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Abstract

We extend the classical Pohozaev’s identity to semilinear elliptic systems of Hamiltonian
type, providing a simpler approach, and a generalization, of the results of E. Mitidieri [6],
R.C.A.M. Van der Vorst [14], and Y. Bozhkov and E. Mitidieri [1].
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1 Introduction

Any solution u(x) of semilinear Dirichlet problem on a bounded domain Ω ⊂ Rn

∆u + f(x, u) = 0 in Ω, u = 0 on ∂Ω(1.1)

satisfies the well known Pohozaev’s identity

∫

Ω
[2nF (x, u) + (2− n)uf(x, u) + 2Σn

i=1xiFxi
(x, u)] dx =

∫

∂Ω
(x · ν)|∇u|2 dS .(1.2)

Here F (x, u) =
∫ u
0 f(x, t) dt, and ν is the unit normal vector on ∂Ω, pointing outside. (From the

equation (1.1),
∫

Ω uf(x, u) dx =
∫

Ω |∇u|2 dx, which gives an alternative form of the Pohozaev’s

identity.) Pohozaev’s identity is usually written for the case f = f(u), but the present version is
also known, see e.g., K. Schmitt [13]. A standard use of this identity is to conclude that if Ω is a
star-shaped domain with respect to the origin, i.e., x · ν ≥ 0 for all x ∈ ∂Ω, and f(u) = u|u|p−1,

for some constant p, then the problem (1.1) has no non-trivial solutions in the super-critical case,
when p > n+2

n−2 . In this note we present a proof of Pohozaev’s identity, which appears a little more

straightforward than the usual one, see e.g., L. Evans [2], and then use a similar idea for systems,
generalizing the well-known results of E. Mitidieri [6], see also R.C.A.M. Van der Vorst [14], and of

Y. Bozhkov and E. Mitidieri [1], by allowing explicit dependence on x in the Hamiltonian function.

Let z = x · ∇u = Σn
i=1xiuxi

. It is straightforward to verify that z satisfies

∆z + fu(x, u)z = −2f(x, u)− Σn
i=1xifxi

(x, u) .(1.3)
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We multiply the equation (1.1) by z, and subtract from that the equation (1.3) multiplied by u,

obtaining

Σn
i=1 (zuxi

− uzxi
)xi

+ Σn
i=1 (f(x, u)− ufu(x, u))xiuxi

= 2f(x, u)u + Σn
i=1xifxi

(x, u)u .(1.4)

We have

Σn
i=1 (f(x, u)− ufu(x, u))xiuxi

= Σn
i=1xi

∂
∂xi

(2F − uf) − 2Σn
i=1xiFxi

+ Σn
i=1xifxi

(x, u)u =

Σn
i=1

∂
∂xi

[xi(2F − uf)] − n(2F − uf) − 2Σn
i=1xiFxi

+ Σn
i=1xifxi

(x, u)u .

We then rewrite (1.4)

Σn
i=1 [(zuxi

− uzxi
) + xi(2F (x, u)− uf(x, u))]xi

= 2nF (x, u)+(2−n)uf(x, u)+2Σn
i=1xiFxi

.(1.5)

Integrating over Ω, we conclude the Pohozaev’s identity (1.2). (The only non-zero boundary

term is Σn
i=1

∫

∂Ω zuxi
νi dS. Since ∂Ω is a level set of u, ν = ± ∇u

|∇u| , i.e., uxi
= ±|∇u|νi. Then

z = ±(x · ν)|∇u|, and Σn
i=1uxi

νi = ±|∇u|.)

We refer to (1.5) as a differential form of Pohozaev’s identity. For radial solutions on a ball, the
corresponding version of (1.5) played a crucial role in the study of exact multiplicity of solutions,

see T. Ouyang and J. Shi [7], and also P. Korman [5], which shows the potential usefulness of this
identity.

