\
3 x_{3}=0,
\end{gathered}
$$

2 giving $x_{1}=x_{2}=x_{3}=0$.
3 2. b. To express D need to solve

$$
x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}=D .
$$

4 In components

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=3 \\
2 x_{2}+2 x_{3}=4 \\
3 x_{3}=3,
\end{gathered}
$$

${ }^{\text {giving }} x_{1}=x_{2}=x_{3}=1$.
${ }_{6}$ 2. c. The vectors $A_{1}, A_{2}, A_{3}, A_{4}$ are linearly independent because

$$
x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}+x_{4} A_{4}=O
$$

7 implies that $x_{1}=x_{2}=x_{3}=x_{4}=0$. Four linearly independent vectors form 8 a basis of four dimensional space $M_{2 \times 2}$.
9 2. d. The coordinates of F are the solutions

$$
x_{1} A_{1}+x_{2} A_{2}+x_{3} A_{3}+x_{4} A_{4}=F .
$$

- In components obtain a system of four equations with four unknowns, which 11 is solved by back substitution:

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}=3 \\
2 x_{2}+2 x_{3}=4 \\
3 x_{3}=0 \\
x_{4}=-7,
\end{gathered}
$$

12 giving $x_{1}=1, x_{2}=2, x_{3}=0, x_{4}=-7$.

16 5. b. The standard basis of P_{3} is $1, x, x^{2}, x^{3}$, the standard basis of P_{4} is 17 $1, x, x^{2}, x^{3}, x^{4}$. Calculate

$$
I(1)=x=0 \times 1+1 \times x+0 \times x^{2}+0 \times x^{3}+0 \times x^{4},
$$

18 so that the first column of the matrix of I is $\left[\begin{array}{l}0 \\ 1 \\ 0 \\ 0 \\ 0\end{array}\right]$. Proceed similarly with
${ }_{1} I(x)=\frac{1}{2} x^{2}$, so that the second column is $\left[\begin{array}{c}0 \\ 0 \\ \frac{1}{2} \\ 0 \\ 0\end{array}\right], I\left(x^{2}\right)=\frac{1}{3} x^{3}$, so that
2 the third column is $\left[\begin{array}{c}0 \\ 0 \\ 0 \\ \frac{1}{3} \\ 0\end{array}\right]$, and $I\left(x^{3}\right)=\frac{1}{4} x^{4}$, so that the fourth column is
${ }^{3}\left[\begin{array}{c}0 \\ 0 \\ 0 \\ 0 \\ \frac{1}{4}\end{array}\right]$. The matrix of $I(x)$ is

$$
A=\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & \frac{1}{3} & 0 \\
0 & 0 & 0 & \frac{1}{4}
\end{array}\right]
$$

4 6. b. Using the standard basis in the vector space of 2×2 matrices

$$
T\left(E_{11}\right)=E_{21}=0 \times E_{11}+0 \times E_{12}+1 \times E_{21}+0 \times E_{22},
$$

5 so that the first column is $\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 0\end{array}\right]$. Similarly

$$
T\left(E_{12}\right)=E_{22}=0 \times E_{11}+0 \times E_{12}+0 \times E_{21}+1 \times E_{22},
$$

6 so that the second column is

$$
T\left(E_{21}\right)=2 E_{11}=2 \times E_{11}+0 \times E_{12}+0 \times E_{21}+0 \times E_{22},
$$

1 so that the third column is $\left[\begin{array}{l}2 \\ 0 \\ 0 \\ 0\end{array}\right]$,

$$
T\left(E_{22}\right)=2 E_{12}=0 \times E_{11}+2 \times E_{12}+0 \times E_{21}+0 \times E_{22},
$$

so that the fourth column is $\left[\begin{array}{l}0 \\ 2 \\ 0 \\ 0\end{array}\right]$. The matrix of $T(x)$ is

$$
A=\left[\begin{array}{llll}
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

$$
7
$$ responding eigenvector $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$, and an eigenvalue $\lambda_{2}=2$, with the corre5 sponding eigenvector $\left[\begin{array}{r}-4 \\ 1\end{array}\right]$. The general solution is

$$
x(t)=c_{1} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{r}
-4 \\
1
\end{array}\right]
$$

16

1. b. The matrix $\left[\begin{array}{rr}4 & -2 \\ -2 & 1\end{array}\right]$ has an eigenvalue $\lambda_{1}=5$, with the care7 sponding eigenvector $\left[\begin{array}{r}-2 \\ 1\end{array}\right]$, and an eigenvalue $\lambda_{2}=0$, with the core-
${ }_{1}$ sponding eigenvector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The general solution is

$$
x(t)=c_{1} e^{5 t}\left[\begin{array}{r}
-2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

2
3 may enter the matrix $A=\left[\begin{array}{rrr}1 & 1 & 1 \\ 2 & 2 & 1 \\ 4 & -2 & 1\end{array}\right]$ into Mathematica as the following
4 "row of rows": $A=\{\{1,1,1\},\{2,2,1\},\{4,-2,1\}\}$. The command Eigensys-
5 tem $[\mathrm{A}]$ produces the eigenvalues of A, and the corresponding eigenvectors.
${ }^{6}$ The eigenvalues are $\lambda_{1}=-1$, corresponding to $\xi_{1}=\left[\begin{array}{r}-1 \\ 0 \\ 2\end{array}\right], \lambda_{2}=2$, corre-
${ }_{7}$ sponding to $\xi_{2}=\left[\begin{array}{r}-1 \\ -3 \\ 2\end{array}\right]$, and $\lambda_{3}=3$, corresponding to $\xi_{3}=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right]$. The
8 general solution is then

$$
x(t)=c_{1} e^{-t}\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{r}
-1 \\
-3 \\
2
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{l}
1 \\
2 \\
0
\end{array}\right] .
$$

9 1. (e) The eigenvalues are $\lambda_{1}=-1$, corresponding to $\xi_{1}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right], \lambda_{2}=3$,
${ }_{10}$ corresponding to $\xi_{2}=\left[\begin{array}{r}-1 \\ -1 \\ 1\end{array}\right]$, and $\lambda_{3}=0$, corresponding to $\xi_{3}=\left[\begin{array}{l}1 \\ 1 \\ 2\end{array}\right]$.
11 The general solution is then

$$
x(t)=c_{1} e^{-t}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{r}
-1 \\
-1 \\
1
\end{array}\right]+c_{3}\left[\begin{array}{l}
1 \\
1 \\
2
\end{array}\right] .
$$

12 1. (f) The eigenvalues are $-1,-1,1,3$. (This matrix is block diagonal.) The ${ }_{13}$ eigenvalue -1 is repeated, but it has two linearly independent eigenvectors
${ }^{1}\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ and $\left[\begin{array}{r}-1 \\ 1 \\ 0 \\ 0\end{array}\right]$. The general solution is

$$
x(t)=c_{1} e^{-t}\left[\begin{array}{l}
0 \\
0 \\
1 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{r}
-1 \\
1 \\
0 \\
0
\end{array}\right]+c_{3} e^{t}\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right]+c_{4} e^{3 t}\left[\begin{array}{l}
0 \\
0 \\
5 \\
1
\end{array}\right],
$$

