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Solutions Manual
Lectures on Linear Algebra and its Applications

Philip L. Korman
Chapter 1

Section 1.1

1. d. Set z = t, an arbitrary number. From the second equation y =t + 3.
Substitute these expressions into the first equation

x—(t+3)+2t=0,
so that x = —t + 3.
1. e. From the last equation © = 0. Update the system:

TH+y—z2=2
3y—3z=3.

Set z = t. From the second equation y = t+ 1. Then from the first equation
z =1

2. f. From the second equation subtract the first one, and from the third
equation subtract twice the first one:

r—y+22=0
y—z=23
y—z=3.

Discard the third equation. Set z = t. From the second equation y =t + 3.
Then from the first equation x = —t + 3.

3. The point (1,0,2) lying on the plane ax + by + cz = d implies that
a + 2¢ = d. Similarly for the other two points, giving the following three
equations for the unknowns a, b, ¢, d

a +2c=d
b+5c=d
2a+b+c=d.
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From the second equation subtract twice the first one:

a +2c=d
b+5c=d
b—3c=-d.

From the third equation subtract the second one:

a “+2c=d
b+5c=d
—8c = —2d.

While the plane through three points is unique, the equation of the plane
is not. One can multiply the equation by an arbitrary number p to obtain
paxr + pby + pcz = pd. By choosing p one can make the right side of this
equation to be an arbitrary number. In other words, in the equation az +
by+cz = d, d can be taken to be an arbitrary number. In the last system we
choose a convenient d = 4, and obtain by back substitution c =1, b = —1
and a = 2. Obtain the plane 2z — y 4+ z = 4.

4.  Multiply the first equation by a, and the second one by 2:

2ax — 3ay = —a
2ax — 12y = 10.

From the second equation subtract the first one:

2ax — 3ay = —a
(Ba—12)y=10+a.

If 3a—12 # 0, or a # 4, by back substitution one produces a unique solution.
In case a = 4, the second equation becomes

0=14,

and the system has no solutions.

For the system to have infinitely many solutions, the second equation
would need to be
0=0,
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which does not happen for any a.

5. Solve for y: y = 5933—_1 =2r — %’1 Since x and y are integers, %’1 is an

integer too. Set %’1 = n, an integer. Then x = 3n—1, leading to y = 5n—2,
where n is an arbitrary integer.

Section 1.2

Let us consider one equation with two unknowns
r—y=1.
It has infinitely many solutions: z =2 andy =1,z =3 and y =2, z = %
and y = %, and so on (and on). One way to represent all solutions is to let
y be arbitrary and solve for z, = y + 1. A slightly different way is to let
y = t, an arbitrary number and solve for x, z =t + 1.

1(a). The pivots are circled:

%3

Restore the system:

2:E1—:E2:0
3:E2:6.

From the second equation xo = 1. Using that in the first equation gives

2:171 —2= 0,
so that x1 = 1.
1.(b). The pivot is circled:
@ 2.4
0 0'0]"°

Discard the second equation. Restore the first equation
2:171 — 2:172 =4.

Set x9 = t, an arbitrary number and solve for zo: 1 =1t + 2.
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1(e). The pivots are circled:

® -1 1, 3
0 @ 2'-1]"
Restore the system:
xT1 — T2 + X3 =3
To + 2x3 = —1.
The variable x3 is free. Set x3 = t and arbitrary number. Then zo = —2¢{—1
and then x1 = —3t + 2.
1(f). The pivots are circled:
@ -1 0, 2
0 0 O'-4
Restore the system:
2:E1 — X9 =2
Tr3 = —4.
1 .
Answer. 1 = 5:172 + 1, z3 = —4, x4 is free.

2(d). Write down the augmented matrix, then apply Ry < R (i.e., switch
the first and second rows to avoid fractions) to get

1 2 1,-1
3 -2 —-1! 0
1 -6 —31 2
Apply R2—3R1 and Rg—Rli
1 2 1,-1 1 2 1,-1
3 2 -1 0|=]|0 -8 -4 3
1 -6 -3 2 0 -8 —41 3
Apply Rs — Ro:
1 2 1,-1 O 2 1.,-1
0 8 -4 3|=| 0& -4 3
0 -8 —41 3 0 0 0! 0
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Pivot variables are 1 and xo, while z3 is free. The second equation becomes

—8:E2 — 4t = 3,
giving xo = —%t — %. Then from the first equation
1 3 1
m=-2wy -y —1=-2(—gt—g)—t-1=—7.

2(e). Apply Ry — 2Ry, followed by R3 — Ro

1 -1 0 1, 1 1 -1 0 1, 1 @ -1 0 1,
2 11 1!-3|=]0 11 -1'-5|=|10 O 1 —1
0 1 1 —11-5 0 11 —-11-5 0 00

Pivot variables are x1 and xy, while x3 and x4 are free. Set x3 =t, T4 = s,
and solve for xo = —t+s—5, 21 =29 —x4+1=—t — 4.

3(a). Apply Ry — 2Ry and R3 — R, followed by R3 — Ro

1 -2 01 2 1 -2 01 2 1 -2 0, 2
2 31,4|=|0 71,-8|=|0 7 1,-8
1 5 1'-5 0o 7 1'-7 0 00" 1

The last equation is

0=1
The system is inconsistent.
3(c). Apply Ry —2R; and R3 — Ry:
1 -2 -1 3.1 1 -2 -1 3.1 » -2 -1

3.1

2 4 1 0/5[/=]{0 0 3 6!3|=|0 0@ —6'3
1 -2 2 314 1 -2 2 -314 0 0 3 —613

The second column has no pivot, but the third one does. Then R3 — Ro
gives .
O -2 -1 3.1
0 0 @ —-6'3
0O 0 0 00
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The third row is discarded. The pivot variables are x1 and x3, while x5 and
x4 are free. Restore the system, take xo and x4 to the right, then set xo = s,

x4 =1:

T, —2x9 — 3+ 3x4 =1

3:E3—6:E4:3,

Ty — 23 =229 —3x4+1=25s—3t+1
3x3 =06x4 +3=06t+3.

Then z3=2t+ 1, and 21 = x3+ 220 — 324 +1 = —t + 25 + 2.

d. Apply R2 - 2R1 and Rg - 3R11

1 -1 0 1.0
2 -2 1 -1!1
3 -3 2 02

The second column has no pivot, but the third one does. Then R3 — 2Ry

gives

The last equation reads

so that x4 = 0. Then the second equation gives x3 = 1, and from the first

equation x1; = xo.

1
=10 01
0

-1 0

0 2

3:E4:0,

5. In case a = 1, the augmented matrix is

Apply R3 — Ry to get

1.0
31
—312
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Then R3 — Ry gives

® -1 2, 3
0 O -1!-2
0 0 0' 0

Pivot variables: x; and zo. Free variable x3. From the second equation
T9 = x3 — 2, and from the first equation z1 = —x3 + 1.

In case a # 0, the same process leads to

® -1 2 . 3
0o O -1 !-2
0 0 a—1' 0

Since a — 1 # 0, the system is inconsistent.

6. Each pivot occupies its own row and its own column. Therefore the
maximal possible number of pivots for a m xn matrix is equal to the smaller
of the numbers m and n. So that for a 5 x 6 matrix, the maximal possible
number of pivots is 5. For a 11 x 3 matrix, it is 3.

Section 1.3

1. Form a system of equations with the augmented matrix [C; Cy Cs |b]:

10 1.1

-1 2,0

|1 1 314 |

Apply Rs — Ry: ) o
10 1.1

0 -1 2,0

|0 1 213 ]

Apply R3 + Ry: i o
10 1.1

-1 2,0

|0 0 413 ]

Perform back-substitution: xg = %, Ty = %, T = i.

2. Form a system of equations with the augmented matrix [Cy Co Cs |b].
Solve it to get £1 = 0, zo = 1 and x3 = 1. It follows that b = Cy + Cj.

3. Any linear combination of Cy, Cy, C3 has the first component equal to 0,
and hence it cannot be equal to b, which has the first component 5.
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5. a. Form a system of equations with the augmented matrix [C; C5 |b], and
determine z1 = 1, xo = —2. It follows that b = C7 — 2C5, so that the vector
b lies in the plane spanned by C7 and Cs.

5. b. The system of equations with the augmented matrix [Cy Cy |b] is
inconsistent. It follows that the vector b does not lie in the plane spanned
by C7 and Cs.

6. a. Span of Cq, (5, C3 has the third component zero, while the third
component of b is 1.

6. b. b =C1+ Cy + C3, hence b is in span of C, Cy, Cs.

7. Vector z € R* is a 4 x 1 matrix. Since A is of size 4 x 5, the product Az
is not defined.

8. x € R®is an 8 x 1 matrix. Hence, Az is defined, and Az is of size 7 x 1,
or Az € R.

Section 1.4

1. All three systems have the same matrix. The same sequence of row oper-
ations is used in each case. Therefore we form a “long” augmented matrix
[ A 0 by by ] and perform the Gaussian elimination on the entire long
rows. When A is reduced to the row echelon form, one restores separately
each system, to perfom back substitution on each one.

Apply R2 - R1 and Rg - Rli

1 2 -1,0,2,-1 D 2 -1,0,2,-1
12 0/0!3) 0l=] 00 @01 1
12 —110121 2 00 01010 3

Restore separately each system. The variable xo is free, therefore Az = 0
and Ax = b; have each infinitely many solutions. For Ax = by the third
equation says 0 = 3, and the system is inconsistent. Indeed, the restored
system for Az =0 is

1+ 229 — 23 =0
(0.1) :E3:0.

Then z3 = 0, x1 = —2x9 and x4 is free. (x5 is pivot variable.) For the
system Az = by get

T, + 229 — 13 = 2
(0.2) r3=1.
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Then 3 = 1, 1 = —2x9 + 3 and zo is free. The system Az = by is
inconsistent.

2. A has at most 4 pivots, and hence at least one free variable. There are
infinitely many solutions.

3. No free variables. There is only the trivial solution.

4. Solutions of non-homogeneous system Ax = b can be written as x = p+v,
where p is any particular solution of that system, and ¥ is the general solution
of the corresponding homogeneous system Ax = 0. We are given that y is

;]), and

] +t [ _; ], or the line of slope —3

the line of slope —3 through the origin (or a set of vectors ¢ [

2

p = [1] It follows that x = [2

1
through the point (2, 1).

5. If 1 and zo are two solutions of Az = b, then Az = b and Azo = b.
Subtracting
A (:E1 — :Eg) =0.

It follows that 1 — x5 is a solution of the corresponding homogeneous equa-
tion. Since the homogeneous system has only the trivial solution, conclude
that z1 — 29 = 0, or £1 = x4, so that Az = b can have at most one solution.

6. a. Since x1 and zo are solutions of homogeneous system, Az; = 0 and
Azxo = 0. Then

A(:El—I—ZEQ)ZA:El—I—A:EQZO—I—OZO.

6. b. Similarly,
A(c171 + c2m2) = c1Ary + oAz =0+ 0=10,
so that c¢1x1 + coxo is also solution of Ax = 0.
7. If x and y are two solutions, Ax = b and Ay = b. Adding:
Alx+y) =2b.

Since 2b # b for b # 0, it follows that x + y is not a solution of the system
Ax =b.
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8. a. True. If Ax = b has trivial solution, then A0 = b or b = 0 and the
system is homegeneous.

b. True. There is one free variable.

c. False. There are two pivots. The solution set involves two arbitrary
constants.

d. False. To show that a statement is false, it is enough to provide one
example to the contrary. We now exhibit a system of 5 equations with 6
unknowns that is inconsistent. The first two equations are:

x1+ 22+ 23+ 24+ 25+ 26 =0
T1+ 2o +x3+ 24+ 25 +26=05.

This system is inconsistent, since the same sum on the left cannot be equal
to both 0 and 5. Add to this system three more arbitrary equations in
z1,...,T¢. Obtain an inconsistent 5 x 6 system.

Section 1.5
1. a. The second vector is twice the first one. Dependent.

1. b. The second vector is not a constant multiple of the first one. Indepen-
dent.

1. ¢. One of the vectors is the zero vector. Dependent.
1. f. Any 3 vectors in R? are linearly dependent.

1. k. Form a matrix using these vectors as columns, and then apply Ry — R,
Rs— Ry, Ry — Ry:

1 -1 2 1 -1 2
1 -1 2 N 0 0 O
1 -2 0 0 -1 -2
1 3 1 0 4 -1

Perform Ry < Ry4. (R2 <« Rj3 is also possible, but that will require another
row exchange down the road.) Obtain:

1 -1 2
0 4 -1
0 -1 -2
0 0 O

10
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Finally, apply R3 + %Rg:

OOO@
oM@»'—\l\D

There are three pivots (the third one is —%), so that the vectors are linearly
independent.

2. a. Set a linear combination of these vectors to zero
:El(ul + UQ) + :Eg(ul — ug) =0.

Rearrange:
(1 + z2)ur + (1 — 22)ue = 0.

Since u; and us are linearly independent, it follows that

x1+x0=0

:El—:EQZO.

The only solution of the last system is 1 = zo = 0. The vectors u; + uo
and u; — ug are linearly independent.

3. Since the vectors u; + ug and u; — ug are linearly dependent, one of them
is a scalar multiple of the other, so that

up +ug = a(up —ug) ,
for some number a. Rearrange:
(1-a)u1 +(1+a)up =0.

Since the coefficients 1 — @ and 1 + a cannot be both zero, it follows that
the vectors u; and wue are also linearly dependent.

4. Take a linear combination of these vectors, and set it equal to the zero
vector

(%) x1ur+x (ug + u2)+x3 (ur + ug + us)+x4 (ug +ug +uz + uyg) = 0.
Rearrange:

(:171 —1—2172—|—:E3—|—:E4)’LL1—|—(ZE2—|—ZE3+ZE4)UQ+(:E3+:E4)’LL3+ZE41L4:0.

11
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Since the vectors uq, uo, ug, u4 are linearly independent the coefficients of
the last linear combination must be all zero:

T+ 2o +x3+2x4=0
To+x3+24=0
3+ x4 =0
T4 = 0.
Solving this system of equations gives 1 = x2 = 3 = x4 = 0. Since the

formula (*) holds true only when all coefficients are zero, it follows that the
vectors uy, u1 +usg, U1 +uo+ug and uq +us+ug—+ug are linearly independent.

5. No. Consider three vectors that lie in the same plane, but no pair of
them lies on the same line. Then they are linearly dependent, but linearly
independent pairwise.