2 Non-existence of solutions for a class of systems

The following class of systems has attracted considerable attention recently

∆u + Hv(u, v) = 0 in Ω, u = 0 on ∂Ω(2.1)

∆v + Hu(u, v) = 0 in Ω, v = 0 on ∂Ω ,

where H(u, v) is a given differentiable function, see e.g., the following surveys: D.G. de Figueiredo
[3], P. Quittner and P. Souplet [11], B. Ruf [12], see also P. Korman [4]. This system is of
Hamiltonian type, so that it has some of the properties of scalar equations.

More generally, let H = H(x, u1, u2, . . . , um, v1, v2, . . . , vm), with integer m ≥ 1, and consider

the Hamiltonian system of 2m equations

∆uk + Hvk
= 0 in Ω, uk = 0 on ∂Ω, k = 1, 2, . . . , m(2.2)

∆vk + Huk
= 0 in Ω, vk = 0 on ∂Ω, k = 1, 2, . . . , m .

We call solution of (2.2) to be positive, if uk(x) > 0 and vk(x) > 0 for all x ∈ Ω, and all k. We
consider only the classical solutions, with uk and vk of class C2(Ω)∩C1(Ω̄). We have the following

generalization of the results of [1] and [6].

Theorem 2.1 Assume that H(x, u1, u2, . . . , um, v1, v2, . . . , vm) ∈ C2(Ω×Rm
+ ×Rm

+ )∩C(Ω̄×R̄m
+ ×

R̄m
+ ) satisfies

H(x, 0, . . . , 0, 0, . . . , 0) = 0 for all x ∈ ∂Ω .(2.3)

Then for any positive solution of (2.2), and any real numbers a1, . . . , am, one has

∫

Ω [2nH + (2− n)Σm
k=1 (akukHuk

+ (2− ak)vkHvk
) + 2Σn

i=1xiHxi
] dx(2.4)

= 2Σm
k=1

∫

∂Ω(x · ν)|∇uk||∇vk| dS .
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Proof: Define pk = x · ∇uk = Σn
i=1xiukxi

, and qk = x · ∇v = Σn
i=1xivkxi

, k = 1, 2, . . . , m. These

functions satisfy the system

∆pk + Σm
j=1Hvkuj

pj + Σm
j=1Hvkvj

qj = −2Hvk
− Σn

i=1xiHvkxi
, k = 1, 2, . . . , m(2.5)

∆qk + Σm
j=1Hukuj

pj + Σm
j=1Hukvj

qj = −2Huk
− Σn

i=1xiHukxi
, k = 1, 2, . . . , m .

We multiply the first equation in (2.2) by qk, and subtract from that the first equation in (2.5)

multiplied by vk. The result can be written as

Σn
i=1 [(ukxi

qk − pkxi
vk)xi

+ (−ukxi
qkxi

+ vkxi
pkxi

)](2.6)

+Hvk
qk − Σm

j=1Hvkuj
pjvk − Σm

j=1Hvkvj
qjvk = 2vkHvk

+ vkΣ
n
i=1xiHvkxi

.

Similarly, we multiply the second equation in (2.2) by pk, and subtract from that the second

equation in (2.5) multiplied by uk, and write the result as

Σn
i=1 [(vkxi

pk − qkxi
uk)xi

+ (−vkxi
pkxi

+ ukxi
qkxi

)](2.7)

+Huk
pk − Σm

j=1Hukuj
pjuk − Σm

j=1Hukvj
qjuk = 2ukHuk

+ ukΣ
n
i=1xiHukxi

.

Adding the equations (2.6) and (2.7), we get

Σn
i=1 [ukxi

qk − pkxi
vk + vkxi

pk − qkxi
uk]xi

+ Huk
pk + Hvk

qk − Σm
j=1Hukuj

pjuk

−Σm
j=1Hukvj

qjuk − Σm
j=1Hvkuj

pjvk − Σm
j=1Hvkvj

qjvk

= 2ukHuk
+ 2vkHvk

+ ukΣ
n
i=1xiHukxi

+ vkΣ
n
i=1xiHvkxi

.