2 where $\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right]$ is an eigevector corresponding to $\lambda=1$, and $\left[\begin{array}{l}0 \\ 0 \\ 5 \\ 1\end{array}\right]$ corresponds
3 to $\lambda=3$.
4 2. (b) The eigenvalues are $\lambda_{1}=0$ with an eigenvector $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right], \lambda_{2}=2$ with 5 an eigenvector $\left[\begin{array}{r}-1 \\ 4 \\ 3\end{array}\right], \lambda_{3}=3$ with an eigenvector $\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$. The general
6 solution is

$$
x(t)=c_{1}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{r}
-1 \\
4 \\
3
\end{array}\right]+c_{3} e^{3 t}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

7 The initial condition implies

$$
x(0)=c_{1}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
-1 \\
4 \\
3
\end{array}\right]+c_{3}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right] .
$$

Solving this system of three equations, $c_{1}=1, c_{2}=-1, c_{3}=3$.
3. (a) The first component of the vector $\frac{x(t+h)-x(t)}{h}$ is $\frac{x_{1}(t+h)-x_{1}(t)}{h} \rightarrow x^{\prime}(t)$.

11 3. (b) Differentiate the first component of $x(t)$, and then other components.

13 5. (a) The matrix of this system has a double eigenvalue $\lambda_{1}=\lambda_{2}=-1$, and ${ }_{14}$ only one linearly independent eigenvector $\xi=\left[\begin{array}{l}1 \\ 2\end{array}\right]$. We have one solution:
$x_{1}(t)=e^{-t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The system $\left(A-\lambda_{1} I\right) \eta=\xi$, or $(A+I) \eta=\xi$, to determine 2 the generalized eigenvector $\eta=\left[\begin{array}{l}\eta_{1} \\ \eta_{2}\end{array}\right]$ takes the form

$$
\begin{aligned}
2 \eta_{1}-\eta_{2} & =1 \\
4 \eta_{1}-2 \eta_{2} & =2 .
\end{aligned}
$$

Discard the second equation, then set $\eta_{1}=0$ in the first equation, to obtain a generalized eigenvector $\eta=\left[\begin{array}{r}0 \\ -1\end{array}\right]$. The general solution is then

$$
x(t)=c_{1} e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2} e^{-t}\left(t\left[\begin{array}{l}
1 \\
2
\end{array}\right]+\left[\begin{array}{r}
0 \\
-1
\end{array}\right]\right) .
$$

5. (b) Using the initial conditions

$$
x(0)=c_{1}\left[\begin{array}{l}
1 \\
2
\end{array}\right]+c_{2}\left[\begin{array}{r}
0 \\
-1
\end{array}\right]=\left[\begin{array}{r}
1 \\
-1
\end{array}\right] .
$$

Then $c_{1}=1, c_{2}=3$.
6. Expanding $|A-\lambda I|$ in the second row shows that the characteristic equation has a factor $(-1-\lambda)$, and hence $\lambda=-1$ is an eigenvalue. The second factor is a cubic polynomial, for which we guess a root $\lambda_{2}=-1$. Then the cubic can be factored as $(\lambda+1)$ times a quadratic polynomial. The quadratic polynomial has roots $\lambda_{3}=-2$ and $\lambda_{4}=-4$. Calculation shows that the repeated eigenvalue $\lambda=-1$ has only one linearly independent eigenvector $\xi=\left[\begin{array}{l}0 \\ 0 \\ 1 \\ 1\end{array}\right]$ ξ_{3}, ξ_{4} are eigenvectors correponding to λ_{3}, λ_{4} respectively, then the general solution is

$$
x(t)=c_{1} e^{-t} \xi+c_{2} e^{-t}(t \xi+\eta)+c_{3} e^{-2 t} \xi_{3}+c_{4} e^{-4 t} \xi_{4} .
$$

Using the L'Hospital rule, $x(t) \rightarrow 0$ as $t \rightarrow \infty$. Observe that the exact knowledge of vectors η, ξ_{3}, ξ_{4} is not needed here.
7. The eigenvalues satisfy $\lambda_{1} \lambda_{2}=\operatorname{det} A=-a^{2}-2<0, \lambda_{1}+\lambda_{2}=\operatorname{trA}=0$. Hence the eigenvalues are non-zero, and have opposite sign.
8. $(A-\lambda I)(2 \eta)=2 \xi \neq \xi$, since the eigenvector $\xi \neq 0$.
3. The solution is

$$
x(t)=\left[\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]
$$

which is rotation of the initial vector $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$.
5. The eigenvalues of this system satisfy

$$
\begin{aligned}
& \lambda_{1}+\lambda_{2}=\operatorname{tr}(A)=a+d<0 \\
& \lambda_{1} \lambda_{2}=\operatorname{det}(A)=a d-b c>0
\end{aligned}
$$

If the eigenvalues are real, they are of the same sign by the second formula, and therefore they are both negative by the first formula. If the eigenvalues are complex, $p \pm i q$, their real part is negative, because $\lambda_{1}+\lambda_{2}=2 p<0$. In either case, solution tends to zero as $t \rightarrow \infty$.
6. (a) The characteristic polynomial of a 3×3 matrix is a cubic, and hence one of its roots is real. That root λ must be zero, in order for $e^{\lambda t}$ to remain bounded, as $t \rightarrow \pm \infty$. The root $\lambda=0$ must be simple, otherwise the solution contains an unbounded factor of t. The other two roots must be purely imaginary $\lambda= \pm i q$, for the corresponding solutions to remain bounded as $t \rightarrow \pm \infty$. Then the general solution has the form

$$
x(t)=c_{1} \xi_{1}+c_{2} \cos q t \xi_{2}+c_{3} \sin q t \xi_{3}
$$

where ξ_{1}, ξ_{2} and ξ_{3} are constant, real valued three dimensional vectors. The solution is periodic, of period $\frac{2 \pi}{q}$.
6. (b) Observe that $a_{j i}=-a_{i j}$, and then $a_{i i}=0$ for any skew-symmetric matrix. Then any 3×3 skew-symmetric matrix is of the form $\left[\begin{array}{rrr}0 & p & q \\ -p & 0 & r \\ -q & -r & 0\end{array}\right]$, with some real p, q and r. Compute the eigenvalues $\lambda=0, \lambda= \pm i \sqrt{p^{2}+q^{2}+r^{2}}$.
6. (c) Use part (a) to show that all solutions have period $\frac{2 \pi}{\sqrt{p^{2}+q^{2}+r^{2}}}$.
7. We are given that the eigenvalues of A satisfy $\lambda_{1} \lambda_{2}<0$, hence we may assume that $\lambda_{1}<0$ and $\lambda_{2}>0$. The general solution is

$$
x(t)=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2} e^{\lambda_{2} t} \xi_{2},
$$

where ξ_{1}, ξ_{2} the corresponding eigenvectors. The numbers c_{1}, c_{2} depend on the initial conditions. If $c_{2} \neq 0$, the solution tends to infinity, and if $c_{2}=0$, $x(t) \rightarrow 0$ as $t \rightarrow \infty$. There are no periodic solutions.

