Non-existence of solutions for non-autonomous elliptic systems

Philip Korman *
Department of Mathematical Sciences
University of Cincinnati
Cincinnati Ohio 45221-0025

Abstract

We extend the classical Pohozaev's identity to semilinear elliptic systems of Hamiltonian type, providing a simpler approach, and a generalization, of the results of E. Mitidieri [6], R.C.A.M. Van der Vorst [14], and Y. Bozhkov and E. Mitidieri [1].

Key words: Pohozaev's identity, non-existence of solutions.
AMS subject classification: 35J57.

1 Introduction

Any solution $u(x)$ of semilinear Dirichlet problem on a bounded domain $\Omega \subset R^{n}$

$$
\begin{equation*}
\Delta u+f(x, u)=0 \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{1.1}
\end{equation*}
$$

satisfies the well known Pohozaev's identity

$$
\begin{equation*}
\int_{\Omega}\left[2 n F(x, u)+(2-n) u f(x, u)+2 \Sigma_{i=1}^{n} x_{i} F_{x_{i}}(x, u)\right] d x=\int_{\partial \Omega}(x \cdot \nu)|\nabla u|^{2} d S . \tag{1.2}
\end{equation*}
$$

Here $F(x, u)=\int_{0}^{u} f(x, t) d t$, and ν is the unit normal vector on $\partial \Omega$, pointing outside. (From the equation (1.1), $\int_{\Omega} u f(x, u) d x=\int_{\Omega}|\nabla u|^{2} d x$, which gives an alternative form of the Pohozaev's identity.) Pohozaev's identity is usually written for the case $f=f(u)$, but the present version is also known, see e.g., K. Schmitt [13]. A standard use of this identity is to conclude that if Ω is a star-shaped domain with respect to the origin, i.e., $x \cdot \nu \geq 0$ for all $x \in \partial \Omega$, and $f(u)=u|u|^{p-1}$, for some constant p, then the problem (1.1) has no non-trivial solutions in the super-critical case, when $p>\frac{n+2}{n-2}$. In this note we present a proof of Pohozaev's identity, which appears a little more straightforward than the usual one, see e.g., L. Evans [2], and then use a similar idea for systems, generalizing the well-known results of E. Mitidieri [6], see also R.C.A.M. Van der Vorst [14], and of Y. Bozhkov and E. Mitidieri [1], by allowing explicit dependence on x in the Hamiltonian function.

Let $z=x \cdot \nabla u=\sum_{i=1}^{n} x_{i} u_{x_{i}}$. It is straightforward to verify that z satisfies

$$
\begin{equation*}
\Delta z+f_{u}(x, u) z=-2 f(x, u)-\sum_{i=1}^{n} x_{i} f_{x_{i}}(x, u) . \tag{1.3}
\end{equation*}
$$

[^0]We multiply the equation (1.1) by z, and subtract from that the equation (1.3) multiplied by u, obtaining

$$
\begin{equation*}
\sum_{i=1}^{n}\left(z u_{x_{i}}-u z_{x_{i}}\right)_{x_{i}}+\sum_{i=1}^{n}\left(f(x, u)-u f_{u}(x, u)\right) x_{i} u_{x_{i}}=2 f(x, u) u+\sum_{i=1}^{n} x_{i} f_{x_{i}}(x, u) u \tag{1.4}
\end{equation*}
$$

We have

$$
\begin{gathered}
\sum_{i=1}^{n}\left(f(x, u)-u f_{u}(x, u)\right) x_{i} u_{x_{i}}=\sum_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}(2 F-u f)-2 \sum_{i=1}^{n} x_{i} F_{x_{i}}+\sum_{i=1}^{n} x_{i} f_{x_{i}}(x, u) u= \\
\sum_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left[x_{i}(2 F-u f)\right]-n(2 F-u f)-2 \sum_{i=1}^{n} x_{i} F_{x_{i}}+\sum_{i=1}^{n} x_{i} f_{x_{i}}(x, u) u .
\end{gathered}
$$

We then rewrite (1.4)

$$
\begin{equation*}
\sum_{i=1}^{n}\left[\left(z u_{x_{i}}-u z_{x_{i}}\right)+x_{i}(2 F(x, u)-u f(x, u))\right]_{x_{i}}=2 n F(x, u)+(2-n) u f(x, u)+2 \sum_{i=1}^{n} x_{i} F_{x_{i}} . \tag{1.5}
\end{equation*}
$$

