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Introduction1

This book is based on several courses that I taught at the University of2

Cincinnati. Chapters 1-4 are based on the course “Differential Equations”3

for sophomores in science and engineering. Only some basic concepts of mul-4

tivariable calculus are used (functions of two variables and partial deriva-5

tives), and they are reviewed in the text. Chapters 7 and 8 are based on the6

course “Fourier Series and PDE”, and they should provide a wide choice of7

material for the instructors. Chapters 5 and 6 were used in graduate ODE8

courses, providing most of the needed material. Some of the sections of this9

book are outside of the scope of usual courses, but I hope they will be of10

interest to students and instructors alike. The book has a wide range of11

problems.12

I attempted to share my enthusiasm for the subject, and write a textbook13

that students will like to read. While some theoretical material is either14

quoted, or just mentioned without proof, my goal was to show all of the15

details when doing problems. I tried to use plain language and not to be too16

wordy. I think that an extra word of explanation has often as much potential17

to confuse a student, as to be helpful. I also tried not to overwhelm students18

with new information. I forgot who said it first: “one should teach the truth,19

nothing but the truth, but not the whole truth”.20

I hope that experts will find this book useful as well. It presents several21

important topics that are hard to find in the literature: Massera’s theorem,22

Lyapunov’s inequality, Picone’s form of Sturm’s comparison theorem, “side-23

ways” heat equation, periodic population models, “hands on” numerical24

solution of nonlinear boundary value problems, the isoperimetric inequality,25

etc. The book also contains new exposition of some standard topics. We26

have completely revamped the presentation of the Frobenius method for se-27

ries solution of differential equations, so that the “regular singular points”28

are now hopefully in the past. In the proof of the existence and uniqueness29

theorem, we replaced the standard Picard iterations with monotone itera-30

vii



viii INTRODUCTION

tions, which should be easier for students to absorb. There are many other1

fresh touches throughout the book. The book contains a number of inter-2

esting non-standard problems, including some original ones, published by3

the author over the years in the Problem Sections of SIAM Review, EJDE,4

and other journals. All of the challenging problems are provided with hints,5

making them easy to solve for instructors. We use asterisk (or star) to6

identify non-standard problems.7

How important are differential equations? Here is what Isaac Newton8

said: “It is useful to solve differential equations”. And what he knew was9

just the beginning. Today differential equations are used widely in science10

and engineering. This book presents many applications as well. Some of11

these applications are very old, like the tautochrone problem considered by12

Christian Huygens in 1659. Some applications, like when a drone is targeting13

a car, are modern. Differential Equations is also a beautiful subject, which14

lets students see Calculus “in action”.15

I attempted to start each topic with simple examples, to keep the presen-16

tation focused, and to show all of the details. I think this book is suitable17

for self-study. However, instructor can help in many ways. He (she) will18

present the subject with the enthusiasm it deserves, draw more pictures,19

talk about the history, and his jokes will supplement the lame ones in the20

book.21

I am very grateful to the MAA Book Board, including Steve Kennedy,22

Stan Seltzer and the whole group of anonymous reviewers, for providing23

me with detailed lists of corrections and suggested changes. Their help was24

crucial in making considerable improvements of the manuscript.25

It is a pleasure to thank Ken Meyer and Dieter Schmidt for constant26

encouragement while I was writing this book. I also wish to thank Ken27

for reading the entire book, and making a number of useful suggestions,28

like doing Fourier series early, with applications to periodic vibrations and29

radio tuning. I wish to thank Roger Chalkley, Tomasz Adamowicz, Dieter30

Schmidt, and Ning Zhong for a number of useful comments. Many useful31

comments came from students in my classes. They liked the book, and that32

provided me with the biggest encouragement.33



Chapter 11

First Order Equations2

First order equations occur naturally in many applications, making them an3

important object to study. They are also used throughout this book, and are4

of great theoretical importance. Linear first order equations, the first class5

of the equations we study, turns out to be of particular importance. Sepa-6

rable, exact and homogeneous equations are also used throughout the book.7

Applications are made to population modeling, and to various physical and8

geometrical problems. If a solution cannot be found by a formula, we prove9

that solution still exists, and indicate how it can be computed numerically.10

1.1 Integration by Guess-and-Check11

Many problems in differential equations end with a computation of an inte-12

gral. One even uses the term “integration of a differential equation” instead13

of “solution”. We need to be able to compute integrals quickly, which can14

be done by using the approach of this section. For example, one can write15

down16
∫

x3ex dx = x3ex − 3x2ex + 6xex − 6ex + c

very quickly, avoiding three integrations by parts.17

Recall the product rule18

(fg)′ = fg′ + f ′g .

Example 1
∫

xex dx. We need to find the function, with the derivative19

equal to xex. If we try a guess: xex, then its derivative20

(xex)′ = xex + ex

1



2 CHAPTER 1. FIRST ORDER EQUATIONS

has an extra term ex. To remove this extra term, we subtract ex from the1

initial guess, so that2

∫

xex dx = xex − 6ex + c.

By differentiation, we verify that this is correct. Of course, integration by3

parts may also be used.4

Example 2
∫

x cos 3x dx. Starting with the initial guess
1

3
x sin 3x, with5

the derivative equal to x cos 3x+ 1
3 sin 3x, we compute6

∫

x cos 3x dx =
1

3
x sin 3x+

1

9
cos 3x+ c.

Example 3
∫ π

0
x cos 3x dx =

[

1

3
x sin 3x+

1

9
cos 3x

]

|π
0

= −2

9
.7

We see that the initial guess is the product f(x)g(x), chosen in such a8

way that f(x)g′(x) gives the integrand.9

Example 4
∫

xe−5x dx. Starting with the initial guess −1

5
xe−5x, we10

compute11
∫

xe−5x dx = −1

5
xe−5x − 1

25
e−5x + c.

12

Example 5
∫

x2 sin 3x dx. The initial guess is −1

3
x2 cos 3x. Its derivative13

(

−1

3
x2 cos 3x

)′
= x2 sin 3x− 2

3
x cos 3x

has an extra term −2

3
x cos 3x. To remove this term, we modify our guess:14

−1

3
x2 cos 3x+

2

9
x sin 3x. Its derivative15

(

−1

3
x2 cos 3x+

2

9
x sin 3x

)′
= x2 sin 3x+

2

9
sin 3x

still has an extra term
2

9
sin 3x. So we make the final adjustment16

∫

x2 sin 3x dx = −1

3
x2 cos 3x+

2

9
x sin 3x+

2

27
cos 3x+ c .
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This is easier than integrating by parts twice.1

Example 6
∫

x
√

x2 + 4 dx. We begin by rewriting the integral as
∫

x
(

x2 + 4
)1/2

dx.2

One usually computes this integral by a substitution u = x2 + 4, with3

du = 2x dx. Forgetting a constant multiple for now, the integral becomes4
∫

u1/2 du. Ignoring a constant multiple again, this evaluates to u3/2. Re-5

turning to the original variable, we have our initial guess
(

x2 + 4
)3/2

. Dif-6

ferentiation7

d

dx

(

x2 + 4
)3/2

= 3x
(

x2 + 4
)1/2

gives us the integrand with an extra factor of 3. To fix that, we multiply8

the initial guess by 1
3 :9

∫

x
√

x2 + 4 dx =
1

3

(

x2 + 4
)3/2

+ c.

10

Example 7
∫

1

(x2 + 1)(x2 + 4)
dx. Instead of using partial fractions, let11

us try to split the integrand as12

1

x2 + 1
− 1

x2 + 4
.

This is off by a factor of 3. The correct formula is13

1

(x2 + 1)(x2 + 4)
=

1

3

(

1

x2 + 1
− 1

x2 + 4

)

.

Then14
∫

1

(x2 + 1)(x2 + 4)
dx =

1

3
tan−1 x− 1

6
tan−1 x

2
+ c .

15

Sometimes one can guess the splitting twice, as in the following case.16

Example 8
∫

1

x2 (1− x2)
dx.17

1

x2 (1− x2)
=

1

x2
+

1

1− x2
=

1

x2
+

1

(1 − x)(1 + x)
=

1

x2
+

1

2

1

1 − x
+

1

2

1

1 + x
.

Then (for |x| < 1)18

∫

1

x2 (1− x2)
dx = −1

x
− 1

2
ln(1− x) +

1

2
ln(1 + x) + c .
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1.2 First Order Linear Equations1

Background2

Suppose we need to find a function y(x) so that3

y′(x) = x.

We have a differential equation, because it involves a derivative of the un-4

known function. This is a first order equation, as it only involves the first5

derivative. Solution is, of course,6

y(x) =
x2

2
+ c,(2.1)

where c is an arbitrary constant. We see that differential equations have7

infinitely many solutions. The formula (2.1) gives us the general solution.8

Then we can select the solution that satisfies an extra initial condition. For9

example, for the problem10

y′(x) = x(2.2)

y(0) = 5

we begin with the general solution given in formula (2.1), and then evaluate11

it at x = 012

y(0) = c = 5.

So that c = 5, and solution of the problem (14.10) is13

y(x) =
x2

2
+ 5.

The problem (14.10) is an example of an initial value problem. If the vari-14

able x represents time, then the value of y(x) at the initial time x = 0 is15

prescribed to be 5. The initial condition may be prescribed at other values16

of x, as in the following example:17

y′ = y

y(1) = 2e .

Here the initial condition is prescribed at x = 1, e denotes the Euler number18

e ≈ 2.718. Observe that while y and y′ are both functions of x, we do not19

spell this out. This problem can also be solved using calculus. Indeed, we20

are looking for a function y(x), with the derivative equal to y(x). This is a21
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property of the function ex, and its constant multiples. The general solution1

is2

y(x) = cex,

and the initial condition gives3

y(1) = ce = 2e,

so that c = 2. The solution is then4

y(x) = 2ex.

We see that the main effort is in finding the general solution. Selecting5

c, to satisfy the initial condition, is usually easy.6

Recall from calculus that7

d

dx
eg(x) = eg(x)g′(x).

In case g(x) is an integral, we have8

d

dx
e
∫

p(x)dx = p(x)e
∫

p(x)dx,(2.3)

because the derivative of the integral
∫

p(x) dx is p(x).9

1.2.1 The Integrating Factor10

Let us find the general solution of the important class of equations11

y′ + p(x)y = g(x),(2.4)

where p(x) and g(x) are given functions. This is a linear equation, because12

y′ + p(x)y is a linear combination of the unknown functions y and y′, for13

each fixed x.14

Calculate the function15

µ(x) = e
∫

p(x)dx ,

and its derivative16

µ′(x) = p(x)e
∫

p(x)dx = p(x)µ .(2.5)

We now multiply the equation (2.4) by µ(x), giving17

µy′ + p(x)µy = µg(x) .(2.6)



6 CHAPTER 1. FIRST ORDER EQUATIONS

Let us use the product rule and the formula (2.5) to calculate the derivative1

d

dx
[µy] = µy′ + µ′y = µy′ + p(x)µy .

So that we may rewrite the equation (2.6) in the form2

d

dx
[µy] = µg(x) .(2.7)

This relation allows us to compute the general solution. Indeed, we know the3

function on the right. By integration, we express µ(x)y(x) =
∫

µ(x)g(x) dx,4

and then solve for y(x).5

In practice one needs to memorize the formula for the integrating factor6

µ(x), and the form (2.7) of our equation (2.4). When computing µ(x), we7

shall always take the constant of integration to be zero, c = 0, because the8

method works for any c.9

Example 1 Solve10

y′ + 2xy = x
11

y(0) = 2 .

Here p(x) = 2x, and g(x) = x. Compute12

µ(x) = e
∫

2xdx = ex
2
.

The equation (2.7) takes the form13

d

dx

[

ex
2
y
]

= xex
2
.

Integrate both sides, and then perform integration by a substitution u = x2
14

(or use guess-and-check)15

ex
2
y =

∫

xex
2
dx =

1

2
ex

2
+ c .

Solving for y, gives16

y(x) =
1

2
+ ce−x2

.

From the initial condition17

y(0) =
1

2
+ c = 2,
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so that c =
3

2
. Answer: y(x) =

1

2
+

3

2
e−x2

.1

Example 2 Solve2

y′ +
1

t
y = cos 2t , y(π/2) = 1 .

Here the independent variable is t, y = y(t), but the method is, of course,3

the same. Compute (for t > 0)4

µ(t) = e
∫

1
t

dt = eln t = t ,

and then by (2.7)5

d

dt
[ty] = t cos 2t .

Integrate both sides, and perform integration by parts6

ty =

∫

t cos 2t dt =
1

2
t sin 2t+

1

4
cos 2t+ c .

Divide by t7

y(t) =
1

2
sin 2t+

1

4

cos 2t

t
+
c

t
.

The initial condition gives8

y(π/2) = −1

4

1

π/2
+

c

π/2
= 1 .

Solve for c (multiplying by π/2)9

c = π/2 +
1

4
,

and the solution is10

y(t) =
1

2
sin 2t+

1

4

cos 2t

t
+
π/2 + 1

4

t
.(2.8)

The solution y(t) defines a curve, called the integral curve, for this intial-11

value problem. The initial condition tells us that y = 1 when t = π/2, so12

that the point (π/2, 1) lies on the integral curve. What is the maximal13

interval on which the solution (2.8) is valid? I.e., starting with the initial14

point t = π/2, how far can we continue the solution to the left and to the15

right of the initial point? We see from (2.8) that the maximal interval is16
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(0,∞). As t tends to 0 from the right, y(t) tends to +∞. At t = 0, the1

solution y(t) is undefined.2

Example 3 Solve3

x
dy

dx
+ 2y = sinx , y(−π) = −2 .

Here the equation is not in the form (2.4), for which the theory applies. We4

divide the equation by x5

dy

dx
+

2

x
y =

sinx

x
.

Now the equation is in the right form, with p(x) =
2

x
and g(x) =

sinx

x
.6

Using the properties of logarithms, compute7

µ(x) = e
∫

2
x

dx = e2 ln |x| = elnx2
= x2.

And then8

d

dx

[

x2y
]

= x2 sinx

x
= x sinx.

Integrate both sides, and perform integration by parts9

x2y =

∫

x sinx dx = −x cos x+ sinx+ c,

giving us the general solution10

y(x) = −cos x

x
+

sinx

x2
+

c

x2
.

The initial condition implies11

y(−π) = −1

π
+

c

π2
= −2.

Solve for c:12

c = −2π2 + π.

13

Answer: y(x) = −cosx

x
+

sinx

x2
+

−2π2 + π

x2
. This solution is valid on the14

interval (−∞, 0) (that is how far it can be continued to the left and to the15

right, starting from the initial point x = −π).16
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Example 4 Solve1

dy

dx
=

1

y − x
, y(1) = 0 .

We have a problem: not only this equation is not in the right form, this is2

a nonlinear equation, because
1

y − x
is not a linear function of y (it is not3

of the form ay + b, for any fixed x). We need a little trick. Let us pretend4

that dy and dx are numbers, and take the reciprocals of both sides of the5

equation, getting6

dx

dy
= y − x,

or7

dx

dy
+ x = y.

Let us now think of y as independent variable, and x as a function of y,8

x = x(y). Then the last equation is linear, with p(y) = 1 and g(y) = y. We9

proceed as usual: µ(y) = e
∫

1dy = ey, and10

d

dy
[eyx] = yey.

Integration gives11

eyx =

∫

yey dy = yey − ey + c,

and solving for x we obtain12

x(y) = y − 1 + ce−y.

To find c, we need an initial condition. The original initial condition tells13

us that y = 0 for x = 1. For the inverse function x(y) this translates to14

x(0) = 1. So that c = 2.15

Answer: x(y) = y − 1 + 2e−y (see the Figure 1.1).16

Rigorous justification of this method is based on the formula for the17

derivative of the inverse function, that we recall next. Let y = y(x) be18

some function, and y0 = y(x0). Let x = x(y) be its inverse function. Then19

x0 = x(y0), and we have20

dx

dy
(y0) =

1
dy
dx(x0)

.
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0.5 1.0 1.5 2.0 2.5 3.0
x

-1

1

2

3

y

Figure 1.1: The integral curve x = y− 1 + 2e−y, with the initial point (1, 0)

marked

1.3 Separable Equations1

Background2

Suppose we have a function F (y), and y in turn depends on x, y = y(x). So3

that, in effect, F depends on x. To differentiate F with respect to x, we use4

the chain rule from calculus:5

d

dx
F (y(x)) = F ′(y(x))

dy

dx
.

The Method6

Given two functions F (y) and G(x), let us use the corresponding lower case7

letters to denote their derivatives, so that F ′(y) = f(y) and G′(x) = g(x),8

and correspondingly
∫

f(y) dy = F (y) + c,
∫

g(x) dx = G(x) + c. Our goal9

is to solve the following equation10

f(y)
dy

dx
= g(x).(3.1)

This is a nonlinear equation.11
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Using the upper case functions, this equation becomes1

F ′(y)
dy

dx
= G′(x).

By the chain rule, we rewrite this as2

d

dx
F (y) =

d

dx
G(x).

If derivatives of two functions are the same, these functions differ by a3

constant, so that4

F (y) = G(x) + c.(3.2)

This gives the desired general solution! If one is lucky, it may be possible to5

solve this relation for y as a function of x. If not, maybe one can solve for6

x as a function of y. If both attempts fail, one can use a computer implicit7

plotting routine to draw the integral curves, given by (3.2).8

We now describe a simple procedure, which leads from the equation9

(3.1) to its solution (3.2). Let us pretend that dy
dx is not a notation for the10

derivative, but a ratio of two numbers dy and dx. Clearing the denominator11

in (3.1)12

f(y) dy = g(x) dx.

We have separated the variables, everything involving y is now on the left,13

while x appears only on the right. Integrate both sides:14

∫

f(y) dy =

∫

g(x) dx,

which gives us immediately the solution (3.2).15

Example 1 Solve16

dy

dx
= x

(

y2 + 9
)

.

To separate the variables, we multiply by dx, and divide by y2 + 917

∫

dy

y2 + 9
dy =

∫

x dx .

So that the general solution is18

1

3
arctan

y

3
=

1

2
x2 + c ,
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which can be solved for y1

y = 3 tan

(

3

2
x2 + 3c

)

= 3 tan

(

3

2
x2 + c

)

.

On the last step we replaced 3c, which is an arbitrary constant, by c.2

Example 2 Solve3

(

xy2 + x
)

dx+ ex dy = 0 .

This is an example of a differential equation, written in differentials. (Di-4

viding through by dx, we can put it into a familiar form xy2 +x+ex
dy

dx
= 0,5

although there is no need to do that.)6

By factoring, we are able to separate the variables:7

ex dy = −x(y2 + 1) dx ,
8

∫

dy

y2 + 1
= −

∫

xe−x dx ,

9

tan−1 y = xe−x + e−x + c .

Answer: y(x) = tan
(

xe−x + e−x + c
)

.10

Example 3 Find all solutions of11

dy

dx
= y2 .

We separate the variables, and obtain12

∫

dy

y2
=

∫

dx , −1

y
= x+ c , y = − 1

x+ c
.

However, division by y2 is possible only if y2 6= 0. The case when y2 = 013

leads to another solution: y = 0. Answer: y = − 1

x + c
, and y = 0.14

When performing a division by a non-constant expression, one needs to15

check if any solutions are lost, when this expression is zero. (If you divide16

the quadratic equation x(x − 1) = 0 by x, the root x = 0 is lost. If you17

divide by x− 1, the root x = 1 is lost.)18

Recall the fundamental theorem of calculus:19

d

dx

∫ x

a
f(t) dt = f(x) ,
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for any constant a. The integral
∫ x
a f(t) dt gives us an antiderivative of f(x),1

so that we may write2

∫

f(x) dx =

∫ x

a
f(t) dt+ c .(3.3)

Here we can let c be an arbitrary constant, and a fixed, or the other way3

around.4

Example 4 Solve5

dy

dx
= ex

2
y2 , y(1) = −2 .

Separation of variables6
∫

dy

y2
=

∫

ex
2
dx

gives on the right an integral that cannot be evaluated in elementary func-7

tions. We shall change it to a definite integral, as in (3.3). It is convenient8

to choose a = 1, because the initial condition is given at x = 1:9

∫

dy

y2
=

∫ x

1
et

2
dt + c ,

10

−1

y
=

∫ x

1
et

2
dt+ c .

When x = 1, we have y = −2, which gives c = 1
2 (using that

∫ 1
1 e

t2 dt = 0).11

Answer: y(x) = − 1
∫ x
1 e

t2 dt+ 1
2

. For any x, the integral
∫ x
1 e

t2 dt can be12

quickly computed by a numerical integration method, for example, by using13

the trapezoidal rule.14

1.3.1 Problems15

I. Integrate by Guess-and-Check.16

1.

∫

xe5x dx. Answer. x
e5x

5
− e5x

25
+ c.17

2.

∫

x cos 2x dx. Answer. x
sin 2x

2
+

cos 2x

4
+ c.18

3.

∫

(2x+ 1) sin 3x dx. Answer. −(2x+ 1)
cos3x

3
+

2

9
sin 3x+ c.19
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4.

∫

xe−
1
2
x dx. Answer. e−x/2(−4 − 2x) + c.1

5.

∫

x2e−x dx. Answer. −x2e−x − 2xe−x − 2e−x + c.2

6.

∫

x2 cos 2x dx. Answer.
1

2
x cos 2x+

(

1

2
x2 − 1

4

)

sin 2x+ c.3

7.

∫

x√
x2 + 1

dx. Answer.
√

x2 + 1 + c.4

8.

∫ 1

0

x√
x2 + 1

dx. Answer.
√

2 − 1.5

9.

∫

1

(x2 + 1)(x2 + 9)
dx. Answer.

1

8
tan−1 x− 1

24
tan−1 x

3
+ c.6

10.

∫

x

(x2 + 1)(x2 + 2)
dx. Answer.

1

2
ln
(

x2 + 1
)

− 1

2
ln
(

x2 + 2
)

+ c.7

8

11.

∫

dx

x3 + 4x
. Answer.

1

4
lnx− 1

8
ln
(

x2 + 4
)

+ c.9

12.

∫

(lnx)5

x
dx. Answer.

1

6
(lnx)6 + c.10

13.

∫

x2ex
3
dx. Answer.

1

3
ex

3
+ c.11

14.

∫ π

0
x sinnx dx, where n is a positive integer.12

Answer. −π
n

cosnπ =
π

n
(−1)n+1.13

15.

∫

e2x sin 3x dx. Answer. e2x
(

2

13
sin 3x− 3

13
cos 3x

)

+ c.14

Hint: Look for the antiderivative in the form Ae2x sin 3x+Be2x cos 3x, and15

determine the constants A and B by differentiation.16

16.

∫ ∞

2

dx

x (lnx)2
. Answer.

1

ln 2
.17

17.