6. Clearly
1"LL1—|—1"LL2—|—(—1)'(’LL1-|—’LL2)+0"LL4:0,

and the coefficients 1, 1, (—1), 0 are not all zero.

7. Since u1, u9, ug are linearly dependent
T1u1 + Toug + x3u3z =0,

with a non-trivial combination of the coefficients x1, 2, z3 (at least one of
them is non-zero). Then for any wuy

T1Uu1 + Toug +x3uz +0-ugy =0,

with a non-trivial combination of the coefficients x1, z2, 23,0 (at least one
of them is non-zero).

8. Suppose that, on the contrary, the vectors uq, ug, ug are linearly depen-
dent. Then
T1u1 + T2u2 + 23Uz = 0,

with at least one of the coefficients non-zero. But then
iU + xouo +x3u3 +0-ug =0,
with at least one of the coefficients non-zero. It follows that the vectors

u1, U2, U3, Uyg are linearly dependent, contrary to what is given.

12
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9. Since uy = 0, obtain
O-up+1-ug+0-u3+0-ug =0,

and one of the coefficients (the second one) is non-zero. (Remark: the
vectors are considered to be in R® to make this problem non-trivial. For
example, in R? four vectors would be automatically linearly dependent.)

10. The formula

n=n+n+---+n

holds only at integer values of n, while the definition of differentiation re-
quires that functions be defined on some interval. Hence, it is not admissible
to differentiate this formula.

Chapter 2

Section 2.1
2.3X=-1, X =—3I.

3. e. and f. The matrices B are diagonal. Multiply the columns of A by
the diagonal entries of B. (The first column of A is multiplied by b1, the
second column of A is multiplied by bao, etc.)

3. g. Since B is diagonal, multiply the first column of A by 2, the second
column by —1, the third column by 0 to get

2 -1 0
AB=|2 -1 0
2 -1 0

4. All three formulas are not true in general. The correct formulas are:
(A-B)(A+B)=(A—B)A+ (A—B)B= A>- BA+ AB + B>
(A+B)?=(A+B)(A+ B) = A? + AB + BA + B%
c. (AB)? = ABAB.

If the matrices A and B commute (BA = AB), then indeed we have:

®

=3

a. (A—B)(A+B) = A*> - B
b. (A+ B)? = A> +2AB + B%
c. (AB)? = A’B?

13
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5. Apply the formula (AB)T = BT AT to two matrices at a time:
(ABO)T = (A(BO)T = (BO)T AT = cTBT AT .

6. Apply the formula AB = BT AT

(42)" = ATAT = (AT)? .
0 0 1
8. A*=10 0 0 = A?A=0.
0 00
10 a. Vectors in R™ are n x 1 matrices. Hence 2T is a 1 x n matrix, or a

TOW vector.

10. b. If x # 0, then at least one of its components is non-zero. Hence,
eTe =2t +23+ - +22 >0

Section 2.2
1 0 0
2. Ttis E3(=5)= [0 1 0
0 0 =5

4. a., b., c. Let B be any matrix of the same size as A. Show that AB # [.

5. All of the matrices in parts a.-e. are either elementary or diagonal ones,
for which we have formulas to write down inverse matrices.

5. g. Use the formula for the inverse of a 2 x 2 matrix to obtain

o [-21
ER!

6. a. Apply R3 — Rq:

1 2 0,100 1 0, 1 00
0 -1 1,01 0|=]|0-11!010
1 -2 110 0 1 0 -4 1'-1 0 1
Apply R3 —4Rs to get
1 0, 1 00
0 -1 1) 0 10
0 0 -3'-1 —4 1
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Apply —R5 and —%Rg to get

12 0,1 0 0
01 -1!0 -1 0
1 4 1
00 11z 3 —3
Apply Re + R3 to get
1 20,1 0 0
11 1
PRI B
3 3 73
Apply R1 — 2Rs to get
1 00,4+ -2 2
010:i i1
0o 111 1 _1%
'3 3 73

7. The columns of this matrix are linearly dependent. By Theorem 2.2.2,
this matrix is not invertible.

8. By the definition of the square of a matrix, (AB)?> = ABAB. We are
given that
ABAB = AABB.

Multiply both sides by A~! from the left:
BAB = ABB.
Multiply both sides by B~! from the right:
BA = AB.

9. ¢. Observe that
E13FE>y = EoyEh3,

because it does not matter if one switches rows 1 and 3 first, and rows 2 and
4 second, or the other way around. Then

P? = E13F94EoyE13 = B13lEB13 =1,

because both matrices Fo4 and Ey3 are their own inverses.

11. Since A* = O,

<I+A+A2+---+Ak‘1> (I—A)=1-A=1,

15
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so that the matrix I + A + A% + ... + A*~1 gives the inverse of I — A.

Section 2.3
l.a. B(AB) 'A=BB'A'A=TA"'A=1.

1. b (24)71 A2 = %A‘lAA = %A.

—

e [4 (AB)™ A} T i [(AB)—1 A} T iA‘lAB - iB.

2. Inverses of elementary matrices are elementary matrices of the same type.

a. E13(2)7! = Ei3(-2).

C. E1_31 = E13.

3. a. The matrix A is obtained from I by switching row 2 and row 4.
Therefore, A = Fo4.

3. b. The matrix B is obtained from I by applying R4 — 5R3. Therefore,
B = E34(-5).

3. c¢. The matrix C is obtained from I by multiplying row 4 by 7. Therefore,
C = Ey(7), and C™" = Ey(1).

4. a. Restore the elementary matrices and perform multiplication from right
to left: Elg(—3)E13(—1)E23(4) == Elg(—3) [Elg(—l)Egg(él)]. Obtain
100 100 1 00
Eq13(—1)E23(4) = 010 01 0|= 01 0|,
-1 0 1 0 4 1 -1 4 1

by applying R3 — R; to the second matrix. Then

1 00 1 00 1 0 0
E12(=3) [E13(=1)Ea3(4)]=| =3 1 0 01 0|=-3120]¢,
0 0 1 -1 4 1 -1 4 1

obtained by by applying Ro — 3R; to the second matrix.

4. b. Spell out the elementary matrices, and perform multiplication from
I‘ight to left: E12E13(—1)E23(4) = E12 [Elg(—l)Egg(él)]. The pI’OdUCt of the
last two matrices

1007100 100
Eis(-1)Eyp@) =] 01 0[]0 10]|=| 010
101]|041 141

16
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is obtained by applying R3 — R1 to the second matrix. Then

1 00 010
E19 [F13(—1)FE93(4)] = Eq2 01 0|= 1 00
-1 4 1 -1 4 1
is obtained by switching rows 1 and 2 of the second matrix.
4. e. Again, E3(3)E13(—1)Er2 = E3(3) [Er3(—1) Engl.
1 00][0 10 0 10
Ei3(-1)E19 = 010 10 0]|=]1 0],
10 1][00 1 0 -1 1
applying R3 — R to the second matrix. Then
10010 10 0 10
Es(3) [E13(—1)E1)=]10 1 0 1 00|=|1 00
003]]l0 —-11 0 -3 3

applying 3R3 to the second matrix.

5. a. Ry — 3Ry takes this matrix into U, while L = [ :13 2 ]

5. b. Apply Ry — R; and R3 — Rq. Then

1 11 1 11
1 2 2|=1]011
1 2 3 01 2
Apply Apply R3 — R
1 11 1 1 1
01 1|=(011]|=U
01 2 0 01
Forward elimination gave U, while
1 00
L=|1 10
1 11
5. e. Apply R3 — 2R,
1 2 1 0 1 2 1 0
0 2 1 -1 N 0 2 1 -1
2 4 3 1 0 0 1 1
0 -2 0 2 0 -2 0

17
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Apply Ry + Ry

1 2 1 0 1 21 0
0 2 1 -1 N 0 2 1 -1
0 01 1 0 01 1
0 -2 0 2 0 01 1
Finally, R4 — R3 gives
1 2 1 0 1 2 1 0
0 2 1 -1 N 0 21 —-1/| U
001 1 o0 1 11|
001 1 0 00
The last matrix is U, while
1 0 0 0
10 100
12 01 0|
0O -1 1 1

Observe that zeroes under the diagonal correspond to row operations that
were not used.

6. a. Row exchange is needed for Gaussian elimination, therefore the LU
decomposition is not possible.

6. b. The multiplication by permutation matrix PA interchanges the rows
of A so that no row exchanges are needed in forward elimination.

1
7.2 AT = By By(=2) " B1a(3) " = EasBs(—5) Fra(=3).

7. b. Restore the 3 x 3 elementary matrices, and perform multiplication
from right to left: Fo3 (Eg(—%)Elg(—g))). Begin with

. 10 0 100 10 0
Es(—§)E12(—3): 01 0 -3 1L 0r=y-=31 01,
00 —3 001 00 -1

obtained by performing —%Rg on the second matrix. Then

10 0 10 0
Ep| -3 1 0|=| 00 —3
00 —3 -3 1 0,

18
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obtained by performing Rs <+ R3 on the second matrix.
9. Taking inverses of both sides, we get an equivalent statement to prove
Aty B t=B1lA+BA.
Distributing B~!, and then distributing A~! on the right
BYA+BA ' =B 1A+NA =B+ A=At 4 BT,

Section 2.4

1. a. Not a subspace, because the zero vector, with z1 = z9 = 0, does not
belong to this subset of R2.

1. b. Multiplying a vector of say length % lying inside the unit sphere by
say 5, produces a vector of length % lying outside of the unit sphere. The
subset is not closed under multiplication by a scalar. Not a subspace.

€1
€2
1. c. Yes, a subspace. For x = | x3 | we are given that x1 + x4 = 0.
B
T5
|
Y2
Any y = | y3 | belonging to this subset satisfies y1 + y4 = 0. Their sum
Ya
Ys
T1+ Y1
T2 + Y2
r+y = | x3+ys | alsohas the sum of the first and the fourth components
Ta+ Ya
L T5 +Ys J
ZEro:
T+t rat+ys=r1+x4+y1 +y2=04+0=0.
CT1
CI2
Similarly for cx = | cxs | one has the sum of the first and the fourth
o)
CI5
components:

cx1+crg=c(z1+24)=0.
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1. f. Vectors [ (1) ] and [ (1) ] belong to this subset, but their sum [ 1 ]

does not. The subset is not closed under addition. Not a subspace.

1. g. The subset is a line through the origin, or the span of any vector going
along this line. A subspace.

0
1. h. Zero vector belongs to the set x = | 3 | (when z9 =0, z = 0), so
2
T2
that we cannot quickly conclude that this set is not a subspace. However,
this set is indeed not a subspace, because 2z does not belong to this set if

x # 0.

4. a. The vectors b; and bs are linearly independent. Therefore they form
a basis of R?. To find the coordinates of e, solve the system with the
augmented matrix
1 —1,1
I

to get T1 = %, Ty = —3.

4. b. 1by + 3by = [ _§ ]

5. Three linearly independent vectors by, by, b3 form a basis of R3. The
coordinates of v; and vy with respect to this basis can be calculated in
parallel by working with the augmented matrix

[bl b2 bg:’Ul:’Ug].
6. a. Solve the system with the augmented matrix

[ b1 by by ]

to get x1 = —1, 9 = 1.
7. x = x1€1 + To€9 + X3€3.

8. ¢. Draw the vector x in the first quadrant of the x1xo-plane, for simplicity.
Rotate = by the angle # and reflect the result with respect to the x; axis.
Then rotate just obtained result by the angle 6 and reflect the last result
with respect to the z; axis. Obtain z. So that PPz = x for any =z.
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Section 2.5
1. g. To solve the system Ax = 0, perform Ry — R and R3 + R

2 1 30,0 @ 13 0,0
2 0 41,0(=| 061 1,0
-2 -1 -3 10 0 00 D'0
The variable x3 is free, so set x3 = t. Back substitution gives: x4 = 0,
—2
To =t, x1 = —2t, so that z = ¢ 1 . The null space N(A) is spanned
0
—2
by the vector 1 , dimN(A) =1.
0

1. h. Hx = 0 gives one equation with four unknowns
—x1+ 22+ 323 =0.

x1 is the pivot variable, while xo, z3, x4 are free. Express x1 = x5+ 33, and
the solution is

To + 3x3 1 3 0

Tr = 2 = T3 L + x3 0 + x4 0
xs 0 1 0

T4 0 0 1

2. If a 4 x 5 matrix has two pivots, it has three free variables. The dimension
of its null space is 3.

3. Since the rank is 3, there are 3 pivots. There are 4 free variables, and
the dimension of the null space is 4.

4. a. The system Az = 0 has only the trivial solution, so that the null space
is the trivial subspace.

b. The column space is R* because the system Az = b has a (unique)
solution for any vector b € R*.

5. There is one free variable. The null space consists of multiples of a three
dimensional vector. The column space is a span of two of the columns.
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6. The matrix A has at most 3 pivots (each pivot occupies its own row).
Therefore, there is at least 2 free variables.

7. There are no pivots. Only the zero matrix O has this property.

8. a. The matrix is already in the row echelon form. Columns one and two
have pivots, so C1 and Cy form a basis of the column space C(A). The rank
of A is 2. To express (3, do back-substitution on

a 1,-1
0 @' 4
to obtain z9 = 2 and x1 = 3. Conclusion: C3 = 3C; + 2C5.
8. ¢. Ro+ 3Ry gives

KRR

Only column one has pivot, and hence Cy spans C(A). Indeed, Cy = Ci,
and 03 = 301.

8. d. Apply Ry — R and R3 + 2R;. Obtain:

-1 2 5 -1 2 5
A= -1 2 5 |=> 0 00
0 —2 0 4 8
Apply Ro < R3.
-1 2 5 D 2 5
00 0]|= 0 @ 8
0 4 8 0 00

Span of C7 and Cy gives the basis of C(A). To express C3 through C; and
(5, do back-substitution on

D 2.5
0 @'8
0 010

Obtain z9 = 2 and 1 = —1, so that C3 = —C7 4+ 2Cs.
8. e. Perform R, <« Rj:

00 1 a 0 -3
02 5|=] 0@ 5
-1 0 -3 0 0 @
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The columns of this matrix are linearly independent. Since any three linearly
independent vectors in R? form a basis in R3, it follows that C(A) = R3.