Section 6.3

1

1. a. Here $A^{2}=O, A^{3}=O, \ldots, A^{n}=O$ for all $n \geq 2$. Hence

$$
e^{A t}=I+A t=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]+\left[\begin{array}{rr}
0 & -t \\
0 & 0
\end{array}\right]=\left[\begin{array}{rr}
1 & -t \\
0 & 1
\end{array}\right] .
$$

1. c. The matrix $D t=\left[\begin{array}{rrr}2 t & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 t\end{array}\right]$ is diagonal. Just exponentiate the

3 diagonal elements:

$$
e^{D t}=\left[\begin{array}{rrc}
e^{2 t} & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-3 t}
\end{array}\right]
$$

4 1. d. Here $A^{2}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right], A^{3}=O, \ldots, A^{n}=O$ for all $n \geq 3$. Hence

$$
e^{A t}=I+A t+\frac{1}{2} A^{2} t^{2}=I+\left[\begin{array}{ccc}
0 & t & 0 \\
0 & 0 & t \\
0 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
0 & 0 & \frac{1}{2} t^{2} \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
$$

5 1. e. Write

$$
A=-2 I+J,
$$

${ }^{6}$ where $J=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Using 1. d.

$$
e^{A t}=e^{-2 t I+t J}=e^{-2 t I} e^{J t}=e^{-2 t} e^{J t}=e^{-2 t}\left[\begin{array}{ccc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right] .
$$

7 1. f. The matrix A is a block matrix, consisting of a 2×2 and 1×1 blocks.
8 Calculate the exponentials of each block separately.
9 2. Since the matrices A and $-A$ commute

$$
e^{A} e^{-A}=e^{A-A}=e^{O}=I
$$

10 Hence, e^{-A} is the inverse of e^{A}.
11
3. Since the matrices A and A commute

$$
\left(e^{A}\right)^{2}=e^{A} e^{A}=e^{2 A},
$$

1
2
5. a. If $A x=\lambda x$, then

$$
e^{A} x=\sum_{k=0}^{\infty} \frac{A^{k} x}{k!}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} x=e^{\lambda} x
$$

${ }^{3}$ It follows that e^{λ} is an eigenvalue of e^{A} corresponding to an eigenvector x.
${ }_{4} 5$. b. If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A, then $e^{\lambda_{1}}, e^{\lambda_{2}}, \ldots, e^{\lambda_{n}}$ are the ${ }^{5}$ eigenvalues of e^{A}, as follows by 5 . a. Then

$$
\operatorname{det} e^{A}=e^{\lambda_{1}} e^{\lambda_{2}} \cdots e^{\lambda_{n}}=e^{\lambda_{1}+\lambda_{2}+\cdots+\lambda_{n}}=e^{\operatorname{tr} A}
$$

6

$$
e^{A} x \cdot x=e^{A / 2} e^{A / 2} x \cdot x=e^{A / 2} x \cdot e^{A^{T} / 2} x=e^{A / 2} x \cdot e^{A / 2} x=\left\|e^{A / 2} x\right\|^{2}>0
$$

9
8. b. With $K=\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0\end{array}\right]$, calculate $K^{2}=\left[\begin{array}{cccc}0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], K^{3}=$ $12\left[\begin{array}{llll}0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right], K^{4}=O$. Since $K^{m}=O$, for $m \geq 4$,

$$
\sin K t=K t-\frac{1}{6} K^{3} t^{3}
$$

${ }^{13}$ 11. By the definition, $e^{A}=\sum_{k=0}^{\infty} \frac{A^{k}}{k!}$. Apply the triangle inequality to a 14 partial sum (the triangle inequality holds for arbitrary number of terms)

$$
\left\|\sum_{k=0}^{N} \frac{A^{k}}{k!}\right\| \leq \sum_{k=0}^{N} \frac{\|A\|^{k}}{k!}<\sum_{k=0}^{\infty} \frac{\|A\|^{k}}{k!}=e^{\|A\|}
$$

. The numerical sequence $\left\{\left\|\sum_{k=0}^{N} \frac{A^{k}}{k!}\right\|\right\}$ converges to $\left\|e^{A}\right\|$ as $N \rightarrow \infty$, and all terms of this sequence are less than $e^{\|A\|}$. It follows that

$$
\left\|e^{A}\right\| \leq e^{\|A\|}
$$

3 Section 6.4
4 1. d. The matrix of this system has an eigenvalue $\lambda_{1}=-1$ with correspond5 ing eigenvector $\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$, and a repeated eigenvalue $\lambda_{2}=\lambda_{3}=1$ with with 6 two linearly independent eigenvectors $\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$. The general solution is

$$
x(t)=c_{1} e^{-t}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]+c_{3} e^{t}\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

13 solution matrix $X(t)$. The solution with the initial condition $x(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is $x(t)=\left[\begin{array}{r}-2 \sin 2 t \\ \cos 2 t\end{array}\right]$, and it gives the second column of $X(t)$.
3. a. Using that $A^{T}=-A$, calculate

$$
\frac{d}{d t} x(t) \cdot y(t)=x^{\prime}(t) \cdot y(t)+x(t) \cdot y^{\prime}(t)=A x \cdot y+x \cdot A y=x \cdot A^{T} y+x \cdot A y=0
$$

so that $x(t) \cdot y(t)$ is independent of t, and hence $x(t) \cdot y(t)=x(0) \cdot y(0)$.
3. b. Letting $y(t)=x(t)$ in the last formula, conclude that $\|x(t)\|^{2}=$ $\|x(0)\|^{2}$ for all t.
3. c. Column i of the fundamental matrix is the solution of $x^{\prime}=A(t) x$, ${ }^{2} x(0)=e_{i}$. Column j of the fundamental matrix is the solution of $y^{\prime}=A(t) y$,
$y(0)=e_{i}$. Since the coordinate vectors e_{i} and e_{j} are orthogonal, so are $x(t)$ and $y(t)$ for all t, by 3 . a. All columns of the fundamental matrix are of unit length, by 3 . b. Hence, the fundamental matrix is orthogonal.
7. a. Write $J_{0}=\lambda I+J$, with the matrix J satisfying $J^{2}=O$. Then the binomial formula simplifies:

$$
J_{0}^{n}=(\lambda I+J)^{n}=\lambda^{n} I+n \lambda^{n-1} J+\frac{n(n-1)}{2} \lambda^{n-2} J^{2} .
$$

7. b. By L'Hospital rule, if $|\lambda|<1$, then $n \lambda^{n} \rightarrow 0$ as $n \rightarrow \infty$. It follows that all elements of the matrix tend to zero, $J_{0}^{n} \rightarrow O$ as $n \rightarrow \infty$.
8. c. To see that $\lim _{n \rightarrow \infty} A^{n}=O$, write A in the Jordan normal form, and apply part 7. b. to each block. Then

$$
(I-A) \sum_{k=0}^{n} A^{k}=I-A^{n+1} \rightarrow I, \quad \text { as } n \rightarrow \infty,
$$

so that $I-A$ is the inverse matrix of $\sum_{k=0}^{\infty} A^{k}$.