∫

x3e−x dx. Answer. −x3e−x − 3x2e−x − 6xe−x − 6e−x + c.18

II. Find the general solution of the linear problems.19

1. y′ − y sinx = sinx. Answer. y = −1 + ce− cosx.20

2. y′ +
1

x
y = cos x. Answer. y =

c

x
+ sinx+

cos x

x
.21
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3. xy′ + 2y = e−x. Answer. y =
c

x2
− (x+ 1)e−x

x2
.1

4. x4y′ + 3x3y = x2ex. Answer. y =
c

x3
+

(x− 1)ex

x3
.2

5.
dy

dx
= 2x(x2 + y). Answer. y = cex

2 − x2 − 1.3

6. xy′ − 2y = xe1/x. Answer. y = cx2 − x2e1/x.4

7. y′ + 2y = sin 3x. Answer. y = ce−2x +
2

13
sin 3x− 3

13
cos 3x.5

8. x
(

yy′ − 1
)

= y2.6

Hint: Set v = y2. Then v′ = 2yy′, and one obtains a linear equation for7

v = v(x). Answer. y2 = −2x+ cx2.8

III. Find the solution of the initial value problem, and state the maximum9

interval on which this solution is valid.10

1. y′ − 2y = ex, y(0) = 2. Answer. y = 3e2x − ex; (−∞,∞).11

2. y′ +
1

x
y = cos x, y(

π

2
) = 1. Answer. y =

cosx+ x sinx

x
; (0,∞).12

13

3. xy′ + 2y =
sinx

x
, y(

π

2
) = −1. Answer. y = −π

2 + 4 cosx

4x2
; (0,∞).14

4. xy′ + (2 + x)y = 1, y(−2) = 0.15

Answer. y =
1

x
+

3e−x−2

x2
− 1

x2
; (−∞, 0).16

5. x(y′ − y) = ex, y(−1) =
1

e
. Answer. y = ex ln |x|+ ex; (−∞, 0).17

18

6. (t+ 2)
dy

dt
+ y = 5, y(1) = 1. Answer. y =

5t− 2

t+ 2
; (−2,∞).19

7. ty′ − 2y = t4 cos t, y(π/2) = 0.20

Answer. y = t3 sin t+ t2 cos t− π

2
t2; (−∞,∞). Solution is valid for all t.21

8. t ln t
dr

dt
+ r = 5tet, r(2) = 0. Answer. r =

5et − 5e2

ln t
; (1,∞).22

9. xy′ + 2y = y′ +
1

(x− 1)2
, y(−2) = 0.23
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Answer. y =
ln |x− 1| − ln 3

(x− 1)2
=

ln(1 − x) − ln 3

(x− 1)2
; (−∞, 1).1

10.
dy

dx
=

1

y2 + x
, y(2) = 0.2

Hint: Consider
dx

dy
, and obtain a linear equation for x(y).3

Answer. x = −2 + 4ey − 2y − y2.4

11∗. Find a solution (y = y(t)) of y′+y = sin2t, which is a periodic function.5

6

Hint: Look for a solution in the form y(t) = A sin 2t+ B cos 2t, substitute7

this expression into the equation, and determine the constants A and B.8

Answer. y =
1

5
sin 2t− 2

5
cos 2t.9

12∗. Show that the equation y′ +y = sin 2t has no other periodic solutions.10

Hint: Consider the equation that the difference of any two solutions satisfies.11

12

13∗. For the equation13

y′ + a(x)y = f(x)

assume that a(x) ≥ a0 > 0, where a0 is a constant, and f(x) → 0 as x→ ∞.14

Show that any solution tends to zero as x→ ∞.15

Hint: Write the integrating factor as µ(x) = e
∫ x

0
a(t)dt ≥ ea0x, so that µ(x) →16

∞ as x→ ∞. Then express17

y =

∫ x
0 µ(t)f(t) dt+ c

µ(x)
,

and use L’Hospital’s rule.18

14∗. Assume that in the equation (for y = y(t))19

y′ + ay = f(t)

the continuous function f(t) satisfies |f(t)| ≤M for all −∞ < t <∞, where20

M and a are positive constants. Show that there is only one solution, call21

it y0(t), which is bounded for all −∞ < t < ∞. Show that limt→∞ y0(t) =22

0, provided that limt→∞ f(t) = 0, and limt→−∞ y0(t) = 0, provided that23
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limt→−∞ f(t) = 0. Show also that y0(t) is a periodic function, provided that1

f(t) is a periodic function.2

Hint: Using the integrating factor eat, express3

eaty(t) =

∫ t

α
easf(s) ds+ c .

Select c = 0, and α = −∞. Then y0(t) = e−at
∫ t
−∞ easf(s) ds, and |y0(t)| ≤4

e−at
∫ t
−∞ eas|f(s)| ds ≤ M

a . In case limt→−∞ f(t) = 0, a similar argument5

shows that |y0(t)| ≤ ε
a , for −t large enough. In case limt→∞ f(t) = 0, use6

L’Hospital’s rule.7

IV. Solve by separating the variables.8

1.
dy

dx
=

2

x(y3 + 1)
. Answer.

y4

4
+ y − 2 ln |x| = c.9

2. ex dx− y dy = 0, y(0) = −1. Answer. y = −
√

2ex − 1.10

3. (x2y2 + y2) dx− yx dy = 0.11

Answer. y = e
x2

2
+ln |x|+c = c |x| ex2

2 (writing ec = c).12

4. y′ = x2
√

4 − y2. Answer. y = 2 sin

(

x3

3
+ c

)

, and y = ±2.13

5. y′(t) = ty2(1 + t2)−1/2, y(0) = 2. Answer. y = − 2

2
√
t2 + 1 − 3

.14

6. (y− xy + x− 1) dx+ x2 dy = 0, y(1) = 0. Answer. y =
e− e

1
xx

e
.15

7. x2y2y′ = y− 1. Answer.
y2

2
+ y+ ln |y− 1| = −1

x
+ c, and y = 1.16

8. y′ = ex
2
y, y(2) = 1. Answer. y = e

∫ x

2
et2 dt.17

9. y′ = xy2 + xy, y(0) = 2. Answer. y =
2e

x2

2

3 − 2e
x2

2

.18

10. y′ − 2xy2 = 8x, y(0) = −2.19

Hint: There are infinitely many choices for c, but they all lead to the same20

solution.21

Answer. y = 2 tan

(

2x2 − π

4

)

.22
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11. y′(t) = y − y2 − 1

4
.1

Hint: Write the right hand side as −1
4 (2y − 1)2.2

Answer. y =
1

2
+

1

t+ c
, and y = 1

2 .3

12.
dy

dx
=
y2 − y

x
.4

Answer.

∣

∣

∣

∣

y − 1

y

∣

∣

∣

∣

= ec|x|, and also y = 0 and y = 1.5

13.
dy

dx
=
y2 − y

x
, y(1) = 2. Answer. y =

2

2 − x
.6

14. y′ = (x+ y)2, y(0) = 1.7

Hint: Set x+ y = z, where z = z(x) is a new unknown function.8

Answer. y = −x + tan(x+ π
4 ).9

15. Show that one can reduce10

y′ = f(ax+ by)

to a separable equation. Here a and b are constants, f = f(z) is an arbitrary11

function.12

Hint: Set ax+ by = z, where z = z(x) is a new unknown function.13

16. A particle is moving on a polar curve r = f(θ). Find the function f(θ)14

so that the speed of the particle is 1, for all θ.15

Hint: x = f(θ) cos θ, y = f(θ) sin θ, and then16

speed2 =

(

dx

dθ

)2

+

(

dy

dθ

)2

= f ′2(θ) + f2(θ) = 1 ,

or f ′ = ±
√

1 − f2.17

Answer. f(θ) = ±1, or f(θ) = ± sin(θ + c). (r = sin(θ + c) is a circle of18

radius 1
2 with center on the ray θ =

π

2
− c, and passing through the origin.)19

20
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17∗. Find the differentiable function f(x) satisfying the following functional1

equation (for all x and y)2

f(x+ y) =
f(x) + f(y)

1 − f(x)f(y)
.

Hint: By setting x = y = 0, conclude that f(0) = 0. Then f ′(x) =3

lim
y→0

f(x+ y) − f(x)

y
= c

(

1 + f2(x)
)

, where c = f ′(0).4

Answer. f(x) = tan c x.5

1.4 Some Special Equations6

Differential equations that are not linear are called nonlinear. In this section7

we encounter several classes of nonlinear equations that can be reduced to8

linear ones.9

1.4.1 Homogeneous Equations10

Let f(t) be a given function. Setting here t =
y

x
, we obtain a function11

f(
y

x
), which is a function of two variables x and y, but it depends on them12

in a special way. One calls functions of the form f(
y

x
) homogeneous. For13

example,
y − 4x

x− y
is a homogeneous function, because we can put it into the14

form (dividing both the numerator and the denominator by x)15

y − 4x

x− y
=

y
x − 4

1 − y
x

,

so that here f(t) = t−4
1−t .16

Our goal is to solve homogeneous equations17

dy

dx
= f(

y

x
).(4.1)

Set v =
y

x
. Since y is a function of x, the same is true of v = v(x). Solving18

for y, y = xv, we express by the product rule19

dy

dx
= v + x

dv

dx
.
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Switching to v in (4.1), gives1

v + x
dv

dx
= f(v).(4.2)

This is a separable equation! Indeed, after taking v to the right, we can2

separate the variables3

∫

dv

f(v)− v
dv =

∫

dx

x
.

After solving this equation for v(x), we can express the original unknown4

y = xv(x).5

In practice, one should try to remember the formula (4.2).6

Example 1 Solve7

dy

dx
=
x2 + 3y2

2xy
8

y(1) = −2 .

To see that this equation is homogeneous, we rewrite it as (dividing both9

the numerator and the denominator by x2)10

dy

dx
=

1 + 3
(y

x

)2

2 y
x

.

Set v =
y

x
, or y = xv. Using that dy

dx = v + x dv
dx , obtain11

v + x
dv

dx
=

1 + 3v2

2v
.

Simplify:12

x
dv

dx
=

1 + 3v2

2v
− v =

1 + v2

2v
.

Separating the variables gives13

∫

2v

1 + v2
dv =

∫

dx

x
.

We now obtain the solution, by performing the following steps (observe that14

ln c is another way to write an arbitrary constant):15

ln (1 + v2) = lnx+ ln c = ln cx ,
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1

1 + v2 = cx ,
2

v = ±
√
cx− 1 ,

3

y(x) = xv = ±x
√
cx− 1 .

From the initial condition4

y(1) = ±
√
c− 1 = −2 .

It follows that we need to select “minus”, and c = 5.5

Answer: y(x) = −x
√

5x− 1.6

There is an alternative (equivalent) definition: a function f(x, y) is called7

homogeneous if8

f(tx, ty) = f(x, y), for all constants t.

If this condition holds, then setting t =
1

x
, we see that9

f(x, y) = f(tx, ty) = f(1,
y

x
) ,

so that f(x, y) is a function of
y

x
, and the old definition applies. It is easy to10

check that f(x, y) = x2+3y2

2xy from the Example 1 satisfies the new definition.11

12

Example 2 Solve13

dy

dx
=

y

x+
√
xy
, with x > 0, y ≥ 0 .

It is more straightforward to use the new definition to verify that the function14

f(x, y) = y
x+

√
xy is homogeneous. For all t > 0, we have15

f(tx, ty) =
(ty)

(tx) +
√

(tx)(ty)
=

y

x+
√
xy

= f(x, y) .

Letting y/x = v, or y = xv, we rewrite this equation as16

v + xv′ =
xv

x+
√
x xv

=
v

1 +
√
v
.
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We proceed to separate the variables:1

x
dv

dx
=

v

1 +
√
v
− v = − v3/2

1 +
√
v
,

2
∫

1 +
√
v

v3/2
dv = −

∫

dx

x
,

3

−2v−1/2 + ln v = − lnx+ c .

The integral on the left was evaluated by performing division, and splitting4

it into two pieces. Finally, we replace v by y/x, and simplify:5

−2

√

x

y
+ ln

y

x
= − lnx+ c ,

6

−2

√

x

y
+ ln y = c .

We obtained an implicit representation of a family of solutions. One can7

solve for x, x = 1
4y (c− ln y)2.8

When separating the variables, we had to assume that v 6= 0 (in order9

to divide by v3/2). In case v = 0, we obtain another solution: y = 0.10

1.4.2 The Logistic Population Model11

Let y(t) denote the number of rabbits on a tropical island at time t. The12

simplest model of population growth is13

y′ = ay

y(0) = y0 .

Here a > 0 is a given constant, called the growth rate. This model assumes14

that initially the number of rabbits was equal to some number y0 > 0,15

while the rate of change of population, given by y′(t), is proportional to16

the number of rabbits. The population of rabbits grows, which results in a17

faster and faster rate of growth. One expects an explosive growth. Indeed,18

solving the equation, we get19

y(t) = ceat .

From the initial condition y(0) = c = y0, which gives us y(t) = y0e
at, an20

exponential growth. This is the notorious Malthusian model of population21
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growth. Is it realistic? Yes, sometimes, for a limited time. If the initial1

number of rabbits y0 is small, then for a while their number may grow2

exponentially.3

A more realistic model, which can be used for a long time, is the logistic4

model:5

y′ = ay − by2(4.3)

y(0) = y0 .

Here a, b and y0 are given positive constants, and y = y(t). Writing this6

equation in the form7

y′ = by

(

a

b
− y

)

,

we see that when 0 < y < a
b , we have y′(t) > 0 and y(t) is increasing, while8

in the case y > a
b we have y′(t) < 0 and y(t) is decreasing.9

If y0 is small, then for small t, y(t) is small, so that the by2 term is10

negligible, and we have exponential growth. As y(t) increases, the by2 term11

is not negligible anymore, and we can expect the rate of growth of y(t) to get12

smaller and smaller, and y(t) to tend to a finite limit. (Writing the equation13

as y′ = (a − b y)y, we can regard the a − b y term as the rate of growth.)14

In case the initial number y0 is large (when y0 > a/b), the quadratic on the15

right in (4.3) is negative, so that y′(t) < 0, and the population decreases. If16

y0 = a/b, then y′(0) = 0, and we expect that y(t) = a/b for all t. We now17

solve the equation (4.3) to confirm our guesses.18

This equation can be solved by separating the variables. Instead, we use19

another technique that will be useful in the next section. Divide both sides20

of the equation by y2:21

y−2y′ = ay−1 − b.

Introduce a new unknown function v(t) = y−1(t) =
1

y(t)
. By the generalized22

power rule, v′ = −y−2y′, so that we can rewrite the last equation as23

−v′ = av − b,

or24

v′ + av = b.

This is a linear equation for v(t)! To solve it, we follow the familiar steps,25

and then we return to the original unknown function y(t):26

µ(t) = e
∫

a dt = eat,
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Figure 1.2: The solution of y′ = 5y − 2y2, y(0) = 0.2

1

d

dt

[

eatv
]

= beat,

2

eatv = b

∫

eat dt =
b

a
eat + c,

3

v =
b

a
+ ce−at,

4

y(t) =
1

v
=

1
b
a + ce−at

.

To find the constant c, we use the initial condition5

y(0) =
1

b
a + c

= y0 ,

6

c =
1

y0
− b

a
.

We conclude:7

y(t) =
1

b
a +

(

1
y0

− b
a

)

e−at
.

Observe that limt→+∞ y(t) = a/b, no matter what initial value y0 we take.8

The number a/b is called the carrying capacity. It tells us the number of9

rabbits, in the long run, that our island will support. A typical solution10

curve, called the logistic curve is given in Figure 1.2.11
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1.4.3 Bernoulli’s Equations1

Let us solve the equation2

y′(t) = p(t)y(t) + g(t)yn(t).

Here p(t) and g(t) are given functions, n is a given constant. The logistic3

model above is just a particular example of Bernoulli’s equation.4

Proceeding similarly to the logistic equation, we divide this equation by yn:5

y−ny′ = p(t)y1−n + g(t).

Introduce a new unknown function v(t) = y1−n(t). Compute v′ = (1 −6

n)y−ny′, so that y−ny′ = 1
1−nv

′, and rewrite the equation as7

v′ = (1− n)p(t)v + (1− n)g(t).

This is a linear equation for v(t)! After solving for v(t), we calculate the8

solution y(t) = v
1

1−n (t).9

Example Solve10

y′ = y +
t√
y
.

Writing this equation in the form y′ = y + ty−1/2, we see that this is11

Bernoulli’s equation, with n = −1/2, so that we need to divide through12

by y−1/2. But that is the same as multiplying through by y1/2, which we13

do, obtaining14

y1/2y′ = y3/2 + t .

We now let v(t) = y3/2, v′(t) = 3
2y

1/2y′, obtaining a linear equation for v,15

which is solved as usual:16

2

3
v′ = v + t , v′ − 3

2
v =

3

2
t,

17

µ(t) = e−
∫

3
2

dt = e−
3
2
t ,

d

dt

[

e−
3
2
tv
]

=
3

2
te−

3
2
t,

18

e−
3
2
tv =

∫

3

2
te−

3
2
t dt = −te− 3

2
t − 2

3
e−

3
2
t + c,

19

v = −t− 2

3
+ ce

3
2
t .

Returning to the original variable y, gives the answer: y =

(

−t− 2

3
+ ce

3
2
t
)2/3

.20
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1.4.4 ∗ Riccati’s Equations1

Let us try to solve the equation2

y′(t) + a(t)y(t) + b(t)y2(t) = c(t).

Here a(t), b(t) and c(t) are given functions. In case c(t) = 0, this is3

Bernoulli’s equation, which we can solve. For general c(t), one needs some4

luck to solve this equation. Namely, one needs to guess some solution p(t),5

which we refer to as a particular solution. Then a substitution y(t) =6

p(t) + z(t) produces Bernoulli’s equation for z(t)7

z′ + (a+ 2bp)z + bz2 = 0 ,

which can be solved.8

There is no general way to find a particular solution, which means that9

one cannot always solve Riccati’s equation. Occasionally one can get lucky.10

11

Example 1 Solve12

y′ + y2 = t2 − 2t .

We see a quadratic polynomial on the right, which suggests to look for a13

particular solution in the form y = at + b. Substitution into the equation14

produces a quadratic polynomial on the left too. Equating the coefficients15

in t2, t and constant terms, gives three equations to find a and b. In general,16

three equations with two unknowns will have no solutions, but this is a lucky17

case, with the solution a = −1, b = 1, so that p(t) = −t+ 1 is a particular18

solution. Substituting y(t) = −t+1+v(t) into the equation, and simplifying,19

we get20

v′ + 2(1− t)v = −v2 .

This is Bernoulli’s equation. Divide through by v2, and then set z =
1

v
,21

z′ = − v′

v2
, to get a linear equation:22

v−2v′ + 2(1− t)v−1 = −1 , z′ − 2(1 − t)z = 1 ,

23

µ = e−
∫

2(1−t)dt = et
2−2t ,

d

dt

[

et
2−2tz

]

= et
2−2t ,

24

et
2−2tz =

∫

et
2−2t dt .
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The last integral cannot be evaluated through elementary functions (Math-1

ematica can evaluate it through a special function, called Erfi). So we2

leave this integral unevaluated. One gets z from the last formula, after3

which one expresses v, and finally y. The result is a family of solutions:4

y(t) = −t+ 1 +
et

2−2t

∫

et
2−2t dt

. (The usual arbitrary constant c is now “inside”5

of the integral. Replacing
∫

et
2−2t dt by

∫ t
a e

s2−2s ds will give a formula for6

y(t) that can be used for computations and graphing.) Another solution:7

y = −t+ 1 (corresponding to v = 0).8

Example 2 Solve9

y′ + 2y2 =
6

t2
.(4.4)

We look for a particular solution in the form y(t) = a/t, and calculate a = 2,10

so that p(t) = 2/t is a particular solution (a = −3/2 is also a possibility).11

The substitution y(t) = 2/t+ v(t) produces Bernoulli’s equation12

v′ +
8

t
v + 2v2 = 0 .

Solving it, gives v(t) =
7

c t8 − 2t
, and v = 0. The solutions of (4.4) are13

y(t) =
2

t
+

7

c t8 − 2t
, and also y =

2

t
.14

Let us outline an alternative approach to the last problem. Setting15

y = 1/z in (4.4), then clearing the denominators, gives16

− z′

z2
+ 2

1

z2
=

6

t2
,

17

−z′ + 2 =
6z2

t2
.

This is a homogeneous equation, which we can solve.18

There are some important ideas that we learned in this subsection.19

Knowledge of one particular solution may help to “crack open” the equation,20

and get other solutions. Also, the form of this particular solution depends21

on the equation.22

1.4.5 ∗ Parametric Integration23

Let us solve the initial value problem (here y = y(x))24

y =
√

1 − y′2(4.5)

y(0) = 1 .
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This equation is not solved for the derivative y′(x). Solving for y′(x), and1

then separating the variables, one can indeed find the solution. Instead, let2

us assume that3

y′(x) = sin t,

where t is a parameter (upon which both x and y will depend). From the4

equation (4.5):5

y =

√

1 − sin2 t =
√

cos2 t = cos t,

assuming that cos t ≥ 0. Recall the differentials: dy = y′(x) dx, or6

dx =
dy

y′(x)
=

− sin t dt

sin t
= −dt,

so that
dx

dt
= −1, which gives7

x = −t+ c.

We obtained a family of solutions in parametric form (valid if cos t ≥ 0)8

x = −t+ c

y = cos t .

Solving for t, t = −x+ c, gives y = cos(−x+ c). From the initial condition,9

calculate that c = 0, giving us the solution y = cosx. This solution is10

valid on infinitely many disjoint intervals where cos x ≥ 0 (because we see11

from the equation (4.5) that y ≥ 0). This problem admits another solution:12

y = 1.13

For the equation14

y′5 + y′ = x

we do not have an option of solving for y′(x). Parametric integration appears15

to be the only way to solve it. We let y′(x) = t, so that from the equation,16

x = t5 + t, and dx = dx
dt dt = (5t4 + 1) dt. Then17

dy = y′(x) dx = t(5t4 + 1) dt ,

so that
dy

dt
= t(5t4 +1), which gives y = 5

6 t
6 + 1

2 t
2 +c. We obtained a family18

of solutions in parametric form:19

x = t5 + t

y = 5
6 t

6 + 1
2t

2 + c .

If an initial condition is given, one can determine the value of c, and20

then plot the solution.21
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1.4.6 Some Applications1

Differential equations arise naturally in geometric and physical problems.2

Example 1 Find all positive decreasing functions y = f(x), with the3

following property: the area of the triangle formed by the vertical line going4

down from the curve, the x-axis and the tangent line to this curve is constant,5

equal to a > 0.6

-

6

s

s s x

y

(x0, f(x0))

y = f(x)

x1x0

@
@

@
@

@
@

The triangle formed by the tangent line, the line x = x0, and the x-axis
7

Let (x0, f(x0)) be an arbitrary point on the graph of y = f(x). Draw8

the triangle in question, formed by the vertical line x = x0, the x-axis, and9

the tangent line to this curve. The tangent line intersects the x-axis at some10

point x1, lying to the right of x0, because f(x) is decreasing. The slope of11

the tangent line is f ′(x0), so that the point-slope equation of the tangent12

line is13

y = f(x0) + f ′(x0)(x− x0) .