8. f. Perform Ry — R1 and R3 + R,

2 1 30 @ 13 0
2 0 41|=]| 01 1
—2 -1 -3 1 0 00 D

The column space is spanned by C7, Cy and Cy. To express C3 through Cf,
(5 and (4, do a back substitution on

@ 1 0.3
0 € 1,1
0 0 ®'O0

Obtain z3 = 0, xo = —1, 1 = 2. Conclude C5 = 2C; — Cs.
10. b. Both N(A) and C(A) have dimension 1, and therefore both are

1 .
arbitrary multiples of the vector [ 1 ] , which belongs to both spaces.

10. c. Observe that A2 = O. All x € R? satisfy Oz = 0. Hence N (A?) = R2.

-1

11. b. Try the matrix A = [ 1

—1 .
1 ] from the preceding exercise.

12. a. The difference of any two solutions satisfies the homogeneous system
Az = 0. If Cq,Cy,...,C, are the columns of A, and z1,xo,...,x, are
the components of x, then z1C7 + x2Cs + ... 4+ z,C,, = 0. By the linear
independence of the columns, z = 0, and hence any two solutions of Az = b
are identical.

Chapter 3

Section 3.1

1. Evaluation of both determinants gives
20 +3=—x,

so that x = —1.

3. b. Determinant of a diagonal matrix matrix is equal to the product of
the diagonal entries: 1(—2)(—3)(—4) = —24.
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3. g. Expand in the first row to get

0 b

ac—2

Iz —abc.

3. i. Expand in the third column, to take advantage of the two zeros it
contains.

3. 1. All entries of the third column are zero. Expanding in the third column
one shows that the determinant is zero.

4. In both cases |A?| = |A|?, which is a general fact, which will be justified
in the next section.

5. Expansion in the first column gives

0 1

0
4] = (-1 .
O ... 1 0

The new (n — 1) x (n — 1) determinant is expanded in the first row to get
Al = ()" (=D ) = (-1 = -1

since the number 2n — 3 is odd.

7. All elements of the third row are zero, since a;; = 0 for ¢ = 3. Then
|A| = 0.

8. When computing a determinant, one performs multiplications, additions,
and subtractions that turn integers into integers. If all entries of the matrix
are integers, its determinant is an integer. The converse statement is “if the
determinant is an integer then all entries of the matrix are integers”. An
example of ‘

OB

proves it wrong.

Section 3.2

1. b. Perform R; <« Rj3, followed by R — 3R;. After that expand in the
first column.
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1. g. Perform Ry — aR; and R3 — a’R;, then expand in the first column.
Obtain

1 1

1
0 b—a c—a |=((0b—-a)c—a)(cta)—(b—a)(b+a)(c—a).
0

b2 —a? 2 — a2

Factoring (b — a)(c — a) out, this simplifies to (b — a)(c — a)(c —b).
2. a. Apply Ro — 3R; to obtain

a b c a b c
d+3a e+3b f+3c|=|d e f|=5
g h k g h k
2. b. Factor 2 out of the second row to obtain
a b ¢ a b c
2d 2 2f |=2|d e f|=10.
g h k g h k

2. c. Factor 3 out of the first row, and 2 out of the second row to obtain

3a 3b 3c a b ¢
2d 2e¢ 2f |=6|d e f |=30.
g h k g h k

N
a

. Apply Rs — 3R; to obtain the determinant in part b. Answer. 10.

2. e. Perform Ry <+ Ry to obtain

d f

S o ™
S ot
T 0
Il
|
ot

&
k

I
|
@ a9

a
g

2. f. Perform Ry « Rj3, followed by R; < Ry to obtain

Qo Q.
(S
Q %
I
|
Q 2 Q.
S o ™
> o
I
Q@ Q2
o o
T 0
I
ot

. Factor —1 out of the third column.

N
0

2. h. A column of zeros makes the determinant zero.
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3. a. Adding all rows to the last one, produces all entries equal to zero in
the last row. The new determinant is equal to zero, and it is equal to the
original one.

4. b. Since A is 4 x 4, [2A] = 2% A| = 16 - 3 = 48.

1
4. c. |B*|=|B)? = -.
c. |B7 =B =7
1
4. f. 2AB™| = 24 A||B7Y = 16| A| B~ 96.

9
4. g |A(=B)T| =A% |(-B)"| = |[AP|(-B)| = 3*(-1)*|B| = 5
5. | — A| = (=1)7|A] = —|A|, so that |A| = —|A|, and then |A| = 0.

7. Expanding the determinant in the first column obtain a linear equation
of the type
A+ Bx+Cy=0,

with some numbers A, B, C'. This line passes through the point (a,b), be-
cause when z = a and y = b the determinant is zero, since the columns one
and two are identical.

8. Expanding the determinant in the first column obtain a linear equation
of the type
A4+ Bx+Cy+Dz=0,

with some numbers A, B, C, D. This equation represents a plane. The point
(a1, a9,a3) lies on this plane, because when x = a1, y = ag, z = ag the
determinant is zero (its first two columns are identical).

9. For B one has Ry = 2R; (also, columns one and three are identical), so
that |B| = 0. Then |A3B| = |A3||B| = 0.

10. Apply Ry — 2R1, R3 — 2R4,..., R, — 2R;. Obtain an upper triangular
determinant, with the diagonal entries 1,1,2,3,...,n — 1. Their product is
(n—1)L

11. It takes n — 1 row exchanges to put the last row back into the first

position. Then use n — 2 row exchanges to put the next to last row back
into the second position. The total number of row exchanges

n(n —1)

L4243+ 4n—1=—"—

is equal to the number of sign changes of the determinant, as |B| is trans-
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formed into |A|.

12. |AT| = | — A|, implies that |A| = (—1)"|A|, giving |A| = —|A]| since n is
odd, so that |A| = 0.

13. b. Apply R,,— R,,_1, then R,,_1 — R,,_2, and so on ending with Ry — R,
obtain determinant of an upper triangular matrix with all diagonal entries
equal to 1.

14. If A? = —J for some matrix A, then

A% =] 1.
But |A%| = |A|? > 0, while for n odd, | — I| = (—=1)" = —1 < 0, a contradic-
tion.

15. If rows are linearly dependent, one of them is a linear combination of
the others. Suppose that the matrix is 4 x 4, and

Ry =aR; + bRy + cR3.

Perform the elementary operations Ry — aR1, R4 — bR, R4y — cR3. On one
hand the determinant is unchanged, and on the other hand the row 4 has
all zeros, so that |A| = 0.

Section 3.3

1. b. |A| =0, no inverse matrix exists.

1. g. Expand |A| in the third row.

1. h. Use Gaussian elimination on the first column of |A|.

2. c¢. Determinant of the system is zero, so that Cramer’s rule does not
apply. Gaussian elimination shows that this system is inconsistent.

2. d. The second row can be discarded. The variable x5 is free, there are
infinitely many solutions.

3. a. Recall that A Adj A = |A|I, and then
|AAdj Al = det (JA|]) .

On the left one has determinant of a product of two matrices, on the right
determinant of a constant |A| times the unit matrix I. Then

[Al[Adj A] = [A[",
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|AdjA| = A",
3. b. By part (a), |Adj A| = 0 if and only if |A| = 0. So that either both

matrices are singular, or both are non-singular.

4. a. Determinant of a lower triangular matrix equals to the product of the
diagonal entries. If one of the diagonal entries is zero, the determinant is
zero, and the matrix is not invertible.

4. b. In the adjugate matrix Co1,C3q,... (all cofactors below the main
diagonal) are determinants of triangular matrices, with one of the diagonal
entries zero. It follows that Co; = 0,C3; = 0,..., so that A~ is lower
triangular.

6. Since det A = 0, the matrix A has fewer than n pivots. So that either
the system Az = b is inconsistent, or it has infinitely many solutions, since
there are free variables.

7. Write all three vectors in components, and show that both sides of each
identity contain the same expressions. For Part b. observe that wvector
product is not associative, with a x (b x c) being different from (a x b) x c,
in general. Part c. is rather long.

8. a. A is a block-diagonal matrix, with blocks of dimensions 2 x 2, 2 x 2,
and the scalar 4. Invert each block separately to obtain A~

8. b. The first two components of the vector Ay are obtained by multi-

. 4
plying [ 1 :13 ] [ il ] , and the last three components of the vector Ay are
2

zero. The vector Az has zeros in the first, second and and fifth compo-
nents, while the third and fourth components are calculated by multiplying

0

cos) —sinf 0

. T3, Similarly, Aw = 0

sin 6 cos 0 Ty 0
5:E5

This example shows how the three blocks of A act separately on vectors in
R5. Other block matrices act similarly.

Chapter 4

Section 4.1
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2. a. b. c. d. If a matrix is upper or lower triangular, or diagonal, then its

diagonal entries give the eigenvalues.

2. e. Expand
I 3-\ 2

4 1—/\|:0

to get
B3=MN(1-X)—-8=0,
A —4N—5=0,
A+1)(A=5)=0.
The roots (the eigenvalues) are \y = —1, Ay = 5.

2. g. Expand
—2-X -1 4
3 2—-X =5 |=0
0 0 1—A

in the third row to get
1=XN[(-2=-XN(2-XN+3]=0,

1-M(\-1)=0.

Setting the first factor to zero gives Ay = 1. Setting the second factor to

zero gives o = 1, A3 = —1.

2. h. This example is covered in the text, in Section 4.2.

3. a. The eigenvalues are Ay = —3 and Ay = 3.

To find eigenvectors corresponding to Ay = —3 we need to solve the

system (A +31)z =0, or

9x1+x2=0
9r1+ 22 =0.
Discard the second equation:
9r1 + 22 =0.
Set 9 = 5, to avoid fractions, and then x1 = —1. Obtained an eigenvector

[ _é ], or any of its multiples ¢ [ _é ]
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To find eigenvectors corresponding to A1 = 3 we need to solve the system
(A—=3I)z=0,or

—r1+x29=0
5ZE1 — 5ZE2 =0.

Discard the second equation:
—x1+20=0.

Set o = 1, and then x1 = 1. Obtained an eigenvector [ ], or any of its

1
. 1
multiples ¢ [ 1 ]

3. e. The eigenvalues are 2, —3,0,5, the diagonal entries. The eigenvec-
tors are eq, eo, €3, e4 the coordinate vectors. Indeed, to find eigenvectors
corresponding to A; = 2, one needs to solve (A — 2I)x = 0. Since

0 0 00
0 -5 00
A=2I=1y o 20"
0O 0 0 3
the corresponding system is
0=0
—5:172 =0
—2:173 =0
3:174 =0.

The solution is zo = x3 = x4 = 0, while z1 = ¢, arbitrary. In the vector
form x = cej. Proceed similarly to find other eigenvectors.

3. f. Building on the solution to 3. e., it follows that the eigenvalues of
any n X n diagonal matrix are its diagonal entries. The eigenvectors are
e1, €9, ...,e, the coordinate vectors.

3. g. The characteristic equation is

2—A 1 1
-1 -2-X 1 |=0.
3 3 —A
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Expand in the third row

2—A 1

1 1 2-) 1
3'—2—/\ 1|_3| ~1 1|_A| 1 oA | 7Y
3340 —33-N—-A[2-N\)(=2-)\)+1]=0,
6L — AN =3)=0.
Factor A:

A9—-2H) =0.
The roots (or the eigenvalues) are A = 0 and \ = £3.

4. Sum of the eigenvalues is equal to the trace:
A +A=6.
Given that \; = —1, it follows that Ao = 7, and then

1Al =M Ag = —T.

5. You may begin with, say I Z ; I, which has trace 5, and then choose
the numbers a and b, so that the determinant is 4.

6. a. The eigenvalues of A3 are (—2)3 = =8, 13 = 1, (3)® = &. The
determinant | A3| is their product,

1 1
|43 = (=2) x 1 x — = ——.
64 8

6. b. |A| = —3, the product of its eigenvalues. Then

1
A= —=-2.
A7 ]

7. If A is invertible, so is A~1 (its inverse is A). Hence, A~! cannot have
zero eigenvalues.

8. Since A has zero eigenvalue, |A| = 0 (|A| is the product of eigenvalues).
Then |AB| = |A||B| = 0, therefore AB is not invertible.

9. If Az = Az, then (kA)x = kAz, so that x is an eigenvector of kA, and kA
is the corresponding eigenvalue.

10. a. Since A and A” have identical characteristic polynomials (by the
Hint), all of the eigenvalues are the same.
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11. b. If Az = Az, then
(3A2 + 5Dz = (3N\2 +5)x.

12. b. tr (AB) = En: aijbji = En: bjiaij.

ig=1 ij=1
Here ¢ and j are “dummy” variables of summation. Rename ¢ to be j, and
7 to be i. Then

Z bjiaij = Z bijaji =1tr (BA) .
ij=1 ij=1
12. ¢. Use part (b) of this problem:

tr (AB— BA) =trl,
0=mn,

a contradiction, proving that the equality AB — BA = I is not possible for
any two matrices A and B.

13. Similar matrices have the same eigenvalues. Therefore they have the
same trace, since the trace equals to the sum of eigenvalues.

14. Assume that Az = Az and Bz = px. Then
(AB — BA)x = ABx — BAx = pAz — ABx = p x — Apx = 0.

It follows that x is an eigenvector of AB — BA, corresponding to zero eigen-
value. Hence, |AB — BA| = 0.

15. Add to the last row all other rows. The last row will consist of zeroes,
so that |A — bI| = 0. Then A = b is a root of the characteristic equation, or
an eigenvalue of A.

Section 4.2
2. b. The characteristic equation is

3—-A 3 2
1 1-A -2 |=0.
-3 e

Expand in the third column and simplify the first two terms:

22-3A) +2(A+6) —A[B=A)(1—-))—3]=0,
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—AN+16 —A[(3—=XN)(1—A)—3]=0.
Now expand the expression in the square bracket
—AXN+16 — AN —4)) =0,
—4N—4) =X\ —4) =0,
A—4)(N*+4)=0.

The roots, or the eigenvalues, are A\ = —2i, Ay = 2¢, A3 = 4.
To find the eigenvectors corresponding to A\ = —2i, need to solve
(A+2il)x =0,
with
3+ 2 3 2
A+ 2il = 1 142 =2
-3 -1 2i

We know that the rows of this matrix are linearly dependent. The second row
is not a multiple of the first, therefore the third row is a linear combination
of the first two, although the exact complex coefficients are not easy to find.
Therefore, discard the third equation to obtain

(34 2i)x1 +3z2 + 223 =0
X1 —|—(1—|—2’i)$2—2$3 =0.