Section 6.5

1. a. Search for a particular solution in the form $x_{1}(t)=A e^{2 t}, x_{2}(t)=B e^{2 t}$. Substitution into the system gives (after dividing both equations by $e^{2 t}$)

$$
\begin{aligned}
& 2 A=B+2 \\
& 2 B=A-1 .
\end{aligned}
$$

Solve this system: $A=1, B=0$. It follows that $Y(t)=\left[\begin{array}{c}e^{2 t} \\ 0\end{array}\right]$ is a particular solution. The general solution is the sum of this particular solution and the general solution of the corresponding homogeneous system

$$
x^{\prime}=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] x,
$$

which is

$$
c_{1} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

1. b. Search for a particular solution in the form $x_{1}(t)=A e^{2 t}, x_{2}(t)=B e^{2 t}$. Substitution into the system gives $A=\frac{2}{3}, B=\frac{1}{3}$. Add this particular solution and the general solution of the corresponding homogeneous system.
2. a. Search for a particular solution in the form $Y(t)=\left[\begin{array}{l}A \\ B\end{array}\right]$, and calculate $Y(t)=\left[\begin{array}{r}1 \\ -1\end{array}\right]$. The general solution of the corresponding homogeneous system

$$
x^{\prime}(t)=\left[\begin{array}{ll}
1 & 2 \\
4 & 3
\end{array}\right] x(t)
$$

${ }_{4}$ is $x(t)=c_{1} e^{-t}\left[\begin{array}{r}-1 \\ 1\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}1 \\ 2\end{array}\right]$. The general solution of the non5 homogeneous system is

$$
x(t)=\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+c_{1} e^{-t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]+c_{2} e^{-t}\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

Use the initial conditions to calculate $c_{1}=c_{2}=\frac{1}{3}$.
6. b. Multiplication of block matrices gives $J J=-I$, so that $-J$ is the inverse of J.
6. c. Let J_{n} denote the determinant of $2 n \times 2 n$ matrix J. Expanding J first in the first row, and then in the last row, gives

$$
J_{n}=(-1)^{2 n} \cdot 1 \cdot(-1)^{2 n-1} \cdot(-1) \cdot J_{n-1}=J_{n-1},
$$

so that J_{n} is independent of n. Since

$$
J_{1}=\left|\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right|=1,
$$

it follows that $J_{n}=1$, for all n.

Section 6.6

1. The Fibonacci numbers are: odd,odd,even,odd,odd,even,odd,odd,even and so on. Every third number is even.
2. The second term of the Binet's formula tends to zero as $n \rightarrow \infty$. Hence Fibonacci numbers are approximated by a geometric progression given by the first term of Binet's formula, for large n.
3. Search for solution in the form $x_{n}=r^{n}$. Substitution into the difference equation gives

$$
r^{n}=3 r^{n-1}-2 r^{n-2} .
$$

Division by r^{n-2} gives a quadratic equation

$$
r^{2}-3 r+2=0
$$

2 with roots $r_{1}=1, r_{2}=3$. The general solution of the difference equation is

$$
x_{n}=c_{1}+c_{2} 3^{n}
$$

3 From the initial conditions $c_{1}=c_{2}=1$.
${ }_{4}$ 4. This approach to deriving Binet's formula is explained in the book of G.
Strang [16].
6. a. Since the columns of A are linearly dependent, it follows that the determinant of A is zero, so that $\lambda=0$ is one of the eigenvalues.
6. c. Since A is Markov matrix, one of its eigenvalues is $\lambda=1$. The third
eigenvalue is $\lambda=\frac{1}{6}$, since the sum of eigenvalues is equal to the trace of A. 8. a. The entry i of $A x$ is $\sum_{j=1}^{n} a_{i j} x_{j}$ and it is positive because all $a_{i j}$ are positive while all x_{j} are non-negative with at least one of them positive.
8. b. Look for all numbers $t>0$ such that $A x \geq t x$ for some vector $x \geq \mathbf{0}$, $x \neq \mathbf{0}$. The largest possible value of such t 's we call $t_{\max }$. We claim that

$$
A x=t_{\max } x
$$

By part a:

$$
A\left(A x-t_{\max } x\right)>0
$$

giving

$$
A^{2} x>t_{\max } A x
$$

Denoting $A x=y>0$ obtain

$$
A y>t_{\max } y
$$

We can then choose $\epsilon>0$ small so that

$$
A y>\left(t_{\max }+\epsilon\right) y
$$

contradicting the maximality of $t_{\max }$, proving that $t_{\max }$ is an eigenvalue of A.

Using part a again, the corresponding eigenvector satisfies $x>0$.
We claim that any other eigenvalue λ satisfies

$$
|\lambda| \leq t_{\max } .
$$

Begin with

$$
A z=\lambda z
$$

and use the Cauchy-Schwarz inequality:

$$
|\lambda||z|=|A z| \leq|A||z|=A|z| .
$$

(Since $A>0,|A|=A$.) Hence

$$
A|z| \geq|\lambda||z|, \quad|z|>0
$$

It follows that $|\lambda|$ is one of the eligible t 's, and hence it cannot exceed $t_{\text {max }}$.

To prove that the eigenvalue $t_{\text {max }}$ is simple, one needs a strict inequality $|\lambda|<t_{\max }$. Please find this remaining piece on the internet.
9. The component i of $A x$ is $\sum_{j=1}^{n} a_{i j} x_{j}$. The sum of all entries of $A x$

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n} \sum_{i=1}^{n} a_{i j} x_{j}=\sum_{j=1}^{n} x_{j} \sum_{i=1}^{n} a_{i j}=\sum_{j=1}^{n} x_{j}
$$

after switching the order of summation, using that $\sum_{i=1}^{n} a_{i j}=1$ by definition of Markov matrix. (Elements of a matrix can be added up by calculating either column totals first, or calculating row totals first.)
10. a. Other terms in $A^{n} x_{0}$ tend to zero as $n \rightarrow \infty$, by using (6.4) in the text.
11. The matrix A is diagonally dominant. The second and the third Gershgorin's circles are identical.

Chapter 7

Section 7.1

Sylvester's criterion provides a third way to determine if a symmetric matrix is positive definite (in addition to all eigenvalues being positive, and to $A x \cdot x>0$ holding for all $x \neq 0$).
R^{5}, by the positive difiniteness of A conclude:

$$
0<A x \cdot x=B z \cdot z
$$

4 Since z is an arbitrary vector in R^{2}, it follows that B is positive definite.
2. a. Here $a_{33}<0$, and hence $A e_{3} \cdot e_{3}=a_{33}<0$.
2. b. Here $a_{33}=0$, and hence $A e_{3} \cdot e_{3}=0$.
2. c. The matrix is not symmetric (the notion of positive definiteness applies only to symmetric matrices).
2. d. The second principal minor is zero. Use Sylvester's criterion to conclude that the matrix is not is positive definite.
3. d. Here $A x \cdot x=4 x_{1}^{2}+4 x_{1} x_{2}+x_{2}^{2}=\left(2 x_{1}+x_{2}\right)^{2} \geq 0$, but $A x \cdot x=0$ if $x_{2}=2 x_{1} . A$ is positive semidefinite.
4. a. The first Gershgorin's circle is centered at the point $x=4$ on the x-axis of the complex plane. Its radius is 3 , and so it does not include the origin, and stays in the right half of the complex plane. Similarly, with other Gershgorin's circles. Hence all eigenvalues lie in the right half of the complex plane. Since A is symmetric, all of its eigenvalues are real, and hence positive. Then A is positive definite.
5. a. To find the critical points one needs to solve the system

$$
\begin{gathered}
f_{x}=3 x^{2}+30 y=0 \\
f_{y}=30 x+6 y=0 \\
f_{z}=2 z=0
\end{gathered}
$$