At x1, we have y = 0, so that14

0 = f(x0) + f ′(x0)(x1 − x0) .

Solve this for x1, x1 = x0 −
f(x0)

f ′(x0)
. It follows that the horizontal side of our15

triangle is − f(x0)

f ′(x0)
, while the vertical side is f(x0). The area of this right16
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triangle is then1

−1

2

f2(x0)

f ′(x0)
= a .

(Observe that f ′(x0) < 0, so that the area is positive.) The point x0 was2

arbitrary, so that we replace it by x, and then we replace f(x) by y, and3

f ′(x) by y′:4

−1

2

y2

y′
= a , or − y′

y2
=

1

2a
.

We solve this differential equation by taking the antiderivatives of both sides:5

1

y
=

1

2a
x+ c .

Answer: y(x) =
2a

x+ 2ac
. This is a family of hyperbolas. One of them is6

y =
2a

x
.7

Example 2 A tank holding 10L (liters) originally is completely filled with8

water. A salt-water mixture is pumped into the tank at a rate of 2L per9

minute. This mixture contains 0.3 kg of salt per liter. The excess fluid is10

flowing out of the tank at the same rate (2L per minute). How much salt11

does the tank contain after 4 minutes?12

BBN
�
��

B
BN

CCW

AAU

Salt-water mixture pumped into a full tank

13

Let t be the time (in minutes) since the mixture started flowing, and let14

y(t) denote the amount of salt in the tank at time t. The derivative, y′(t),15

approximates the rate of change of salt per minute, and it is equal to the16

difference between the rate at which salt flows in, and the rate it flows out.17

The salt is pumped in at a rate of 0.6 kg per minute. The density of salt at18

time t is
y(t)

10
(so that each liter of the solution in the tank contains

y(t)

10
kg19
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of salt). Then, the salt flows out at the rate 2
y(t)

10
= 0.2 y(t) kg/min. The1

difference of these two rates gives y′(t), so that2

y′ = 0.6− 0.2y .

This is a linear differential equation. Initially, there was no salt in the tank,3

so that y(0) = 0 is our initial condition. Solving this equation together with4

the initial condition, we have y(t) = 3 − 3e−0.2t. After 4 minutes, we have5

y(4) = 3 − 3e−0.8 ≈ 1.65 kg of salt in the tank.6

Now suppose a patient has alcohol poisoning, and doctors are pumping7

in water to flush his stomach out. One can compute similarly the weight8

of poison left in the stomach at time t. (An example is included in the9

Problems.)10

1.5 Exact Equations11

This section covers exact equations. While this class of equations is rather12

special, it often occurs in applications.13

Let us begin by recalling partial derivatives. If a function f(x) = x2 + a14

depends on a parameter a, then f ′(x) = 2x. If g(x) = x2 + y3, with a15

parameter y, we have
dg

dx
= 2x. Another way to denote this derivative16

is gx = 2x. We can also regard g as a function of two variables, g =17

g(x, y) = x2 + y3. Then the partial derivative with respect to x is computed18

by regarding y to be a parameter, gx = 2x. Alternative notation:
∂g

∂x
= 2x.19

Similarly, a partial derivative with respect to y is gy =
∂g

∂y
= 3y2. The20

derivative gy gives us the rate of change in y, when x is kept fixed.21

The equation (here y = y(x))22

y2 + 2xyy′ = 0

can be easily solved, if we rewrite it in the equivalent form23

d

dx

(

xy2
)

= 0.

Then xy2 = c, and the solution is24

y(x) = ± c√
x
.
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We wish to play the same game for general equations of the form1

M(x, y) +N (x, y)y′(x) = 0.(5.1)

Here the functions M(x, y) and N (x, y) are given. In the above example,2

M = y2 and N = 2xy.3

Definition The equation (5.1) is called exact if there is a function ψ(x, y),4

with continuous derivatives up to second order, so that we can rewrite (5.1)5

in the form6

d

dx
ψ(x, y) = 0.(5.2)

The solution of the exact equation is (c is an arbitrary constant)7

ψ(x, y) = c.(5.3)

There are two natural questions: what conditions on M(x, y) and N (x, y)8

will force the equation (5.1) to be exact, and if the equation (5.1) is exact,9

how does one find ψ(x, y)?10

Theorem 1.5.1 Assume that the functions M(x, y), N (x, y), My(x, y) and11

Nx(x, y) are continuous in some disc D : (x− x0)
2 + (y− y0)

2 < r2, around12

some point (x0, y0). Then the equation (5.1) is exact in D if and only if the13

following partial derivatives are equal14

My(x, y) = Nx(x, y) , for all points (x, y) in D.(5.4)

This theorem makes two claims: if the equation is exact, then the partials15

are equal, and conversely, if the partials are equal, then the equation is16

exact.17

Proof: 1. Assume that the equation (5.1) is exact, so that it can be18

written in the form (5.2). Performing the differentiation in (5.2), using the19

chain rule, gives20

ψx + ψyy
′ = 0 .

But this equation is the same as (5.1), so that21

ψx = M

ψy = N .

Taking the second partials22

ψxy = My

ψyx = Nx .
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We know from calculus that ψxy = ψyx, therefore My = Nx.1

2. Assume that My = Nx. We will show that the equation (5.1) is then2

exact by producing ψ(x, y). We have just seen that ψ(x, y) must satisfy3

ψx = M(x, y)(5.5)

ψy = N (x, y) .

Take the antiderivative in x of the first equation4

ψ(x, y) =

∫ x

x0

M(t, y) dt+ h(y) ,(5.6)

where h(y) is an arbitrary function of y, and x0 is an arbitrary number. To5

determine h(y), substitute the last formula into the second line of (5.5)6

ψy(x, y) =

∫ x

x0

My(t, y) dt+ h′(y) = N (x, y) ,

or7

h′(y) = N (x, y)−
∫ x

x0

My(t, y) dt ≡ p(x, y) .(5.7)

Observe that we denoted by p(x, y) the right side of the last equation. It8

turns out that p(x, y) does not really depend on x! Indeed, taking the partial9

derivative in x,10

∂

∂x
p(x, y) = Nx(x, y)−My(x, y) = 0 ,

because it was given to us that My(x, y) = Nx(x, y). So that p(x, y) is a11

function of y only, or p(y). The equation (5.7) takes the form12

h′(y) = p(y) .

We determine h(y) by integration, and use it in (5.6) to get ψ(x, y). ♦13

Recall that the equation in differentials14

M(x, y) dx+N (x, y) dy = 0

is an alternative form of (5.1), so that it is exact if and only if My = Nx, for15

all x and y.16

Example 1 Consider17

ex sin y + y3 − (3x− ex cos y)
dy

dx
= 0 .
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Here M(x, y) = ex sin y + y3, N (x, y) = −3x+ ex cos y. Compute1

My = ex cos y + 3y2

Nx = ex cos y − 3 .

The partials are not the same, this equation is not exact, and our theory2

does not apply.3

Example 2 Solve (for x > 0)4

(

y

x
+ 6x

)

dx+ (lnx− 2) dy = 0 .

Here M(x, y) =
y

x
+ 6x and N (x, y) = lnx− 2. Compute5

My =
1

x
= Nx ,

and so the equation is exact. To find ψ(x, y), we observe that the equations6

(5.5) take the form7

ψx =
y

x
+ 6x

8

ψy = lnx− 2 .

Take the antiderivative in x of the first equation9

ψ(x, y) = y lnx+ 3x2 + h(y) ,

where h(y) is an arbitrary function of y. Substitute this ψ(x, y) into the10

second equation11

ψy = lnx+ h′(y) = lnx− 2 ,

which gives12

h′(y) = −2 .

Integrating, h(y) = −2y, and so ψ(x, y) = y lnx + 3x2 − 2y, giving us the13

solution14

y lnx + 3x2 − 2y = c .

We can solve this relation for y, y(x) =
c− 3x2

lnx− 2
. Observe that when solving15

for h(y), we chose the integration constant to be zero, because at the next16

step we set ψ(x, y) equal to c, an arbitrary constant.17



1.6. EXISTENCE AND UNIQUENESS OF SOLUTION 35

Example 3 Find the constant b, for which the equation1

(

2x3e2xy + x4ye2xy + x
)

dx+ bx5e2xy dy = 0

is exact, and then solve the equation with that b.2

Here M(x, y) = 2x3e2xy +x4ye2xy +x, and N (x, y) = bx5e2xy. Setting equal3

the partials My and Nx, we have4

5x4e2xy + 2x5ye2xy = 5bx4e2xy + 2bx5ye2xy .

One needs b = 1 for this equation to be exact. When b = 1, the equation5

becomes6
(

2x3e2xy + x4ye2xy + x
)

dx+ x5e2xy dy = 0 ,

and we already know that it is exact. We look for ψ(x, y) by using (5.5), as7

in Example 28

ψx = 2x3e2xy + x4ye2xy + x
9

ψy = x5e2xy .

It is easier to begin this time with the second equation. Taking the an-10

tiderivative in y, in the second equation,11

ψ(x, y) =
1

2
x4e2xy + h(x) ,

where h(x) is an arbitrary function of x. Substituting ψ(x, y) into the first12

equation gives13

ψx = 2x3e2xy + x4ye2xy + h′(x) = 2x3e2xy + x4ye2xy + x .

This tells us that h′(x) = x, h(x) = 1
2x

2, and then ψ(x, y) = 1
2x

4e2xy + 1
2x

2.14

Answer:
1

2
x4e2xy +

1

2
x2 = c, or y =

1

2x
ln

(

2c− x2

x4

)

.15

Exact equations are connected with conservative vector fields. Recall16

that a vector field F(x, y) =< M(x, y), N (x, y) > is called conservative if17

there is a function ψ(x, y), called the potential, such that F(x, y) = ∇ψ(x, y).18

Recalling that the gradient ∇ψ(x, y) =< ψx, ψy >, we have ψx = M , and19

ψy = N , the same relations that we had for exact equations.20
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1.6 Existence and Uniqueness of Solution1

We consider a general initial value problem2

y′ = f(x, y)

y(x0) = y0 ,

with a given function f(x, y), and given numbers x0 and y0. Let us ask two3

basic questions: is there a solution of this problem, and if there is, is the4

solution unique?5

Theorem 1.6.1 Assume that the functions f(x, y) and fy(x, y) are contin-6

uous in some neighborhood of the initial point (x0, y0). Then there exists a7

solution, and there is only one solution. The solution y = y(x) is defined on8

some interval (x1, x2) that includes x0.9

One sees that the conditions of this theorem are not too restrictive,10

so that the theorem tends to apply, providing us with the existence and11

uniqueness of solution. But not always!12

Example 1 Solve13

y′ =
√
y

y(0) = 0 .

The function f(x, y) =
√
y is continuous (for y ≥ 0), but its partial derivative14

in y, fy(x, y) = 1
2
√

y , is not even defined at the initial point (0, 0). The15

theorem does not apply. One checks that the function y = x2

4 solves our16

initial value problem (for x ≥ 0). But here is another solution: y(x) = 0.17

(Having two different solutions of the same initial value problem is like18

having two primadonnas in the same theater.)19

Observe that the theorem guarantees existence of solution only on some20

interval (it is not “happily ever after”).21

Example 2 Solve for y = y(t)22

y′ = y2

y(0) = 1 .

Here f(t, y) = y2, and fy(t, y) = 2y are continuous functions. The theorem23

applies. By separation of variables, we determine the solution y(t) =
1

1 − t
.24

As time t approaches 1, this solution disappears, by going to infinity. This25

phenomenon is sometimes called the blow up in finite time.26
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1.7 Numerical Solution by Euler’s method1

We have learned a number of techniques for solving differential equations,2

however the sad truth is that most equations cannot be solved (by a formula).3

Even a simple looking equation like4

y′ = x+ y3(7.1)

is totally out of reach. Fortunately, if you need a specific solution, say the5

one satisfying the initial condition6

y(0) = 1 ,(7.2)

it can be easily approximated using the method developed in this section (by7

the Theorem 1.6.1, such solution exists, and it is unique, because f(x, y) =8

x+ y3 and fy(x, y) = 3y2 are continuous functions).9

In general, we shall deal with the problem10

y′ = f(x, y)

y(x0) = y0 .

Here the function f(x, y) is given (in the example above we had f(x, y) =11

x+ y3), and the initial condition prescribes that solution is equal to a given12

number y0 at a given point x0. Fix a step size h, and let x1 = x0 + h,13

x2 = x0 + 2h, . . . , xn = x0 + nh. We will approximate y(xn), the value of14

the solution at xn. We call this approximation yn. To go from the point15

(xn, yn) to the point (xn+1, yn+1) on the graph of solution y(x), we use the16

tangent line approximation:17

yn+1 ≈ yn + y′(xn)(xn+1 − xn) = yn + y′(xn)h = yn + f(xn, yn)h .

(We expressed y′(xn) = f(xn, yn) from the differential equation. Because18

of the approximation errors, the point (xn, yn) is not exactly lying on the19

solution curve y = y(x), but we pretend that it does.) The resulting formula20

is easy to implement, it is just one computational loop, starting with the21

initial point (x0, y0).22

One continues the computations until the points xn go as far as needed.23

Decreasing the step size h, will improve the accuracy. Smaller h’s will require24

more steps, but with the power of modern computers, that is not a prob-25

lem, particularly for simple examples, like the problem (7.1), (7.2), which is26
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Figure 1.3: The numerical solution of y′ = x+ y3, y(0) = 1

discussed next. In that example x0 = 0, y0 = 1. If we choose h = 0.05, then1

x1 = 0.05, and2

y1 = y0 + f(x0, y0)h = 1 + (0 + 13) 0.05 = 1.05.

Continuing, we have x2 = 0.1, and3

y2 = y1 + f(x1, y1)h = 1.05 + (0.05 + 1.053) 0.05 ≈ 1.11 .

Next, x3 = 0.15, and4

y3 = y2 + f(x2, y2)h = 1.11 + (0.1 + 1.113) 0.05 ≈ 1.18 .

These computations imply that y(0.05) ≈ 1.05, y(0.1) ≈ 1.11, and y(1.15) ≈5

1.18. If you need to approximate the solution on the interval (0, 0.4), you6

have to make five more steps. Of course, it is better to program a computer.7

A computer computation reveals that this solution tends to infinity (blows8

up) at x ≈ 0.47. The Figure 1.3 presents the solution curve, computed by9

Mathematica, as well as the three points we computed by Euler’s method.10

Euler’s method is using the tangent line approximation, or the first two11

terms of the Taylor series approximation. One can use more terms of the12

Taylor series, and develop more sophisticated methods (which is done in13

books on numerical methods, and implemented in software packages, like14

Mathematica). But here is a question: if it is so easy to compute numerical15
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approximation of solutions, why bother learning analytical solutions? The1

reason is that we seek not just to solve a differential equation, but to under-2

stand it. What happens if the initial condition changes? The equation may3

include some parameters, what happens if they change? What happens to4

solutions in the long term?5

1.7.1 Problems6

I. Determine if the equation is homogeneous, and if it is, solve it.7

1.
dy

dx
=
y + 2x

x
, with x > 0. Answer. y = x (2 lnx+ c).8

2. (x+ y) dx− x dy = 0. Answer. y = x (ln |x| + c).9

3.
dy

dx
=
x2 − xy + y2

x2
. Answer. y = x

(

1 − 1

ln |x| + c

)

, and y = x.10

4.
dy

dx
=
y2 + 2x

y
.11

5. y′ =
y2

x2
+
y

x
, y(1) = 1. Answer. y =

x

1 − lnx
.12

6. y′ =
y2

x2
+
y

x
, y(−1) = 1. Answer. y = − x

1 + ln |x| .13

7.
dy

dx
=
y2 + 2xy

x2
, y(1) = 2. Answer. y =

2x2

3 − 2x
.14

8. xy′ − y = x tan
y

x
. Answer. sin

y

x
= cx.15

9. xy′ =
x2

x+ y
+ y. Answer. y = −x ± x

√

2 ln |x| + c .16

10. y′ =
x2 + y2

xy
, y(1) = −2. Answer. y = −x

√
2 lnx+ 4.17

11. y′ =
y + x−1/2y3/2

√
xy

, with x > 0, y > 0. Answer. 2

√

y

x
= lnx+ c.18

12. x3y′ = y2 (y − xy′
)

. Answer. ln |y|+ 1

2

(

y

x

)2

= c, and y = 0.19

13∗. A function f(x, y) is called quasi-homogeneous if for any constant α20

f(αx, αpy) = αp−1f(x, y) ,
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with some constant p.1

(i) Letting α = 1
x , and v = y

xp , verify that2

f(x, y) = xp−1g(v) ,

where g(v) is some function of one variable.3

(ii) Consider a quasi-homogeneous equation4

y′ = f(x, y) ,

where f(x, y) is a quasi-homogeneous function. Show that a change of vari-5

ables v = y
xp produces a separable equation.6

(iii) Solve7

y′ = x+
y2

x3
.

Hint: Denoting f(x, y) = x+
y2

x3
, we have f(αx, α2y) = αf(x, y), so that8

p = 2. Letting v = y
x2 , or y = x2v, we get9

xv′ = 1 − 2v + v2 .

Answer. y = x2
(

1 − 1
ln |x|+c

)

.10

II. Solve the following Bernoulli’s equations.11

1. y′(t) = 3y − y2. Answer. y =
3

1 + ce−3t
, and y = 0.12

2. y′ − 1

x
y = y2, y(2) = −2. Answer. y =

2x

2 − x2
.13

3. xy′ + y + xy2 = 0, y(1) = 2. Answer. y =
2

x (1 + 2 lnx)
.14

4. y′ + y = xy3, y(0) = −1. Answer. y = −
√

2√
2x+ e2x + 1

.15

5.
dy

dx
=
y2 + 2x

y
. Answer. y = ±

√

−1 − 2x+ ce2x.16

6. y′ + x 3
√
y = 3y. Answer. y = ±

(

x

3
+

1

6
+ ce2x

) 3
2

, and y = 0.17

Hint: When dividing the equation by 3
√
y, one needs to check if y = 0 is a18

solution, and indeed it is.19
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7. y′ + y = −xy2. Answer. y =
1

cex − x− 1
, and y = 0.1

8. y′+xy = y3, y(1) = −1

e
. Answer. y = − 1

√

−2ex
2 ∫ x

1 e
−t2 dt+ e(x

2+1)
.2

3

9. The equation4

dy

dx
=
y2 + 2x

y

could not be solved in the preceding problem set, because it is not homo-5

geneous. Can you solve it now? Answer. y = ±
√

ce2x − 2x− 1.6

7

10. y′ =
x

y
e2x + y. Answer. y = ±ex

√

x2 + c.8

11. Solve the Gompertz population model (a and b are positive constants)9

dx

dt
= x (a− b lnx) , x > 1 .

Hint: Setting y = lnx, obtain y′ = a − by.10

Answer. x(t) = ea/bec e−bt
.11

12. Solve12

x(y′ − ey) + 2 = 0 .

Hint: Divide the equation by ey, then set v = e−y , obtaining a linear equa-13

tion for v = v(x). Answer. y = − ln
(

x+ cx2
)

.14

13.
dy

dx
=

y

x+ x2y
.15

Hint: Consider
dx

dy
, and obtain Bernoulli’s equation for x(y).16

Answer. x =
2y

c− y2
.17

III. 1. Use parametric integration to solve18

y′3 + y′ = x .

Answer. x = t3 + t, y =
3

4
t4 +

1

2
t2 + c.19
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2. Use parametric integration to solve1

y = ln(1 + y′2) .

Answer. x = 2 tan−1 t+ c, y = ln(1 + t2). Another solution: y = 0.2

3. Use parametric integration to solve3

y′ + sin(y′) = x , y(0) = 0 .

Answer. x = t+ sin t, y =
1

2
t2 + t sin t+ cos t− 1.4

4. Solve the logistic model (for 0 < y < 3)5

y′(t) = 3y − y2 , y(0) = 1

as a separable equation. What is the carrying capacity? What is lim
t→∞

y(t)?6

7

Answer. y(t) =
3

1 + 2e−3t
, lim

t→∞
y(t) = 3.8

5. A tank is completely filled with 100L of water-salt mixture, which initially9

contains 10 kg of salt. Water is flowing in at a rate of 5L per minute. The10

new mixture flows out at the same rate. How much salt remains in the tank11

after an hour?12

Answer. Approximately 0.5 kg.13

6. A tank is completely filled with 100L of water-salt mixture, which initially14

contains 10 kg of salt. A water-salt mixture is flowing in at a rate of 3L15

per minute, and each liter of it contains 0.1 kg of salt. The new mixture16

flows out at the same rate. How much salt is contained in the tank after t17

minutes?18

Answer. 10 kg.19

7. Water is being pumped into patient’s stomach at a rate of 0.5L per minute20

to flush out 300 grams of alcohol poisoning. The excess fluid is flowing out at21

the same rate. The stomach holds 3L. The patient can be discharged when22

the amount of poison drops to 50 grams. How long should this procedure23

last?24

Answer. t = 6 ln6 ≈ 10.75 minutes.25

8. Temperature in a room is maintained at 70◦. If an object at 100◦ is26

placed in this room, it cools down to 80◦ in 5 minutes. A bowl of soup at27
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190◦ is placed in this room. The soup is ready to eat at 130◦. How many1

minutes one should wait?2

Hint: If y(t) is the temperature after t minutes, it is natural to assume that3

the speed of cooling is proportional to the difference of temperatures, so4

that5

y′ = −k(y − 70)

for some constant k > 0. We are given that y(5) = 80, provided that6

y(0) = 100. This allows us to calculate k = ln 3
5 . Then assuming that7

y(0) = 190, one calculates t such that y(t) = 130.8

Answer. t = 5
ln 2

ln 3
≈ 3.15 minutes.9

9. Find all curves y = f(x) with the following property: if you draw a10

tangent line at any point (x0, f(x0)) on this curve, and continue the tangent11

line until it intersects the x-axis, then the point of intersection is x0/2.12

Answer. y = cx2. (A family of parabolas.)13

10. Find all positive decreasing functions y = f(x), with the following14

property: in the triangle formed by the vertical line going down from the15

curve, the x-axis and the tangent line to this curve, the sum of two sides16

adjacent to the right angle is a constant, equal to b > 0.17

Answer. y − b lny = x+ c.18

11. Find all positive decreasing functions y = f(x), with the following19

property: for the tangent line at (x0, f(x0)), the length of the segment20

between the point (x0, f(x0)) and the y-axis is equal to 1, for all 0 < x0 ≤ 1.21

22

Answer. y = −
√

1 − x2 − lnx + ln
[

1 +
√

1 − x2
]

+ c. This historic curve23

(first studied by Huygens in 1692) is called the tractrix.24

12. Find all curves y = f(x) such that the point of intersection of the25

tangent line at (x0, f(x0)) with the x-axis is equidistant from the origin and26

the point (x0, f(x0)), at any x0.27

Answer. x2 + y2 = cy, a family of circles. (Hint: The differential equation28

y′ =
2xy

x2 − y2
is homogeneous.)29

13. Solve Riccati’s equation30

y′ + 2exy − y2 = ex + e2x .
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Answer. y = ex, and y = ex − 1

x+ c
.1

14. Solve Riccati’s equation2

y′ + (2ex + 2) y − exy2 = ex + 2 .