Setting z3 = 1 gives

(3 + 2i)xq + 329 = —2
1+ (1+2i)ze=2.

Use Cramer’s rule: z1 = :?H__éi =1, To = _84+—f8ii = —i. The eigenvectors
i
are | —t |, and any of its multiples. The eigenvectors corresponding to
1
—1i
Ao = 2¢ are the complex conjugates: ¢ i
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3. The characteristic polynomial |A — M| is a polynomial of degree n. If n
is odd, this polynomial has at least one real root by the intermediate value
theorem. (If this polynomial tends to —oco as A — —oo, then it tends to oo
as A — 00.)

5. Since A\j + Ay = tr A = 2 and A\ Ay = det(A) = 2, it follows that the
eigenvalues are 1 £+ i.

6. The matrix A has eigenvalues +¢ and +2¢. Hence the size of A is at least
4 x 4.

Section 4.3

2
1. a. A haseigenvalues \; = 3 with an eigenvector [ 1 ] ,and Ao = 2 with an

2 1
]. Use these eigenvectors as columns to get P = [ ]

. 1
elgenvector [ 11

1

Use the eigenvalues to form D = [ 3 (2) ] .

1. b. X = 2 is a double eigenvalue, but it has only one linearly inde-

pendent eigenvector, namely e; = , the first coordinate vector in R2.

1
0
This matrix does not have a full set of eigenvectors, and therefore it is not
diagonalizable.

1. d. A = 2 is a triple eigenvalue, but it has only one linearly independent
1

eigenvector, which is e; = | 0 | € R3. This matrix is not diagonalizable.
0

1. f. Verify that the columns of P, given in the answer, are the eigenvectors
of A, corresponding to the eigenvalues A\ = 0, Ao = 1, and A3 = 3.

1. g. This matrix has a double eigenvalue Ay = Ay = 0 with two linearly

—1 —1
independent eigenvectors 0 [ and 1 |, and eigenvalue A3 = 3 cor-
1 0
1
responding to | 1 |. This matrix is diagonalizable. Use the eigenvectors as
1
-1 -1 1
columns to produce the diagonalizing matrix P = 0 1 1 |. Then
1 0 1
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0 00
D=]1000
0 0 3
1. h. A =1 is an eigenvalue of multiplicity four, but it has only one linearly
1
independent eigenvector, which is e; = 8 € R* This matrix is not
0
diagonalizable.
1. i. The eigenvalues are Ay = a corresponding to an eigenvector (1) , and
. . 1 11
A1 = b corresponding to an eigenvector 11 Hence, P = 0 1 and

a 0
ool 0]
2. We have A = PDP~!, with P and D from the preceding exercise. Then
ko oorkoel |1 1][a 011 =11 [a* bF—d*
A_PDP_[Ol o v ]l0o 1] [0 bF ‘

3. a. Since the eigenvalues are different, the corresponding eigenvectors are
linearly independent, and the matrix is diagonalizable.

3. b. (ﬂ)zzp[‘ﬂ_é \/A_g]zp—lzp[Aé /\S]P‘le.

. . B VA1 0| p1
3. c. Diagonalize B, then B = P [ 0 Vi, P

3. d. Asin 3. a., one shows that C? = A,
4. The eigenvalues of A are 0 and 1. They are different so that A is diago-

nalizable. Write
_ 10 1
amr[) 0]

with an appropriate diagonalizing matrix P and its inverse P~!. Then

k
Ak:P[lo OQ]P‘lzP[é 8]13-1:/1.

5. The eigenvalues of A are —% and % They are different so that A is
diagonalizable. Write

|7

NI= O
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with an appropriate diagonalizing matrix P and its inverse P~!. Then

(-3F 0

Ak:P[ 0 (l)k]P—l—m()P—l:O,
2

as k — oo.

6. The eigenvalues of A are distinct so that A is diagonalizable. Write
0O 00
A=P| 0 -1 0| Pt
0 01

with an appropriate diagonalizing matrix P and its inverse P~'. Then

0" 0 0 0 00
A=pP| 0 (-1)7 0 |Pt=P|0 -1 0|P'=1.
0 0 17 0 0 1

—i 0 0 0

B 0 i 00/,

A=P1 g0 21 0| T
00 01

[ (=) 0 0 0
4 0 Z4 0 0 1 1
A*=P 0 0 (_1)4 0 P =PIP =1
0 o o 14
Al 0 —1
9. Inthe2x2case A=P 0\ P~*. Then
2

q(A) =P [ Q(Sl) q(gz) ] pPl=popPt=0,

since eigenvalues are roots of the characteristic equation ¢(\) = 0.

Chapter 5
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Section 5.1

1. e. Between any two non-parallel vectors there is an acute angle (less than
m/2) and an obtuse angle (greater than 7/2), and these angles add up to
7. Recall also that the range of the arc cosine function is [0, 7], so that arc
cosine of a negative number is an obtuse angle. Here ||y1]| = 3, ||ys]| = 2,
y1-y3 = —1, cosf = —%. The acute angle is m — arccos (—%) ~m—1.738 =
1.403 in radian measure.

1. g. PI’OJmliﬂg = WZ_:EI = —I1, SInce ry - r3 = —9 and ||$1|| = 3.

1. i. The vectors v; and v are orthogonal, hence the projection of v9 on vy
is the zero vector.

2. (z+y) (z—y) =z-z-—z-y+y-z—y-y=|z|>— |yl

3. Vectors x +y and x —y give the diagonals of the parallelogram with sides
x and y. If the sides are equal, ||z|| = ||y||, then

(@ +y) - (@—y) =]zl = |lyl* =0,

and the diagonals are orthogonal. Conversely, if the diagonals are orthogo-
nal, it follows from the same formula that the sides are equal.

4. |z+y|P = (z+y) - (z+y) = z-z+z-y+y-z+y-y=||z||*+2z-y+||y||* =
16 — 2+ 9 = 23.

. e
5. a. Since cosf; = WH;zH

i +a3+- 4
IEdls

cos® 0y + cos® Oy + - - -+ cos 0,, = —1.
5. b. In case n = 2, 03 = § — 61, so that cosfly = sin 6, and the formula

becomes
cos?f; +sin?6h; = 1.
6. Consider the triangle formed by the vectors z, y and x + y for the

geometrical interpretation.

8. Aej equals to the column j of A. Taking the inner product with e; picks
out the element 4 of this column, which is a;;.

9. a. Using the Cauchy-Schwarz inequality

a-b . la-b|
711 = Tare

[lal[1]0]]

|lal[?

|[Projabl| = || [lal| < [lall = [[6]] -

lal]
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9. c. True:

2a-b a-b
= o 2= 2
||2al] |lal|

9. b. Part 9. c. shows that Proj, b does not change if vector a is multiplied
by any number. If this number c is chosen small, then ||Proj . b|| > ||call.

Projoq b

10. Just observe the derivation in the text works for rectangular matrices
as well.

Section 5.2
1. uq - ug = 0, hence the vectors are orthogonal. They are orthonormal
because ||ui|| = 1 and [|ug|| = 1. Two linearly independent vectors form a

basis of R2. To find the coordinates of e; and e; with respect to the basis
B = {uj,us}, form the augmented matrix

[u1 ug 1 e ],

and do Gaussian elimination on the entire long matrix. Obtain e; = %ul +

%ug, and eg = —%Ul—l—%’L@, so that [e;]p = [ %g :|7 lea] B = [ _%g ]

2. Since the vectors u1, ue, ug are orthonormal, can use the following formu-
las to the coordinates with respect to the basis B = {u1, ua, us}:

wy U V3

[wilp= | wi-up | = 0 1,
w1 - u3 0
i w9 - Uq 0
[wao]lp = | wa-up | = 0 1,
| W2 - U3 —%
r 1
€9 Ul \/g
eelp=| e2ouz | =| —F
| €2 U3 0

3. a. Any set of linearly independent vectors form a basis in the subspace
that they span.

3. b. Since the vectors v1 and vy are orthogonal

2/3

. b-wv b-wv 3 0
Proj,, b= 121)1—1— 221)2:—1)1—1——1)2: -1/3
||'U1|| ||U2|| 9 2 2/3
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Since Proj ,, b # b, b does not belong to W.

3. c. Before calculating the coordinates of w, we need to make sure that w
belongs to W (so that w can be expressed through the basis of W). To this
end, calcluate the projection

U1

and hence w € W. The same calculation shows that [w]p = [ -3 ]
3. d. There is a misprint in the book. The correct statement is “ Calculate
Projy, w. Does w belong to W77

Solution. Since w belongs to W (by part c.), Proj,, w = w.

3. e. W is the plane passing through the vectors v; and vs.

f. W is the straight line perpendicular to the plane W.

4. a. Since uq, ug, u3g are orthonormal, they are linearly independent, and
hence they form a basis of their span.
4. b. Proj,, b= (b-u)us + (b-ug)us + (b-uz)ug = —3us + Sus + jus.

5. Let wy,ws, ..., w, be some basis of W. Observe that k < n. A vector
z € R™ belongs to W when wy -2 = 0,ws-2 =0,...,w;-x = 0. So that we

have a system of k equations with n unknowns to determine xz. The matrix

of this homogeneous system has rows w?, wg, .. .,wg. Since the rows are

linearly independent, there are k pivots, and the the solution space (which
is W) has dimension n — k.

6. We will show that every vector in (VVl)l belongs also to W, and con-

versely that any vector in W is in (Wl)l.

Assume that € W. Then z is orthogonal to any vector in W+, by the
definition of W+. Hence, z € (Wl)l.

Conversely, assume that = € (Wl)l. Decompose
x = Proj ,x + z,

with z € W+. Since z is orthogonal to W+, 2 = 0. Then z = Proj , x,
which implies that x € W.
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7. Since the vectors q1, qo, . . ., gr are orthonormal
la|P=a-a=(a1qu+asqe+- - +arq) (a1 q1 +a2qa + - + ak )

=ai+a5+- - +a;.
9. AT is of size n x m, and so AT A is a square n x n matrix. AT A is
symmetric because
T
(ATA)" =ATA.
To show that AT A is invertible, follow the Hint in the book to show that

AT Az = 0 implies that « = 0. This means that AT A has n pivots, and
therefore is invertible.

10. Assume that w1y, we, w3 are linearly dependent, so that xiwq + xows +
r3wg = 0 with some numbers 1, x2, 3 that are not all zero. Then

1wy w1 T1Wi1-wWy T1W1 - W3 1w - w1 I1W1-WwW2 T1W1 - W3
:E1:E2:E3G = | W2 W1 T2W2 - W2 IT2W9 W3 = | QW2 W1 TW2 - W2 IT2W2 - W3
Tr3ws - wip IT3ws-wy IT3W3 - W3 0 0 0

On the second step we added the first and the second row to the third row,
producing a row of zeroes. Indeed,

T1W1 - W1 + Taw2 - W1 + T3wsz - W1 = (:Elwl + xows + :Eg’wg) -wy; =0,

and similarly the other two sums are zero.

Conversely, assume that the Gramian G = 0. Then its columns Cy, Cs, C3
are linearly dependent, so that

(1) 21C1 + 29C5 + x3C5 =0,
with some numbers x1, 22, x3 that are not all zero. The first component of

(1) is
Tiwi - Wy + Towy - wa + 3wy w3z =0,

or
(2) wy - (:El’wl + xows + :Eg’wg) =0.

Express similarly the second and the third components of (1):
(3) wo - (z1w1 + 22w + 3W3) =0,

(4) ws - (:El’wl + xows + :Eg’wg) =0.
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Multiply the equation (2) by x1, the equation (3) by x2, the equation (4) by
r3 and add the results:

(:El’wl + xows + :ngg) . (:nlwl + xowo + :ngg) =0,

so that ||xywi 4+ xows + z3ws|| = 0, or 1wy + Towe + z3w3 = 0, proving
that the vectors wi, wo, w3 are linearly dependent.

The proof is similar for the general case of n vectors.

2 1 3
11. b. Here A= | 1 -2 |, b= 4 |, and a calculation gives the least

2 —1 -5
squares solution

1 116 2 2 1 2 3 0
(AT L gqT L _
7=(404) Ab_50[2 9“1—2 —1] _g [0]’
0
. Ty _
since A*b = [ 0
[0
11. c. p=Az = | 0 |. Hence b is orthogonal to C(A).
| 0

Section 5.3

1
l.a.vy=w1=1| 0 |, and

1

1 1
. 2
U2:w2—w2 'U11: 1 —5 0 = 1
v 1 1 0

Normalize:

1

1 1

Ul = 7V = ——=

[|v1]] 2
0
U9 = 7—/—0V2 = 1
[[oal] .
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3
w9 - V1 2 12
V2 = Wy — = - —
2 2 vy - vy 1 4 6 -1
1
1 2
Vs — w _w3 U1 ws -+ V2 . 1 _§ 1
3o V1 - U1 V2 - V2 2 0 6 -1
-2 0
Normalize: ~ ~
1 1 1
Ul = 7+—U1 = —=
[|val] Ve | 1
L 0 -
T 1]
1 1 0
U2 = 7—F/02 = —=
[|val| Ve | 2
L 1 -
—1
1 1 1
Uy = —— UV = —F—
[[va]| V12 { —1
-3

3
-2
Here v = wy = 1

o

|

1. e. This example is similar to 1.b., only vectors have more components.

o] L[
e
0 16 1
1 —1
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Normalize v, v to obtain uq, us.

1. f. Since the vectors u; and uy form an orthonormal basis of the subspace
W,

Proj ,b = Proj,,b + Proj,,b = (b-ui)us + (b- u2) ug = u; —ug.

1
2. a. The null-space N(A) is spanned by the vectors wy = 8 and wy =
2
)
i . Apply the Gram-Schmidt process to these vectors to produce an or-
0
1 2
thogonal basis for the null-space N(A): u; = = 0 Uy = —= L
g P Ul = \/5 0 y U2 — \/ﬁ 92
2 —1

2. c¢. The null-space N(A) is spanned by the vectors

-1 0 1

w1 = 0 wo = 0 w3 = 1
0]’ 1]’ 0

1 0 0

Apply the Gram-Schmidt process to these vectors to produce an orthogonal
basis for the null-space N(A):

ol [o ] e
uy = L 0 ug = 0 us = L 2 .
S R FE R b
1

3. Any m x n matriz A with linearly independent columns can be factored
as A = QR, where QQ is an m X n matriz with orthonormal columns, and R
18 a square n X n upper triangular matriz. If A is a square n X n matrix, so
is Q.