Integrating over Ω, we conclude the Pohozaev's identity (1.2). (The only non-zero boundary term is $\sum_{i=1}^{n} \int_{\partial \Omega} z u_{x_{i}} \nu_{i} d S$. Since $\partial \Omega$ is a level set of $u, \nu= \pm \frac{\nabla u}{|\nabla u|}$, i.e., $u_{x_{i}}= \pm|\nabla u| \nu_{i}$. Then $z= \pm(x \cdot \nu)|\nabla u|$, and $\sum_{i=1}^{n} u_{x_{i}} \nu_{i}= \pm|\nabla u|$.)

We refer to (1.5) as a differential form of Pohozaev's identity. For radial solutions on a ball, the corresponding version of (1.5) played a crucial role in the study of exact multiplicity of solutions, see T. Ouyang and J. Shi [7], and also P. Korman [5], which shows the potential usefulness of this identity.

2 Non-existence of solutions for a class of systems

The following class of systems has attracted considerable attention recently

$$
\begin{align*}
& \Delta u+H_{v}(u, v)=0 \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{2.1}\\
& \Delta v+H_{u}(u, v)=0 \text { in } \Omega, v=0 \text { on } \partial \Omega,
\end{align*}
$$

where $H(u, v)$ is a given differentiable function, see e.g., the following surveys: D.G. de Figueiredo [3], P. Quittner and P. Souplet [11], B. Ruf [12], see also P. Korman [4]. This system is of Hamiltonian type, so that it has some of the properties of scalar equations.

More generally, let $H=H\left(x, u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{m}\right)$, with integer $m \geq 1$, and consider the Hamiltonian system of $2 m$ equations

$$
\begin{gather*}
\Delta u_{k}+H_{v_{k}}=0 \text { in } \Omega, \quad u_{k}=0 \text { on } \partial \Omega, \quad k=1,2, \ldots, m \tag{2.2}\\
\Delta v_{k}+H_{u_{k}}=0 \text { in } \Omega, \quad v_{k}=0 \text { on } \partial \Omega, \quad k=1,2, \ldots, m .
\end{gather*}
$$

We call solution of (2.2) to be positive, if $u_{k}(x)>0$ and $v_{k}(x)>0$ for all $x \in \Omega$, and all k. We consider only the classical solutions, with u_{k} and v_{k} of class $C^{2}(\Omega) \cap C^{1}(\bar{\Omega})$. We have the following generalization of the results of [1] and [6].

Theorem 2.1 Assume that $H\left(x, u_{1}, u_{2}, \ldots, u_{m}, v_{1}, v_{2}, \ldots, v_{m}\right) \in C^{2}\left(\Omega \times R_{+}^{m} \times R_{+}^{m}\right) \cap C\left(\bar{\Omega} \times \bar{R}_{+}^{m} \times\right.$ $\left.\bar{R}_{+}^{m}\right)$ satisfies

$$
\begin{equation*}
H(x, 0, \ldots, 0,0, \ldots, 0)=0 \text { for all } x \in \partial \Omega \tag{2.3}
\end{equation*}
$$

Then for any positive solution of (2.2), and any real numbers a_{1}, \ldots, a_{m}, one has

$$
\begin{gather*}
\int_{\Omega}\left[2 n H+(2-n) \sum_{k=1}^{m}\left(a_{k} u_{k} H_{u_{k}}+\left(2-a_{k}\right) v_{k} H_{v_{k}}\right)+2 \Sigma_{i=1}^{n} x_{i} H_{x_{i}}\right] d x \tag{2.4}\\
=2 \Sigma_{k=1}^{m} \int_{\partial \Omega}(x \cdot \nu)\left|\nabla u_{k}\right|\left|\nabla v_{k}\right| d S
\end{gather*}
$$