Answer. y = 1, and y = 1 +
1

ex + ce2x
.3

15∗. (From the Putnam competition, 2009) Show that any solution of4

y′ =
x2 − y2

x2(y2 + 1)

satisfies lim
x→∞ y(x) = ∞.5

Hint: Using “partial fractions”, rewrite this equation as6

y′ =
1 + 1/x2

y2 + 1
− 1

x2
.

Then y′(x) > − 1
x2 , which precludes y(x) from going to −∞. So, either y(x)7

is bounded, or it goes to +∞, as x → ∞ (possibly along some sequence).8

If y(x) is bounded when x is large, then y′(x) exceeds a positive constant9

for all large x, and therefore y(x) tends to infinity, a contradiction (observe10

that 1/x2 becomes negligible for large x). Finally, if y(x) failed to tend to11

infinity as x→ ∞ (while going to infinity over a subsequence), it would have12

infinitely many points of local minimum, at which y = x, a contradiction.13

16. Solve the integral equation14

y(x) =

∫ x

1
y(t) dt+ x+ 1 .

Hint: Differentiate the equation, and also evaluate y(1).15

Answer. y = 3ex−1 − 1.16

IV. Determine if the equation is exact, and if it is, solve it.17

1. (2x+ 3x2y) dx+ (x3 − 3y2) dy = 0. Answer. x2 + x3y − y3 = c.18

2. (x+sin y) dx+(x cosy−2y) dy = 0. Answer.
1

2
x2 +x sin y−y2 = c.19

20

3.
x

x2 + y4
dx+

2y3

x2 + y4
dy = 0. Answer. x2 + y4 = c.21
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4. Find a simpler solution for the preceding problem.1

5. (6xy−cos y) dx+(3x2+x siny+1) dy = 0. Answer. 3x2y−x cos y+y = c.2

3

6. (2x−y) dx+(2y−x) dy = 0, y(1) = 2. Answer. x2+y2−xy = 3.4

5

7. 2x

(

1 +
√

x2 − y

)

dx−
√

x2 − y dy = 0. Answer. x2 +
2

3

(

x2 − y
)3

2 = c.6

7

8. (yexy sin 2x+ 2exy cos 2x+ 2x) dx+(xexy sin 2x− 2) dy = 0, y(0) = −2.8

9

Answer. exy sin 2x+ x2 − 2y = 4.10

9. Find the value of b for which the following equation is exact, and then11

solve the equation, using that value of b12

(yexy + 2x) dx+ bxexy dy = 0 .

Answer. b = 1, y =
1

x
ln(c− x2).13

10. Verify that the equation14

(2 sin y + 3x) dx+ x cos y dy = 0

is not exact, however if one multiplies it by x, the equation becomes exact,15

and it can be solved. Answer. x2 sin y + x3 = c.16

11. Verify that the equation17

(x− 3y) dx+ (x+ y) dy = 0

is not exact, however it can be solved as a homogeneous equation.18

Answer. ln |y − x|+ 2x

x− y
= c.19

V. 1. Find three solutions of the initial value problem20

y′ = (y − 1)1/3, y(1) = 1 .

Is it desirable in applications to have three solutions of the same initial21

value problem? What “went wrong”? (Why the existence and uniqueness22

Theorem 1.6.1 does not apply here?)23
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Answer. y(x) = 1, and y(x) = 1 ±
(

2

3
x− 2

3

) 3
2

.1

2. Find all y0, for which the following problem has a unique solution2

y′ =
x

y2 − 2x
, y(2) = y0 .

Hint: Apply the existence and uniqueness Theorem 1.6.1.3

Answer. All y0 except ±2.4

3. Show that the function
x|x|
4

solves the problem5

y′ =
√

|y|
y(0) = 0 ,

for all x. Can you find another solution?6

Hint: Consider separately the cases when x > 0, x < 0, and x = 0.7

4. Show that the problem (here y = y(t))8

y′ = y2/3

y(0) = 0

has infinitely many solutions.9

Hint: Consider y(t) that is equal to zero for t < a, and to (t−a)3

27 for t ≥ a,10

where a > 0 is any constant.11

5. (i) Apply Euler’s method to12

y′ = x(1 + y), y(0) = 1 .

Take h = 0.25, and do four steps, obtaining an approximation for y(1).13

(ii) Take h = 0.2, and do five steps of Euler’s method, obtaining another14

approximation for y(1).15

(iii) Solve the above problem exactly, and determine which one of the two16

approximations is better.17

6. Write a computer program to implement Euler’s method for18

y′ = f(x, y), y(x0) = y0 .

It involves a simple loop: yn+1 = yn + hf(x0 + nh, yn), n = 0, 1, 2, . . ..19
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1.8 ∗ The Existence and Uniqueness Theorem1

In this section, for the initial value problem2

y′ = f(x, y)(8.3)

y(x0) = y0 ,

we prove a more general existence and uniqueness theorem than the Theorem3

1.6.1 stated above.4

Define a rectangular box B around the initial point (x0, y0) to be the set5

of points (x, y), satisfying x0 − a ≤ x ≤ x0 + a and y0 − b ≤ y ≤ y0 + b,6

for some positive a and b. It is known from calculus that in case f(x, y) is7

continuous on B, it is bounded on B, so that for some constant M > 08

|f(x, y)| ≤M, for all points (x, y) in B .(8.4)

Theorem 1.8.1 Assume that the function f(x, y) is continuous on B, and9

for some constant L > 0, it satisfies (the Lipschitz condition)10

|f(x, y2)− f(x, y1)| ≤ L|y2 − y1|,(8.5)

for any two points (x, y1) and (x, y2) in B. Then the initial value problem11

(8.3) has a unique solution, which is defined for x on the interval (x0 −12

b
M , x0 + b

M ), in case b
M < a, and on the interval (x0 − a, x0 + a) if b

M ≥ a.13

Proof: Assume, for definiteness, that b
M < a, and the other case is14

similar. We shall prove the existence of solutions first, and let us restrict to15

the case x > x0 (the case when x < x0 is similar). Integrating the equation16

in (8.3) over the interval (x0, x), we convert the initial value problem (8.3)17

into an equivalent integral equation18

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt .(8.6)

(If y(x) solves (8.6), then y(x0) = y0, and by differentiation y′ = f(x, y).)19

By (8.4), obtain20

−M ≤ f(t, y(t)) ≤M ,(8.7)

and then any solution of (8.6) lies between two straight lines21

y0 −M(x− x0) ≤ y(x) ≤ y0 +M(x− x0) .
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For x0 ≤ x ≤ x0 + b
M these lines stay in the box B, reaching its upper and1

lower boundaries at x = x0 + b
M . (In the other case, when b

M ≥ a, these2

lines stay in B for all x0 ≤ x ≤ x0 + a.) We denote ϕ(x) = y0 +M(x− x0),3

and call this function a supersolution, while ψ(x) = y0 −M(x−x0) is called4

a subsolution.5

-
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The functions ϕ(x) and ψ(x) exiting the box B

6

1. A special case. Let us make an additional assumption that f(x, y) is7

increasing in y, so that if y2 > y1, then f(x, y2) > f(x, y1), for any two8

points (x, y1) and (x, y2) in B. We shall construct a solution of (8.3) as the9

limit of a sequence of iterates ψ(x), y1(x), y2(x), . . . , yn(x), . . ., defined as10

follows11

y1(x) = y0 +

∫ x

x0

f(t, ψ(t)) dt ,

12

y2(x) = y0 +

∫ x

x0

f(t, y1(t)) dt , . . . , yn(x) = y0 +

∫ x

x0

f(t, yn−1(t)) dt .

We claim that for all x on the interval x0 < x ≤ x0 + b
M , the following13

inequalities hold14

ψ(x) ≤ y1(x) ≤ y2(x) ≤ · · · ≤ yn(x) ≤ · · · .(8.8)

Indeed, f(t, ψ(t)) ≥ −M , by (8.7), and then15

y1(x) = y0 +

∫ x

x0

f(t, ψ(t)) dt≥ y0 −M(x− x0) = ψ(x) ,
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giving us the first of the inequalities in (8.8). Then1

y2(x) − y1(x) =

∫ x

x0

[f(t, y1(t)) − f(t, ψ(t))] dt ≥ 0 ,

using the just established inequality ψ(x) ≤ y1(x), and the monotonicity2

of f(x, y). So that y1(x) ≤ y2(x), and the other inequalities in (8.8) are3

established similarly. Next, we claim that for any x on the interval x0 <4

x ≤ x0 + b
M , all of these iterates lie below the supersolution ϕ(x), so that5

ψ(x) ≤ y1(x) ≤ y2(x) ≤ · · · ≤ yn(x) ≤ · · · ≤ ϕ(x) .(8.9)

Indeed, f(t, ψ(t)) ≤M , by (8.7), giving6

y1(x) = y0 +

∫ x

x0

f(t, ψ(t)) dt ≤ y0 +M(x− x0) = ϕ(x) ,

proving the first inequality in (8.9), and that the graph of y1(x) stays in the7

box B, for x0 < x ≤ x0 + b
M . Then8

y2(x) = y0 +

∫ x

x0

f(t, y1(t)) dt ≤ y0 +M(x− x0) = ϕ(x) ,

and so on, for all yn(x).9

At each x in (x0, x0 + b
M ), the numerical sequence {yn(x)} is non-10

decreasing, bounded above by the number ϕ(x). Hence, this sequence has11

a limit which we denote by y(x). The sequence f(x, yn(x)) is also non-12

decreasing, and it converges to f(x, y(x)). By the monotone convergence13

theorem, we may pass to the limit in the recurrence relation14

yn(x) = y0 +

∫ x

x0

f(t, yn−1(t)) dt ,(8.10)

concluding that y(x) gives the desired solution of the integral equation (8.6).15

(If one starts the recurrence relation (8.10) with the supersolution φ(x),16

one obtains similarly a decreasing sequence of iterates converging to a solu-17

tion of (8.6).)18

2. The general case. Define g(x, y) = f(x, y)+Ay. If we choose the constant19

A large enough, then the new function g(x, y) will be increasing in y, for20

(x, y) ∈ B. Indeed, using the Lipschitz condition (8.5),21

g(x, y2) − g(x, y1) = f(x, y2) − f(x, y1) +A (y2 − y1)
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1

≥ −L (y2 − y1) + A (y2 − y1) = (A− L) (y2 − y1) > 0 ,

for any two points (x, y1) and (x, y2) in B, provided that A > L, and y2 > y1.2

We now consider an equivalent equation (recall that g(x, y) = f(x, y)+Ay)3

y′ + Ay = f(x, y) +Ay = g(x, y) .

Multiplying both sides by the integrating factor eAx, we put this equation4

into the form5

d

dx

[

eAxy
]

= eAxg(x, y) .

Set z(x) = eAxy(x), then y(x) = e−Axz(x), and the new unknown function6

z(x) satisfies7

z′ = eAxg
(

x, e−Axz
)

(8.11)

z(x0) = eAx0y0 .

The function eAxg
(

x, e−Axz
)

is increasing in z. The special case applies,8

so that the solution z(x) of (8.11) exists. Then y(x) = e−Axz(x) gives the9

desired solution of (8.3).10

Finally, we prove the uniqueness of solution. Let u(x) be another solution11

of (8.6) on the interval (x0, x0 + b
M ), so that12

u(x) = y0 +

∫ x

x0

f(t, u(t)) dt .

Subtracting this from (8.6), gives13

y(x) − u(x) =

∫ x

x0

[f(t, y(t))− f(t, u(t))] dt .

Assume first that x is in [x0, x0 + 1
2L ]. Then using the Lipschitz condition14

(8.5), we estimate15

|y(x)− u(x)| ≤
∫ x

x0

|f(t, y(t))− f(t, u(t))| dt ≤ L

∫ x

x0

|y(t))− u(t)| dt
16

≤ L(x− x0) max
[x0,x0+

1
2L

]
|y(x)− u(x)| ≤ 1

2
max

[x0,x0+
1
2L

]
|y(x)− u(x)| .

It follows that17

max
[x0,x0+

1
2L

]
|y(x)− u(x)| ≤ 1

2
max

[x0,x0+
1

2L
]
|y(x)− u(x)| .
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But then max[x0,x0+
1

2L
] |y(x)−u(x)| = 0, so that y(x) = u(x) on [x0, x0+

1
2L ].1

Let x1 = x0 + 1
2L . We just proved that y(x) = u(x) on [x0, x0 + 1

2L ], and2

in particular y(x1) = u(x1). Repeating (if necessary) the same argument on3

[x1, x1 + 1
2L ], and so on, we will eventually conclude that y(x) = u(x) on4

(x0, x0 + b
M ). ♦5

Observe that the Lipschitz condition (8.5) follows from the easy to check6

requirement that the function fy(x, y) is continuous in the box B.7

We shall need the following important tool.8

Lemma 1.8.1 (Bellman-Gronwall Lemma) Assume that for x ≥ x0, the9

functions u(x) and a(x) are continuous, and satisfy u(x) ≥ 0, a(x) ≥ 0.10

Assume that for some number K > 0 we have11

u(x) ≤ K +

∫ x

x0

a(t)u(t) dt, for x ≥ x0 .(8.12)

Then12

u(x) ≤ Ke

∫ x

x0
a(t)dt

, for x ≥ x0 .(8.13)

Proof: Divide the inequality (8.12) by its right hand side (which is13

positive)14

a(x)u(x)

K +
∫ x
x0
a(t)u(t) dt

≤ a(x) .

Integrating both sides over (x0, x) (the numerator of the fraction on the left15

is equal to the derivative of its denominator), gives16

ln

(

K +

∫ x

x0

a(t)u(t) dt

)

− lnK ≤
∫ x

x0

a(t) dt ,

which implies that17

K +

∫ x

x0

a(t)u(t) dt ≤ Ke

∫ x

x0
a(t)dt

.

Using the inequality (8.12) once more, we get (8.13). ♦18

In addition to the initial value problem (8.3), with f(x, y) satisfying the19

Lipschitz condition (8.5), consider20

z′ = f(x, z)(8.14)

z(x0) = z0 .
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If z0 = y0, then z(x) = y(x) for all x ∈ B, by the Theorem 1.8.1 (observe1

that the Lipschitz condition (8.5) implies the continuity of f(x, y) on B).2

Now suppose that z0 6= y0, but |z0 − y0| is small. We claim that z(x) and3

y(x) will remain close over any bounded interval (x0, x0 + p), provided that4

both solutions exist on that interval, and |z0 − y0| is small enough. This5

fact is known as the continuous dependence of solutions, with respect to the6

initial condition.7

We begin the proof of the claim by observing that z(x) satisfies8

z(x) = z0 +

∫ x

x0

f(t, z(t)) dt .

From this formula we subtract (8.6), and then estimate9

z(x) − y(x) = z0 − y0 +

∫ x

x0

[f(t, z(t))− f(t, y(t))] dt ;

10

|z(x)− y(x)| ≤ |z0 − y0| +
∫ x

x0

|f(t, z(t))− f(t, y(t))| dt
11

≤ |z0 − y0|+
∫ x

x0

L |z(t) − y(t)| dt .

(We used the triangle inequality for numbers: |a+ b| ≤ |a|+ |b|, the triangle12

inequality for integrals: |
∫ x
x0
g(t) dt| ≤

∫ x
x0

|g(t)| dt, and the condition (8.5).)13

By the Bellman-Gronwall lemma14

|z(x)− y(x)| ≤ |z0 − y0| eL(x−x0) ≤ |z0 − y0| eLp, for x ∈ (x0, x0 + p) ,

so that z(x) and y(x) remain close over the interval (x0, x0 + p), provided15

that |z0 − y0| is small enough.16

1.8.1 Problems17

1. Assume that the function u(x) ≥ 0 is continuous for x ≥ 1, and for some18

number K > 0, we have19

xu(x) ≤ K +

∫ x

1
u(t) dt, for x ≥ 1 .

Show that u(x) ≤ K, for x ≥ 1.20

2. Assume that the functions a(x) ≥ 0, and u(x) ≥ 0 are continuous for21

x ≥ x0, and we have22

u(x) ≤
∫ x

x0

a(t)u(t) dt, for x ≥ x0 .
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Show that u(x) = 0, for x ≥ x0. Then give an alternative proof of the1

uniqueness part of the Theorem 1.8.1.2

Hint: Let K → 0 in the Bellman-Gronwall lemma.3

3. Assume that the functions a(x) ≥ 0, and u(x) ≥ 0 are continuous for4

x ≥ x0, and we have5

u(x) ≤
∫ x

x0

a(t)u2(t) dt, for x ≥ x0 .

Show that u(x) = 0, for x ≥ x0.6

Hint: Observe that u(x0) = 0. When t is close to x0, u(t) is small. But then7

u2(t) < u(t). (Alternatively, one may treat the function a(t)u(t) as known,8

and use the preceding problem.)9

4. Show that if a function x(t) satisfies10

0 ≤ dx

dt
≤ x2 for all t, and x(0) = 0,

then x(t) = 0 for all t ∈ (−∞,∞).11

Hint: Show that x(t) = 0 for t > 0. In case t < 0, introduce new variables12

y and s, by setting x = −y and t = −s, so that s > 0.13

5. Assume that the functions a(x) ≥ 0, and u(x) ≥ 0 are continuous for14

x ≥ x0, and we have15

u(x) ≤ K +

∫ x

x0

a(t) [u(t)]m dt , for x ≥ x0 ,(8.15)

with some constants K > 0 and 0 < m < 1. Show that16

u(x) ≤
[

K1−m + (1 −m)

∫ x

x0

a(t) dt

]
1

1−m

, for x ≥ x0 .

This fact is known as Bihari’s inequality. Show also that the same inequality17

holds in case m > 1, under an additional assumption that18

K1−m + (1 −m)

∫ x

x0

a(t) dt > 0 , for all x ≥ x0 .

Hint: Denote the right hand side of (8.15) by w(x). Then w(x0) = K, and19

w′ = a(x)um ≤ a(x)wm .

Divide by wm, and integrate over (x0, x).20
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6. For the initial value problem1

y′ = f(x, y) , y(x0) = y0 ,

or the corresponding integral equation2

y(x) = y0 +

∫ x

x0

f(t, y(t)) dt ,

the Picard iterations are defined by the recurrence relation3

yn+1(x) = y0 +

∫ x

x0

f(t, yn(t)) dt , n = 0, 1, 2, . . . ,

starting with y0(x) = y0. (Picard’s iterations are traditionally used to prove4

the existence and uniqueness Theorem 1.8.1.)5

(i) Compute the Picard iterations for6

y′ = y , y(0) = 1 ,

and compare them with the exact solution.7

(ii) Compute the Picard iterates y1(x) and y2(x) for8

y′ = 2xy2 , y(0) = 1 ,

and compare them with the exact solution, for |x| small.9

Hint: The exact solution may be written as a series y(x) = 1 + x2 + x4 +10

x6 + · · ·.11

Answer. y0(x) = 1, y1(x) = 1+ x2, y2(x) = 1 +x2 + x4 + x6

3 . The difference12

|y(x)− y2(x)| is very small, for |x| small.13

7. Let y(x) be the solution for x > 0 of the equation14

y′ = f(x, y) , y(0) = y0 .

Assume that |f(x, y)| ≤ a(x)|y|+b(x), with positive functions a(x) and b(x)15

satisfying
∫∞
0 a(x) dx < ∞,

∫∞
0 b(x) dx < ∞. Show that |y(x)| is bounded16

for all x > 0.17

Hint: Apply the Bellman-Gronwall lemma to the corresponding integral18

equation.19
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8. Assume that for x ≥ x0 the continuous functions y(x), f(x) and g(x) are1

non-negative, and2

y(x) ≤ f(x) +

∫ x

x0

g(t)y(t) dt , for x ≥ x0 .

Show that3

y(x) ≤ f(x) +

∫ x

x0

g(t)f(t)e
∫ x

t
g(u) du dt , for x ≥ x0 .

Hint: Denote I(x) =
∫ x
x0
g(t)y(t) dt. Since I ′(x) = g(x)y(x) ≤ g(x)I(x) +4

g(x)f(x), it follows that5

d

dx

[

e
−
∫ x

x0
g(u) du

I(x)

]

≤ e
−
∫ x

x0
g(u) du

g(x)f(x) .

Integration over [x0, x] gives I(x) ≤ ∫ x
x0
g(t)f(t)e

∫ x

t
g(u) du dt.6
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Second Order Equations2

The central topic of this chapter involves linear second order equations with3

constant coefficients. These equations, while relatively easy to solve, are4

of great importance, particularly for their role in modeling mechanical and5

electrical oscillations. Several sections deal with such applications. Some6

non-standard applications are also included: the motion of a meteor, cou-7

pled pendulums, and the path of a military drone. Then we study Euler’s8

equation with variable coefficients, and higher order equations. The chapter9

concludes with a more advanced topic of oscillation theory.10

2.1 Special Second Order Equations11

Probably the simplest second order equation is12

y′′(x) = 0.

Taking the antiderivative13

y′(x) = c1 .

We denoted an arbitrary constant by c1, because we expect another arbitrary14

constant to make an appearance. Indeed, taking another antiderivative, we15

get the general solution16

y(x) = c1x+ c2 .

This example suggests that general solutions of second order equations de-17

pend on two arbitrary constants.18

General second order equations for the unknown function y = y(x) can19

often be written as20

y′′ = f(x, y, y′),

56



2.1. SPECIAL SECOND ORDER EQUATIONS 57

where f is a given function of its three variables. One cannot expect all such1

equations to be solvable, as we could not even solve all first order equations.2

In this section we study special second order equations, which are reducible3

to first order equations, greatly increasing their chances to be solved.4

2.1.1 y is not present in the equation5

Let us solve for y(t) the equation6

ty′′ − y′ = t2 .

The derivatives of y are present in this equation, but not the function y itself.7

We denote y′(t) = v(t), and v(t) is our new unknown function. Clearly,8

y′′(t) = v′(t), and the equation becomes9

tv′ − v = t2 .