3. a. |A] = |Q||R]. If |A| # 0, then |R| # 0, so that R is non-singular. The
diagonal entries of R are positive because they contain the magnitudes of
the vectors vy, vo, . . ..
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1 3. b. Multiply A = QR from the left by A”: QTA=Q"QR=Q 'QR=R.

3 4. a. The columns of the matrix A are w; = [ Z ], wy = [ _(1) ] Apply

4+ Gram-Schmidt: v; = wq,

3 1[—16] 4[—4]
Vo =Wy + —w1 = .

25 25| 12] 25| 3
3 —4 3/5 —4/5
5 Hence,u1:%[4],u2:%[ 3].ThenQ:[4§5 345].
6 Also, w1 = duq, and wy = —%ul + %ug, giving R. Alternatively, R =
w1 U w2 Ul . 5 —%
! 0 wo - U o 0 % )
1 1
— 0
s 4. e. The columns of the matrix A are w; = | yw2 =
1 2
-1
9 w3z = _1 . Apply Gram-Schmidt: v; = w1,
-1
0
vo = wy — 2 Uy — 41) L
2 2 1 2 — U1 )
1] 2 4 0
1
10
~1/2
VU3 = w3 L8 0 s 'Uzvz w3 _21)1 _21)2 _ | 712
[|v1][? [|v2][? 4 2 1/2
1/2
1 1
= 0 =
sl
11 Normalize u; = %vl, Ug = %vg, ug = v3. Hence, QQ = _i \/(5) i .
{ i1 1 ‘
2 2 2
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To calculate the matrix R we use the above computations to express
w1, wo, w3 through uq, us, ug. Obtain

wp = v = ||’U1||’LL1 = 2’LL1,

wy = vy + vy = ||v1||ur + ||va]|ug = 2u1 + V2us,

1 1

wsy = —51)1 — Vg + V3 = —§||U1||’LL1 — ||'U2||'LL2 + ||v3||u3 = —uy — \/§UQ + us .
2 2 —1
Hence, R= 1| 0 V2 =2
0 0 1

5. a. @ is orthogonal if and only if Q7 = @~'. Then
T _1\T 7\ —1
@) =(@7) =(@)
It follows that @7 is orthogonal.

b. Since Q7T is orthogonal, the rows of () are orthonormal.

c. Since @ is orthogonal, Q7 = Q. To prove that Q! is orthogonal, need
to show that . .
@) =@ .

Both sides are equal to Q.

6. Since columns of () are unit vectors, the entries Q31 = Q@30 = 0. Similarly,
Q13 = Q23 = 0, because the rows of ) are unit vectors. The third column
cosf —sinf 0
of ) is also a unit vector. Answer. Q = | sinf cosf 0
0 0 +1

7. a. Take inner product of Qx = Ax with another copy of the same formula:
Qxr-Qxr =Xz - Az,

or
Ne-z2=Qr-Qr=2-Q"Qr=2-Q 'Qur=2z=z,
so that A2 = 1, A = £1 (since the eigenvector x # 0).

7. b. The matrix [ (1) _(1) ] is an orthogonal matrix with the eigenvalues

A = +i.
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7. c. If Q is upper triangular then Q! is upper triangular, while Q7 is lower
triangular. Since Q7 = Q', it follows that Q is diagonal. The diagonal
entries of () are £1, because they are eigenvalues of an orthogonal matrix.
-1
8. The eigenspace of A = —2 is spanned by wy; = 0 | and wy =
1
-1
1 |. Applying the Gram-Schmidt process to these vectors produces an
0

—1 —1
orthonormal basis of this eigenspace: u; = % 0 |,us= % 2
—1

9. In case n = 3, this formula for R was developed in the text. Follow the
same derivation.

Section 5.4

0
l.a. T ([ 8 ]) = | 1 |, which is not the zero vector. The transformation
0

T(z) is not linear.

2
1. b. T(e1) =T ([ (1) ]) = | 1 |, giving the first column of A. Similarly,
0
0 —1
T(ea) =T ([ 1 ]) = 1 | gives the second column of A.
0

1. f. This transformation is neither homogeneous nor additive. It is easier
to show that it is not homogeneous. For example, T'(2z) = 4T (x) # 2T (z).

Conclusion. If all components of T'(x) are linear functions of x1, xa, . . ., Ty,
and T'(0) = 0 holds, then T'(z) is a linear transformation. Its matrix A can
be found by inspection (just by looking), similarly to matrices of linear
systems.

o
Il

2.a.T(ep)=T gives the first column of A, and so on.

— o O O
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The other three columns of A are given by T'(e2),T'(e3), T'(e4). The matrix
A can be also found by inspection, as explained in the Conclusion above.

2. b.,c.,d. Try to use the short-cut from the Conclusion above.

-2
2. e. T(er) = —2e; = 0 |, giving the first column of the matrix
0
A. (Indeed, projection of e; on the zjxo-plane leaves e; unchanged, then
reflection with respect to the origin produces —e1, and finally doubling the

0
length gives —2e;.) Similarly, T'(eg) = —2e9 = | —2 |, giving the second
0
column of the matrix A. Since the projection of e3 on the zizo-plane is
0
the zero vector, T'(es) = | 0 |, which gives the third column. Obtain
0
-2 00
A= 0 -2 0
0O 0O
€1
2. f. The projection of x € R3 on the xjxo-plane is | zo |. When this
0

vector is rotated by the angle # counterclockwise, the third component stays
zero, while the first two components are rotated. For x = ey, the projec-

1
tion on the xiz9-plane is | 0 |. The first two components of this vector
0
. 59 . . | cos@ .
represent the vector e; in R*. Its rotation is [ sind ], as was established
cosf
in our discussion of the rotation matrix. It follows that T'(e;) = | sin#6
0
—sinf 0
Similarly, T'(e2) = cosf |. Finally, T'(e3) = 3es = | 0 |. Hence,
0 3

cos —sinf O
A= sinf cosf O
0 0 3
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2 00
2. g. Here A= | 0 —2 0 |. Indeed,
0 0 2
2z 2 00 1
T(:E) = —2:E2 = 0 -2 0 T
2:E3 0 0 2 T3

2. h. Here ||a|| = 2. By (4.2) the projection matrix is

1 1 -1 1 -1
1 4 -1 1] -1 1 -1 1
P—Zaa == ) [1 -1 1 —1}_1 L1 1 1

(Use the first definition of matrix product.)

3. Since
T (Ty(z1 + 2)) = To (T1(21) + Ti(22)) = To (T1(21)) + T2 (Ta(22))
it follows that the composition T (T (x)) is additive. Similarly,
Ty (Thi(cx)) = Ty (cTh(z)) = Tz (Ta(x))

so that the composition T5 (77 (x)) is homogeneous.

4. a. Assume that T'(u) = 0 implies that v = 0. If now T'(u;) = T'(u2), then
T(u1 —uz2) = 0 and hence u; = ug, so that T'(u) is one-to-one. The converse
statement is proved similarly.

4. b. Represent T'(u) = Au with an m x n matrix A. The homogeneous
system Au = 0 has non-trivial solutions. It follows that T(u) = 0 does not
imply that uw = 0. Hence T'(u) is not one-to-one by the part a.

5. If a linear transformation T'(z) : R™ — R"™ has a matrix representation
T(z) = Az, then the range of T'(z) is the same as the column space C(A).
Then T'(z) is onto if and only if C(A) = R™.

5. a. One has rank A = m if and only if C(A) = R™. Indeed, if C(A) is
spanned by m linearly independent vectors, these vectors also span R™.

5. b. If n < m, the matrix A has fewer than m pivots. Hence dimension of
C(A) is less than m, and then C(A) is a proper subspace of R™ (C(A) #
R™).
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6. c. Let T'(z1) = y1, T'(z2) = y2. By linearity of T'(x)
T (c1z1 + com2) = e1T (1) + 2T (z2) = c1y1 + c2y2
for any scalars ¢; and co. It follows that
T~ (e + cayz) = c1a1 + cowa = T (1) + 2T (y2)
proving that T!(y) is linear.
7. a. There are infinitely many vectors that share the same projection.
b. T'(x) is not onto, its range consists of a line.

8. b. The columns of P are T'(e1) and T'(e3).

8. c¢. To see that PP = I, draw a vector z in the first quadrant of xqxo-
plane. Px is obtained by rotating of x followed by reflection with respect
to x1 axis. To get PPx one rotates Px and reflects the result with respect
to x1 axis. This brings one back to x. Hence PPx = Iz for any x, so that
PP =1.

f. As in part c, two reflections and two rotations bring any = € R? back to
the same z.

Section 5.5

1. Matrix AA” is symmetric because
(AAT)" = (AT)" AT = 44T

To see that AAT is positive definite, we shall show that AATz -z > 0 for
any = # 0. So assume that x # 0. We claim that ATz # 0. Indeed, if
ATz =0, then z = (AT)_1 0 = 0, a contradiction. (A” is invertible because
A is.) Conclude:

AATz  x = ATz ATz = [|AT2]2 > 0.
2. a. Since BT = B, and (AT)T =A,
T T TRT (AT\T T
(A"BA) =A"B" (A") =A"BA,

and hence AT BA is symmetric.

3. Eigenvalues of a positive definite matrix are all positive. Determinant is
equal to the product of eigenvalues.

49



10

11

12

13

14

15

16

17

18

19

20

21

4. b. The eigenvalues are \y = —2, with the normalized eigenvector

—2
% [ 1 ], and Ay = 3, with the normalized eigenvector % [ L ] These

2
eigenvectors form an orthonormal set, and they are the columns of the or-
thogonal diagonalizing matrix P.

5. b. Since AT = —A,

AT = |- 4]
Using that |A”| = |A|, and | — A| = (~1)"|A| = —|A| because n is odd,
obtain
Al = 4],
so that |A| = 0.

5. ¢. By part a, the eigenvalues of A are of the form iq, with real q. The
eigenvalues of I + A are 1+14q. Since 1+4q cannot be zero, the matrix I + A
is non-singular.

5. d. To justify that (I — A)(I + A)~! is orthogonal, we show that its
transpose is equal to its inverse. Indeed,

[(T—A)T+A) " =T+ A7)y (T - AT) = (T - A) (I + A),

[(T—A)(I+A)7" ] =T +A)T-A4)"

To see that
(I-A)IT+A)=T+A)T-A)"1,

multiply from both the left and from the right by I — A, to get an equivalent
and correct expression

(I+A)I—A) =(I—A)I+A).

(Both sides are equal to I — A2.)

6. The matrix AT A + I is symmetric because
(ATA+ 1) = (ATA) + 1T = ATA+ 1.
This matrix is positive definite because
(ATA—I—I) v-x= ATAz x4 Tz -z = Az Az + ||z||> = || Az| |2+ ||z||> > 0,

for all z # 0.
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7. Since AT = A, obtain
() = (@)=,
and hence A~! is symmetric.

8. a. Since . .
(win} )" = (uf )" uf =uf

it follows that AT = A.
8. b. Since uZTuj = u; - u; = 0 for i # j, it follows that Au; = \ju,;.
9. a. Aej - e;1 = —5 < 0, therefore A is not positive definite.

10. For any non-zero vector z € R", the vector y = Sx is also non-zero.
Indeed, if y = 0, then z = S~10 = 0, a contradiction. Hence

STASz -z =ASx-Sr=Ay-y >0,
and hence the matrix ST AS is positive definite. (This matrix is symmetric,
since (STAS)" = STAS.)
12. Calculate
T, |19 O
AT = [ 0 144 ] '

We call Ay = 144 and Ao = 9, in order to arrange the singular values o1 =
vA1 =12 and 09 = v/A2 = 3 to be in decreasing order. The corresponding

. 1 e
unit eigenvectors are x1 = [ _(1) ] and zo = [ 0 ] (another possibility is

4 2
i [ (1) ]) Calculate Azy = | 8 |, Azo = | —2 |, and then
8 1
1/3
A
a=""=123,
o1 2/3
2/3
A
qa = ﬂ = —2/3
72 1/3
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2/3

Calculate g3 = q1 X g2 = 1/3 |. All of the pieces are in place for singular
-2/3

value decomposition:

1/3 2/3 2/37[12 0 0 117

A=12/3 -2/3 1/3 0 3 [_1 0] .

2/3  1/3 -2/3 0 0
Section 5.6
2. c¢. Here the —2x129 term gives a1o = ag1 = —1, the 8xoxg term gives
a3 = azo = 4, while 3JE% produces a1 = 3, JE% produces age = 1, —5:13%
produces azs = —5. The quadratic form does not have a z1x3 term, therefore

a3 = asp = 0.
3. b. Here agg = agg = 11. Therefore the coefficient in z3xg is 22.

3. c¢. The purely quadratic terms correspond to the diagonal entries of the
n X n matrix A, while the x;x; terms can be identified with the terms above
the diagonal in A. There a total of % of terms that lie on or above

the diagonal. (Counting such terms from first, second and other columns:
142+34--+n="0H)

3

1 3 ] has an eigenvalue

4. a. The matrix of this quadratic form A = [

-1 .
A1 = 2 with the normalized eigenvector % [ 1 ] , and an eigenvalue Ay =

1 .
4 with the normalized eigenvector % [ 1 ] Using these eigenvectors as

-1 1

11 ] The change

columns, obtain the diagonalizing matrix P = % [

of variables x = Py takes the form

r1 = % (—y1 +v2)
Ty = %(yﬁ-yz) .

Substituting these expressions into our quadratic form 3z? + 4175 + 323,
gives the diagonalized form 2y + 4y3.
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4. b. The matrix of this quadratic form A = [ 9 3

] has an eigenvalue

2
A1 = —1 with the normalized eigenvector % [ 1 ] , and an eigenvalue Ao = 4

. . . -1 . .
with the normalized eigenvector % [ 9 ] Using these eigenvectors as

2 -1
columns, obtain the diagonalizing matrix P = % [ 1 9 ] The change

of variables x = Py takes the form

T = % (2y1 — y2)
Ty = % (y1 4+ 2y2) -

Substituting these expressions into our quadratic form —4z1xo + 373, gives
the diagonalized form —y? + 4y3.