Proof: \quad Define $p_{k}=x \cdot \nabla u_{k}=\sum_{i=1}^{n} x_{i} u_{k x_{i}}$, and $q_{k}=x \cdot \nabla v=\sum_{i=1}^{n} x_{i} v_{k x_{i}}, k=1,2, \ldots, m$. These functions satisfy the system

$$
\begin{align*}
\Delta p_{k}+\Sigma_{j=1}^{m} H_{v_{k} u_{j}} p_{j}+\sum_{j=1}^{m} H_{v_{k} v_{j}} q_{j}=-2 H_{v_{k}}-\sum_{i=1}^{n} x_{i} H_{v_{k} x_{i}}, \quad k=1,2, \ldots, m \tag{2.5}\\
\Delta q_{k}+\sum_{j=1}^{m} H_{u_{k} u_{j}} p_{j}+\sum_{j=1}^{m} H_{u_{k} v_{j}} q_{j}=-2 H_{u_{k}}-\sum_{i=1}^{n} x_{i} H_{u_{k} x_{i}}, \quad k=1,2, \ldots, m
\end{align*}
$$

We multiply the first equation in (2.2) by q_{k}, and subtract from that the first equation in (2.5) multiplied by v_{k}. The result can be written as

$$
\begin{gather*}
\sum_{i=1}^{n}\left[\left(u_{k x_{i}} q_{k}-p_{k x_{i}} v_{k}\right)_{x_{i}}+\left(-u_{k x_{i}} q_{k x_{i}}+v_{k x_{i}} p_{k x_{i}}\right)\right] \tag{2.6}\\
+H_{v_{k}} q_{k}-\sum_{j=1}^{m} H_{v_{k} u_{j}} p_{j} v_{k}-\sum_{j=1}^{m} H_{v_{k} v_{j}} q_{j} v_{k}=2 v_{k} H_{v_{k}}+v_{k} \sum_{i=1}^{n} x_{i} H_{v_{k} x_{i}} .
\end{gather*}
$$

Similarly, we multiply the second equation in (2.2) by p_{k}, and subtract from that the second equation in (2.5) multiplied by u_{k}, and write the result as

$$
\begin{gather*}
\sum_{i=1}^{n}\left[\left(v_{k x_{i}} p_{k}-q_{k x_{i}} u_{k}\right)_{x_{i}}+\left(-v_{k x_{i}} p_{k x_{i}}+u_{k x_{i}} q_{k x_{i}}\right)\right] \tag{2.7}\\
+H_{u_{k}} p_{k}-\sum_{j=1}^{m} H_{u_{k} u_{j}} p_{j} u_{k}-\sum_{j=1}^{m} H_{u_{k} v_{j}} q_{j} u_{k}=2 u_{k} H_{u_{k}}+u_{k} \Sigma_{i=1}^{n} x_{i} H_{u_{k} x_{i}} .
\end{gather*}
$$

Adding the equations (2.6) and (2.7), we get

$$
\begin{aligned}
\sum_{i=1}^{n}\left[u_{k x_{i}} q_{k}\right. & \left.-p_{k x_{i}} v_{k}+v_{k x_{i}} p_{k}-q_{k x_{i}} u_{k}\right]_{x_{i}}+H_{u_{k}} p_{k}+H_{v_{k}} q_{k}-\Sigma_{j=1}^{m} H_{u_{k} u_{j}} p_{j} u_{k} \\
& -\sum_{j=1}^{m} H_{u_{k} v_{j}} q_{j} u_{k}-\Sigma_{j=1}^{m} H_{v_{k} u_{j}} p_{j} v_{k}-\sum_{j=1}^{m} H_{v_{k} v_{j}} q_{j} v_{k} \\
= & 2 u_{k} H_{u_{k}}+2 v_{k} H_{v_{k}}+u_{k} \Sigma_{i=1}^{n} x_{i} H_{u_{k} x_{i}}+v_{k} \Sigma_{i=1}^{n} x_{i} H_{v_{k} x_{i}} .
\end{aligned}
$$

We now sum in k, putting the result into the form

$$
\begin{gathered}
\sum_{k=1}^{m} \Sigma_{i=1}^{n}\left[u_{k x_{i}} q_{k}-p_{k x_{i}} v_{k}+v_{k x_{i}} p_{k}-q_{k x_{i}} u_{k}\right]_{x_{i}} \\
+\Sigma_{i=1}^{n} x_{i}\left(2 H-\Sigma_{k=1}^{m} u_{k} H_{u_{k}}-\Sigma_{k=1}^{m} v_{k} H_{v_{k}}\right)_{x_{i}}=2 \Sigma_{k=1}^{m} u_{k} H_{u_{k}}+2 \Sigma_{k=1}^{m} v_{k} H_{v_{k}}+2 \Sigma_{i=1}^{n} x_{i} H_{x_{i}} .
\end{gathered}
$$

