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Abstract

We extend the classical Pohozaev’s identity to semilinear elliptic systems of Hamiltonian
type, providing a simpler approach, and a generalization, of the results of E. Mitidieri [6],
R.C.A.M. Van der Vorst [14], and Y. Bozhkov and E. Mitidieri [1].

Key words: Pohozaev’s identity, non-existence of solutions.

AMS subject classification: 35J57.

1 Introduction
Any solution u(z) of semilinear Dirichlet problem on a bounded domain 2 C R"
(1.1) Au+ f(z,u) =0 in Q, u=0 on I

satisfies the well known Pohozaev’s identity

(1.2) /Q 2nF (2, u) + (2 — n)uf (e, u) + 257 2, Fy, (2, )] dz — /a (@-v)|Vulas.

Here F(z,u) = [y f(z,t)dt, and v is the unit normal vector on 9, pointing outside. (From the
equation (1.1), [quf(z,u)dz = [ |Vu|?dz, which gives an alternative form of the Pohozaev’s
identity.) Pohozaev’s identity is usually written for the case f = f(u), but the present version is
also known, see e.g., K. Schmitt [13]. A standard use of this identity is to conclude that if {2 is a
star-shaped domain with respect to the origin, i.e., x - v > 0 for all z € 09, and f(u) = u|u[P~!,
for some constant p, then the problem (1.1) has no non-trivial solutions in the super-critical case,
when p > Z—i’g In this note we present a proof of Pohozaev’s identity, which appears a little more
straightforward than the usual one, see e.g., L. Evans [2], and then use a similar idea for systems,
generalizing the well-known results of E. Mitidieri [6], see also R.C.A.M. Van der Vorst [14], and of
Y. Bozhkov and E. Mitidieri [1], by allowing explicit dependence on x in the Hamiltonian function.

Let z = o - Vu = X" x;u,,. It is straightforward to verify that z satisfies

(1.3) Az + fulz,u)z = =2f(z,u) — X @i fa, (T, 0) .
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We multiply the equation (1.1) by z, and subtract from that the equation (1.3) multiplied by u,
obtaining

(1.4) 37y (pua; — uzg,),. + S (f(z,u) —ufu(z,u) zivg, = 2f(z, u)u+ 3 i fr, (2, u)u .
We have
2 (fzyu) —ufulz,uw) xiug, = E?lenia%i(QF —uf) =257 i Fy, + X0 xifr, (2, u)u =
S g [#(2F —uf)] = n(2F — uf) — 250 @i Fy, + S0y f, (2, u)u.
We then rewrite (1.4)
(1.5) iy [(pug, — uzy,) + 2i(2F (z,u) — uf(w,u))],, = 2nF (2, u)+2—n)uf(z,u)+257 2 F, .

Integrating over ), we conclude the Pohozaev’s identity (1.2). (The only non-zero boundary
term is X7, [ 2uq,; v dS. Since 0 is a level set of u, v = :|:|g—z| , 1.e., uy; = £|Vuly;. Then
z = =£(z-v)|Vul|, and X' ju,,v; = £|Vul.)

We refer to (1.5) as a differential form of Pohozaev’s identity. For radial solutions on a ball, the
corresponding version of (1.5) played a crucial role in the study of exact multiplicity of solutions,
see T. Ouyang and J. Shi [7], and also P. Korman [5], which shows the potential usefulness of this
identity.

2 Non-existence of solutions for a class of systems

The following class of systems has attracted considerable attention recently

(2.1) Au+ Hy(u,v) =0 in 2, u=0 on 09
Av+ Hy(u,v) =0 inQ, v=0 on 99N,
where H (u,v) is a given differentiable function, see e.g., the following surveys: D.G. de Figueiredo

[3], P. Quittner and P. Souplet [11], B. Ruf [12], see also P. Korman [4]. This system is of
Hamiltonian type, so that it has some of the properties of scalar equations.

More generally, let H = H(x,u1,ug, ..., Un, V1,02, ..., Unp), with integer m > 1, and consider
the Hamiltonian system of 2m equations
(2.2) Aup+H,, =0 inQ, upy=00on0Q, k=1,2,...,m
Avp+H,, =0 inQ, v, =0 0n0Q, k=1,2,...,m.
We call solution of (2.2) to be positive, if ug(xz) > 0 and vg(x) > 0 for all z € Q, and all k. We

consider only the classical solutions, with uy and vy of class C?(Q2) N C(Q). We have the following
generalization of the results of [1] and [6].