-1 1 1
4. d. The matrix of the quadratic form A = 1 -1 1 | has eigen-
1 ~1
[ —1
values A\{ = Ay = —2 with the eigenspace spanned by wi = 0 | and
1
-1 1
wo = 1 |, and A3 = 1 with the eigenvector wg = | 1 |. The vectors
0 1

wy and we are not orthogonal. Apply the Gram-Schmidt process: v; = w1,

-1
wo - Wy 1 1
Vo = W9 — w) = wy — W1 = = 2
w1 - Wy 2 2 1
~1 ~1
; -1, 1 -2, = 1
Normalize u; = U= 5 0 |,u = 2= 5 f . The vectors
u1 and ug give the first and the second columms of P. Since ws is orthogonal
1
to u1 and wusg, its normanlzation %wg = % 1 | is the third column of P.
1
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Conclude:

1 1 1
V2 NERVE]
S
FIRN LR
V2 V6 V3
The change of variables
1 1 1
x1 y1 V2 V6 V3 U1
Z2 Y2 V6 3 Y2 )
73 s S s R
. . _ 1 1 1 _ 2 1 —
or in coordinates, r1 = — BV~ gYe + 73U T2 = 52 + /3Y3 3 =

1 — dys + oy, produces —292 — 243 + 1.

5. Since A has zero eigenvalue, |A| = 0. It follows that |STAS| = |A||S|? =
0, and hence ST AS also has zero eigenvalue. The multiplicity of zero eigen-
value is the same for A and STAS, since by law of inertia both matrices
have exactly the same number of non-zero eigenvalues.

6. a. If x¢ is an eigenvector corresponding to A = 0, then Azg = Oxg = 0,
and then Azg-x9 = 0.

6. b. Diagonalizing as in 6. a., conclude that all eigenvalues of a positive
semidefinite matrix are nonnegative.

6. c. Since determinant is nonzero, there is no zero eigenvalues. Hence, all
eigenvalues are positive, and the matrix is positive definite.

7. Following the Hint given in the text,

1/ n 2
Ag;.;g:/ <Z$itl_l> dt > 0.
0 \i=1

It remains to rule out the possibility that this integral is zero. This can
happen only if > | x;#71 = 0 for all t € (0, 1), which in turn will require
that all z; = 0. But the vector z, with components x;, is assumed to be
non-zero. Hence, Az -z > 0.

Section 5.7

2. a. Consider the linear combination

1 A1 + 1945 + 2343 = 0.
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In components

1+ 22 +23=0
2x9 + 223 =10
3ZE3:0,

giving 1 = x2 = z3 = 0.

2. b. To express D need to solve
1A + 1949 + x3A3=D.
In components

1+ 2o +2x3=3
2x0 + 223 =4
3:173:3,

giving 1 = x2 = z3 = 1.
2. c. The vectors Aj, As, A3, A4 are linearly independent because
1A + 2940 + 2343 + 2444 = O

implies that x1 = x9 = 3 = 4 = 0. Four linearly independent vectors form
a basis of four dimensional space Msyo.

2. d. The coordinates of F' are the solutions
T1A1 + 90Ag + x3A3 + x4 Ay = F.

In components obtain a system of four equations with four unknowns, which
is solved by back substitution:

1+ 20 +2x3=3

2x0 + 223 =4
3:173 =0
T4 = —7,
givingz1 =1, 20 =2, 23=0, z4 = —7.
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3. b. Obtain
1 16

||x2_1||2:(452_1).@2_1):/ (- 1) dw=1o.

-1

3. c. Similarly
1
||\/§||2:\/§.\/§:/ 2dz =4
-1

2

4. Denote wy = 1, w9 = x + 2, w3 = z“ — x. Then v; = w; =1,

Vg = Wy — m=x+2-2==x,

|| ||2
since wy - v1 = f_ll(:n—|—2) dr =4, and ||v1||? = f_ll 1dx = 2. Then

w3 * V1 w3 - V2 2 1

U3 = w3 — 1= V2 =2" — 3
[[on[? [[va 2 3

1

(22 — 2)dx = %, w3 - vy = f_1($2
||v2||2 = f (2tde = % Standardization produces u; = 1, uy = z, ug =
1

because w3 - v1 = f —z)rdr = -2,

5. a. The transformation I is integration I(p fo t) dt, which is
taking the antiderivative with ¢ = 0. [ is hnear because the 1ntegrat10n is
linear.

Let T'(z) be a linear transformation 7' : V; — V5. Assume that B; =
{wy,we,...,wp} is a basis of Vi, and By = {21, 22, ..., 25} is a basis of V5.
Then the matrix of T'(z) is A = [ [T'(w1)]B, [T (w2)]B, - .- [T (wp)]B, |, of size
s X p, obtained by using the vectors [T'(w;)]p, as its columns. (There is a
misprint in the book on A.)

5. b. The standard basis of P3 is 1,xz, 2%, 23, the standard basis of Py is

1,z, :E2 :E3 2%, Calculate

IM=z=0x14+1xz+0xz>4+0x2®>+0xz?,
0
1
so that the first column of the matrix of I is | 0 |. Proceed similarly with
o]
0

56



~
—~
8
V)
S—
I

23, so that

1 I(z) = 3% so that the second column is %

- 1
o OoONvE O O

4

2 the third column is , and I(z%) = 127, so that the fourth column is

ow—OoO O O

—
| I

} . The matrix of I(x) is

|
|

Bl O O O O

|

0
1
A=10
0
0

o OoONvE O O
ow O O O
RO O O O

4 6. b. Using the standard basis in the vector space of 2 x 2 matrices

T(Ell):E21:0><E11—|—0><E12—|—1XEQl—I—OXEQQ,

1

|
5 so that the first column is { 0 . Similarly
;)

T(Elg):EQQZOXE11+0XE12—|—0XE21+1XEQQ,

|
H

T(FE2) =2F11 =2x E11 40X E12+40 x E9; + 0 X FEag,

6 so that the second column is
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0|
so that the third column is { 0 ,
3

T(E22)22E12:0XE11—|—2XE12—|—0><E21—|—0><E22,

0
so that the fourth column is 3 . The matrix of T'(x) is
0
00 20
0 0 0 2
4= 1 0 00
01 00

7. The transformation is not linear because T'(O) # O.

8. Legendre polynomials are polynomials of degree n, satisfying P,(1) = 1
(there is a misprint in the book on this condition), and orthogonal on (—1,1).

Differentiating n times a polynomial of degree 2n, P, (z) = ﬁ dci—nn [(:E2 - 1)”} ,

indeed produces a polynomial of degree n. Repeated differentiations pro-
duce many terms, but all except one vanish when z = 1. That happens
when all n derivatives “fall” on (:E2 — 1)”, which produces a coefficient of
2™"n!. To prove orthogonality, follow the Hint in the book.

Chapter 6
Section 6.1

4
1. a. The matrix [ _:13 9 ] has an eigenvalue Ay = —1, with the cor-
. . -1 . .
responding eigenvector uE and an eigenvalue Ao = 2, with the corre-

—4
sponding eigenvector [ 1 ] The general solution is
| —1 —4
z(t) = cre t[ 1 ] +C2€2t|: 1 ] .

1. b. The matrix [ _;1 _f ] has an eigenvalue \; = 5, with the corre-

. . -2 . .
sponding eigenvector [ 1 ], and an eigenvalue Ay = 0, with the corre-
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1 .
sponding eigenvector [ 9 ] The general solution is

:n(t):cle“[‘f]ﬂg[;].

1. d. To avoid a tedious calculation of eigenvalues and eigenvectors, one

1 1 1
may enter the matrix A= | 2 2 1 | into Mathematica as the following
4 =2 1

“row of rows”: A ={{1,1,1},{2,2,1},{4,—2,1}}. The command Eigensys-
tem[A] produces the eigenvalues of A, and the corresponding eigenvectors.

-1
The eigenvalues are A\ = —1, corresponding to £ = 0 [, Ao =2, corre-
2
-1 1
sponding to & = | —3 |, and A3 = 3, corresponding to &3 = | 2 |. The
2 | 0
general solution is then
[ —1 -1 1
z(t) = cre”? 0 | +coe® | =3 | e3¢ | 2
2 2 0
0
1. (e) The eigenvalues are A\; = —1, corresponding to &, = | 1 |, Ao = 3,
1
-1 1
corresponding to & = | —1 [, and A3 = 0, corresponding to {3 = | 1
1
The general solution is then
0 -1 1
zt)=cret | 1 |+ | -1 | +e3| 1
1 1 2

1. (f) The eigenvalues are —1, —1, 1, 3. (This matrix is block diagonal.) The
eigenvalue —1 is repeated, but it has two linearly independent eigenvectors
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. The general solution is

o
I
&
=
(oW

— 1

|
—
I

1
0 -1 1 0
0 1 1 0
o —t —t t 3t
z(t) = cre 1 + coe 0 + c3e 0 + cye 5 |
1 0 0 1
1 0
1. . . 0
where o | san eigevector corresponding to A = 1, and 5 corresponds
o) H
to A = 3.
-1
2. (b) The eigenvalues are A\; = 0 with an eigenvector 0 |, A2 =2 with
1
-1 F 0]
an eigenvector 4 |, A3 = 3 with an eigenvector | 1 |. The general
3 | 1
solution is
-1 -1 [0 ]
z(t) = 0 | + cpe?t 4 | +ege® |1
1 3 1
The initial condition implies
-1 -1 0 0
z(0) =1 0| +e 4 | 4es| 1 | =] -1
1 3 1
Solving this system of three equations, ¢ = 1, co = —1, c3 = 3.

3. (a) The first component of the vector m(t+hg_m(t) is ml(th)L_ml(t) — /(t).

3. (b) Differentiate the first component of z(t), and then other components.

5. (a) The matrix of this system has a double eigenvalue \; = Ay = —1, and

only one linearly independent eigenvector £ = [ ] . We have one solution:

2
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z(t) = e [ ; ] . The system (A— X\ I)n =&, or (A+1)n =&, to determine
the generalized eigenvector 7 = [ Zl ] takes the form
2

2m—m2=1
dm —2mp = 2.
Discard the second equation, then set n; = 0 in the first equation, to obtain

a generalized eigenvector 1 = _(1) ] . The general solution is then

o=ec[ L ree ([ 2] ] 2]).

5. (b) Using the initial conditions

$<0>=cl[§]+62[_2]:[_”.

Then ¢ =1, ¢g = 3.

6. Expanding |A — A\I| in the second row shows that the characteristic equa-
tion has a factor (—1 — \), and hence A = —1 is an eigenvalue. The second
factor is a cubic polynomial, for which we guess a root As = —1. Then the
cubic can be factored as (A+1) times a quadratic polynomial. The quadratic
polynomial has roots A3 = —2 and Ay = —4. Calculation shows that the
repeated eigenvalue A = —1 has only one linearly independent eigenvector

0|
£ = { 0 J If n denotes the corresponding generalized eigenvector, and

&3, &4 are eigenvectors correponding to As, A4 respectively, then the general
solution is

z(t) = cre '€+ coe™ (€ + ) + cze” P + cae ey

Using the L’Hospital rule, z(t) — 0 as t — oo. Observe that the exact
knowledge of vectors n, &3, €4 is not needed here.

7. The eigenvalues satisfy A\j Ao = det A = —a®> —2 < 0, \{ + Ao = trA = 0.
Hence the eigenvalues are non-zero, and have opposite sign.

8. (A —\I)(2n) = 2£ # &, since the eigenvector £ # 0.
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9. Follows using that (A — AI)(c€) = 0.

10. If AT = A, A¢ = X\, and 7 is a generalized eigenvector satisfying
(A—Xl)n=¢&, then

E-E=A-Xnp-E=n- (AT = XDé=n- (A —Xx)=1n-0=0,

and hence £ = 0, which is not possible for an eigenvector. It follows that a
generalized eigenvector 1 does not exist.

If A is symmetric there it has a complete set of eigenvectors, providing
the general solution of 2/ = Axz. Conclusion: symmetric matrices do not
have generalized eigenvectors, but they are not needed for solving ' = Ax.

Section 6.2

1. a. The eigenvalues are A = 1 & 4. An eigenvector corresponding to

A=1+1is [ i ] , leading to a complex valued solution

' ; —sint , t
ezt[ ]:(cost—l—z’sint)[i]:[ j(l)rslt]—'_z[:iojt]'

Since both the real and the imaginary parts of the complex valued solution
are also solutions, the general solution of our system is

:E(t)—c —sint L cost
- cost 21 sint |-

2. The general solution is

—_ .

2(t) = 1T el 717200,
where &1, &9 the corresponding complex-valued eigenvectors. Observe that

eI — o=t — = (0o 2t + isin2t) — 0,

o(—1-20)t

as t — oo. Similarly, — 0, t — oo. Hence z(t) tends to zero.

3. The solution is
cost —sint a
z(t) = [ sint  cost ] [ I6; ]’
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which is rotation of the initial vector [ g ] .

5. The eigenvalues of this system satisfy
M+ A=tr(A)=a+d<0,

Mo =det(A) =ad—bc>0.

If the eigenvalues are real, they are of the same sign by the second formula,
and therefore they are both negative by the first formula. If the eigenvalues
are complex, p + iq, their real part is negative, because A1 + Ay = 2p < 0.
In either case, solution tends to zero as t — oo.

6. (a) The characteristic polynomial of a 3 x 3 matrix is a cubic, and
hence one of its roots is real. That root A\ must be zero, in order for e to
remain bounded, as t — Foo. The root A = 0 must be simple, otherwise
the solution contains an unbounded factor of t. The other two roots must
be purely imaginary A = +iq, for the corresponding solutions to remain
bounded as t — 4o00. Then the general solution has the form

z(t) = c1&1 + cacosqt & + c3singt &3,

where &1, & and &3 are constant, real valued three dimensional vectors. The
solution is periodic, of period 27“.

6. (b) Observe that aj; = —a;;, and then a;; = 0 for any skew-symmetric ma-
0 p ¢

trix. Then any 3 x 3 skew-symmetric matrix is of the form | —p 0 r |,
—q —1r 0

with some real p, ¢ and r. Compute the eigenvalues A = 0, A = &1 \/p2 + ¢2 + r2.

6. (c) Use part (a) to show that all solutions have period \/ﬁ.

7. We are given that the eigenvalues of A satisfy A;{A2 < 0, hence we may
assume that Ay < 0 and Ao > 0. The general solution is

z(t) = c1eME) + ey,

where &1, & the corresponding eigenvectors. The numbers c¢1, co depend on
the initial conditions. If co # 0, the solution tends to infinity, and if co = 0,
x(t) — 0 as t — oo. There are no periodic solutions.