Writing,

$$
\begin{gathered}
\Sigma_{i=1}^{n} x_{i} \frac{\partial}{\partial x_{i}}\left(2 H-\Sigma_{k=1}^{m} u_{k} H_{u_{k}}-\Sigma_{k=1}^{m} v_{k} H_{v_{k}}\right)=\Sigma_{i=1}^{n} \frac{\partial}{\partial x_{i}}\left[x_{i}\left(2 H-\Sigma_{k=1}^{m} u_{k} H_{u_{k}}-\Sigma_{k=1}^{m} v_{k} H_{v_{k}}\right)\right] \\
-n\left(2 H-\Sigma_{k=1}^{m} u_{k} H_{u_{k}}-\Sigma_{k=1}^{m} v_{k} H_{v_{k}}\right),
\end{gathered}
$$

we obtain the differential form of Pohozaev's identity

$$
\begin{gathered}
\Sigma_{k=1}^{m} \Sigma_{i=1}^{n}\left[u_{k x_{i}} q_{k}-p_{k x_{i}} v_{k}+v_{k x_{i}} p_{k}-q_{k x_{i}} u_{k}+x_{i}\left(2 H-\Sigma_{k=1}^{m} u_{k} H_{u_{k}}-\Sigma_{k=1}^{m} v_{k} H_{v_{k}}\right)\right]_{x_{i}} \\
=2 n H+(2-n)\left(\Sigma_{k=1}^{m} u_{k} H_{u_{k}}+\Sigma_{k=1}^{m} v_{k} H_{v_{k}}\right)+2 \Sigma_{i=1}^{n} x_{i} H_{x_{i}} .
\end{gathered}
$$

Integrating, we obtain, in view of (2.3),

$$
\begin{gather*}
\int_{\Omega}\left[2 n H(u, v)+(2-n)\left(\sum_{k=1}^{m} u_{k} H_{u_{k}}+\sum_{k=1}^{m} v_{k} H_{v_{k}}\right)+2 \sum_{i=1}^{n} x_{i} H_{x_{i}}\right] d x \tag{2.8}\\
=2 \sum_{k=1}^{m} \int_{\partial \Omega}(x \cdot \nu)\left|\nabla u_{k}\right|\left|\nabla v_{k}\right| d S
\end{gather*}
$$

(Since we consider positive solutions, and $\partial \Omega$ is a level set for both u_{k} and v_{k}, we have $\nu=$ $-\frac{\nabla u_{k}}{\left|\nabla u_{k}\right|}=-\frac{\nabla v_{k}}{\mid \nabla v_{k}}$, i.e., $u_{k i}=-\left|\nabla u_{k}\right| \nu_{i}$ and $v_{k i}=-\left|\nabla v_{k}\right| \nu_{i}$ on the boundary $\partial \Omega$.) From the first equation in (2.2), $\int_{\Omega} v_{k} H_{v_{k}} d x=\int_{\Omega} \nabla u_{k} \cdot \nabla v_{k} d x$, while from the second equation $\int_{\Omega} u_{k} H_{u_{k}} d x=$ $\int_{\Omega} \nabla u_{k} \cdot \nabla v_{k} d x$, i.e., for each k

$$
\int_{\Omega} v_{k} H_{v_{k}} d x=\int_{\Omega} u_{k} H_{u_{k}} d x .
$$

Using this in (2.8), we conclude the proof.

Remarks

1. We consider only the classical solutions. Observe that by our conditions and elliptic regularity, classical solutions are in fact of class $C^{3}(\Omega)$, so that all quantities in the above proof are well defined.
2. In case H is independent of x, the condition (2.3) can be assumed without loss of generality.

As a consequence, we have the following non-existence result.
Proposition 1 Assume that Ω is a star-shaped domain with respect to the origin, and for some real constants $\alpha_{1}, \ldots, \alpha_{m}$, all $u_{k}>0, v_{k}>0$, and all $x \in \Omega$, we have

$$
\begin{equation*}
n H+(2-n) \Sigma_{k=1}^{m}\left(\alpha_{k} u_{k} H_{u_{k}}+\left(1-\alpha_{k}\right) v_{k} H_{v_{k}}\right)+\sum_{i=1}^{n} x_{i} H_{x_{i}}<0 . \tag{2.9}
\end{equation*}
$$

Then the problem (2.2) has no positive solutions.
Proof: We use the identity (2.4), with $a_{k} / 2=\alpha_{k}$. Then, assuming existence of positive solution, the left hand side of (2.4) is negative, while the right hand side is non-negative, a contradiction. \diamond

Observe, that it suffices to assume that Ω is star-shaped with respect to any one of its points (which we then take to be the origin).