Theorem 2.1 Assume that H(z,uy, ug, .. ., Unm, V1,02, ..., Vn) € C2(Qx R x RT)NC(Q x R x
R™) satisfies

(2.3) H(z,0,...,0,0,...,0) =0 for all z € 00).
Then for any positive solution of (2.2), and any real numbers aq, ..., an, one has
(2.4) Jo 2nH + (2 — n)X7, (apurHy, + (2 — a)viH,,) + 257 2;H,,] do

=257 [oq(x - v)|Vug|[Vug| dS.



Proof: Define p; = - Vup = X7 2jupy,, and qp = - Vo = X7 205,., k= 1,2,...,m. These
functions satisfy the system

(25) Apk + Egnlevk“Jpj + E;nlevkvjqj = _2Hvk - E?:l‘/niHkai? k= 17 27 cee, M
Agr + E;nleukujpj + E;nleukvjqj = —2H,, - ¥ 2y -, k=1,2,...,m.

We multiply the first equation in (2.2) by gk, and subtract from that the first equation in (2.5)
multiplied by vg. The result can be written as

(2.6) X0 (ke @ — PhayVk) 2y + (—Uhay Qe + Ve, Dk, )]
+Hy, gk — X7 Hypu; Pj0k — X5 Hopo; 0k = 205 Hy, + 0272 Hypa, -

Similarly, we multiply the second equation in (2.2) by pg, and subtract from that the second
equation in (2.5) multiplied by wuy, and write the result as

(2.7) Y7 (ke Pk — Qrayb)e; + (—Vka; Dha; + Uke, Qi)
+Hy, pr — X5 Hupuypjuk — X7 Hypo, giue = 2upHy, + upXig o Hy, o, -
Adding the equations (2.6) and (2.7), we get
Sy ke Gk — Pha; V% + Vka, Pk — Qhay Ukl y, + Huy Pk + Hop Qe — S50y Hu, Djug
=30 Huy; g — X572 Hopu; pjor — X572 Hypo; 450k
= 2upH,, +2viHy, + up Xl v Hyy e, + 020 2 Hyy o, -

We now sum in k, putting the result into the form

Y X0y (ke Gk — Pha; Uk + Ok Pk — Qha; Uk,
X0 (2H — B ueHy, — X3 vpHy, ), = 2500y ugHy, + 250 o Hyy, + 257 2, Hy,

Writing,
S wige-(2H — S up Hyy, — Sy opHy, ) = S0y 52 [24(2H — S up Hy, — S5 vp Hy, )]
—n(2H — X7 upHyy — S0 opHy, )
we obtain the differential form of Pohozaev’s identity
Y1 Xy ke, @ — Phay Uk + Vkay P — Qo wh + @i (2H — X0 upHy,y, — 30 v Hy, )],
=2nH + (2 —n) (7 upHy, + X0 o Hy, ) + 257 2:H,,
Integrating, we obtain, in view of (2.3),

(2.8) Jo 2nH (u,v) + (2 — n) (X7 upHy, + 570 i Hy,) + 257 2Hy,] do
=257 [oq(x - v)|Vug||[Vug| dS.

(Since we consider positive solutions, and 02 is a level set for both w; and v, we have v =

—@—Z’Z' = —@—g’lz', ie., ug; = —|Vug|y; and vy, = —|Vog|y; on the boundary 0€2.) From the first

equation in (2.2), [ viH,, dx = [, Vuy - Vo dx, while from the second equation [, uxHy, dz =
Jo Vug, - Vo dz, i.e., for each k

/ vpHy, do = / upHy, dx .
Q Q

Using this in (2.8), we conclude the proof. O

Remarks



1. We consider only the classical solutions. Observe that by our conditions and elliptic regu-
larity, classical solutions are in fact of class C3(£2), so that all quantities in the above proof
are well defined.

2. In case H is independent of x, the condition (2.3) can be assumed without loss of generality.

As a consequence, we have the following non-existence result.

Proposition 1 Assume that Q) is a star-shaped domain with respect to the origin, and for some
real constants aq, ..., m, all upy >0, vy > 0, and all z € Q, we have

(2.9) nH + (2 —n)XL (agupHy, + (1 — ag)vpHy, ) + Xiq2iHy, < 0.
Then the problem (2.2) has no positive solutions.