Section 6.3
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1 1. a. Here A2=0, A3=0,...,A" = O for all n > 2. Hence

e RN ]

0 1 10 0 0 1
2t 0 0]
2> 1. ¢. The matrix Dt = 0 0 0 | is diagonal. Just exponentiate the
0 0 =3t
3 diagonal elements:
e 0 0
Pr=1 01 0
0 0 e
0 01
s 1.d. Here A2=10 0 0|,A%=0,...,A" = O for all n > 3. Hence
0 00
1 0 ¢t 0 0 0 32 1t 3t
eAt:I+At+§A2t2:I+ 00 t|+|{00 0 |=|01 t
0 0O 00 O 0 0 1
5 1. e. Write
A=-2I+J,
0 10
6 where J=| 0 0 1 |. Using 1. d.
0 00

1t
2

QAL _ 2Tt =2tI It =2t Jt 2t | g
0 0 1

1. f. The matrix A is a block matrix, consisting of a 2 x 2 and 1 x 1 blocks.
s Calculate the exponentials of each block separately.

o 2. Since the matrices A and —A commute
ele A=A 4=0=17.

10 Hence, e=4 is the inverse of e4.

-

1 3. Since the matrices A and A commute

(eA)2 — eAeA = 24
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and similarly (eA)m = ¢4 for any integer m.
5. a. If Ax = Ax, then

o o

Ak AF
A _ N A
GJE—Z—! = Tr=ee.

k=0 k=0

It follows that e is an eigenvalue of e? corresponding to an eigenvector .

5. b. If A1, Ao, ..., A, are the eigenvalues of A, then e*,e?2, ... e* are the
eigenvalues of e, as follows by 5. a. Then

det eA — e)\le)\g . 'e)\n — e>\1+>\2+'--+>\n — etrA )

5. ¢. By 5. b., dete? > 0, and hence e is non-singular.

6. The matrix e

the matrix e?/?

is symmetric, as a sum of symmetric matrices. Similarly,
is symmetric. Then for any = # 0,

T
eAr - x =M g = My e 2y = A Pr M2 = e 2|2 > 0,

because in case e/2z = 0, it follows that = 0, a contradiction. (Recall
that e/2 is non-singular, by the exercise 5. c.)

[0 1 00 [0 0 1 0_|
. 100 10 s |0 0 01 3
8. b. With K = 00 0 1 , calculate K= = 000 0 , K° =
0 00O 0000
[0 00 1_|
0 0O 4 . m
= 0. = >
000 0 , K O. Since K O, for m > 4,
0000
sinKt:Kt—%th?’.
11. By the definition, et = Zﬁ Apply the triangle inequality to a

k=0
partial sum (the triangle inequality holds for arbitrary number of terms)

A X jAlE & Ak
i _ Al
12 Zrll=> <2 ="
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The numerical sequence {|| Zévzo ATI,CH} converges to ||ed|| as N — oo, and

all terms of this sequence are less than ell4ll. Tt follows that

||eA|| < ellAll,
Section 6.4
1. d. The matrix of this system has an eigenvalue Ay = —1 with correspond-
—1
ing eigenvector 0 [, and a repeated eigenvalue Ao = A3 = 1 with with
1
1
two linearly independent eigenvectors | 0 |, | 1 |. The general solution
1
-1 1 0
z(t)=cie" | 0| +cae' | 0| +eczel | 1
1 1 0

Using the initial conditions, obtain ¢; = 1, co = 2, ¢35 = 2. The answer in
the book is wrong (the second and the third components are switched in the
book).

SR

2. a. The solution of this system with the initial condition z(0) = 0

is z(t) = 16(.)8 2t , and it gives the first column of the fundamental
5 sin 2t
solution matrix X (¢). The solution with the initial condition z(0) = (1)

N
3. a. Using that AT = —A, calculate
d

prid
so that x(t) - y(t) is independent of ¢, and hence z(t) - y(t) = z(0) - y(0).

] , and it gives the second column of X (¢).

(t)-y(t) = 2'(t)-y(t) +a(t) y'(t) = Av-y+a- Ay =2 ATy +a- Ay =0,

3. b. Letting y(t) = x(t) in the last formula, conclude that ||z(t)||?> =
[|z(0)]|? for all t.

3. ¢. Column i of the fundamental matrix is the solution of ' = A(t)z,
x(0) = e;. Column j of the fundamental matrix is the solution of y' = A(t)y,
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y(0) = e;. Since the coordinate vectors e; and e; are orthogonal, so are z(t)
and y(t) for all ¢, by 3. a. All columns of the fundamental matrix are of
unit length, by 3. b. Hence, the fundamental matrix is orthogonal.

7. a. Write Jy = A + J, with the matrix J satisfying J? = O. Then the
binomial formula simplifies:

%%:Ql+ﬂ":XU+nV4J+z@§iz

7. b. By L’Hospital rule, if |A\| < 1, then nA\" — 0 as n — oco. It follows
that all elements of the matrix tend to zero, J' — O as n — oc.

AVRE

7. ¢. To see that lim, o, A" = O, write A in the Jordan normal form, and
apply part 7. b. to each block. Then

(I—A)ZAk:I—A"+1—>I, as n — oo,
k=0

so that I — A is the inverse matrix of 33, A*.

Section 6.5

1. a. Search for a particular solution in the form x1(t) = Ae?!, x5(t) = Be*.
Substitution into the system gives (after dividing both equations by e??)

2A=B+2

2B=A—1.

o2t
0
ticular solution. The general solution is the sum of this particular solution
and the general solution of the corresponding homogeneous system

110 |™

| -1 1
clet[ 1:|—|—Cget|:1:|.

1. b. Search for a particular solution in the form z (t) = Ae?!, z9(t) = Be?:.
Substitution into the system gives A = %, B = % Add this particular
solution and the general solution of the corresponding homogeneous system.

Solve this system: A =1, B = 0. It follows that Y (¢) = is a par-

which is
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2. a. Search for a particular solution in the form Y (t) = [ ] , and calcu-

B

1 . .
late Y (t) = [ 1 ] . The general solution of the corresponding homogeneous

system

2 (t) = [ i :2)) ] (1)
1
2

—1
is z(t) = cie? [ 1 ] + coet [ ] The general solution of the non-

homogeneous system is

x(t) = [ _i ] +c1e‘t[_1 ] +ch"5[;] .

Use the initial conditions to calculate ¢; = ¢cg =

1

g.
6. b. Multiplication of block matrices gives JJ = —I, so that —J is the
inverse of .J.

6. c. Let J, denote the determinant of 2n x 2n matrix J. Expanding J first
in the first row, and then in the last row, gives

Jo= (=11 (=1)> 1 (=1) - Ty = Jp1 s

so that .J, is independent of n. Since

it follows that J, = 1, for all n.

Section 6.6

1. The Fibonacci numbers are: odd,odd,even,odd,odd,even,odd,odd,even
and so on. Every third number is even.

2. The second term of the Binet’s formula tends to zero as n — oo. Hence
Fibonacci numbers are approximated by a geometric progression given by
the first term of Binet’s formula, for large n.

3. Search for solution in the form x,, = ™. Substitution into the difference
equation gives
P = 3rnTt - 2pnT2
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Division by "2 gives a quadratic equation
r2—3r+2=0

with roots r; = 1, 7o = 3. The general solution of the difference equation is
Ty, = c1 + 23"

From the initial conditions ¢; = ¢y = 1.

4. This approach to deriving Binet’s formula is explained in the book of G.
Strang [16].

6. a. Since the columns of A are linearly dependent, it follows that the
determinant of A is zero, so that A = 0 is one of the eigenvalues.

6. c. Since A is Markov matrix, one of its eigenvalues is A = 1. The third
eigenvalue is A = %, since the sum of eigenvalues is equal to the trace of A.

8. a. The entry 7 of Ax is Z;’L=1 a;jx; and it is positive because all a;; are
positive while all x; are non-negative with at least one of them positive.

8. b. Look for all numbers ¢ > 0 such that Az > tx for some vector z > 0,
x # 0. The largest possible value of such t’s we call t,,,x. We claim that

Ar = thaxT,
so that t,ax is an eigenvalue of A. Assume, on the contrary, that
Az > thaxr, not an equality.

By part a:
A (Ax — tyaxz) > 0,
giving
A%z >t A

Denoting Az = y > 0 obtain
Ay > tmaxy -
We can then choose ¢ > 0 small so that
Ay > (tmax + €)Y,

contradicting the maximality of ¢.x, proving that ¢, is an eigenvalue of
A.
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Using part a again, the corresponding eigenvector satisfies z > 0.

We claim that any other eigenvalue X satisfies
IAl < tmax -

Begin with
Az = Az,

and use the Cauchy-Schwarz inequality:
[Allz] = [Az] < [A]|z] = Alz].
(Since A > 0, |A] = A.) Hence
Alz| > |M||z], |z| >0.

It follows that || is one of the eligible ¢’s, and hence it cannot exceed tpax.

To prove that the eigenvalue ¢,y is simple, one needs a strict inequality
IA| < tmax. Please find this remaining piece on the internet.

9. The component i of Az is 2?21 a;jxrj. The sum of all entries of Ax

n n n n n n n
Y D agui =Y Y agui =Yy xpy ag =Yy,
j=1 i=1 J=1

i=1 j=1 j=1i=1

after switching the order of summation, using that ;" | a;; = 1 by definition
of Markov matrix. (Elements of a matrix can be added up by calculating
either column totals first, or calculating row totals first.)

10. a. Other terms in A™x tend to zero as n — oo, by using (6.4) in the
text.

11. The matrix A is diagonally dominant. The second and the third Gersh-
gorin’s circles are identical.

Chapter 7

Section 7.1

Sylvester’s criterion provides a third way to determine if a symmetric
matrix is positive definite (in addition to all eigenvalues being positive, and
to Az - x > 0 holding for all x # 0).
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1. a. Since A is positive definite, Ae; - e; > 0. Then a; = Ae; - e; > 0.

M

1. b. Denote B = [ @22 (24 ] and z = [ 2 ] Then foranyz = | 0 | €
Gq2 Q44 T4
Ty
0

RS, by the positive difiniteness of A conclude:
0<Ax-x=Bz-=z.

Since z is an arbitrary vector in R?, it follows that B is positive definite.
2. a. Here ag3 < 0, and hence Aes - e3 = agz < 0.
2. b. Here azz = 0, and hence Aes - ez = 0.

2. ¢. The matrix is not symmetric (the notion of positive definiteness applies
only to symmetric matrices).

2. d. The second principal minor is zero. Use Sylvester’s criterion to
conclude that the matrix is not is positive definite.

3. d. Here Ax -z = 422 + 4dx129 + 23 = (214 —|—:E2)2 >0, but Az -z =0if
T9 = 2x1. A is positive semidefinite.

4. a. The first Gershgorin’s circle is centered at the point = 4 on the
z-axis of the complex plane. Its radius is 3, and so it does not include the
origin, and stays in the right half of the complex plane. Similarly, with
other Gershgorin’s circles. Hence all eigenvalues lie in the right half of the
complex plane. Since A is symmetric, all of its eigenvalues are real, and
hence positive. Then A is positive definite.

5. a. To find the critical points one needs to solve the system

fr=3224+30y=0
fy =30z + 6y =0
f-=22=0.

From the third equation z = 0. From the second equation express y = —5x,
and use this in the first equation to obtain

22 =50z =0.
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Obtain # = 0 and x = 50, so that the critical points are (0,0,0) and
(50, —250, 0). Calculate the Hessian at (0,0, 0)

0 30 0
H(0,0,00=1]30 6 0
0 0 2

It has one negative eigenvalue A\ = 3 — 34/101, and two positive eigenvalues
A2 =3+ 3v101 and A3 = 2. One has a saddle point at (0,0,0). Calculate
the Hessian at (50, —250,0)

300 30 O
H (50,—-250,0)=| 30 6 O
0 0 2

By Sylvester’s criterion, this matrix is positive definite, and hence (50, —250, 0)
is a point of minimum.

5. b. To find the critical points one needs to solve the system

fr="2cx+y+22=0
fy=x—4y=20
f:=2x—-22=0.
This linear homogeneous system has only the trivial solution x =y = z = 0,

so that (0,0, 0) is the only critical point. Calculate the Hessian at the critical
point:

—2 1 2
H(0,0,00=| 1 —4 0
2 0 -2

Mathematica approximately calculates the eigenvalues. Turns out that one
of the eigenvalues is negative and two are positive, and hence (0,0, 0) is a
saddle point.

Without computer assistance, one may proceed as follows. By Sylvester’s
criterion H (0,0, 0) is not positive definite, and not negative definite, so that
it cannot have all eigenvalues of the same sign. This matrix is non-singular,
so that it cannot have a zero eigenvalue. Hence, eigenvalues are non-zero,
and of different signs. It follows that (0,0, 0) is a saddle point.
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5. c. Similarly to 5. b., (0,0,0) is the only critical point. Calculate the
Hessian at the critical point:

—2 1 2
H(0,0,00=| 1 —4 0
2 0 -8

By Sylvester’s criterion H (0, 0, 0) is negative definite (—H (0, 0, 0) is positive
definite), and hence (0,0, 0) is a point of maximum.

5. e. To find the critical points one needs to solve the system

fo=2— 2— =0
fy= y = z yz =0
f=%-%=0.
From the first equation £ = £2. Using this relation, conclude from the

second equation that £ = 2. Then the second equation implies that § = +1.
The third equation implies that § = 1. Then the third equation gives
z = 1. Assume first that z = 1. Then the second equation takes the form
2 2 0
v
Then y = +1, and in view of the third equation, y = 1. Since £ = 2, obtain
= % So that (%, 1, 1) is a critical point. Since f(x,y, z) is an odd function,
it follows that (—%, -1, —1) is also a critical point. Calculate the Hessian

t(3,1,1)

) 8 —4 0
H<§,1,1>: —4 6 -4
0 —4 12

By Sylvester’s criterion, this matrix is positive definite, and hence (%, 1, 1)
is a point of minimum. Since f(z,y, 2) is an odd function, it follows that

(—%, -1, —1) is a point of maximum.

5. f. Set the first partials to zero. From

Z2
f{El — ) - 0
3y
obtain x9 = 3. From
1 T3
for = — = 2 =0
T €Ty
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obtain z3 = i—f = z3. Continue, to get z; = 2%, i = 2,3,...,n. (The

last relation, z,, = 7 follows from f, , = 0.) Using these relations in
f(x1,29,...,2,) obtain that

f=f(:v1)=n:v1+$2—?.