In case $m=1$, and $H=H(u, v)$, we recover the following condition of E. Mitidieri [6].
Proposition 2 Assume that Ω is a star-shaped domain with respect to the origin, and for some real constant α, and all $u>0, v>0$ we have

$$
\begin{equation*}
\alpha u H_{u}(u, v)+(1-\alpha) v H_{v}(u, v)>\frac{n}{n-2} H(u, v) . \tag{2.10}
\end{equation*}
$$

Then the problem (2.1) has no positive solutions.
Comparing this result to E. Mitidieri [6], observe that we do not require that $H_{u}(0,0)=$ $H_{v}(0,0)=0$.

An important subclass of (2.1) is

$$
\begin{align*}
& \Delta u+f(v)=0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{2.11}\\
& \Delta v+g(u)=0 \text { in } \Omega, \quad v=0 \text { on } \partial \Omega,
\end{align*}
$$

which corresponds to $H(u, v)=F(v)+G(u)$, where $F(v)=\int_{0}^{v} f(t) d t, G(u)=\int_{0}^{u} g(t) d t$. Unlike [6], we do not require that $f(0)=g(0)=0$. The Theorem 2.1 now reads as follows.

Theorem 2.2 Let $f, g \in C\left(\bar{R}_{+}\right)$. For any positive solution of (2.11), and any real number a, one has

$$
\begin{gather*}
\int_{\Omega}[2 n(F(v)+G(u))+(2-n)(a v f(v)+(2-a) u g(u))] d x \tag{2.12}\\
=2 \int_{\partial \Omega}(x \cdot \nu)|\nabla u \| \nabla v| d S .
\end{gather*}
$$

More generally, we consider

$$
\begin{align*}
& \Delta u+f(x, v)=0 \text { in } \Omega, \quad u=0 \text { on } \partial \Omega \tag{2.13}\\
& \Delta v+g(x, u)=0 \text { in } \Omega, \quad v=0 \text { on } \partial \Omega
\end{align*}
$$

with $H(x, u, v)=F(x, v)+G(x, u)$, where $F(x, v)=\int_{0}^{v} f(x, t) d t, G(x, u)=\int_{0}^{u} g(x, t) d t$.

Theorem 2.3 Let $f, g \in C\left(\Omega \times \bar{R}_{+}\right)$. For any positive solution of (2.13), and any real number a, one has

$$
\begin{aligned}
(2.14) \int_{\Omega}[2 n(F(x, v)+G(x, u))+(2 & \left.-n)(a v f(x, v)+(2-a) u g(x, u))+2 \sum_{i=1}^{n} x_{i}\left(F_{x_{i}}+G_{x_{i}}\right)\right] d x \\
& =2 \int_{\partial \Omega}(x \cdot \nu)|\nabla u||\nabla v| d S .
\end{aligned}
$$

We now consider a particular system

$$
\begin{gather*}
\Delta u+v^{p}=0 \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{2.15}\\
\Delta v+g(x, u)=0 \text { in } \Omega, v=0 \text { on } \partial \Omega,
\end{gather*}
$$

with $g(x, u) \in C\left(\Omega \times \bar{R}_{+}\right)$, and a constant $p>0$.
Theorem 2.4 Assume that Ω is a star-shaped domain with respect to the origin, and (2.16) $n G(x, u)+(2-n)\left(1-\frac{n}{(n-2)(p+1)}\right) u g(x, u)+\sum_{i=1}^{n} x_{i} G_{x_{i}}<0$, for $x \in \Omega$, and $u>0$.

Then the problem (2.15) has no positive solutions.
Proof: We use the identity (2.14), with $f(v)=v^{p}$. We select the constant a, so that

$$
2 n F(v)+(2-n) a v f(v)=0,
$$

i.e., $a=\frac{2 n}{(n-2)(p+1)}$. Then, assuming existence of a positive solution, the left hand side of (2.14) is negative, while the right hand side is non-negative, a contradiction.