Proof: We use the identity (2.4), with ag /2 = aj. Then, assuming existence of positive solution,
the left hand side of (2.4) is negative, while the right hand side is non-negative, a contradiction.

&

Observe, that it suffices to assume that €2 is star-shaped with respect to any one of its points
(which we then take to be the origin).

In case m = 1, and H = H (u,v), we recover the following condition of E. Mitidieri [6].

Proposition 2 Assume that Q) is a star-shaped domain with respect to the origin, and for some
real constant o, and all u > 0, v > 0 we have

(2.10) auHy(u,v) + (1 — a)vHy(u,v) > %H(u, v).

Then the problem (2.1) has no positive solutions.

Comparing this result to E. Mitidieri [6], observe that we do not require that H,(0,0) =
H,(0,0) = 0.

An important subclass of (2.1) is

(2.11) Au+ f(v) =0 inQ, u=0 on N
Av+g(u)=0in Q, v=0 on 09,

which corresponds to H(u,v) = F(v) 4+ G(u), where F(v) = [5 f(t) dt, G(u) = [y g(t) dt. Unlike
[6], we do not require that f(0) = g(0) = 0. The Theorem 2.1 now reads as follows.

Theorem 2.2 Let f, g € C(Ry). For any positive solution of (2.11), and any real number a, one
has

(2.12) Jo 2n(F(v) + G(u) + (2 —n) (avf(v) + (2 — a)ug(u))] dz
=2 [yo(z - v)|Vu||Vu|dS.
More generally, we consider

(2.13) Au+ f(z,v) =0 in 2, u=0 on 0N
Av+g(z,u) =0 in Q, v=0 on 99,

with H(z,u,v) = F(z,v) + G(z,u), where F(z,v) = [ f(z,t)dt, G(z,u) = [y g(z,t)dt.
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Theorem 2.3 Let f, g € C(Q x Ry). For any positive solution of (2.13), and any real number
a, one has

(2.14)[ 2n(F(z,v) + G(z,u)) + (2 — n) (avf(z,v) + (2 — a)ug(x, u)) + 257, x; (Fo, + Ga,)] dx
=2 [yo(x - v)|[Vu||Vu|dS.
We now consider a particular system
(2.15) Au+vP =0 inQ, uv=0 on 9N
Av+g(z,u) =0 in Q, v=0 on 99,
with g(z,u) € C(Q x Ry), and a constant p > 0.

Theorem 2.4 Assume that Q is a star-shaped domain with respect to the origin, and

n
(n=2)(p+1)
Then the problem (2.15) has no positive solutions.

(2.16) nG(z,u) + (2 —n) (1 - ) ug(x,u) + X 2:Gy, <0, forxeQ, andu>0.

Proof: We use the identity (2.14), with f(v) = vP. We select the constant a, so that

2nF(v) + (2 —n)avf(v) =0,

(n_zz)%' Then, assuming existence of a positive solution, the left hand side of (2.14) is

negative, while the right hand side is non-negative, a contradiction. &

ie,a=

Observe that in case p = 1, the Theorem 2.4 provides a non-existence result for a biharmonic
problem with Navier boundary conditions

(2.17) A%y = g(z,u) in Q, u=Au=0 on IN.

Proposition 3 Assume that €2 is a star-shaped domain with respect to the origin, and the condi-
tion (2.16), with p =1, holds. Then the problem (2.17) has no positive solutions.

Finally, we consider the system

(2.18) Au+vP =0 inQ, v=0 on 9N
Av4+u?=01inQ, v=0 on 99.
The curve ﬁ + q%—% = "T_z is called a critical hyperbola. We recover the following well known

result of E. Mitidieri [6], see also R.C.A.M. Van der Vorst [14]. (Observe that we relax the
restriction p, ¢ > 1 from [6].)
Proposition 4 Assume that p, ¢ > 0, and
1 1 n—2
+ < .
p+1 qg+1 n
Then the problem (2.18) has no positive solutions.

(2.19)

Proof: Condition (2.19) implies (2.16), and then the Theorem 2.4 applies. &
In case p = 1, we recover the following known result, see E. Mitidieri [6].
Proposition 5 Assume that Q) is a star-shaped domain with respect to the origin, and q > Z—*_’j

Then the problem
(2.20) APu=ul inQ, u=Au=0 ondQ

has no positive solutions.
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