1
at any critical point. This function has a global minimum at xz; = 2»+1,

6. Set the first partials to zero

cosz —cos(x+y+2)=0
cosy —cos(z+y+2)=0
cosz—cos(z+y+2)=0.

It follows that
COST = COSY = COS 2 .

Since cos z is decreasing on (0, 7), conclude that

r=y=z,
and then
cos3x —cosz = 0.
Using the trig identity cosa — cosf3 = —2sin M sin Tﬁ, write the last

equation as
—2sin2zsinz = 0.

r = 7 is the only solution inside (0,7). Hence the function f(z,y
s
2

z) =

)

sinz +siny + sin z —sin (z + y + 2) has only one critical point, (5,%,%), on
(0, ).

Calculate the Hessian at the critical point

S -2 -1 -1
H(ppg)=| 1 21
-1 -1 -2

This matrix is negative definite, since its negative

— =N
[ R

1
1 | is positive
2

definite by Sylvester’s criterion. Hence, (%, 5 %) is a point of maximum of

flz,y, 2).
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&

b. The Hessian is negative definite.

c. The Hessian is indefinite.

. Apply Ro — 3R;:
1 2 N 1 2
3 4 0o -2 |°

So that L = [ :13 (1) ] Factor:

o -le 2]l T

The first factor on the right is D, and the second one is U. (The A =
LDU decomposition involves “a new U”, when compared with the A = LU
decomposition.)

SO S

&

9. Calculate the A = LDU decomposition, and just observe that U = L7,
since the matrix A is symmetric.

Section 7.2
1. a. The Jacobian

| ug(0,0) uy(0,0) | | O 0|
TO0 =1 0.0) w0y | =0 1|7%
The implicit function theorem does not apply.
1. b. The Jacobian
| we(0,1) uy(0,1) | _ |0 2|
TOD=1 4 0.1) w01 |~|1 1|7 270
The implicit function theorem applies.
1. ¢. The Jacobian
— uiﬂ(lvo) ’Lby(l,()) _ 30 —
T =1 (10 0y(1,0) | 0 e =3e70.

The implicit function theorem applies.
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2. a. To show that 1,1 components are the same on the left and on the
right, one needs
Tp = TyUp + TyUp

which follows by the multivariable chain rule. Similarly, the other compo-
nents are equal.

3. b. Make a change of variables x = au, y = bv, z = cw. Instead of using
the Jacobian, one may simply write dr = a du, dy = bdv, dz = cdw. Then

2 2 2
/// \/1—$—2—y—2—z—2dmdydz:abc/// V1—u2 — 0?2 — w2 dudvdw,
v a b C B

where B is the unit ball u? + v% 4+ w? < 1. Use spherical coordinates in the
last integral to obtain

2w pmopl 1 2
abc/ // V1 — p2p?sin g dpdpdf = 47Tabc/ V1—p2p%dp = 7Tzabc.
o JoJo 0

(The integral fol 1 — p? p? dp is computed by a trig substitution z = sin 6.)

2. ¢. The volume is given by [[] fV dxdydz. Proceeding as in part b, obtain

2m pmopl 4
// dxdydz = abc/ / / p*sin p dpdpdd = —mabe.
v o JoJo 3

Section 7.3

1. a. Here x = 2cost, y = 3sint, or

2. With v(t) = (z(¢),y(t),0), calcullate Y'(t) = (2/(t),y'(¢),0), v'(t) =
(@ (8). /0,00, [0 = (2 + 9) . and

() x"(t) = (0,0,2(t)y"(t) — 2" (t)y' (1)) -
By Theorem 7.3.2

_ @) — :U“(t)y;(t)l '

(:Elz(t) + y/2(t)) 2

K(t)
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1. b. If ¢ is a polar angle, then ¢t =
gives the point (2 cos 7, 3sin %) that is not on the line y = x.

3. a. Since s is arc-length, 2/%(s) +y'*(s) = 1 for all s. Then use the formula

from exercise 2.

4. With~(x) = (z, f(z),0), calculatey'(z) = (1, f'(x),0), 7" (x) = (0, f"(x),0),

)
1
2

W@l = (14 )", and

By Theorem 7.3.2

s

4

7'(@) x 7"(2) = (0,0, f()) .

k(z) =

6. a. Write the unit sphere as

" ()|

3 -
2

(1+ f2(x))
5. d. Use the definitions of tanh v and sech u, and 5. b.

2 4+y?=1-22=1—singp.

When ¢ = 7, obtain the circle

which is a circle on the plane z =

SE

Z is the line y = . On the torus, t =

s

4

6. b. Once the curve o(6, 7) has been identified as a circle, there is no need
for integration to find its length. It is 27r = 2774 =/27.

6. c. The point on the sphere is o(%,%) =

(—sinfsin g, cosfsin @, 0), oo( 5, 5) =

oo(5.5) = (33,

N = oy(

T T
ZvZ) Xaw(zaz)—<

(

(%’ %, %) Calculate oy

1 1 _
3:3:0),05 =

1

1

(cos 8 cos p, sinf cos p, — sin ),

).

—%) The normal to the tangent plane is

1

_ﬁv _ﬁv _5

The equation of the tangent plane at the point (%, %, %) is

1
2V2

1

(5’3—5)

1
2v2

(y—5)—
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> Section 7.4

3 1. a. Here z =u— v, y =u+ v, so that
P24yt =u—-v)>2+ (u+v)?=20?+0?) =2z.

4 Calculate
O-U = (17 17211/) )

Oy :(—1,1,2’0),
E=o0y-0,=2+4u?,
F=0, 0, =4uv,

G =0y 0y =2+ 40>,

2

o 1. e. Here 22 + 3% = u? = 22. Calculate

oy = (cosv,sinv, 1) ,
10
oy = (—usinv, ucosv,0) ,

11

E=0y -0,=2,
12

F=0y-0,=0,
13

G=o0, 0, =1u>.

12 2. The projection of this curve on the zy-plane is

224 ==t

5 Write this projection in polar coordinates:

[

—

16 which is an expanding spiral. Since z = u = €?!, the curve is climbing. The
17 curve is somewhat similar to helix (although expanding and climbing fast).

18

19 Write this curve as

v(t) = (e* cost, e sint, e*').
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Calculate ||Y/(t)|| = 3e%, and then the length is

2 2 3
/ mwmﬁ5/3ﬁﬁ:—wﬂ4y
0 0 2

or = (1,0, fa)

oy = (0,1, fy) ,
E=0, 0, =1+ f%,
F=oy-0y=fafy,
Gzay'ayzl—l—fj.

3. Calculate

4. The surface is z = 22 + y? + 2. Write this surface as
Z:($—1)2+y2—1,

a paraboloid with the vertex at the point (1,0, —1).

Calculate
oy = (1,0,2u+2) ,
o, = (0,1, 2v),
E=0, 0y,=1+4(u+1)?,
F=0y,-0,=4(u+1)v,
G=o0, 0p=1+ 4>,
Then

4(u+1)v
VI 4+ D1+ 402)

Here 6 is the angle between the coordinate curves at the point o(u,v).

cosf =

aq b1
5. a. Write the vectors in components: a = | as |, b= | b |, c =
as bs

C1 d1
ca |,d= | do |. Then both sides of the vector identity are equal to
3 ds

a2b162d1 — a1b262d1 + a3b163d1 — a1b363d1 — a2b161d2 + a1b261d2 + (13()263(12 —
agbzczda — azbicidz + arbscids — agbacads + azbzcads.
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I used Mathematica.

5. d. Since the surface is regular, E' = oy, - 0, > 0 (otherwise the vectors o,
and o, are linearly dependent). By part ¢, EG — F? > 0. By Sylverster’s

criterion, the matrix [ r G ] of the first fundamental form is positive
definite.

6. a. Consider the surface o(u,v) = (z(u,v),y(u,v),0). Calculate

oy = (zy(u,v), yu(u,v),0),

oy = (@y(u,v), yo(u, v), 0)
E=0, 0,=72+y2,
G=0, 0,=122+y2,

F =040y = 2%y + Yuy

EG — F? = (22 + y2) (22 + 12) — (200 + Yuin)? = (@Tulp — Yuy)?
ox T
VEG — F? = |$uyv yu$v| = | % | )
ou

the absolute value of the Jacobian. (Recall that v/22 = |z|.) Then the area
of the region R is

//D\/mdudv://D|

7. a. Write o(u(t),v(t)) = (x(u(t), v(t)), y(u(t),v(t)), 2(u(t), v(t))). The
derivative of the vector function o(u(t),v(t)) is obtained by differentiation
of each component, for which the “usual chain rule” applies.

Q

NS

ov

Q>|Q>Q>|Q>
SIS IS

oz
% ||dudv.

Section 7.5
1. a. With o(u,v) = (f(u) cosv, f(u)sinv, g(u)), calculate
0u(u,v) = (/(w) cosv, f'(u) sinv, g'(u))
ov(u,v) = (—f(u) sinv, f(u) cosv,0),
ouu(u,v) = (f"(u )COSU fu )Sinv g"(w),
ous(u,v) = (= f'(u) sinv, f'(u) cosv,0),

ow(u,v) = (— ( ) cosv, —f(u) sinv, 0),
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o, 0) X 0u(u,0) = (= (w)g (u) cosv, —f (u)g'(w) sinv, f(u) f'(u)).
(e, ) oo, )12 = £2(u) (F2(w) + 9 (w)) = F2(w),

N = O'u(’LL,'U) X O'U(’LL,’U)

[ow(u, v) x ou(u,v)]| (—g'(w) cosv, —¢'(u) sinv, f'(u)),

L =oyu(u,v) N = f'g" = f"q,
M = oyy(u,v)- N =0,
N = oy (u,v)-N = fg'.
The second fundamental form is ( g’ — f”g/) du® + fq'dv?.
2. a. The characteristic equation |A — AB| = 0 takes the form

—1—-3A 0] 0
0 2—4x|
or
(1+3\N)(1—-2)\)=0.
The roots (the generalized eigenvalues) are A\ = —% and Ay = %
The generalized eigenvectors corresponding to A\; = —% are solutions of

1

The first equation of this system is 0 = 0, and it is discarded. The second
equation becomes

?IEQZO.

Then x9 = 0, while z; is arbitrary. The generalized eigenvectors correspond-

ing to A\ = —% are multiples of [ (1) ]

The generalized eigenvectors corresponding to Ao = % are solutions of

1

The second equation of this system is 0 = 0, and it is discarded. The first

equation becomes

)
—51171 =0.
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Then x1 = 0, while x4 is arbitrary. The generalized eigenvectors correspond-
ing to Ay = % are multiples of [ (1) ]

In general if the matrices A and B are both diagonal, of the form A =

a0 , B= b 0 , the characteristic equation |A — AB| = 0 takes
0 asp 0 by

the form

al — /\b1 0

0 ag — /\b2
(a1 - /\bl)(ag — /\bg) =0.

=0,

Its roots, the generalized eigenvalues, are A\; = z—i, Ay = z—j. The corre-
sponding generalized eigenvectors are the coordinate vectors e; and es.

2. b. The characteristic equation |A — AB| = 0 takes the form

1—2\ 2-2AX

9 x 1-2x |0

(1-2))2—(2-)N)?=0,

302 -1)=0.
The roots (the generalized eigenvalues) are \; = —1 and Ay = 1. The
generalized eigenvectors corresponding to A\; = —1 are solutions of
(A+B)x =0,

-1
which are multiples of the vector [ 1 ] The generalized eigenvectors

corresponding to Ay = 1 are solutions of

(A-—B)x =0,

1
which are multiples of the vector [ 1 ] .

3. a. Obtain

B( x > x _BZE':E_l
VBr-xz) Bx-x Br-x '

4. Multiply by B and divide by A:

1
BA_IZI? = XZE .
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Hence, % is an eigenvalue of BA™!.

Section 7.6

1. If A and B are the matrices of the second and the first fundamental forms
respectively, then the characteristic equation |A — kB| = 0 takes the form

L—-kFE M—-EkF

M—kF N-kG | =0

(L—kE)(N —kG) — (M —kF)* =0,
(EG - F*)k* + (~GL+2FM — EN)k+ LN — M? =0.
If k1 and ko are roots of the last quadratic equation, it can be factored as
(EG — F?) (k—ky)(k— k) =0.
Compare the constant terms of the last two equations
(EG — F?) kiky = LN — M?.

LN—M?

EG—FZ

2. For the torus o(6, p) = ((a + bcosh) cos ¢, (a + bcosf) sin p, bsinf), cal-
culate

It follows that the Gaussian curvature satisfies K = k1ky =

09(0, ) = (—bsinf cos p, —bsinfsin p, bcosh) ,
o,(0, ) = (— (a+bcosf)sinp, (a+ bcosf) cos p,0).
E =0y 09 =0
F=04-0,=0,
G=0,-0,=(a+bcosh)>.
The first fundamental form is b2d6? + (a + b cos 0)* dp?.
Calculate further

o90(0, p) = (—bcosb cos p, —bcosfsin p, —bsinb) ,

o6,(0, @) = (bsinfsing, —bsinf cos ¢, 0) ,
0uop(0, ) = (— (a+ bcosb) cos p, — (a+ beosf) sinp,0).

o9 X0, = (—bcosfcosp(a+ bcosh), —bcosfsinp(a + bcosb), —bsinf(a + bcosh)),
%)

100 % 0l = /(00 % 0) - (09 X 7p) = b(a+ beosh),
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N=2072"% _ (—cos @ cos p, — cos @ sinp, —bsin) ,
lloo X oyl|

L =0gs- N =bcos? 0 cos® p + bcos’ sin® ¢ + bsin® 6 = b,
M =04, N =0,
N =0y, N = (a+bcosb) cosf.
The second fundamental form is bd6? + (a + b cos §) cos Odp?.

The matrices of the first and the second fundamental form are both

L 0 E 0 L.
0o N | B = [ ] The characteristic

diagonal of the form A = 0 G
equation |A — kB| = 0 takes the form

‘L—kE 0

0 N—kG‘:Q

(L — kE)(N — kG) = 0.

Its roots are the principal curvatures

L 1
k = — = —
1 E bv
i _E_ cos 6
2T G a+tbcosd

When ky > 0, or =5 < 6 < 7, the points on the torus are elliptic
(corresponding to the right half of the circle that is being rotated, when

producing the torus). Hyperbolic points correspond to § < 6 < =F.
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