This is a first order equation for v(t)! This equation is linear, so that we10

solve it as usual. Once v(t) is calculated, the solution y(t) is determined by11

integration. Details:12

v′ − 1

t
v = t ,

13

µ(t) = e−
∫

1
t

dt = e− ln t = eln
1
t =

1

t
,

14

d

dt

[

1

t
v

]

= 1 ,

15

1

t
v = t+ c1 ,

16

y′ = v = t2 + c1t ,
17

y(t) =
t3

3
+ c1

t2

2
+ c2 .

Here c1 and c2 are arbitrary constants.18

For the general case of equations with y not present19

y′′ = f(x, y′) ,

the change of variables y′ = v results in the first order equation20

v′ = f(x, v) .
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Let us solve the following equation for y(x):1

y′′ + 2xy′
2

= 0 .

Again, y is missing in this equation. Setting y′ = v, with y′′ = v′, gives a2

first order equation:3

v′ + 2xv2 = 0 ,
4

dv

dx
= −2xv2 .

The last equation has a solution v = 0, or y′ = 0, giving y = c, the first5

family of solutions. Assuming that v 6= 0, we separate the variables6

∫

dv

v2
dv = −

∫

2x dx ,

7

−1

v
= −x2 − c1 ,

8

y′ = v =
1

x2 + c1
.

Let us now assume that c1 > 0. Then9

y(x) =

∫

1

x2 + c1
dx =

1√
c1

arctan
x√
c1

+ c2 ,

the second family of solutions. If c1 = 0 or c1 < 0, we get two more different10

formulas for solutions! Indeed, in case c1 = 0, or y′ =
1

x2
, an integration11

gives y = −1

x
+ c3, the third family of solutions. In case c1 < 0, we can12

write (replacing c1 by −c21, with a new c1)13

y′ =
1

x2 − c21
=

1

(x− c1)(x+ c1)
=

1

2c1

[

1

x− c1
− 1

x+ c1

]

.

Integration gives the fourth family of solutions14

y =
1

2c1
ln |x− c1| −

1

2c1
ln |x+ c1| + c4 .

Prescribing two initial conditions is appropriate for second order equa-15

tions. Let us solve16

y′′ + 2xy′2 = 0 , y(0) = 0 , y′(0) = 1 .
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We just solved this equation, so that as above1

y′(x) =
1

x2 + c1
.

From the second initial condition y′(0) = 1
c1

= 1, giving c1 = 1. It follows2

that y′(x) = 1
x2+1 , and then y(x) = arctanx + c2. From the first initial3

condition y(0) = c2 = 0. Answer: y(x) = arctanx.4

2.1.2 x is not present in the equation5

Let us solve for y(x)6

y′′ + yy′3 = 0 .

All three functions appearing in the equation are functions of x, but x itself7

is not present in the equation. On the curve y = y(x), the slope y′ is a8

function of x, but it is also a function of y. We set y′ = v(y), and v(y) will9

be the new unknown function. By the chain rule10

y′′(x) =
d

dx
v(y) = v′(y)

dy

dx
= v′v ,

and our equation takes the form11

v′v + yv3 = 0 .

This is a first order equation! To solve it, we begin by factoring12

v
(

v′ + yv2
)

= 0.

If the first factor is zero, y′ = v = 0, we obtain a family of solutions y = c.13

Setting the second factor to zero14

dv

dy
+ yv2 = 0 ,

gives a separable equation. We solve it by separating the variables15

−
∫

dv

v2
=

∫

y dy ,

16

1

v
=
y2

2
+ c1 =

y2 + 2c1
2

,
17

dy

dx
= v =

2

y2 + 2c1
.



60 CHAPTER 2. SECOND ORDER EQUATIONS

To find y(x) we need to solve another first order equation ( dy
dx = 2

y2+2c1
).1

Separating the variables:2

∫

(

y2 + 2c1
)

dy =

∫

2 dx ,

3

y3/3 + 2c1y = 2x+ c2 ,

giving a second family of solutions.4

For the general case of equations with x not present5

y′′ = f(y, y′) ,

the change of variables y′ = v(y) produces a first order equation for v = v(y)6

vv′ = f(y, v) .

Let us solve for y(x):7

y′′ = yy′ , y(0) = −2 , y′(0) = 2 .

In this equation x is missing, and we could solve it as in the preceding8

example. Instead, write this equation as9

d

dx
y′ =

d

dx

(

1

2
y2
)

,

and integrate, to get10

y′(x) =
1

2
y2(x) + c1 .

Evaluate the last equation at x = 0, and use the initial conditions:11

2 =
1

2
(−2)2 + c1 ,

so that c1 = 0. Then12

dy

dx
=

1

2
y2 .

Solving this separable equation gives y = − 1
1
2x+ c2

. Using the first initial13

condition again, calculate c2 = 1
2 . Answer: y = − 2

x + 1
.14
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2.1.3 ∗ The Trajectory of Pursuit1

Problem. A car is moving along a highway (the x axis) with a constant2

speed a. A drone is flying in the skies (at a point (x, y), which depends3

on time t), with a constant speed v. Find the trajectory for the drone, so4

that the tangent line always passes through the car. Assume that the drone5

starts at a point (x0, y0), and the car starts at x0.6

Solution. If X gives the position of the car, we can express the slope of the7

tangent line as follows ( dy
dx = − tan θ, where θ is the angle the tangent line8

makes with the x-axis)9

dy

dx
= − y

X − x
.(1.1)

s

@
@@Rs s
t

x

y

(x, y)

(x0, y0)

x0

y = f(x)

X

θ -

6

@
@

@
@@

10

Since the velocity of the car is constant, X = x0 + at. Then (1.1) gives11

x0 + at− x = −y dx
dy

.

Differentiate this formula with respect to y, and simplify (here x = x(y))12

dt

dy
= −1

a
y
d2x

dy2
.(1.2)

On the other hand, v =
ds

dt
, and ds =

√

dx2 + dy2, so that13

dt =
1

v
ds =

1

v

√

dx2 + dy2 = −1

v

√

(

dx

dy

)2

+ 1 dy ,
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and then1

dt

dy
= −1

v

√

(

dx

dy

)2

+ 1 .(1.3)

(Observe that
dt

dy
< 0, so that minus is needed in front of the square root.)2

Comparing (1.2) with (1.3), and writing x′(y) =
dx

dy
, x′′(y) =

d2x

dy2
, we arrive3

at the equation of motion for the drone4

y x′′(y) =
a

v

√

x′2(y) + 1 .

The unknown function x(y) is not present in this equation. Therefore set5

x′(y) = p(y), with x′′(y) = p′(y), obtaining a first order equation for p(y),6

which is solved by separating the variables7

y
dp

dy
=
a

v

√

p2 + 1 ,

8
∫

dp
√

p2 + 1
=
a

v

∫

dy

y
.

The integral on the left is computed by a substitution p = tan θ, giving9

ln

(

p+
√

p2 + 1

)

=
a

v
(ln y + ln c) ,

10

p+
√

p2 + 1 = cy
a
v (with a new c) .

Write the last formula as11

√

p2 + 1 = cy
a
v − p ,(1.4)

and square both sides, getting12

1 = c2y
2a
v − 2cy

a
v p .

Solve this for p = x′(y):13

x′(y) =
1

2
cy

a
v − 1

2c
y−

a
v .

The constant c we determine from (1.4). At t = 0, p = x′(y0) = 0, and so14

c = y
−a

v
0 . (At t = 0, the drone is pointed vertically down, because the car is15

directly under it.) Then16

x′(y) =
1

2

(

y

y0

) a
v

− 1

2

(

y

y0

)−a
v

.
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Integrating, and using that x(y0) = x0, we finally obtain (assuming v 6= a)1

x(y) =
y0

2(1 + a/v)

[

(

y

y0

)1+a
v

− 1

]

− y0
2(1− a/v)

[

(

y

y0

)1−a
v

− 1

]

+ x0 .

2.2 Linear Homogeneous Equations with Constant2

Coefficients3

We wish to find solution y = y(t) of the equation4

ay′′ + by′ + cy = 0 ,(2.1)

where a, b and c are given numbers. This is arguably the most important5

class of differential equations, because it arises when applying Newton’s sec-6

ond law of motion (or when modeling electric oscillations). If y(t) denotes7

displacement of an object at time t, then this equation relates the displace-8

ment with velocity y′(t) and acceleration y′′(t). The equation (2.1) is linear,9

because it involves a linear combination of the unknown function y(t), and10

its derivatives y′(t) and y′′(t). The term homogeneous refers to the right11

hand side of this equation being zero.12

Observe that if y(t) is a solution, then so is 2y(t). Indeed, substitute13

2y(t) into the equation:14

a(2y)′′ + b(2y)′ + c(2y) = 2
(

ay′′ + by′ + cy
)

= 0 .

The same argument shows that c1y(t) is a solution for any constant c1. If15

y1(t) and y2(t) are two solutions, a similar argument will show that y1(t) +16

y2(t) and y1(t)−y2(t) are also solutions. More generally, a linear combination17

of two solutions, c1y1(t) + c2y2(t), is also a solution, for any constants c118

and c2. Indeed,19

a (c1y1(t) + c2y2(t))
′′ + b (c1y1(t) + c2y2(t))

′ + c (c1y1(t) + c2y2(t))

= c1 (ay′′1 + by′1 + cy1) + c2 (ay′′2 + by′2 + cy2) = 0 .

This fact is called the linear superposition property of solutions.20

We now try to find a solution of the equation (2.1) in the form y = ert,21

where r is a constant to be determined. We have y′ = rert and y′′ = r2ert,22

so that the substitution into the equation (2.1) gives23

a(r2ert) + b(rert) + cert = ert
(

ar2 + br+ c
)

= 0 .
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Dividing by a positive quantity ert, obtain1

ar2 + br+ c = 0 .

This is a quadratic equation for r, called the characteristic equation. If r is2

a root (solution) of this equation, then ert solves our differential equation3

(2.1). When solving a quadratic equation, it is possible to encounter two4

real roots, one (repeated) real root, or two complex conjugate roots. We5

shall look at these cases in turn.6

2.2.1 The Characteristic Equation Has Two Distinct Real7

Roots8

Assume that the roots r1 and r2 are real, and r2 6= r1. Then er1t and er2t
9

are two solutions, and their linear combination gives us the general solution10

y(t) = c1e
r1t + c2e

r2t .

As there are two constants to play with, one can prescribe two additional11

conditions for the solution to satisfy.12

Example 1 Solve13

y′′ + 4y′ + 3y = 0

y(0) = 2

y′(0) = −1 .

Assuming that y(t) gives displacement of a particle, we prescribe that at time14

zero the displacement is 2, and the velocity is −1. These two conditions are15

usually referred to as the initial conditions, and together with the differential16

equation, they form an initial value problem. The characteristic equation is17

r2 + 4r+ 3 = 0 .

Solving it (say by factoring as (r + 1)(r+ 3) = 0), gives the roots r1 = −1,18

and r2 = −3. The general solution is then19

y(t) = c1e
−t + c2e

−3t .

Calculate y(0) = c1 + c2. Compute y′(t) = −c1e−t − 3c2e
−3t, and therefore20

y′(0) = −c1 − 3c2. The initial conditions tell us that21

c1 + c2 = 2

−c1 − 3c2 = −1 .
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We have two equations to find two unknowns c1 and c2. Obtain: c1 = 5/2,1

and c2 = −1/2 (say by adding the equations).2

Answer: y(t) =
5

2
e−t − 1

2
e−3t.3

Example 2 Solve4

y′′ − 4y = 0 .

The characteristic equation is5

r2 − 4 = 0 .

Its roots are r1 = −2, and r2 = 2. The general solution is then6

y(t) = c1e
−2t + c2e

2t .

More generally, for the equation7

y′′ − a2y = 0 (a is a given constant),

the general solution is8

y(t) = c1e
−at + c2e

at .

This should become automatic, because such equations appear often.9

Example 3 Find the constant a, so that the solution of the initial value10

problem11

9y′′ − y = 0, y(0) = 2, y′(0) = a

is bounded as t→ ∞, and find that solution.12

We begin by writing down (automatically!) the general solution13

y(t) = c1e
− 1

3
t + c2e

1
3
t .

Compute y′(t) = −1

3
c1e

− 1
3
t +

1

3
c2e

1
3
t, and then the initial conditions give14

y(0) = c1 + c2 = 2

y′(0) = −1
3c1 + 1

3c2 = a .

Solving this system of two equation for c1 and c2 (by multiplying the second15

equation through by 3, and adding the result to the first equation), gives16

c2 = 1 + 3
2a, and c1 = 1 − 3

2a. The solution is17

y(t) =

(

1 − 3

2
a

)

e−
1
3
t +

(

1 +
3

2
a

)

e
1
3
t .
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In order for this solution to stay bounded as t→ ∞, the coefficient in front1

of e
1
3
t must be zero. So that 1 + 3

2a = 0, and a = −2
3 . The solution then2

becomes y(t) = 2e−
1
3
t.3

Finally, recall that if r1 and r2 are roots of the characteristic equation,4

then we can factor the characteristic polynomial as5

ar2 + br + c = a(r − r1)(r− r2) .(2.2)

2.2.2 The Characteristic Equation Has Only One (Repeated)6

Real Root7

This is the case when r2 = r1. We still have one solution y1(t) = er1t. Of8

course, any constant multiple of this function is also a solution, but to form9

a general solution we need another truly different solution, as we saw in the10

preceding case. It turns out that y2(t) = ter1t is that second solution, and11

the general solution is then12

y(t) = c1e
r1t + c2te

r1t .

To justify that y2(t) = ter1t is a solution, we begin by observing that in13

this case the formula (2.2) becomes14

ar2 + br+ c = a(r − r1)
2 .

Square out the quadratic on the right as ar2 − 2ar1r + ar21. Because it is15

equal to the quadratic on the left, the coefficients of both polynomials in r2,16

r, and the constant terms are the same. We equate the coefficients in r:17

b = −2ar1 .(2.3)

To substitute y2(t) into the equation, we compute its derivatives y′2(t) =18

er1t + r1te
r1t = er1t (1 + r1t), and similarly y′′2 (t) = er1t

(

2r1 + r21t
)

. Then19

ay′′2 + by′2 + cy2 = aer1t
(

2r1 + r21t
)

+ ber1t (1 + r1t) + cter1t

20

= er1t (2ar1 + b) + ter1t
(

ar21 + br1 + c
)

= 0 .

In the last line, the first bracket is zero because of (2.3), and the second21

bracket is zero because r1 solves the characteristic equation.22

Example 1 Solve 9y′′ + 6y′ + y = 0.23
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The characteristic equation1

9r2 + 6r + 1 = 0

has a double root r = −1
3 . The general solution is then2

y(t) = c1e
− 1

3
t + c2te

− 1
3
t .

Example 2 Solve3

y′′ − 4y′ + 4y = 0

y(0) = 1, y′(0) = −2 .

The characteristic equation4

r2 − 4r + 4 = 0

has a double root r = 2. The general solution is then5

y(t) = c1e
2t + c2te

2t .

Here y′(t) = 2c1e
2t + c2e

2t + 2c2te
2t, and from the initial conditions6

y(0) = c1 = 1

y′(0) = 2c1 + c2 = −2 .

From the first equation c1 = 1, and then c2 = −4. Answer: y(t) = e2t−4te2t.7

2.3 The Characteristic Equation Has Two Com-8

plex Conjugate Roots9

In this section we complete the theory of linear equations with constant10

coefficients. The following important fact will be needed.11

2.3.1 Euler’s Formula12

Recall Maclauren’s formula13

ez = 1 + z +
1

2!
z2 +

1

3!
z3 +

1

4!
z4 +

1

5!
z5 + · · · .
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Let z = i θ, where i =
√
−1 is the imaginary unit, and θ is a real number.1

Calculating the powers, and separating the real and imaginary parts, gives2

ei θ = 1 + i θ + 1
2!(i θ)

2 + 1
3!(i θ)

3 + 1
4!(i θ)

4 + 1
5!(i θ)

5 + · · ·
= 1 + i θ − 1

2!θ
2 − 1

3! i θ
3 + 1

4!θ
4 + 1

5!i θ
5 + · · ·

=
(

1 − 1
2!θ

2 + 1
4!θ

4 + · · ·
)

+ i
(

θ − 1
3!θ

3 + 1
5!θ

5 + · · ·
)

= cos θ + i sin θ .

We derived Euler’s formula:3

ei θ = cos θ + i sin θ .(3.1)

Replacing θ by −θ, gives4

e−i θ = cos(−θ) + i sin(−θ) = cos θ − i sin θ .(3.2)

Adding the last two formulas, we express5

cos θ =
ei θ + e−i θ

2
.(3.3)

Subtracting from (3.1) the formula (3.2), and dividing by 2i6

sin θ =
ei θ − e−i θ

2i
.(3.4)

The last two formulas are also known as Euler’s formulas.7

2.3.2 The General Solution8

Recall that to solve the equation9

ay′′ + by′ + cy = 0(3.5)

one needs to solve the characteristic equation10

ar2 + br+ c = 0 .

Assume now that its roots are complex. Complex roots come in conjugate11

pairs: if p+ iq is one root, then p− iq is the other, and we may assume that12

q > 0. These roots are, of course, different, so that we have two solutions13

z1 = e(p+iq)t, and z2 = e(p−iq)t. The problem with these solutions is that14

they are complex-valued. Adding z1 + z2, gives another solution of (3.5).15
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Dividing this new solution by 2, we get yet another solution. So that the1

function y1(t) =
z1 + z2

2
is a solution of our equation (3.5), and similarly2

the function y2(t) =
z1 − z2

2i
is another solution. Using the formula (3.3),3

compute4

y1(t) =
e(p+iq)t + e(p−iq)t

2
= epte

iqt + e−iqt

2
= ept cos qt .

This is a real valued solution of our equation! Similarly,5

y2(t) =
e(p+iq)t − e(p−iq)t

2i
= ept e

iqt − e−iqt

2i
= ept sin qt

is our second solution. The general solution is then6

y(t) = c1e
pt cos qt+ c2e

pt sin qt .

Example 1 Solve y′′ + 4y′ + 5y = 0.7

The characteristic equation8

r2 + 4r + 5 = 0

can be solved quickly by completing the square:9

(r+ 2)2 + 1 = 0 , (r + 2)2 = −1 ,

10

r + 2 = ±i , r = −2 ± i .

Here p = −2, q = 1, and the general solution is11

y(t) = c1e
−2t cos t+ c2e

−2t sin t .

Example 2 Solve y′′ + y = 0.12

The characteristic equation13

r2 + 1 = 0

has roots ±i. Here p = 0 and q = 1, and the general solution is y(t) =14

c1 cos t+ c2 sin t.15

More generally, for the equation16

y′′ + a2y = 0 (a is a given constant),
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the general solution is1

y(t) = c1 cos at+ c2 sinat .

This should become automatic, because such equations appear often.2

Example 3 Solve3

y′′ + 4y = 0, y(π/3) = 2, y′(π/3) = −4 .

The general solution is4

y(t) = c1 cos 2t+ c2 sin 2t .

Compute y′(t) = −2c1 sin 2t+ 2c2 cos 2t. From the initial conditions5

y(π/3) = c1 cos
2π

3
+ c2 sin

2π

3
= −1

2
c1 +

√
3

2
c2 = 2

6

y′(π/3) = −2c1 sin
2π

3
+ 2c2 cos

2π

3
= −

√
3c1 − c2 = −4 .

This gives c1 =
√

3 − 1, c2 =
√

3 + 1. Answer:7

y(t) = (
√

3 − 1) cos2t+ (
√

3 + 1) sin 2t .

2.3.3 Problems8

I. Solve the second order equations, with y missing.9

1. 2y′ y′′ = 1. Answer. y = ±2

3
(x+ c1)

3/2 + c2.10

2. xy′′ + y′ = x. Answer. y =
x2

4
+ c1 lnx+ c2.11

3. y′′ + y′ = x2. Answer. y =
x3

3
− x2 + 2x+ c1e

−x + c2.12

4. xy′′ + 2y′ = (y′)2, y(1) = 0, y′(1) = 1. Answer. y = 2 tan−1 x− π

2
.13

14

5. y′′ + 2xy′2 = 0 , y(0) = 0 , y′(0) = −4. Answer. y = ln

∣

∣

∣

∣

2x− 1

2x+ 1

∣

∣

∣

∣

.15

II. Solve the second order equations, with x missing.16

1. yy′′− 3 (y′)3 = 0. Answer. 3 (y ln y − y)+ c1y = −x+ c2, and y = c.17
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2. yy′′+(y′)2 = 0. Answer. y2 = c1+c2x (this includes the y = c family).1

2

3. y′′ = 2yy′, y(0) = 0, y′(0) = 1. Answer. y = tanx.3

4. y′′ = 3y2y′ + y′, y(0) = 1, y′(0) = 2. Answer. y =

√

e2x

2 − e2x
.4

5∗. y′′y = 2xy′2, y(0) = 1, y′(0) = −4.5

Hint: Write:6

y′′y − y′2 = (2x− 1)y′2;
y′′y − y′2

y′2
= 2x− 1; −

(

y

y′

)′
= 2x− 1 .

Integrating, and using the initial conditions7

− y

y′
= x2 − x +

1

4
=

(2x− 1)2

4
.

Answer. y = e
4x

2x−1 .8

III. Solve the linear second order equations, with constant coefficients.9

1. y′′ + 4y′ + 3y = 0. Answer. y = c1e
−t + c2e

−3t.10

2. y′′ − 3y′ = 0. Answer. y = c1 + c2e
3t.11

3. 2y′′ + y′ − y = 0. Answer. y = c1e
−t + c2e

1
2
t.12

4. y′′ − 3y = 0. Answer. y = c1e
−
√

3t + c2e
√

3t.13

5. 3y′′ − 5y′ − 2y = 0. Answer. y = c1e
− 1

3
t + c2e

2t.14

6. y′′ − 9y = 0, y(0) = 3, y′(0) = 3. Answer. y = e−3t + 2e3t.15

7. y′′ + 5y′ = 0, y(0) = −1, y′(0) = −10. Answer. y = −3 + 2e−5t.16

8. y′′ +y′−6y = 0, y(0) = −2, y′(0) = 3. Answer. y = −7

5
e−3t − 3e2t

5
.17

18

9. 4y′′ − y = 0. Answer. y = c1e
− 1

2
t + c2e

1
2
t.19

10. 3y′′− 2y′− y = 0, y(0) = 1, y′(0) = −3. Answer. y = 3e−t/3 − 2et.20

21

11. 3y′′ − 2y′ − y = 0, y(0) = 1, y′(0) = a.22

Find the value of a for which the solution is bounded, as t→ ∞.23
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Answer. y =
1

4
(3a+ 1)et − 3

4
(a− 1)e−t/3, a = −1

3
.1

IV. Solve the linear second order equations, with constant coefficients.2

1. y′′ + 6y′ + 9y = 0. Answer. y = c1e
−3t + c2te

−3t.3

2. 4y′′ − 4y′ + y = 0. Answer. y = c1e
1
2
t + c2te

1
2
t.4

3. y′′ − 2y′ + y = 0, y(0) = 0, y′(0) = −2. Answer. y = −2tet.5

4. 9y′′ − 6y′ + y = 0, y(0) = 1, y′(0) = −2. Answer. y =
1

3
et/3(3− 7t).6

V.7

1. Using Euler’s formula, compute: (i) eiπ (ii) e−iπ/2 (iii) ei
3π
48

(iv) e2πi (v)
√

2ei
9π
4 (vi)

(

cos
π

5
+ i sin

π

5

)5

.9

2. Show that sin 2θ = 2 sin θ cos θ, and cos 2θ = cos2 θ − sin2 θ.10

Hint: Begin with ei2θ = (cos θ + i sinθ)2. Apply Euler’s formula on the left,11

and square out on the right. Then equate the real and imaginary parts.12

3∗. Show that13

sin 3θ = 3 cos2 θ sin θ − sin3 θ, and cos 3θ = −3 sin2 θ cos θ + cos3 θ .