We now sum in k, putting the result into the form

Σm
k=1Σ

n
i=1 [ukxi

qk − pkxi
vk + vkxi

pk − qkxi
uk]xi

+Σn
i=1xi (2H − Σm

k=1ukHuk
− Σm

k=1vkHvk
)xi

= 2Σm
k=1ukHuk

+ 2Σm
k=1vkHvk

+ 2Σn
i=1xiHxi

.

Writing,

Σn
i=1xi

∂
∂xi

(2H − Σm
k=1ukHuk

− Σm
k=1vkHvk

) = Σn
i=1

∂
∂xi

[xi(2H − Σm
k=1ukHuk

− Σm
k=1vkHvk

)]

−n(2H − Σm
k=1ukHuk

− Σm
k=1vkHvk

) ,

we obtain the differential form of Pohozaev’s identity

Σm
k=1Σ

n
i=1 [ukxi

qk − pkxi
vk + vkxi

pk − qkxi
uk + xi (2H − Σm

k=1ukHuk
− Σm

k=1vkHvk
)]xi

= 2nH + (2 − n) (Σm
k=1ukHuk

+ Σm
k=1vkHvk

) + 2Σn
i=1xiHxi

.

Integrating, we obtain, in view of (2.3),
∫

Ω [2nH(u, v)+ (2− n) (Σm
k=1ukHuk

+ Σm
k=1vkHvk

) + 2Σn
i=1xiHxi

] dx(2.8)

= 2Σm
k=1

∫

∂Ω(x · ν)|∇uk||∇vk| dS .

(Since we consider positive solutions, and ∂Ω is a level set for both uk and vk, we have ν =
− ∇uk

|∇uk |
= − ∇vk

|∇vk|
, i.e., uki = −|∇uk|νi and vki = −|∇vk|νi on the boundary ∂Ω.) From the first

equation in (2.2),
∫

Ω vkHvk
dx =

∫

Ω ∇uk · ∇vk dx, while from the second equation
∫

Ω ukHuk
dx =

∫

Ω ∇uk · ∇vk dx, i.e., for each k
∫

Ω
vkHvk

dx =

∫

Ω
ukHuk

dx .

Using this in (2.8), we conclude the proof. ♦

Remarks
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1. We consider only the classical solutions. Observe that by our conditions and elliptic regu-

larity, classical solutions are in fact of class C3(Ω), so that all quantities in the above proof
are well defined.

2. In case H is independent of x, the condition (2.3) can be assumed without loss of generality.

As a consequence, we have the following non-existence result.

Proposition 1 Assume that Ω is a star-shaped domain with respect to the origin, and for some
real constants α1, . . . , αm, all uk > 0, vk > 0, and all x ∈ Ω, we have

nH + (2− n)Σm
k=1 (αkukHuk

+ (1 − αk)vkHvk
) + Σn

i=1xiHxi
< 0 .(2.9)

Then the problem (2.2) has no positive solutions.

Proof: We use the identity (2.4), with ak/2 = αk. Then, assuming existence of positive solution,

the left hand side of (2.4) is negative, while the right hand side is non-negative, a contradiction.
♦

Observe, that it suffices to assume that Ω is star-shaped with respect to any one of its points
(which we then take to be the origin).

In case m = 1, and H = H(u, v), we recover the following condition of E. Mitidieri [6].

Proposition 2 Assume that Ω is a star-shaped domain with respect to the origin, and for some
real constant α, and all u > 0, v > 0 we have

αuHu(u, v) + (1 − α)vHv(u, v) >
n

n − 2
H(u, v) .(2.10)

Then the problem (2.1) has no positive solutions.

Comparing this result to E. Mitidieri [6], observe that we do not require that Hu(0, 0) =
Hv(0, 0) = 0.