From the third equation $z=0$. From the second equation express $y=-5 x$, and use this in the first equation to obtain

$$
x^{2}-50 x=0
$$

1 Obtain $x=0$ and $x=50$, so that the critical points are $(0,0,0)$ and $(50,-250,0)$. Calculate the Hessian at $(0,0,0)$

$$
H(0,0,0)=\left[\begin{array}{ccc}
0 & 30 & 0 \\
30 & 6 & 0 \\
0 & 0 & 2
\end{array}\right] .
$$

3 It has one negative eigenvalue $\lambda_{1}=3-3 \sqrt{101}$, and two positive eigenvalues $\lambda_{2}=3+3 \sqrt{101}$ and $\lambda_{3}=2$. One has a saddle point at ($0,0,0$). Calculate the Hessian at $(50,-250,0)$

$$
H(50,-250,0)=\left[\begin{array}{ccc}
300 & 30 & 0 \\
30 & 6 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

6 By Sylvester's criterion, this matrix is positive definite, and hence (50, $-250,0$) is a point of minimum.

This linear homogeneous system has only the trivial solution $x=y=z=0$, so that $(0,0,0)$ is the only critical point. Calculate the Hessian at the critical point:

$$
H(0,0,0)=\left[\begin{array}{rrr}
-2 & 1 & 2 \\
1 & -4 & 0 \\
2 & 0 & -2
\end{array}\right]
$$

Mathematica approximately calculates the eigenvalues. Turns out that one of the eigenvalues is negative and two are positive, and hence $(0,0,0)$ is a saddle point.

Without computer assistance, one may proceed as follows. By Sylvester's criterion $H(0,0,0)$ is not positive definite, and not negative definite, so that it cannot have all eigenvalues of the same sign. This matrix is non-singular, so that it cannot have a zero eigenvalue. Hence, eigenvalues are non-zero, and of different signs. It follows that $(0,0,0)$ is a saddle point.

6 From the first equation $\frac{y}{x}= \pm 2$. Using this relation, conclude from the 7 second equation that $\frac{y}{x}=2$. Then the second equation implies that $\frac{z}{y}= \pm 1$. 8 The third equation implies that $\frac{z}{y}=1$. Then the third equation gives $z= \pm 1$. Assume first that $z=1$. Then the second equation takes the form

$$
2-\frac{2}{y^{2}}=0
$$

o Then $y= \pm 1$, and in view of the third equation, $y=1$. Since $\frac{y}{x}=2$, obtain $x=\frac{1}{2}$. So that $\left(\frac{1}{2}, 1,1\right)$ is a critical point. Since $f(x, y, z)$ is an odd function, it follows that $\left(-\frac{1}{2},-1,-1\right)$ is also a critical point. Calculate the Hessian at $\left(\frac{1}{2}, 1,1\right)$

$$
H\left(\frac{1}{2}, 1,1\right)=\left[\begin{array}{rrr}
8 & -4 & 0 \\
-4 & 6 & -4 \\
0 & -4 & 12
\end{array}\right]
$$

By Sylvester's criterion, this matrix is positive definite, and hence $\left(\frac{1}{2}, 1,1\right)$ is a point of minimum. Since $f(x, y, z)$ is an odd function, it follows that $\left(-\frac{1}{2},-1,-1\right)$ is a point of maximum.
5. f. Set the first partials to zero. From

$$
f_{x_{1}}=1-\frac{x_{2}}{x_{1}^{2}}=0
$$

18
obtain $x_{2}=x_{1}^{2}$. From

$$
f_{x_{2}}=\frac{1}{x_{1}}-\frac{x_{3}}{x_{2}^{2}}=0
$$

1

$$
f=f\left(x_{1}\right)=n x_{1}+\frac{2}{x_{1}^{n}}
$$

4 at any critical point. This function has a global minimum at $x_{1}=2^{\frac{1}{n+1}}$.
5 6. Set the first partials to zero

$$
\begin{gathered}
\cos x-\cos (x+y+z)=0 \\
\cos y-\cos (x+y+z)=0 \\
\cos z-\cos (x+y+z)=0
\end{gathered}
$$

6

7

8

9
10
equation as

$$
\cos x=\cos y=\cos z
$$

Since $\cos x$ is decreasing on $(0, \pi)$, conclude that

$$
x=y=z
$$

and then

$$
\cos 3 x-\cos x=0
$$

Using the trig identity $\cos \alpha-\cos \beta=-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2}$, write the last

$$
-2 \sin 2 x \sin x=0
$$

$x=\frac{\pi}{2}$ is the only solution inside $(0, \pi)$. Hence the function $f(x, y, z)=$ $\sin x+\sin y+\sin z-\sin (x+y+z)$ has only one critical point, $\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)$, on $(0, \pi)$.

Calculate the Hessian at the critical point

$$
H\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)=\left[\begin{array}{ccc}
-2 & -1 & -1 \\
-1 & -2 & -1 \\
-1 & -1 & -2
\end{array}\right]
$$

This matrix is negative definite, since its negative $\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right]$ is positive definite by Sylvester's criterion. Hence, $\left(\frac{\pi}{2}, \frac{\pi}{2}, \frac{\pi}{2}\right)$ is a point of maximum of $f(x, y, z)$.

1 7. a. The Hessian is positive definite.
2 7. b. The Hessian is negative definite.
3 7. c. The Hessian is indefinite.
4 8. a. Apply $R_{2}-3 R_{1}$:

$$
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \Rightarrow\left[\begin{array}{rr}
1 & 2 \\
0 & -2
\end{array}\right] .
$$

${ }_{5}$ So that $L=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$. Factor:

$$
\left[\begin{array}{rr}
1 & 2 \\
0 & -2
\end{array}\right]=\left[\begin{array}{rr}
1 & 0 \\
0 & -2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right] .
$$

6 The first factor on the right is D, and the second one is U. (The $A=$
${ }_{7} L D U$ decomposition involves "a new U ", when compared with the $A=L U$ 8 decomposition.)