Hint: Begin with ei3θ = (cos θ + i sinθ)3. Apply Euler’s formula on the left,14

and “cube out” on the right. Then equate the real and imaginary parts.15

VI. Solve the linear second order equations, with constant coefficients.16

1. y′′ + 4y′ + 8y = 0. Answer. y = c1e
−2t cos 2t+ c2e

−2t sin 2t.17

2. y′′ + 16y = 0. Answer. y = c1 cos 4t+ c2 sin 4t.18

3. y′′−4y′+5y = 0, y(0) = 1, y′(0) = −2. Answer. y = e2t cos t−4e2t sin t.19

20

4. y′′ + 4y = 0, y(0) = −2, y′(0) = 0. Answer. y = −2 cos 2t.21

5. 9y′′ + y = 0, y(0) = 0, y′(0) = 5. Answer. y = 15 sin
1

3
t.22

6. y′′ − y′ + y = 0. Answer. y = e
t
2

(

c1 cos

√
3

2
t+ c2 sin

√
3

2
t

)

.23

7. 4y′′ + 8y′ + 5y = 0, y(π) = 0, y′(π) = 4. Answer. y = −8eπ−t cos
1

2
t.24
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8. y′′ + y = 0, y(π/4) = 0, y′(π/4) = −1. Answer. y = − sin(t− π/4).1

VII.2

1. Consider the equation (y = y(t))3

y′′ + by′ + cy = 0 ,

with positive constants b and c. Show that all of its solutions tend to zero,4

as t→ ∞.5

2. Consider the equation6

y′′ + by′ − cy = 0 ,

with positive constants b and c. Assume that some solution is bounded, as7

t→ ∞. Show that this solution tends to zero, as t→ ∞.8

3. Explain why y1 = te−t and y2 = e3t cannot be both solutions of9

ay′′ + by′ + cy = 0 ,

no matter what the constants a, b and c are.10

4. Solve the non-linear equation11

ty′′y + y′y − ty′2 = 0 .

Hint: Consider the derivative of
ty′

y
. Answer. y = c2t

c1 .12

2.4 Linear Second Order Equations with Variable13

Coefficients14

In this section we present some theory of second order linear equations with15

variable coefficients. Several applications will appear in the following sec-16

tion. Also, this theory explains why the general solutions from the preceding17

sections give all solutions of the corresponding equations.18

Linear Systems19

Recall that a system of two equations (here the numbers a, b, c, d, g and h20

are given, while x and y are the unknowns)21

a x+ b y = g

c x+ d y = h
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has a unique solution, if and only if the determinant of this system is non-1

zero,

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

= ad − bc 6= 0. This fact is justified by explicitly solving the2

system:3

x =
dg − bh

ad− bc
, y =

ah− cg

ad− bc
.

It is also easy to justify that a determinant is zero,

∣

∣

∣

∣

∣

a b
c d

∣

∣

∣

∣

∣

= 0, if and only4

if its columns are proportional, so that a = γb and c = γd, for some constant5

γ.6

General Theory7

We consider an initial value problem for linear second order equations8

y′′ + p(t)y′ + g(t)y = f(t)(4.1)

y(t0) = α

y′(t0) = β .

The coefficient functions p(t) and g(t), and the function f(t) are assumed to9

be given. The constants t0, α and β are also given, so that at some initial10

“time” t = t0, the values of the solution and its derivative are prescribed. It11

is natural to ask the following questions. Is there a solution to this problem?12

If there is, is the solution unique, and how far can it be continued?13

Theorem 2.4.1 Assume that the functions p(t), g(t) and f(t) are contin-14

uous on some interval (a, b) that includes t0. Then the problem (4.1) has a15

solution, and only one solution. This solution can be continued to the left16

and to the right of the initial point t0, so long as t remains in (a, b).17

If the functions p(t), g(t) and f(t) are continuous for all t, then the18

solution can be continued for all t, −∞ < t < ∞. This is a stronger19

conclusion than what we had for first order equations (where blow up in finite20

time was possible). Why? Because the equation here is linear. Linearity21

pays!22

Corollary 2.4.1 Let z(t) be a solution of (4.1) with the same initial data23

as y(t): z(t0) = α and z′(t0) = β. Then z(t) = y(t) for all t.24
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Let us now study the homogeneous equation (for y = y(t))1

y′′ + p(t)y′ + g(t)y = 0 ,(4.2)

with given coefficient functions p(t) and g(t). Although this equation looks2

relatively simple, its analytical solution is totally out of reach, in general.3

(One has to either solve it numerically, or use infinite series.) In this sec-4

tion we study some theoretical aspects. In particular, we shall prove that5

a linear combination of two solutions, which are not constant multiples of6

one another, gives the general solution (a fact that we intuitively used for7

equations with constant coefficients). The equation (4.2) always has a solu-8

tion y(t) = 0 for all t, called the trivial solution. We shall study primarily9

non-trivial solutions.10

We shall need a concept of the Wronskian determinant of two functions11

y1(t) and y2(t), or the Wronskian, for short:12

W (t) =

∣

∣

∣

∣

∣

y1(t) y2(t)
y′1(t) y′2(t)

∣

∣

∣

∣

∣

= y1(t)y
′
2(t) − y′1(t)y2(t) .

(Named in honor of Polish mathematician J.M. Wronski, 1776-1853.) Some-13

times the Wronskian is written as W (y1, y2)(t) to stress its dependence on14

y1(t) and y2(t). For example,15

W (cos 2t, sin 2t)(t) =

∣

∣

∣

∣

∣

cos 2t sin 2t

−2 sin 2t 2 cos 2t

∣

∣

∣

∣

∣

= 2 cos2 2t+ 2 sin2 2t = 2 .

Given the Wronskian and one of the functions, one can determine the16

other one.17

Example If f(t) = t, and W (f, g)(t) = t2et, find g(t).18

Solution: Here f ′(t) = 1, and so19

W (f, g)(t) =

∣

∣

∣

∣

∣

t g(t)
1 g′(t)

∣

∣

∣

∣

∣

= tg′(t)− g(t) = t2et .

This is a linear first order equation for g(t). We solve it as usual, obtaining20

g(t) = tet + ct .

If g(t) = cf(t), with some constant c, we compute that W (f, g)(t) = 0,21

for all t. The converse statement is not true. For example, the functions22

f(t) = t2 and23

g(t) =

{

t2 if t ≥ 0
−t2 if t < 0
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are not constant multiples of one another, but W (f, g)(t) = 0. This is1

seen by computing the Wronskian separately in case t ≥ 0, and for t < 0.2

(Observe that g(t) is a differentiable function, with g′(0) = 0.)3

Theorem 2.4.2 Let y1(t) and y2(t) be two solutions of (4.2), and W (t) is4

their Wronskian. Then5

W (t) = ce−
∫

p(t)dt.(4.3)

where c is some constant.6

This is a remarkable fact! Even though we do not know y1(t) and y2(t), we7

can compute their Wronskian.8

Proof: Differentiate the Wronskian W (t) = y1(t)y
′
2(t) − y′1(t)y2(t):9

W ′ = y1y
′′
2 + y′1y

′
2 − y′1y

′
2 − y′′1y2 = y1y

′′
2 − y′′1y2 .

Because y1 is a solution of (4.2), we have y′′1 + p(t)y′1 + g(t)y1 = 0, or10

y′′1 = −p(t)y′1 − g(t)y1, and similarly y′′2 = −p(t)y′2 − g(t)y2. With these11

formulas, we continue12

W ′ = y1 (−p(t)y′2 − g(t)y2)− (−p(t)y′1 − g(t)y1) y2

= −p(t) (y1y
′
2 − y′1y2) = −p(t)W .

We obtained a linear first order equation for W (t), W ′ = −p(t)W . Solving13

it, gives (4.3). ♦14

Corollary 2.4.2 We see from (4.3) that either W (t) = 0 for all t, when15

c = 0, or else W (t) is never zero, in case c 6= 0.16

Theorem 2.4.3 Let y1(t) and y2(t) be two non-trivial solutions of (4.2),17

and W (t) is their Wronskian. Then W (t) = 0 for all t, if and only if y1(t)18

and y2(t) are constant multiples of each other.19

We just saw that if two functions are constant multiples of each other, then20

their Wronskian is zero, while the converse statement is not true, in general.21

But if these functions happen to be solutions of (4.2), then the converse22

statement is true.23

Proof: Assume that the Wronskian of two solutions y1(t) and y2(t) is zero.24

In particular it is zero at any point t0, so that25

∣

∣

∣

∣

∣

y1(t0) y2(t0)
y′1(t0) y′2(t0)

∣

∣

∣

∣

∣

= 0 .
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When a 2 × 2 determinant is zero, its columns are proportional. Let us1

assume the second column is equal to γ times the first one, where γ is some2

number, so that y2(t0) = γy1(t0) and y′2(t0) = γy′1(t0). We may assume3

that γ 6= 0, because otherwise we would have y2(t0) = y′2(t0) = 0, and then4

y2(t) would be the trivial solution, contrary to our assumptions. Consider5

the function z(t) = y2(t)/γ. This function is a solution of the homogeneous6

equation (4.2), and it has initial values z(t0) = y1(t0) and z′(t0) = y′1(t0),7

the same as y1(t). By Corollary 2.4.1, it follows that z(t) = y1(t), so that8

y2(t) = γy1(t), for all t. ♦9

Definition We say that two solutions y1(t) and y2(t) of (4.2) form a funda-10

mental set, if for any other solution z(t), we can find two constants c01 and11

c02, so that z(t) = c01y1(t) + c02y2(t). In other words, the linear combination12

c1y1(t) + c2y2(t) gives us all solutions of (4.2).13

Theorem 2.4.4 Let y1(t) and y2(t) be two solutions of (4.2), that are not14

constant multiples of one another. Then they form a fundamental set.15

Proof: Let y(t) be any solution of the equation (4.2). Let us try to find the16

constants c1 and c2, so that z(t) = c1y1(t)+ c2y2(t) satisfies the same initial17

conditions as y(t), so that18

z(t0) = c1y1(t0) + c2y2(t0) = y(t0)(4.4)

z′(t0) = c1y
′
1(t0) + c2y

′
2(t0) = y′(t0) .

This is a system of two linear equations to find c1 and c2. The determinant19

of this system is just the Wronskian of y1(t) and y2(t), evaluated at t0. This20

determinant is not zero, because y1(t) and y2(t) are not constant multiples21

of one another. (This determinant is W (t0). If W (t0) = 0, then W (t) = 022

for all t, by the Corollary 2.4.2, and then by the Theorem 2.4.3, y1(t) and23

y2(t) would have to be constant multiples of one another, contrary to our24

assumption.) It follows that the 2 × 2 system (4.4) has a unique solution25

c1 = c01, c2 = c02. The function z(t) = c01y1(t) + c02y2(t) is then a solution of26

the same equation (4.2), satisfying the same initial conditions, as does y(t).27

By the Corollary 2.4.1, y(t) = z(t) for all t. So that any solution y(t) is a28

particular case of the general solution c1y1(t) + c2y2(t). ♦29

Finally, we mention that two functions are called linearly independent, if30

they are not constant multiples of one another. So that two solutions y1(t)31

and y2(t) form a fundamental set, if and only if they are linearly independent.32
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Figure 2.1: The cosine hyperbolic function

2.5 Some Applications of the Theory1

We shall give some practical applications of the theory from the last section.2

But first, we recall the functions sinh t and cosh t.3

2.5.1 The Hyperbolic Sine and Cosine Functions4

One defines5

cosh t =
et + e−t

2
, and sinh t =

et − e−t

2
.

In particular, cosh 0 = 1, sinh 0 = 0. Observe that cosh t is an even function,6

while sinh t is odd. Compute:7

d

dt
cosh t = sinh t and

d

dt
sinh t = cosh t .

These formulas are similar to those for cosine and sine. By squaring out,8

one sees that9

cosh2 t− sinh2 t = 1, for all t.

(There are other similar formulas.) We see that the derivatives, and the10

algebraic properties of the new functions are similar to those for cosine and11

sine. However, the graphs of sinh t and cosh t look totally different: they are12

not periodic, and they are unbounded, see Figures 2.1 and 2.2.13

2.5.2 Different Ways to Write the General Solution14

For the equation15

y′′ − a2y = 0(5.1)
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y = sinh t

Figure 2.2: The sine hyperbolic function

you remember that the functions e−at and eat form a fundamental set, and1

y(t) = c1e
−at + c2e

at is the general solution. But y = sinhat is also a2

solution, because y′ = a coshat and y′′ = a2 sinh at = a2y. Similarly, coshat3

is a solution. It is not a constant multiple of sinhat, so that together they4

form another fundamental set, and we have another form of the general5

solution of (5.1)6

y = c1 cosh at+ c2 sinh at .

This is not a “new” general solution, as it can be reduced to the old one, by7

expressing cosh at and sinh at through the exponentials. However, the new8

form is useful.9

Example 1 Solve: y′′ − 4y = 0, y(0) = 0, y′(0) = −5.10

Write the general solution as y(t) = c1 cosh 2t + c2 sinh 2t. Using that11

cosh 0 = 1 and sinh 0 = 0, gives y(0) = c1 = 0. With c1 = 0, we12

update the solution: y(t) = c2 sinh2t. Compute y′(t) = 2c2 cosh2t, and13

y′(0) = 2c2 = −5, giving c2 = −5
2 . Answer: y(t) = −5

2 sinh2t.14

Yet another form of the general solution of (5.1) is15

y(t) = c1e
−a(t−t0) + c2e

a(t−t0),

where t0 is any number. (Both functions e−a(t−t0) and ea(t−t0) are solutions16

of (5.1).)17

Example 2 Solve: y′′ − 9y = 0, y(2) = −1, y′(2) = 9.18

We select t0 = 2, writing the general solution as19

y(t) = c1e
−3(t−2) + c2e

3(t−2) .
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Compute y′(t) = −3c1e
−3(t−2) + 3c2e

3(t−2), and use the initial conditions1

c1 + c2 = −1

−3c1 + 3c2 = 9 .

Calculate c1 = −2, and c2 = 1. Answer: y(t) = −2e−3(t−2) + e3(t−2).2

One can write general solutions, centered at t0, for other simple equations3

as well. For the equation4

y′′ + a2y = 0

the functions cosa(t−t0) and sina(t−t0) are both solutions, for any value of5

t0, and they form a fundamental set (because they are not constant multiples6

of one another). We can then write the general solution as7

y = c1 cos a(t− t0) + c2 sina(t− t0) .

Example 3 Solve: y′′ + 4y = 0, y(π
5 ) = 2, y′(π

5 ) = −6.8

Write the general solution as9

y = c1 cos 2(t− π

5
) + c2 sin 2(t− π

5
) .

Using the initial conditions, we quickly compute c1 = 2, and c2 = −3.10

Answer: y = 2 cos 2(t− π

5
) − 3 sin 2(t− π

5
).11

2.5.3 Finding the Second Solution12

Next we solve Legendre’s equation (for −1 < t < 1)13

(1− t2)y′′ − 2ty′ + 2y = 0 .

It has a solution y = t. (Lucky!) We need to find another solution in the14

fundamental set. Divide this equation by 1− t2, to put it into the form (4.2)15

from the previous section:16

y′′ − 2t

1 − t2
y′ +

2

1 − t2
y = 0 .

Denote another solution in the fundamental set by y(t). By the Theorem17

2.4.2, we can calculate the Wronskian of the two solutions:18

W (t, y) =

∣

∣

∣

∣

∣

t y(t)
1 y′(t)

∣

∣

∣

∣

∣

= ce

∫

2t
1−t2

dt
.
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Set here c = 1, because we need just one solution, which is not a constant1

multiple of the solution y = t. Then2

ty′ − y = e

∫

2t
1−t2

dt
= e− ln(1−t2) =

1

1 − t2
.

This is a linear equation, which is solved as usual:3

y′ − 1

t
y =

1

t(1 − t2)
, µ(t) = e−

∫

1/t dt = e− ln t =
1

t
,

4

d

dt

[

1

t
y

]

=
1

t2(1− t2)
,

1

t
y =

∫

1

t2(1− t2)
dt .

The last integral was calculated above, by the guess-and-check method, so5

that6

y = t

∫

1

t2 (1− t2)
dt = t

[

−1

t
− 1

2
ln(1 − t) +

1

2
ln(1 + t)

]

= −1+
1

2
t ln

1 + t

1 − t
.

Again, we took the constant of integration c = 0, because we need just one7

solution, which is not a constant multiple of the solution y = t. Answer:8

y(t) = c1t+ c2

(

−1 +
1

2
t ln

1 + t

1 − t

)

.9

2.5.4 Problems10

I. 1. Find the Wronskians of the following functions.11

(i) f(t) = e3t, g(t) = e−
1
2
t. Answer. −7

2
e

5
2
t.12

(ii) f(t) = e2t, g(t) = te2t. Answer. e4t.13

(iii) f(t) = et cos 3t, g(t) = et sin 3t. Answer. 3e2t.14

(iv) f(t) = cosh 4t, g(t) = sinh 4t. Answer. 4.15

2. If f(t) = t2, and the Wronskian W (f, g)(t) = t5et, find g(t).16

Answer. g(t) = t3et − t2et + ct2.17

3. If f(t) = e−t, and the Wronskian W (f, g)(t) = t, find g(t) given that18

g(0) = 0. Answer. g(t) =
tet

2
+
e−t

4
− et

4
.19

4. Assume that f(t) > 0, g(t) > 0 and W (f, g)(t) = 0 for all t. Show that20

g(t) = cf(t), for some constant c.21
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Hint: Express
g′

g
=
f ′

f
, then integrate.1

5. Let y1(t) and y2(t) be any two solutions of2

y′′ − t2y = 0 .

Show that W (y1(t), y2(t))(t) = constant.3

II. Express the solution, by using the hyperbolic sine and cosine functions.4

1. y′′ − 4y = 0, y(0) = 0, y′(0) = −1
3 . Answer. y = −1

6
sinh 2t.5

2. y′′ − 9y = 0, y(0) = 2, y′(0) = 0. Answer. y = 2 cosh3t.6

3. y′′ − y = 0, y(0) = −3, y′(0) = 5. Answer. y = −3 cosh t+ 5 sinh t.7

III. Solve the problem, by using the general solution centered at the initial8

point.9

1. y′′ + y = 0, y(π/8) = 0, y′(π/8) = 3. Answer. y = 3 sin(t− π/8).10

2. y′′ + 4y = 0, y(π/4) = 0, y′(π/4) = 4.11

Answer. y = 2 sin 2(t− π/4) = 2 sin(2t− π/2) = −2 cos 2t.12

3. y′′−2y′−3y = 0, y(1) = 1, y′(1) = 7. Answer. y = 2e3(t−1)−e−(t−1).13

14

4. y′′ − 9y = 0, y(2) = −1, y′(2) = 15.15

Answer. y = − cosh 3(t− 2) + 5 sinh3(t− 2).16

IV. For the following equations one solution is given. Using Wronskians,17

find the second solution, and the general solution.18

1. y′′ − 2y′ + y = 0, y1(t) = et.19

2. t2y′′ − 2ty′ + 2y = 0, y1(t) = t.20

Answer. y = c1t+ c2t
2.21

3. (1 + t2)y′′ − 2ty′ + 2y = 0, y1(t) = t.22

Answer. y = c1t+ c2(t
2 − 1).23

4. (t− 2)y′′ − ty′ + 2y = 0, y1(t) = et.24

Answer. y = c1e
t + c2

(

−t2 + 2t− 2
)

.25

5. ty′′ + 2y′ + ty = 0, y1(t) = sin t
t . Answer. y = c1

sin t

t
+ c2

cos t

t
.26
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6. ty′′ − (t+ 1)y′ − (2t− 2)y = 0.1

Hint: Search for y1(t) in the form y = eat.2

Answer. y = c1e
2t + c2(3t+ 1)e−t.3

V. 1. Show that the functions y1 = t, and y2 = sin t, cannot be both4

solutions of5

y′′ + p(t)y′ + g(t)y = 0 ,

no matter what p(t) and g(t) are.6

Hint: Consider W (y1, y2)(0), then use the Corollary 2.4.2.7

2. Assume that the functions y1 = 1, and y2 = cos t, are both solutions of8

some equation of the form9

y′′ + p(t)y′ + g(t)y = 0 .

What is the equation?10

Hint: Use the Theorem 2.4.2 to determine p(t), then argue that g(t) must11

be zero. Answer. The equation is12

y′′ − cot ty′ = 0 .

3. Let us return to Legendre’s equation13

(1 − t2)y′′ − 2ty′ + 2y = 0 , −1 < t < 1 ,

for which one solution, y1 = t, is known. Show that the substitution y = tv14

produces an equation for v(t), which can be reduced to a separable first15

order equation by letting v′ = z. Solve this equation, to produce the second16

solution y2 in the fundamental set. This technique is known as reduction of17

order.18

2.6 Non-homogeneous Equations19

This section deals with non-homogeneous equations20

y′′ + p(t)y′ + g(t)y = f(t) .(6.1)

Here the coefficient functions p(t) and g(t), and the non-zero function f(t)21

are given. The corresponding homogeneous equation is22

y′′ + p(t)y′ + g(t)y = 0 .(6.2)
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Assume that the general solution of the corresponding homogeneous equa-1

tion is known: y(t) = c1y1(t) + c2y2(t). Our goal is to find the general2

solution of the non-homogeneous equation. Suppose that we can find some-3

how a particular solution Y (t) of the non-homogeneous equation, so that4

Y ′′ + p(t)Y ′ + g(t)Y = f(t) .(6.3)

From the equation (6.1) subtract the equation (6.3):5

(y − Y )′′ + p(t)(y − Y )′ + g(t)(y − Y ) = 0 .