An important subclass of (2.1) is

∆u + f(v) = 0 in Ω, u = 0 on ∂Ω(2.11)

∆v + g(u) = 0 in Ω, v = 0 on ∂Ω ,

which corresponds to H(u, v) = F (v) + G(u), where F (v) =
∫ v
0 f(t) dt, G(u) =

∫ u
0 g(t) dt. Unlike

[6], we do not require that f(0) = g(0) = 0. The Theorem 2.1 now reads as follows.

Theorem 2.2 Let f, g ∈ C(R̄+). For any positive solution of (2.11), and any real number a, one

has

∫

Ω [2n(F (v) + G(u)) + (2− n) (avf(v) + (2 − a)ug(u))] dx(2.12)

= 2
∫

∂Ω(x · ν)|∇u||∇v| dS .

More generally, we consider

∆u + f(x, v) = 0 in Ω, u = 0 on ∂Ω(2.13)

∆v + g(x, u) = 0 in Ω, v = 0 on ∂Ω ,

with H(x, u, v) = F (x, v) + G(x, u), where F (x, v) =
∫ v
0 f(x, t) dt, G(x, u) =

∫ u
0 g(x, t) dt.
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Theorem 2.3 Let f, g ∈ C(Ω × R̄+). For any positive solution of (2.13), and any real number

a, one has
∫

Ω [2n(F (x, v) + G(x, u)) + (2− n) (avf(x, v) + (2− a)ug(x, u))+ 2Σn
i=1xi (Fxi

+ Gxi
)] dx(2.14)

= 2
∫

∂Ω(x · ν)|∇u||∇v| dS .

We now consider a particular system

∆u + vp = 0 in Ω, u = 0 on ∂Ω(2.15)

∆v + g(x, u) = 0 in Ω, v = 0 on ∂Ω ,

with g(x, u) ∈ C(Ω × R̄+), and a constant p > 0.

Theorem 2.4 Assume that Ω is a star-shaped domain with respect to the origin, and

nG(x, u)+ (2−n)

(

1−
n

(n − 2)(p + 1)

)

ug(x, u)+ Σn
i=1xiGxi

< 0 , for x ∈ Ω, and u > 0 .(2.16)

Then the problem (2.15) has no positive solutions.

Proof: We use the identity (2.14), with f(v) = vp. We select the constant a, so that

2nF (v) + (2 − n)avf(v) = 0 ,

i.e., a = 2n
(n−2)(p+1) . Then, assuming existence of a positive solution, the left hand side of (2.14) is

negative, while the right hand side is non-negative, a contradiction. ♦

Observe that in case p = 1, the Theorem 2.4 provides a non-existence result for a biharmonic

problem with Navier boundary conditions

∆2u = g(x, u) in Ω, u = ∆u = 0 on ∂Ω .(2.17)

Proposition 3 Assume that Ω is a star-shaped domain with respect to the origin, and the condi-
tion (2.16), with p = 1, holds. Then the problem (2.17) has no positive solutions.

Finally, we consider the system

∆u + vp = 0 in Ω, u = 0 on ∂Ω(2.18)

∆v + uq = 0 in Ω, v = 0 on ∂Ω .

The curve 1
p+1 + 1

q+1 = n−2
n

is called a critical hyperbola. We recover the following well known
result of E. Mitidieri [6], see also R.C.A.M. Van der Vorst [14]. (Observe that we relax the

restriction p, q > 1 from [6].)

Proposition 4 Assume that p, q > 0, and

1

p + 1
+

1

q + 1
<

n − 2

n
.(2.19)

Then the problem (2.18) has no positive solutions.

Proof: Condition (2.19) implies (2.16), and then the Theorem 2.4 applies. ♦

In case p = 1, we recover the following known result, see E. Mitidieri [6].

Proposition 5 Assume that Ω is a star-shaped domain with respect to the origin, and q > n+4
n−4 .

Then the problem
∆2u = uq in Ω, u = ∆u = 0 on ∂Ω(2.20)

has no positive solutions.
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