9 9. Calculate the $A=L D U$ decomposition, and just observe that $U=L^{T}$, 10 since the matrix A is symmetric.
${ }_{11}$ Section 7.2

1. a. The Jacobian

$$
J(0,0)=\left|\begin{array}{ll}
u_{x}(0,0) & u_{y}(0,0) \\
v_{x}(0,0) & v_{y}(0,0)
\end{array}\right|=\left|\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right|=0 .
$$

${ }_{13}$ The implicit function theorem does not apply.
14 1. b. The Jacobian

$$
J(0,1)=\left|\begin{array}{ll}
u_{x}(0,1) & u_{y}(0,1) \\
v_{x}(0,1) & v_{y}(0,1)
\end{array}\right|=\left|\begin{array}{ll}
0 & 2 \\
1 & 1
\end{array}\right|=-2 \neq 0 .
$$

15 The implicit function theorem applies.
16

1. c. The Jacobian

$$
J(1,0)=\left|\begin{array}{ll}
u_{x}(1,0) & u_{y}(1,0) \\
v_{x}(1,0) & v_{y}(1,0)
\end{array}\right|=\left|\begin{array}{ll}
3 & 0 \\
0 & e
\end{array}\right|=3 e \neq 0 .
$$

17
The implicit function theorem applies.

1 2. a. To show that 1,1 components are the same on the left and on the right, one needs

$$
x_{p}=x_{u} u_{p}+x_{v} v_{p},
$$

which follows by the multivariable chain rule. Similarly, the other components are equal.
3. b. Make a change of variables $x=a u, y=b v, z=c w$. Instead of using the Jacobian, one may simply write $d x=a d u, d y=b d v, d z=c d w$. Then

$$
\iiint_{V} \sqrt{1-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}} d x d y d z=a b c \iiint_{B} \sqrt{1-u^{2}-v^{2}-w^{2}} d u d v d w
$$

where B is the unit ball $u^{2}+v^{2}+w^{2} \leq 1$. Use spherical coordinates in the last integral to obtain

$$
a b c \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \sqrt{1-\rho^{2}} \rho^{2} \sin \varphi d \rho d \varphi d \theta=4 \pi a b c \int_{0}^{1} \sqrt{1-\rho^{2}} \rho^{2} d \rho=\frac{\pi^{2}}{4} a b c .
$$

(The integral $\int_{0}^{1} \sqrt{1-\rho^{2}} \rho^{2} d \rho$ is computed by a trig substitution $x=\sin \theta$.)
2. c. The volume is given by $\iiint_{V} d x d y d z$. Proceeding as in part b, obtain

$$
\iiint_{V} d x d y d z=a b c \int_{0}^{2 \pi} \int_{0}^{\pi} \int_{0}^{1} \rho^{2} \sin \varphi d \rho d \varphi d \theta=\frac{4}{3} \pi a b c .
$$

12

13

Section 7.3

1. a. Here $x=2 \cos t, y=3 \sin t$, or

$$
\frac{x^{2}}{2^{2}}+\frac{y^{2}}{3^{2}}=1
$$

14 2. With $\gamma(t)=(x(t), y(t), 0)$, calculate $\gamma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t), 0\right), \gamma^{\prime \prime}(t)=$ $\left(x^{\prime \prime}(t), y^{\prime \prime}(t), 0\right),\left\|\gamma^{\prime}(t)\right\|=\left(x^{\prime 2}+y^{\prime 2}\right)^{\frac{1}{2}}$, and

$$
\gamma^{\prime}(t) \times \gamma^{\prime \prime}(t)=\left(0,0, x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)\right) .
$$

16
By Theorem 7.3.2

$$
\kappa(t)=\frac{\left|x^{\prime}(t) y^{\prime \prime}(t)-x^{\prime \prime}(t) y^{\prime}(t)\right|}{\left(x^{\prime 2}(t)+y^{\prime 2}(t)\right)^{\frac{3}{2}}} .
$$

1. b. If t is a polar angle, then $t=\frac{\pi}{4}$ is the line $y=x$. On the torus, $t=\frac{\pi}{4}$ gives the point $\left(2 \cos \frac{\pi}{4}, 3 \sin \frac{\pi}{4}\right)$ that is not on the line $y=x$.
2. a. Since s is arc-length, ${x^{\prime}}^{2}(s)+y^{\prime 2}(s)=1$ for all s. Then use the formula from exercise 2.
3. With $\gamma(x)=(x, f(x), 0)$, calculate $\gamma^{\prime}(x)=\left(1, f^{\prime}(x), 0\right), \gamma^{\prime \prime}(x)=\left(0, f^{\prime \prime}(x), 0\right)$, $\left\|\gamma^{\prime}(x)\right\|=\left(1+f^{\prime 2}(x)\right)^{\frac{1}{2}}$, and

$$
\gamma^{\prime}(x) \times \gamma^{\prime \prime}(x)=\left(0,0, f^{\prime \prime}(x)\right) .
$$

7 By Theorem 7.3.2

$$
\kappa(x)=\frac{\left|f^{\prime \prime}(x)\right|}{\left(1+f^{\prime 2}(x)\right)^{\frac{3}{2}}} .
$$

8

9
9

When $\varphi=\frac{\pi}{4}$, obtain the circle

$$
x^{2}+y^{2}=\frac{1}{2},
$$

which is a circle on the plane $z=\frac{\sqrt{2}}{2}$.
6. b. Once the curve $\sigma\left(\theta, \frac{\pi}{4}\right)$ has been identified as a circle, there is no need for integration to find its length. It is $2 \pi r=2 \pi \frac{\sqrt{2}}{2}=\sqrt{2} \pi$.
6. c. The point on the sphere is $\sigma\left(\frac{\pi}{4}, \frac{\pi}{4}\right)=\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$. Calculate $\sigma_{\theta}=$ $(-\sin \theta \sin \varphi, \cos \theta \sin \varphi, 0), \sigma_{\theta}\left(\frac{\pi}{4}, \frac{\pi}{4}\right)=\left(-\frac{1}{2}, \frac{1}{2}, 0\right), \sigma_{\varphi}=(\cos \theta \cos \varphi, \sin \theta \cos \varphi,-\sin \varphi)$, $\sigma_{\varphi}\left(\frac{\pi}{4}, \frac{\pi}{4}\right)=\left(\frac{1}{2}, \frac{1}{2},-\frac{1}{\sqrt{2}}\right)$. The normal to the tangent plane is

$$
\bar{N}=\sigma_{\theta}\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \times \sigma_{\varphi}\left(\frac{\pi}{4}, \frac{\pi}{4}\right)=\left(-\frac{1}{2 \sqrt{2}},-\frac{1}{2 \sqrt{2}},-\frac{1}{2}\right) .
$$

${ }^{17}$ The equation of the tangent plane at the point $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{\sqrt{2}}\right)$ is

$$
-\frac{1}{2 \sqrt{2}}\left(x-\frac{1}{2}\right)-\frac{1}{2 \sqrt{2}}\left(y-\frac{1}{2}\right)-\frac{1}{2}\left(z-\frac{1}{\sqrt{2}}\right)=0 .
$$

Section 7.4

1. a. Here $x=u-v, y=u+v$, so that

$$
x^{2}+y^{2}=(u-v)^{2}+(u+v)^{2}=2\left(u^{2}+v^{2}\right)=2 z
$$

Calculate

$$
\begin{gathered}
\sigma_{u}=(1,1,2 u), \\
\sigma_{v}=(-1,1,2 v) \\
E=\sigma_{u} \cdot \sigma_{u}=2+4 u^{2}, \\
F=\sigma_{u} \cdot \sigma_{v}=4 u v \\
G=\sigma_{v} \cdot \sigma_{v}=2+4 v^{2}
\end{gathered}
$$

Write this projection in polar coordinates:

$$
r=e^{2 t}
$$

which is an expanding spiral. Since $z=u=e^{2 t}$, the curve is climbing. The curve is somewhat similar to helix (although expanding and climbing fast).