We see that the function v = y− Y is a solution the homogeneous equation6

(6.2), and then v(t) = c1y1(t) + c2y2(t), for some constants c1 and c2. We7

express y = Y + v, giving8

y(t) = Y (t) + c1y1(t) + c2y2(t) .

In words: the general solution of the non-homogeneous equation is equal to9

the sum of any particular solution of the non-homogeneous equation, and10

the general solution of the corresponding homogeneous equation.11

Finding a particular solution Y (t) is the subject of this section (and12

the following two sections). We now study the method of undetermined13

coefficients.14

Example 1 Find the general solution of15

y′′ + 9y = −4 cos 2t .

The general solution of the corresponding homogeneous equation16

y′′ + 9y = 0

is y(t) = c1 cos 3t + c2 sin 3t. We look for a particular solution in the form17

Y (t) = A cos 2t. Substitute this in, then simplify:18

−4A cos 2t+ 9A cos2t = −4 cos 2t,
19

5A cos 2t = −4 cos 2t ,

giving A = −4
5 , and Y (t) = −4

5 cos 2t. Answer: y(t) = −4

5
cos 2t+c1 cos 3t+20

c2 sin 3t.21

This was an easy example, because the y′ term was missing. If y′ term22

is present, we need to look for Y (t) in the form Y (t) = A cos 2t+B sin 2t.23
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Prescription 1 If the right side of the equation (6.1) has the form a cosαt+1

b sinαt, with constants a, b and α, then look for a particular solution in2

the form Y (t) = A cosαt + B sinαt. More generally, if the right side of3

the equation has the form (at + b) cosαt + (ct + d) sinαt, involving linear4

polynomials, then look for a particular solution in the form Y (t) = (At +5

B) cosαt+ (Ct+ D) sinαt. Even more generally, if the polynomials are of6

higher power, we make the corresponding adjustments.7

Example 2 Solve y′′ − y′ − 2y = −4 cos 2t+ 8 sin 2t.8

We look for a particular solution Y (t) in the form y(t) = A cos 2t+B sin 2t.9

Substitute y(t) into the equation, then combine the like terms:10

−4A cos 2t− 4B sin 2t− (−2A sin 2t+ 2B cos 2t) − 2 (A cos 2t+B sin 2t)

= −4 cos 2t+ 8 sin 2t ,
11

(−6A− 2B) cos 2t+ (2A− 6B) sin 2t = −4 cos 2t+ 8 sin 2t .

Equating the corresponding coefficients12

−6A− 2B = −4

2A− 6B = 8 .

Solving this system, gives A = 1 and B = −1, so that Y (t) = cos 2t− sin 2t.13

The general solution of the corresponding homogeneous equation14

y′′ − y′ − 2y = 0

is y = c1e
−t + c2e

2t. Answer: y(t) = cos 2t− sin 2t+ c1e
−t + c2e

2t.15

Example 3 Solve y′′ + 2y′ + y = t− 1.16

On the right we see a linear polynomial. We look for particular solution in17

the form Y (t) = At+B. Substituting this in, gives18

2A+ At+ B = t− 1 .

Equating the corresponding coefficients, we get A = 1, and 2A+B = −1, so19

that B = −3. Then, Y (t) = t−3. The general solution of the corresponding20

homogeneous equation21

y′′ + 2y′ + y = 0

is y = c1e
−t + c2te

−t. Answer: y(t) = t− 3 + c1e
−t + c2te

−t.22
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Example 4 Solve y′′ + y′ − 2y = t2.1

On the right we have a quadratic polynomial (two of its coefficients happened2

to be zero). We look for a particular solution as a quadratic Y (t) = At2 +3

Bt+ C. Substituting this in, gives4

2A+ 2At+B − 2(At2 + Bt+C) = t2 .

Equating the coefficients in t2, t, and the constant terms, gives5

−2A = 1

2A− 2B = 0

2A+B − 2C = 0 .

From the first equation, A = −1
2 , from the second one, B = −1

2 , and from6

the third, C = A + 1
2B = −3

4 . So that Y (t) = −1
2 t

2 − 1
2t− 3

4 . The general7

solution of the corresponding homogeneous equation is y(t) = c1e
−2t + c2e

t.8

Answer: y(t) = −1

2
t2 − 1

2
t− 3

4
+ c1e

−2t + c2e
t.9

The last two examples lead to the following prescription.10

Prescription 2 If the right hand side of the equation (6.1) is a polynomial11

of degree n: a0t
n + a1t

n−1 + · · ·+ an−1t+ an, look for a particular solution12

as a polynomial of degree n: A0t
n + A1t

n−1 + · · · + An−1t + An, with the13

coefficients to be determined.14

And on to the final possibility.15

Prescription 3 If the right side of the equation (6.1) is a polynomial of de-16

gree n, times an exponential :
(

a0t
n + a1t

n−1 + · · ·+ an−1t+ an

)

eαt, look17

for a particular solution as a polynomial of degree n times the same expo-18

nential:
(

A0t
n + A1t

n−1 + · · ·+ An−1t+An

)

eαt, with the coefficients to be19

determined.20

Example 5 Solve y′′ + y = te−2t.21

We look for a particular solution in the form Y (t) = (At+B)e−2t . Compute22

Y ′(t) = Ae−2t−2(At+B)e−2t, Y ′′(t) = −4Ae−2t+4(At+B)e−2t. Substitute23

Y (t) into the equation:24

4Ate−2t − 4Ae−2t + 4Be−2t +Ate−2t +Be−2t = te−2t .

Divide by e−2t, then equate the coefficients in t, and the constant terms25

5A = 1

−4A+ 5B = 0 ,
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which gives A = 1/5 and B = 4/25, so that Y (t) = ( 1
5 t+ 4

25)e−2t. Answer:1

y(t) = (
1

5
t+

4

25
)e−2t + c1 cos t+ c2 sin t.2

Example 6 Solve y′′ − 4y = t2 + 3et, y(0) = 0, y′(0) = 2.3

One can find Y (t) as a sum of two pieces, Y (t) = Y1(t) + Y2(t), where Y1(t)4

is any particular solution of5

y′′ − 4y = t2 ,

and Y2(t) is any particular solution of6

y′′ − 4y = 3et .

(Indeed, adding the identities Y ′′
1 − 4Y1 = t2 and Y ′′

2 − 4Y2 = 3et, gives7

Y ′′−4Y = t2 +3et.) Using our prescriptions, Y1(t) = −1
4t

2 − 1
8 , and Y2(t) =8

−et. The general solution is y(t) = −1
4 t

2 − 1
8 − et + c1 cosh 2t + c2 sinh 2t.9

Calculate: c1 = 9/8, and c2 = 3/2.10

Answer: y(t) = −1

4
t2 − 1

8
− et +

9

8
cosh 2t+

3

2
sinh2t.11

2.7 More on Guessing of Y (t)12

The prescriptions from the previous section do not always work. In this13

section we sketch a “fix”. A more general method for finding Y (t) will be14

developed in the next section.15

Example 1 Solve y′′ + y = sin t.16

We try Y (t) = A sin t+B cos t, according to the Prescription 1. Substituting17

Y (t) into the equation gives18

0 = sin t ,

which is impossible. Why did we “strike out”? Because A sin t and B cos t19

are solutions of the corresponding homogeneous equation. Let us multiply20

the initial guess by t, and try Y = At sin t+Bt cos t. Calculate Y ′ = A sin t+21

At cos t+B cos t−Bt sin t, and Y ′′ = 2A cos t−At sin t− 2B sin t−Bt cos t.22

Substitute Y into our equation, and simplify:23

2A cos t− At sin t− 2B sin t− Bt cos t+ At sin t+Bt cos t = sin t ,
24

2A cos t− 2B sin t = sin t .

We conclude that A = 0, and B = −1/2, so that Y = −1
2 t cos t.25

Answer: y = −1
2 t cos t+ c1 sin t+ c2 cos t.26
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This example prompts us to change the strategy. We now begin by solv-1

ing the corresponding homogeneous equation. The Prescriptions from the2

previous section are now the Initial Guesses for the particular solution. We3

now describe the complete strategy, which is justified in the book of W.E.4

Boyce and R.C. DiPrima.5

If any of the functions, appearing in the Initial Guess, is a solution of the6

corresponding homogeneous equation, multiply the entire Initial Guess by7

t, and look at the new functions. If some of them are still solutions of the8

corresponding homogeneous equation, multiply the entire Initial Guess by t2.9

This is guaranteed to work. (Of course, if none of the functions appearing in10

the Initial Guess is a solution of the corresponding homogeneous equation,11

then the Initial Guess works.)12

In the preceding example, the Initial Guess involved the functions sin t13

and cos t, both solutions of the corresponding homogeneous equation. After14

we multiplied the Initial Guess by t, the new functions t sin t and t cos t are15

not solutions of the corresponding homogeneous equation, and the new guess16

worked.17

Example 2 Solve y′′ + 4y′ = 2t− 5.18

The fundamental set of the corresponding homogeneous equation19

y′′ + 4y′ = 0

consists of the functions y1(t) = 1, and y2(t) = e−4t. The Initial Guess,20

according to the Prescription 2, Y (t) = At + B, is a linear combination of21

the functions t and 1, and the second of these functions is a solution of the22

corresponding homogeneous equation. We multiply the Initial Guess by t,23

obtaining Y (t) = t(At+ B) = At2 + Bt. This is a linear combination of t224

and t, both of which are not solutions of the corresponding homogeneous25

equation. Substituting Y (t) into the equation, gives26

2A+ 4(2At+ B) = 2t− 5 .

Equating the coefficients in t, and the constant terms, we have27

8A = 2

2A+ 4B = −5 ,

giving A = 1/4, and B = −11/8. The particular solution is Y (t) = t2

4 − 11
8 t.28

Answer: y(t) =
t2

4
− 11

8
t+ c1 + c2e

−4t.29
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Example 3 Solve y′′ + 2y′ + y = te−t.1

The fundamental set of the corresponding homogeneous equation consists of2

the functions y1(t) = e−t, and y2(t) = te−t. The Initial Guess, according to3

the Prescription 3, (At+B)e−t = Ate−t + Be−t, is a linear combination of4

the same two functions. We multiply the Initial Guess by t: t(At+B)e−t =5

At2e−t+Bte−t . The new guess is a linear combination of the functions t2e−t
6

and te−t. The first of these functions is not a solution of the corresponding7

homogeneous equation, but the second one is. Therefore, we multiply the8

Initial Guess by t2: Y = t2(At+B)e−t = At3e−t +Bt2e−t. It is convenient9

to write Y = (At3 + Bt2)e−t, and we substitute this in:10

(6At+ 2B)e−t − 2(3At2 + 2Bt)e−t + (At3 +Bt2)e−t

+2
[

(3At2 + 2Bt)e−t − (At3 + Bt2)e−t
]

+ (At3 +Bt2)e−t = te−t .

Divide both sides by e−t, and simplify:11

6At+ 2B = t .

It follows that12

6A = 1

2B = 0 ,

giving A = 1/6, and B = 0. Answer: y(t) =
1

6
t3e−t + c1e

−t + c2te
−t.13

2.8 The Method of Variation of Parameters14

We now present a more general way to find a particular solution of the15

non-homogeneous equation16

y′′ + p(t)y′ + g(t)y = f(t) .(8.1)

Let us assume that y1(t) and y2(t) form a fundamental solution set for the17

corresponding homogeneous equation18

y′′ + p(t)y′ + g(t)y = 0 .(8.2)

(So that c1y1(t) + c2y2(t) gives the general solution of (8.2).) We look for a19

particular solution of (8.1) in the form20

Y (t) = u1(t)y1(t) + u2(t)y2(t) ,(8.3)
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with some functions u1(t) and u2(t), that shall be chosen to satisfy the1

following two equations2

u′1(t)y1(t) + u′2(t)y2(t) = 0(8.4)

u′1(t)y
′
1(t) + u′2(t)y

′
2(t) = f(t) .

We have a system of two linear equations to find u′1(t) and u′2(t). Its deter-3

minant4

W (t) =

∣

∣

∣

∣

∣

y1(t) y2(t)
y′1(t) y′2(t)

∣

∣

∣

∣

∣

is the Wronskian of y1(t) and y2(t). By the Theorem 2.4.3, W (t) 6= 0 for5

all t, because y1(t) and y2(t) form a fundamental solution set. By Cramer’s6

rule (or by elimination), the solution of (8.4) is7

u′1(t) = −f(t)y2(t)

W (t)
(8.5)

8

u′2(t) =
f(t)y1(t)

W (t)
.

The functions u1(t) and u2(t) are then computed by integration. We shall9

show that Y (t) = u1(t)y1(t) + u2(t)y2(t) is a particular solution of the non-10

homogeneous equation (8.1). Let us compute the derivatives of Y (t), in11

order to substitute Y (t) into the equation (8.1). Obtain:12

Y ′(t) = u′1(t)y1(t)+u
′
2(t)y2(t)+u1(t)y

′
1(t)+u2(t)y

′
2(t) = u1(t)y

′
1(t)+u2(t)y

′
2(t).

Here the first two terms have disappeared (they add up to zero), thanks to13

the first equation in (8.4). Next:14

Y ′′(t) = u′1(t)y
′
1(t) + u′2(t)y

′
2(t) + u1(t)y

′′
1 (t) + u2(t)y

′′
2 (t)

= f(t) + u1(t)y
′′
1 (t) + u2(t)y

′′
2 (t) ,

by using the second equation in (8.4). Then15

Y ′′ + pY ′ + gY = f(t) + u1y
′′
1 + u2y

′′
2 + p(u1y

′
1 + u2y

′
2) + g(u1y1 + u2y2)

= f(t) + u1(y
′′
1 + py′1 + gy1) + u2(y

′′
2 + py′2 + gy2)

= f(t) ,

which proves that Y (t) is a particular solution of (8.1). (Both brackets are16

zero, because y1(t) and y2(t) are solutions of the corresponding homogeneous17

equation (8.2).)18



2.8. THE METHOD OF VARIATION OF PARAMETERS 91

In practice, one begins by writing down the formulas (8.5).1

Example 1 Find the general solution of2

y′′ + y = tan t .

The fundamental set of the corresponding homogeneous equation3

y′′ + y = 0

consists of y1 = sin t and y2 = cos t. Their Wronskian4

W (t) =

∣

∣

∣

∣

∣

sin t cos t
cos t − sin t

∣

∣

∣

∣

∣

= − sin2 t− cos2 t = −1 ,

and the formulas (8.5) give5

u′1(t) = tan t cos t = sin t
6

u′2(t) = − tan t sin t = −sin2 t

cos t
.

Integrating, u1(t) = − cos t. We set the constant of integration to zero, be-7

cause we only need one particular solution. Integrating the second formula,8

u2(t) = −
∫

sin2 t

cos t
dt = −

∫

1 − cos2 t

cos t
dt =

∫

(− sec t+ cos t) dt

9

= − ln | sec t+ tan t| + sin t .

We have a particular solution (Y = u1y1 + u2y2)10

Y (t) = − cos t sin t+(− ln | sec t+tan t|+sin t) cos t = − cos t ln | sec t+tan t| .

Answer: y(t) = − cos t ln | sec t+ tan t| + c1 sin t+ c2 cos t.11

Example 2 Let us revisit the equation12

y′′ + 2y′ + y = te−t ,

for which we needed to use a modified prescription in the preceding section.13

The fundamental set of the corresponding homogeneous equation14

y′′ + 2y′ + y = 0

consists of y1 = e−t and y2 = te−t, and their Wronskian is W (y1, y2)(t) =15

e−2t. Then by the formulas (8.5), u′1 = −t2, giving u1 = − t3

3 , and u′2 = t,16

giving u2 = t2

2 . Obtain Y = u1y1 + u2y2 = 1
6 t

3e−t. Answer: y(t) =17

1

6
t3e−t + c1e

−t + c2te
−t.18
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2.9 The Convolution Integral1

This section introduces the convolution integral, which allows quick compu-2

tation of a particular solution Y (t), in case of constant coefficients.3

2.9.1 Differentiation of Integrals4

If g(t, s) is a continuously differentiable function of two variables, then the5

integral
∫ b
a g(t, s) ds depends on a parameter t (s is a dummy variable). This6

integral is differentiated as follows7

d

dt

∫ b

a
g(t, s) ds =

∫ b

a
gt(t, s) ds ,

where gt(t, s) denotes the partial derivative in t. To differentiate the integral8

∫ t
a g(s) ds, one uses the fundamental theorem of calculus:9

d

dt

∫ t

a
g(s) ds = g(t) .

The integral
∫ t
a g(t, s) ds depends on a parameter t, and it also has t as its10

upper limit. It is known from calculus that11

d

dt

∫ t

a
g(t, s) ds =

∫ t

a
gt(t, s) ds+ g(t, t) ,

so that, in effect, we combine the previous two formulas. Let now z(t) and12

f(t) be some functions, then the last formula gives13

d

dt

∫ t

a
z(t− s)f(s) ds =

∫ t

a
z′(t− s)f(s) ds+ z(0)f(t) .(9.1)

2.9.2 Yet Another Way to Compute a Particular Solution14

We consider the non-homogeneous equation15

y′′ + py′ + gy = f(t) ,(9.2)

where p and g are given numbers, and f(t) is a given function. Let z(t)16

denote the solution of the corresponding homogeneous equation, satisfying17

z′′ + pz′ + gz = 0, z(0) = 0, z′(0) = 1 .(9.3)
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Then we can write a particular solution of (9.2) as a convolution integral1

Y (t) =

∫ t

0
z(t− s)f(s) ds .(9.4)

To justify this formula, we compute the derivatives of Y (t), by using the2

formula (9.1), and the initial conditions z(0) = 0 and z′(0) = 1:3

Y ′(t) =

∫ t

0
z′(t− s)f(s) ds+ z(0)f(t) =

∫ t

0
z′(t− s)f(s) ds ,

4

Y ′′(t) =

∫ t

0
z′′(t− s)f(s) ds+ z′(0)f(t) =

∫ t

0
z′′(t− s)f(s) ds+ f(t) .

Then5

Y ′′(t) + pY ′(t) + gY (t)

=
∫ t
0 [z′′(t− s) + pz′(t− s) + gz(t− s)] f(s) ds+ f(t) = f(t) .

Here the integral is zero, because z(t) satisfies the homogeneous equation6

in (9.3), with constant coefficients p and g, at all values of its argument t,7

including t− s.8

Example Let us now revisit the equation9

y′′ + y = tan t .

Solving10

z′′ + z = 0, z(0) = 0, z′(0) = 1 ,

gives z(t) = sin t. Then11

Y (t) =

∫ t

0
sin(t− s) tan s ds .

Writing sin(t−s) = sin t cos s−cos t sin s, and integrating, it is easy to obtain12

the solution we had before.13

2.10 Applications of Second Order Equations14

One of the main applications of differential equations is to model mechanical15

and electrical oscillations. This section is mostly devoted to oscillations of16

springs, like the springs used in our cars.17
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2.10.1 Vibrating Spring1

-s
s

y

Spring at rest

0
-s

s
yy(t)

Extended spring

0
2

If a spring is either extended or compressed, it will oscillate around its3

equilibrium position. We direct the y-axis along the spring, with the origin4

chosen at the equilibrium position. Let y = y(t) denote the displacement5

of a spring from its natural position. Its motion is governed by Newton’s6

second law7

ma = f .

The acceleration a = y′′(t). We assume that the only force f , acting on the8

spring, is its own restoring force, which by Hooke’s law is f = −ky, for small9

displacements. Here the physical constant k > 0 describes the stiffness (or10

the hardness) of the spring. Then11

my′′ = −ky .

Divide both sides by the mass m of the spring, and denote k/m = ω2 (so12

that ω =
√

k/m), obtaining13

y′′ + ω2y = 0 .