Observe that in case $p=1$, the Theorem 2.4 provides a non-existence result for a biharmonic problem with Navier boundary conditions

$$
\begin{equation*}
\Delta^{2} u=g(x, u) \text { in } \Omega, u=\Delta u=0 \text { on } \partial \Omega . \tag{2.17}
\end{equation*}
$$

Proposition 3 Assume that Ω is a star-shaped domain with respect to the origin, and the condition (2.16), with $p=1$, holds. Then the problem (2.17) has no positive solutions.

Finally, we consider the system

$$
\begin{gather*}
\Delta u+v^{p}=0 \text { in } \Omega, u=0 \text { on } \partial \Omega \tag{2.18}\\
\Delta v+u^{q}=0 \text { in } \Omega, v=0 \text { on } \partial \Omega .
\end{gather*}
$$

The curve $\frac{1}{p+1}+\frac{1}{q+1}=\frac{n-2}{n}$ is called a critical hyperbola. We recover the following well known result of E. Mitidieri [6], see also R.C.A.M. Van der Vorst [14]. (Observe that we relax the restriction $p, q>1$ from [6].)

Proposition 4 Assume that $p, q>0$, and

$$
\begin{equation*}
\frac{1}{p+1}+\frac{1}{q+1}<\frac{n-2}{n} . \tag{2.19}
\end{equation*}
$$

Then the problem (2.18) has no positive solutions.
Proof: Condition (2.19) implies (2.16), and then the Theorem 2.4 applies.
In case $p=1$, we recover the following known result, see E. Mitidieri [6].
Proposition 5 Assume that Ω is a star-shaped domain with respect to the origin, and $q>\frac{n+4}{n-4}$. Then the problem

$$
\begin{equation*}
\Delta^{2} u=u^{q} \text { in } \Omega, \quad u=\Delta u=0 \text { on } \partial \Omega \tag{2.20}
\end{equation*}
$$

has no positive solutions.

References

[1] Y. Bozhkov and E. Mitidieri, The Noether approach to Pokhozhaev's identities, Mediterr. J. Math. 4, no. 4, 383-405 (2007).
[2] L. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.
[3] D.G. de Figueiredo, Semilinear elliptic systems: existence, multiplicity, symmetry of solutions, Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5, Edited by M. Chipot, Elsevier Science, North Holland, 1-48 (2008).
[4] P. Korman, Pohozaev's identity and non-existence of solutions for elliptic systems, Comm. Appl. Nonlinear Anal. 17, no. 4, 81-88 (2010).
[5] P. Korman, Uniqueness and exact multiplicity of solutions for non-autonomous Dirichlet problems, Adv. Nonlinear Stud. 6, no. 3, 461-481 (2006).
[6] E. Mitidieri, A Rellich type identity and applications, Comm. Partial Differential Equations 18, no. 1-2, 125-151 (1993).
[7] T. Ouyang and J. Shi, Exact multiplicity of positive solutions for a class of semilinear problems, II, J. Differential Equations 158, no. 1, 94-151 (1999).
[8] S. I. Pohozaev, On the eigenfunctions of the equation $\Delta u+\lambda f(u)=0$. (Russian) Dokl. Akad. Nauk SSSR 165, 36-39 (1965).
[9] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35, no. 3, 681-703 (1986).
[10] F. Rellich, Darstellung der Eigenwerte von $\Delta u+\lambda u=0$ durch ein Randintegral. (German) Math. Z. 46, 635-636 (1940).
[11] P. Quittner and P. Souplet, Superlinear Parabolic Problems. Blow-up, global existence and steady states. Birkhäuser Advanced Texts: Basler Lehrbücher. Birkhäuser Verlag, Basel, (2007).
[12] B. Ruf, Superlinear elliptic equations and systems, Handbook of Differential Equations, Stationary Partial Differential Equations, Vol. 5, Edited by M. Chipot, Elsevier Science, North Holland, 277-370. (2008).
[13] K. Schmitt, Positive solutions of semilinear elliptic boundary value problems. Topological methods in differential equations and inclusions (Montreal, PQ, 1994), 447500, NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 472, Kluwer Acad. Publ., Dordrecht, (1995).
[14] R.C.A.M. Van der Vorst, Variational identities and applications to differential systems, Arch. Rational Mech. Anal. 116, no. 4, 375-398 (1992).

[^0]: *Supported in part by the Taft Faculty Grant at the University of Cincinnati