Write this curve as

$$
\gamma(t)=\left(e^{2 t} \cos t, e^{2 t} \sin t, e^{2 t}\right)
$$

1

2

Calculate $\left\|\gamma^{\prime}(t)\right\|=3 e^{2 t}$, and then the length is

$$
\int_{0}^{2 \pi}\left\|\gamma^{\prime}(t)\right\| d t=\int_{0}^{2 \pi} 3 e^{2 t} d t=\frac{3}{2}\left(e^{4 \pi}-1\right)
$$

3. Calculate

$$
\begin{gathered}
\sigma_{x}=\left(1,0, f_{x}\right), \\
\sigma_{y}=\left(0,1, f_{y}\right), \\
E=\sigma_{x} \cdot \sigma_{x}=1+f_{x}^{2}, \\
F=\sigma_{x} \cdot \sigma_{y}=f_{x} f_{y}, \\
G=\sigma_{y} \cdot \sigma_{y}=1+f_{y}^{2} .
\end{gathered}
$$

4. The surface is $z=x^{2}+y^{2}+2 x$. Write this surface as

$$
z=(x-1)^{2}+y^{2}-1
$$

a paraboloid with the vertex at the point $(1,0,-1)$.
Calculate

$$
\begin{gathered}
\sigma_{u}=(1,0,2 u+2), \\
\sigma_{v}=(0,1,2 v), \\
E=\sigma_{u} \cdot \sigma_{u}=1+4(u+1)^{2}, \\
F=\sigma_{u} \cdot \sigma_{v}=4(u+1) v, \\
G=\sigma_{v} \cdot \sigma_{v}=1+4 v^{2} .
\end{gathered}
$$

Then

$$
\cos \theta=\frac{4(u+1) v}{\sqrt{\left[1+4(u+1)^{2}\right]\left(1+4 v^{2}\right)}}
$$

Here θ is the angle between the coordinate curves at the point $\sigma(u, v)$.
5. a. Write the vectors in components: $a=\left[\begin{array}{l}a_{1} \\ a_{2} \\ a_{3}\end{array}\right], b=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right], c=$
$\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right], d=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]$. Then both sides of the vector identity are equal to $a_{2} b_{1} c_{2} d_{1}-a_{1} b_{2} c_{2} d_{1}+a_{3} b_{1} c_{3} d_{1}-a_{1} b_{3} c_{3} d_{1}-a_{2} b_{1} c_{1} d_{2}+a_{1} b_{2} c_{1} d_{2}+a_{3} b_{2} c_{3} d_{2}-$ $a_{2} b_{3} c_{3} d_{2}-a_{3} b_{1} c_{1} d_{3}+a_{1} b_{3} c_{1} d_{3}-a_{3} b_{2} c_{2} d_{3}+a_{2} b_{3} c_{2} d_{3}$.

I used Mathematica.
5. d. Since the surface is regular, $E=\sigma_{u} \cdot \sigma_{u}>0$ (otherwise the vectors σ_{u} and σ_{v} are linearly dependent). By part c, $E G-F^{2}>0$. By Sylverster's criterion, the matrix $\left[\begin{array}{ll}E & F \\ F & G\end{array}\right]$ of the first fundamental form is positive definite.
6. a. Consider the surface $\sigma(u, v)=(x(u, v), y(u, v), 0)$. Calculate

$$
\begin{gathered}
\sigma_{u}=\left(x_{u}(u, v), y_{u}(u, v), 0\right), \\
\sigma_{v}=\left(x_{v}(u, v), y_{v}(u, v), 0\right), \\
E=\sigma_{u} \cdot \sigma_{u}=x_{u}^{2}+y_{u}^{2}, \\
G=\sigma_{v} \cdot \sigma_{v}=x_{v}^{2}+y_{v}^{2}, \\
F=\sigma_{u} \cdot \sigma_{v}=x_{u} x_{v}+y_{u} y_{v}, \\
E G-F^{2}=\left(x_{u}^{2}+y_{u}^{2}\right)\left(x_{v}^{2}+y_{v}^{2}\right)-\left(x_{u} x_{v}+y_{u} y_{v}\right)^{2}=\left(x_{u} y_{v}-y_{u} x_{v}\right)^{2}, \\
\sqrt{E G-F^{2}}=\left|x_{u} y_{v}-y_{u} x_{v}\right|=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|,
\end{gathered}
$$

the absolute value of the Jacobian. (Recall that $\sqrt{z^{2}}=|z|$.) Then the area of the region R is

$$
\left.\iint_{D} \sqrt{E G-F^{2}} d u d v=\iint_{D}\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \right\rvert\, d u d v
$$

7. a. Write $\sigma(u(t), v(t))=(x(u(t), v(t)), y(u(t), v(t)), z(u(t), v(t)))$. The derivative of the vector function $\sigma(u(t), v(t))$ is obtained by differentiation of each component, for which the "usual chain rule" applies.

Section 7.5

1. a. With $\sigma(u, v)=(f(u) \cos v, f(u) \sin v, g(u))$, calculate

$$
\begin{gathered}
\sigma_{u}(u, v)=\left(f^{\prime}(u) \cos v, f^{\prime}(u) \sin v, g^{\prime}(u)\right) \\
\sigma_{v}(u, v)=(-f(u) \sin v, f(u) \cos v, 0), \\
\sigma_{u u}(u, v)=\left(f^{\prime \prime}(u) \cos v, f^{\prime \prime}(u) \sin v, g^{\prime \prime}(u)\right), \\
\sigma_{u v}(u, v)=\left(-f^{\prime}(u) \sin v, f^{\prime}(u) \cos v, 0\right), \\
\sigma_{v v}(u, v)=(-f(u) \cos v,-f(u) \sin v, 0),
\end{gathered}
$$

$$
\begin{gathered}
\sigma_{u}(u, v) \times \sigma_{v}(u, v)=\left(-f(u) g^{\prime}(u) \cos v,-f(u) g^{\prime}(u) \sin v, f(u) f^{\prime}(u)\right), \\
\left\|\sigma_{u}(u, v) \times \sigma_{v}(u, v)\right\|^{2}=f^{2}(u)\left(f^{\prime 2}(u)+g^{\prime 2}(u)\right)=f^{2}(u), \\
\bar{N}=\frac{\sigma_{u}(u, v) \times \sigma_{v}(u, v)}{\left\|\sigma_{u}(u, v) \times \sigma_{v}(u, v)\right\|}=\left(-g^{\prime}(u) \cos v,-g^{\prime}(u) \sin v, f^{\prime}(u)\right), \\
L=\sigma_{u u}(u, v) \cdot \bar{N}=f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}, \\
M=\sigma_{u v}(u, v) \cdot \bar{N}=0, \\
N=\sigma_{v v}(u, v) \cdot \bar{N}=f g^{\prime} .
\end{gathered}
$$

The second fundamental form is $\left(f^{\prime} g^{\prime \prime}-f^{\prime \prime} g^{\prime}\right) d u^{2}+f g^{\prime} d v^{2}$.
2. a. The characteristic equation $|A-\lambda B|=0$ takes the form

$$
\left|\begin{array}{rr}
-1-3 \lambda & 0 \\
0 & 2-4 \lambda
\end{array}\right|=0,
$$

or

$$
(1+3 \lambda)(1-2 \lambda)=0
$$

The roots (the generalized eigenvalues) are $\lambda_{1}=-\frac{1}{3}$ and $\lambda_{2}=\frac{1}{2}$.
The generalized eigenvectors corresponding to $\lambda_{1}=-\frac{1}{3}$ are solutions of

$$
\left(A-\frac{1}{3} B\right) x=0
$$

The first equation of this system is $0=0$, and it is discarded. The second equation becomes

$$
\frac{10}{3} x_{2}=0
$$

Then $x_{2}=0$, while x_{1} is arbitrary. The generalized eigenvectors corresponding to $\lambda_{1}=-\frac{1}{3}$ are multiples of $\left[\begin{array}{l}1 \\ 0\end{array}\right]$.

The generalized eigenvectors corresponding to $\lambda_{2}=\frac{1}{2}$ are solutions of

$$
\left(A+\frac{1}{2} B\right) x=0
$$

The second equation of this system is $0=0$, and it is discarded. The first equation becomes

$$
-\frac{5}{2} x_{1}=0
$$

which are multiples of the vector $\left[\begin{array}{r}-1 \\ 1\end{array}\right]$. The generalized eigenvectors corresponding to $\lambda_{2}=1$ are solutions of

$$
(A-B) x=0
$$

which are multiples of the vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
3. a. Obtain

$$
B\left(\frac{x}{\sqrt{B x \cdot x}}\right) \cdot \frac{x}{\sqrt{B x \cdot x}}=\frac{B x \cdot x}{B x \cdot x}=1
$$

8
4. Multiply by B and divide by λ :

$$
B A^{-1} x=\frac{1}{\lambda} x
$$

Hence, $\frac{1}{\lambda}$ is an eigenvalue of $B A^{-1}$.

Section 7.6

1. If A and B are the matrices of the second and the first fundamental forms respectively, then the characteristic equation $|A-k B|=0$ takes the form

$$
\begin{gathered}
\left|\begin{array}{cc}
L-k E & M-k F \\
M-k F & N-k G
\end{array}\right|=0 \\
(L-k E)(N-k G)-(M-k F)^{2}=0 \\
\left(E G-F^{2}\right) k^{2}+(-G L+2 F M-E N) k+L N-M^{2}=0
\end{gathered}
$$

If k_{1} and k_{2} are roots of the last quadratic equation, it can be factored as

$$
\left(E G-F^{2}\right)\left(k-k_{1}\right)\left(k-k_{2}\right)=0
$$

Compare the constant terms of the last two equations

$$
\left(E G-F^{2}\right) k_{1} k_{2}=L N-M^{2}
$$

It follows that the Gaussian curvature satisfies $K=k_{1} k_{2}=\frac{L N-M^{2}}{E G-F^{2}}$.
2. For the torus $\sigma(\theta, \varphi)=((a+b \cos \theta) \cos \varphi,(a+b \cos \theta) \sin \varphi, b \sin \theta)$, calculate

$$
\begin{gathered}
\sigma_{\theta}(\theta, \varphi)=(-b \sin \theta \cos \varphi,-b \sin \theta \sin \varphi, b \cos \theta) \\
\sigma_{\varphi}(\theta, \varphi)=(-(a+b \cos \theta) \sin \varphi,(a+b \cos \theta) \cos \varphi, 0)
\end{gathered}
$$

$$
E=\sigma_{\theta} \cdot \sigma_{\theta}=b^{2}
$$

$$
F=\sigma_{\theta} \cdot \sigma_{\varphi}=0
$$

$$
G=\sigma_{\varphi} \cdot \sigma_{\varphi}=(a+b \cos \theta)^{2}
$$

The first fundamental form is $b^{2} d \theta^{2}+(a+b \cos \theta)^{2} d \varphi^{2}$.
Calculate further

$$
\sigma_{\theta \theta}(\theta, \varphi)=(-b \cos \theta \cos \varphi,-b \cos \theta \sin \varphi,-b \sin \theta)
$$

$$
\sigma_{\theta \varphi}(\theta, \varphi)=(b \sin \theta \sin \varphi,-b \sin \theta \cos \varphi, 0)
$$

$$
\sigma_{\varphi \varphi}(\theta, \varphi)=(-(a+b \cos \theta) \cos \varphi,-(a+b \cos \theta) \sin \varphi, 0)
$$

$$
\sigma_{\theta} \times \sigma_{\varphi}=(-b \cos \theta \cos \varphi(a+b \cos \theta),-b \cos \theta \sin \varphi(a+b \cos \theta),-b \sin \theta(a+b \cos \theta))
$$

$$
\left\|\sigma_{\theta} \times \sigma_{\varphi}\right\|=\sqrt{\left(\sigma_{\theta} \times \sigma_{\varphi}\right) \cdot\left(\sigma_{\theta} \times \sigma_{\varphi}\right)}=b(a+b \cos \theta)
$$

$$
\begin{gathered}
\bar{N}=\frac{\sigma_{\theta} \times \sigma_{\varphi}}{\left\|\sigma_{\theta} \times \sigma_{\varphi}\right\|}=(-\cos \theta \cos \varphi,-\cos \theta \sin \varphi,-b \sin \theta), \\
L=\sigma_{\theta \theta} \cdot \bar{N}=b \cos ^{2} \theta \cos ^{2} \varphi+b \cos ^{2} \theta \sin ^{2} \varphi+b \sin ^{2} \theta=b, \\
M=\sigma_{\theta \varphi} \cdot \bar{N}=0, \\
N=\sigma_{\varphi \varphi} \cdot \bar{N}=(a+b \cos \theta) \cos \theta .
\end{gathered}
$$

The second fundamental form is $b d \theta^{2}+(a+b \cos \theta) \cos \theta d \varphi^{2}$.
The matrices of the first and the second fundamental form are both diagonal of the form $A=\left[\begin{array}{rr}L & 0 \\ 0 & N\end{array}\right], B=\left[\begin{array}{rr}E & 0 \\ 0 & G\end{array}\right]$. The characteristic equation $|A-k B|=0$ takes the form

$$
\left|\begin{array}{rr}
L-k E & 0 \\
0 & N-k G
\end{array}\right|=0,
$$

$$
(L-k E)(N-k G)=0
$$

Its roots are the principal curvatures

$$
k_{1}=\frac{L}{E}=\frac{1}{b},
$$

$$
k_{2}=\frac{N}{G}=\frac{\cos \theta}{a+b \cos \theta} .
$$

When $k_{2}>0$, or $-\frac{\pi}{2}<\theta<\frac{\pi}{2}$, the points on the torus are elliptic (corresponding to the right half of the circle that is being rotated, when producing the torus). Hyperbolic points correspond to $\frac{\pi}{2}<\theta<\frac{3 \pi}{2}$.