The general solution, y(t) = c1 cosωt + c2 sinωt, gives us the harmonic14

motion of the spring.15

To understand the solution better, let us write y(t) as16

y(t) =
√

c21 + c22

(

c1√
c21+c22

cosωt+ c2√
c21+c22

sinωt

)

= A
( c1

A cosωt+ c2
A sinωt

)

,

where we denoted A =
√

c21 + c22. Observe that ( c1
A )2 + ( c2

A )2 = 1, which17

means that we can find an angle δ, such that cos δ = c1
A , and sin δ = c2

A .18

Then our solution takes the form19

y(t) = A (cosωt cos δ + sinωt sin δ) = A cos(ωt− δ) .
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We conclude that any harmonic motion is just a shifted cosine curve of1

amplitude A =
√

c21 + c22, and of period
2π

ω
. The larger ω is, the smaller2

is the period, and the oscillations are more frequent. So that ω gives us3

the frequency of oscillations, called the natural frequency of the spring. The4

constants c1 and c2 can be computed, once the initial displacement y(0),5

and the initial velocity y′(0) are prescribed.6

Example 1 Solving the initial value problem7

y′′ + 4y = 0, y(0) = 3, y′(0) = −8

one gets y(t) = 3 cos 2t− 4 sin 2t. This solution is a periodic function, with8

the amplitude 5, the frequency 2, and the period π.9

The equation10

y′′ + ω2y = f(t)(10.1)

models the case when an external force, with acceleration equal to f(t), is11

applied to the spring. Indeed, the corresponding equation of motion is now12

my′′ = −ky +mf(t) ,

from which we get (10.1), dividing by m.13

Let us consider the case of a periodic forcing term14

y′′ + ω2y = a sin νt ,(10.2)

where a > 0 is the amplitude of the external force, and ν is the forcing fre-15

quency. If ν 6= ω, we look for a particular solution of this non-homogeneous16

equation in the form Y (t) = A sin νt. Substituting this in, gives A =17

a

ω2 − ν2
. The general solution of (10.2), which is y(t) =

a

ω2 − ν2
sin νt +18

c1 cosωt + c2 sinωt, is a superposition (sum) of the harmonic motion, and19

the response term (
a

ω2 − ν2
sin νt) to the external force. We see that the20

solution is still bounded, although not periodic anymore, for general ν and21

ω, as a sum of functions of different periods 2π
ν and 2π

ω (such functions are22

called quasiperiodic).23

A very important case is when ν = ω, so that the forcing frequency is24

the same as the natural frequency. Then a particular solution has the form25

Y (t) = At sin νt + Bt cos νt, so that solutions become unbounded, as time26

t increases. This is the case of resonance, when a bounded external force27
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y = -
1
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t cos 2t

Figure 2.3: The graph of the secular term y = −1
4 t cos 2t, oscillating between

the lines y = −1
4 t, and y = 1

4t

produces unbounded response. Large displacements will break the spring.1

Resonance is a serious engineering concern.2

Example 2 y′′ + 4y = sin 2t, y(0) = 0, y′(0) = 1.3

Both the natural and forcing frequencies are equal to 2. The fundamental set4

of the corresponding homogeneous equation consists of sin 2t and cos 2t. We5

search for a particular solution in the form Y (t) = At sin 2t+Bt cos 2t, corre-6

sponding to a modified prescription (alternatively, one can use the variation7

of parameters method). As before, we compute Y (t) = −1
4 t cos 2t. Then the8

general solution is y(t) = −1
4 t cos 2t+ c1 cos 2t+ c2 sin 2t. Using the initial9

conditions, calculate c1 = 0 and c2 = 5
8 , so that y(t) = −1

4 t cos 2t+ 5
8 sin 2t.10

The term −1
4 t cos 2t introduces oscillations, with the amplitude 1

4 t increas-11

ing without bound, as time t→ ∞. (It is customary to call such unbounded12

term a secular term, which seems to imply that the harmonic terms are13

divine.)14

2.10.2 Problems15

I. Solve the following non-homogeneous equations.16

1. 2y′′−3y′+y = 2 sin t. Answer. y = c1e
t/2+c2e

t+
3

5
cos t− 1

5
sin t.17

18

2. y′′ + 4y′ + 5y = 2 cos 2t− 3 sin 2t.19

Answer. y =
2

5
cos 2t+

1

5
sin 2t+ c1e

−2t cos t+ c2e
−2t sin t.20
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3. y′′ − y′ = 5 sin2t. Answer. y = c1 + c2e
t +

1

2
cos 2t− sin 2t.1

4. y′′ + 9y = 2 cos νt, ν 6= 3 is a constant.2

Answer. y =
2

9− ν2
cos νt+ c1 cos 3t+ c2 sin 3t.3

5. y′′ + 2y′ + y = 2t cos t.4

Hint: By Prescription 1, look for a particular solution in the form y =5

(At+B) cos t+(Ct+D) sin t. Answer. y = cos t+(t−1) sin t+c1e
−t+c2te

−t.6

7

6. y′′ − 2y′ + y = t+ 2. Answer. y = t+ 4 + c1e
t + c2e

tt.8

7. y′′+4y = t2−3t+1. Answer. y =
1

8

(

2t2 − 6t+ 1
)

+c1 cos 2t+c2 sin 2t.9

10

8. y′′ − 9y = e5t. Answer. y =
e5t

16
+ c1e

−3t + c2e
3t.11

9. y′′ − 4y = te3t, y(0) = 0, y′(0) = 1.12

Answer. y =

(

1

5
t− 6

25

)

e3t − 13

50
e−2t +

1

2
e2t.13

10. 2y′′ + y′ − y = (5t2 + t− 1)e−2t.14

Answer. y =
1

5
e−2t

(

5t2 + 15t+ 16
)

+ c1e
t/2 + c2e

−t.15

11. 4y′′ + 8y′ + 5y = 5t− sin t.16

Answer. y = t− 8

5
+

8

65
cos t− 1

65
sin t+ c1e

−t cos
t

2
+ c2e

−t sin
t

2
.17

12. y′′ + y = 2e4t + t2.18

Answer. y =
2

17
e4t + t2 − 2 + c1 cos t+ c2 sin t.19

13. y′′ − y′ = 2 sin t− cos 2t.20

Answer. y = cos t− sin t+
1

5
cos 2t+

1

10
sin 2t+ c1 + c2e

t.21

14. For the first order equation22

y′ − x2y = 2x− x4

the integrating factor µ = e−
x3

3 leads to an intractable integral. Instead,23

look for a particular solution as a quadratic polynomial, and add to it the24

general solution of the corresponding homogeneous equation.25
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Answer. y = x2 + ce
x3

3 .1

II. Solve the non-homogeneous equations (using the modified prescriptions).2

3

1. y′′ + y = 2 cos t. Answer. y = t sin t+ c1 cos t+ c2 sin t.4

2. y′′ + y′ − 6y = −e2t. Answer. y = −1

5
e2tt+ c1e

−3t + c2e
2t.5

3. y′′ + 2y′ + y = 2e−t. Answer. y = t2e−t + c1e
−t + c2te

−t.6

4. y′′ − 2y′ + y = tet. Answer. y =
t3et

6
+ c1e

t + c2te
t.7

5. y′′ − 4y′ = 2 − cos t. Answer. y = − t

2
+

cos t

17
+

4 sin t

17
+ c1e

4t + c2.8

6. 2y′′ − y′ − y = 3et. Answer. y = tet + c1e
− 1

2
t + c2e

t.9

III. Write down the form in which one should look for a particular solution,10

but DO NOT compute the coefficients.11

1. y′′ + y = 2 sin 2t− cos 3t− 5t2e3t + 4t.12

Answer. A cos 2t+B sin 2t+C cos 3t+D sin 3t+
(

Et2 + Ft+G
)

e3t+Ht+I .13

2. y′′ + y = 4 cos t− cos 5t+ 8.14

Answer. t (A cos t+B sin t) + C cos 5t+D sin 5t+ E.15

3. y′′ − 4y′ + 4y = 3te2t + sin4t− t2.16

Answer. t2 (At+B) e2t +C cos 4t+D sin 4t+Et2 + Ft+G.17

IV. Find a particular solution, by using the method of variation of parame-18

ters, and then write down the general solution.19

1. y′′ + y′ − 6y = 5e2t. Answer. y = te2t + c1e
−3t + c2e

2t.20

2. y′′ − 2y′ + y =
et

1 + t2
.21

Answer. y = c1e
t + c2te

t − 1

2
et ln(1 + t2) + tet tan−1 t.22

3. y′′ + y = sin t. Answer. y = − t

2
cos t+ c1 cos t+ c2 sin t.23

4. y′′ + 9y = −2e3t.24
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Hint: Similar integrals were considered in Section 1.1. For this equation it1

is easier to use the Prescription 3 from Section 2.6.2

Answer. y = −e
3t

9
+ c1 cos 3t+ c2 sin 3t.3

5. y′′ + 2y′ + y =
e−t

t
. Answer. y = −te−t + te−t ln t+ c1e

−t + c2te
−t.4

6. y′′ +4y′ +4y =
e−2t

t2
. Answer. y = −e−2t (1 + ln t)+c1e

−2t +c2te
−2t.5

6

7. y′′ − 4y = 8e2t. Answer. y = 2te2t + c1e
−2t + c2e

2t.7

8. y′′ +y = sec t. Answer. y = c1 cos t+ c2 sin t+cos t ln | cos t|+ t sin t.8

9. y′′ + 3y′ = 6t. Answer. y = t2 − 2

3
t+ c1e

−3t + c2.9

10. y′′ − y′ − 2y = e−t. y(0) = 1, y′(0) = 0.10

Answer. y =
4

9
e2t +

1

9
e−t (3t− 5).11

11. y′′ + 4y = sin2t, y(0) = 0, y′(0) = 1.12

Answer. y = −1

4
t cos 2t+

5

8
sin 2t.13

12. 2y′′ + 2y′ − 4y = e−2t.14

Hint: Put this equation into the right form for the variation of parameters15

formula (8.5).16

Answer. y = −1

6
te−2t + c1e

−2t + c2e
t.17

13. 4y′′ + 4y′ + y = 3tet. Answer. y =
1

9
et (3t− 4) + c1e

− t
2 + c2te

− t
2 .18

V. Verify that the functions y1(t) and y2(t) form a fundamental solution19

set for the corresponding homogeneous equation, and then use variation of20

parameters to find the general solution.21

1. t2y′′ − 2y = t3 − 1. y1(t) = t2, y2(t) = t−1.22

Hint: Begin by putting this equation into the right form to use (8.5).23

Answer. y =
1

2
+

1

4
t3 + c1t

2 + c2
1

t
.24

2. ty′′ − (1 + t)y′ + y = t2e3t. y1(t) = t+ 1, y2(t) = et.25
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Answer. y =
1

12
e3t(2t− 1) + c1(t+ 1) + c2e

t.1

3. x2y′′ + xy′ +
(

x2 − 1

4

)

y = x3/2. (Non-homogeneous Bessel’s equation.)2

y1(x) = x−1/2 cosx, y2(x) = x−1/2 sinx.3

Answer. y = x−1/2 (1 + c1 cos x+ c2 sinx).4

4∗. (3t3 + t)y′′ + 2y′ − 6ty = 4 − 12t2. y1(t) =
1

t
, y2(t) = t2 + 1.5

Hint: Use Mathematica to compute the integrals.6

Answer. y = 2t+ c1
1

t
+ c2(t

2 + 1).7

VI.8

1. Use the convolution integral, to solve9

y′′ + y = t2, y(0) = 0, y′(0) = 1 .

Answer. y = t2 − 2 + 2 cos t+ sin t.10

2. (i) Show that y(t) =

∫ t

0

(t− s)n−1

(n− 1)!
f(s) ds gives a solution of the n-th11

order equation12

y(n) = f(t) .

(This formula lets you compute n consecutive antiderivatives at once.)13

Hint: Use the formula (9.1).14

(ii) Solve the following integral equation15

y(t) +

∫ t

0
(t− s) y(s) ds = t .

Hint: Differentiate the equation twice, and also evaluate y(0), y′(0).16

Answer. y = sin t.17

3∗. For the equation18

u′′ + (1 + f(t))u = 0

assume that |f(t)| ≤ c
t1+α , with positive constants α and c, for t ≥ 1.19

(i) Show that all solutions are bounded as t→ ∞.20

Hint: Consider the “energy” of the solution E(t) = 1
2u

′2 + 1
2u

2. Then21

E ′ = −f(t)uu′ ≤ |f(t)||u′u| ≤ |f(t)|
(

1

2
u′2 +

1

2
u2
)

≤ c

t1+α
E .
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(ii) Show that this equation has two solutions such that for t→ ∞1

u1(t) = cos t+O

(

1

tα

)

, u2(t) = sin t+O

(

1

tα

)

.

(The “big O” O
(

1
tα

)

denotes any function, whose absolute value is bounded2

by const
tα , as t→ ∞.)3

Hint: Take f(t)u to the right hand side, and treat it as a known function.4

Then for any 1 < t < a5

u(t) = cos t+

∫ a

t
sin(t− s)f(s)u(s) ds ,

gives the unique solution of our equation, satisfying the initial conditions6

u(a) = cosa, u′(a) = − sin a. This solution is written using an integral7

involving itself. Since u(s) is bounded, | ∫ a
t sin(t− s)f(s)u(s) ds| ≤ c1

tα .8

4∗. For the equation9

u′′ − (1 + f(t))u = 0

assume that |f(t)| ≤ c
t1+α , with positive constants α and c, for t ≥ 1. Show10

that the equation has two solutions such that for t→ ∞11

u1(t) = et
(

1 +O

(

1

tα

))

, u2(t) = e−t
(

1 +O

(

1

tα

))

.

12

Hint: Expressing a solution as u(t) = et +
∫ t
1 sinh(t−s)f(s)u(s) ds, estimate13

|u(t)| ≤ et +
1

2
et
∫ t

1
e−s|f(s)| |u(s)| ds .

Apply Bellman-Gronwall’s lemma to show that z(t) = e−t|u(t)| is bounded,14

and therefore |u(t)| ≤ cet. Then for any 1 < t < a15

u(t) = et −
∫ a

t
sinh(t− s)f(s)u(s) ds ,

and estimate the integral as above. (Similar questions are discussed in a16

nice old book by R. Bellman [2].)17

5∗. In the equation18

y′′ ± a4(x)y = 0
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make a substitution y = b(x)u to obtain1

b2
(

b2u′
)′

+
(

b′′b3 ± a4b4
)

u = 0 .

Select b(x) = 1
a(x) , then make a change of the independent variable x → t,2

so that dx
dt = 1

a2 , or t =
∫

a2(x) dx. Show that u = u(t) satisfies3

u′′ +
(

±1 +
1

a3

(

1

a

)

xx

)

u = 0 .

This procedure is known as the Liouville transformation. It often happens4

that 1
a3

(

1
a

)

xx
→ 0 as t→ ∞.5

6∗. Apply the Liouville transformation to the equation6

y′′ + e2xy = 0 .(10.3)

Hint: Here a(x) = e
1
2
x, t = ex, 1

a3

(

1
a

)

xx
= 1

4e
−2x = 1

4t2 . Obtain:7

u′′ +
(

1 +
1

4t2

)

u = 0 .

Conclude that the general solution of (10.3) satisfies8

y = c1e
−x/2 cos(ex) + c2e

−x/2 sin(ex) + O
(

e−
3
2
x
)

, as x→ ∞ .

9

7∗. Apply the Liouville transformation to the equation10

xy′′ − y = 0 .

Conclude that the general solution satisfies11

y = c1x
1
4 e2

√
x + c2x

1
4 e−2

√
x +O

(

x−
1
4 e2

√
x
)

, as x→ ∞ .

VII.12

1. A spring has natural frequency ω = 2. Its initial displacement is −1, and13

the initial velocity is 2. Find its displacement y(t) at any time t. What is14

the amplitude of the oscillations?15

Answer. y(t) = sin 2t− cos 2t, A =
√

2.16
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2. A spring of mass 2 lb is hanging down from the ceiling, and its stiffness1

constant is k = 18. Initially, the spring is pushed up 3 inches, and is given2

velocity of 2 inch/sec, directed downward. Find the displacement of the3

spring y(t) at any time t, and the amplitude of oscillations. (Assume that4

the y axis is directed down from the equilibrium position.)5

Answer. y(t) = 2
3 sin 3t− 3 cos3t, A =

√
85
3 .6

3. A spring has natural frequency ω = 3. An outside force, with acceleration7

f(t) = 2 cos νt, is applied to the spring. Here ν is a constant, ν 6= 3. Find8

the displacement of the spring y(t) at any time t. What happens to the9

amplitude of oscillations in case ν is close to 3?10

Answer. y(t) =
2

9 − ν2
cos νt+ c1 cos 3t+ c2 sin 3t.11

4. Assume that ν = 3 in the preceding problem. Find the displacement of12

the spring y(t) at any time t. What happens to the spring in the long run?13

Answer. y(t) =
1

3
t sin 3t+ c1 cos 3t+ c2 sin 3t.14

5. Consider dissipative (or damped) motion of a spring15

y′′ + αy′ + 9y = 0 .

Write down the solution, assuming that α < 6. What is the smallest value16

of the dissipation constant α, which will prevent the spring from oscillating?17

18

Answer. No oscillations for α ≥ 6.19

6. Consider forced vibrations of a dissipative spring20

y′′ + αy′ + 9y = sin 3t .

Write down the general solution for21

(i) α = 022

(ii) α 6= 0.23

What does friction do to the resonance?24

2.10.3 A Meteor Approaching the Earth25

Let r = r(t) denote the distance of some meteor from the center of the Earth.26

The motion of the meteor is governed by Newton’s law of gravitation27

mr′′ = −mMG

r2
.(10.4)
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Here m is the mass of the meteor, M denotes the mass of the Earth, and1

G is the universal gravitational constant. Let a be the radius of the Earth.2

If an object is sitting on Earth’s surface, then r = a, and the acceleration3

r′′ = −g, the gravity of Earth, so that from (10.4)4

g =
MG

a2
.

Then MG = ga2, and we can rewrite (10.4) as5

r′′ = −g a
2

r2
.(10.5)

We could solve this equation by letting r′ = v(r), because the independent6

variable t is missing. Instead, to obtain the solution in a more instructive7

way, let us multiply both sides of the equation by r′, and write the result as8

r′r′′ + g
a2

r2
r′ = 0 ,

9

d

dt

(

1

2
r′2 − g

a2

r

)

= 0 ,

10

1

2
r′2(t) − g

a2

r(t)
= c .(10.6)

So that the energy of the meteor, E(t) =
1

2
r′2(t)−g a

2

r(t)
, remains constant at11

all time. (That is why the gravitational force field is called conservative.) We12

can now express r′(t) = −
√

2c+ 2ga2

r(t) , and calculate the motion of meteor13

r(t) by separation of variables. However, as we are not riding on the meteor,14

this seems to be not worth the effort. What really concerns us is the velocity15

of impact, when the meteor hits the Earth, which is discussed next.16

Let us assume that the meteor “begins” its journey with zero velocity17

r′(0) = 0, and at a distance so large that we may assume r(0) = ∞. Then18

the energy of the meteor at time t = 0 is zero, E(0) = 0. As the energy19

remains constant at all time, the energy at the time of impact is also zero.20

At the time of impact, we have r = a, and the velocity of impact we denote21

by v (r′ = v). Then from (10.6)22

1

2
v2(t) − g

a2

a
= 0 ,
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and the velocity of impact is1

v =
√

2ga .

Food for thought: the velocity of impact is the same, as it would have been2

achieved by free fall from height a.3

Let us now revisit the harmonic oscillations of a spring:4

y′′ + ω2y = 0 .

Similarly to the meteor case, multiply this equation by y′:5

y′y′′ + ω2yy′ = 0 ,
6

d

dt

(

1

2
y′2 +

1

2
ω2y2

)

= 0 ,

7

E(t) =
1

2
y′2 +

1

2
ω2y2 = constant .

With the energy E(t) being conserved, no wonder the motion of the spring8

was periodic.9

2.10.4 Damped Oscillations10

We add an extra term to our model of spring motion:11

my′′ = −ky − k1y
′ ,

where k1 is another positive constant. It represents an additional force,12

which is directed in the opposite direction, and is proportional to the velocity13

of motion y′. This can be either air resistance or friction. Denoting k1/m =14

α > 0, and k/m = ω2, rewrite the equation as15

y′′ + αy′ + ω2y = 0 .(10.7)

Let us see what effect the extra term αy′ has on the energy of the spring,16

E(t) = 1
2y

′2 + 1
2ω

2y2. We differentiate the energy, and express from the17

equation (10.7), y′′ = −αy′ − ω2y, obtaining18

E ′(t) = y′y′′ + ω2yy′ = y′(−αy′ − ω2y) + ω2yy′ = −αy′2 .

It follows that E ′(t) ≤ 0, and the energy decreases. This is an example of a19

dissipative motion. We expect the amplitude of oscillations to decrease with20

time. We call α the dissipation (or damping) coefficient.21
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To solve the equation (10.7), write down its characteristic equation1

r2 + αr + ω2 = 0 .

The roots are r =
−α ±

√
α2 − 4ω2

2
.2

There are three cases to consider.3

(i) α2 − 4ω2 < 0. (The dissipation coefficient α is small.) The roots are4

complex. If we denote α2 − 4ω2 = −q2, with q > 0, the roots are −α
2
± i

q

2
.5

The general solution6

y(t) = c1e
−α

2
t sin

q

2
t+ c2e

−α
2

t cos
q

2
t

exhibits damped oscillations (the amplitude of oscillations tends to zero, as7

t→ ∞).8

(ii) α2 − 4ω2 = 0. There is a double real root −α
2

. The general solution9

y(t) = c1e
−α

2
t + c2te

−α
2

t

tends to zero as t→ ∞, without oscillating.10

(iii) α2 − 4ω2 > 0. The roots are real and distinct. If we denote q =11 √
α2 − 4ω2, then the roots are r1 =

−α− q

2
, and r2 =

−α + q

2
. Both roots12

are negative, because q < α. The general solution13

y(t) = c1e
r1t + c2e

r2t

tends to zero as t → ∞, without oscillating. We see that large enough14

dissipation coefficient α “kills” the oscillations.15

2.11 Further Applications16

This section begins with forced vibrations in presence of damping. It turns17

out that any amount of damping “kills” the resonance, and the largest am-18

plitude of oscillations occurs when the forcing frequency ν is a little smaller19

than the natural frequency ω. Then oscillations of a pendulum, and of two20

coupled pendulums, are studied.21



2.11. FURTHER APPLICATIONS 107

2.11.1 Forced and Damped Oscillations1

It turns out that even a little damping is enough to avoid resonance. Con-2

sider the equation3

y′′ + αy′ + ω2y = sinνt(11.1)

modeling forced vibrations of a spring in the presence of damping. Our the-4

ory tells us to look for a particular solution in the form Y (t) = A1 cos νt+5

A2 sin νt. Once the constants A1 and A2 are determined, we can use trigono-6

metric identities to put this solution into the form7

Y (t) = A sin(νt− γ) ,(11.2)

with the constants A > 0 and γ depending on A1 and A2. So, let us look for8

a particular solution directly in the form (11.2). We transform the forcing9

term as a linear combination of sin(νt− γ) and cos(νt− γ):10

sin νt = sin ((νt− γ) + γ) = sin(νt− γ) cosγ + cos(νt− γ) sinγ .

Substitute Y (t) = A sin(νt− γ) into the equation (11.1):11

−Aν2 sin(νt− γ) + Aαν cos(νt− γ) +Aω2 sin(νt− γ) =

sin(νt− γ) cosγ + cos(νt− γ) sinγ .

Equating the coefficients in sin(νt− γ) and cos(νt− γ), gives12

A(ω2 − ν2) = cos γ(11.3)

Aαν = sin γ .

Square both of these equations, and add the results13

A2(ω2 − ν2)2 +A2α2ν2 = 1 ,

which allows us to calculate A:14

A =
1

√

(ω2 − ν2)2 + α2ν2
.

To calculate γ, divide the second equation in (11.3) by the first15

tan γ =
αν

ω2 − ν2
, or γ = tan−1 αν

ω2 − ν2
.

We computed a particular solution16

Y (t) =
1

√

(ω2 − ν2)2 + α2ν2
sin(νt− γ), where γ = tan−1 αν

ω2 − ν2
.



108 CHAPTER 2. SECOND ORDER EQUATIONS

We now make a physically reasonable assumption that the damping co-1

efficient α is small, so that α2 − 4ω2 < 0. Then the characteristic equation2

for the homogeneous equation corresponding to (11.1)3

r2 + αr + ω2 = 0

has a pair of complex roots −α
2 ± iβ, where β =

√
4ω2−α2

2 . The general4

solution of (11.1) is then5

y(t) = c1e
−α

2
t cos βt+ c2e

−α
2

t sin βt+
1

√

(ω2 − ν2)2 + α2ν2
sin(νt− γ) .

The first two terms of this solution are called the transient oscillations,6

because they quickly tend to zero, as the time t goes on (“sic transit gloria7

mundi”). So that the third term, Y (t), describes the oscillations in the8

long run. We see that oscillations of Y (t) are bounded, no matter what is9

the frequency ν of the forcing term. The resonance is gone! Moreover, the10

largest amplitude of Y (t) occurs not at ν = ω, but at a slightly smaller11

value of ν. Indeed, the maximal amplitude happens when the quantity in12

the denominator, (ω2 − ν2)2 + α2ν2, is the smallest. This quantity is a13

quadratic in ν2. Its minimum occurs when ν2 = ω2 − α2

2 , or ν =
√

ω2 − α2

2 .14

2.11.2 An Example of a Discontinuous Forcing Term15

We now consider equations with a jumping force function. A simple function16

with a jump at some number c, is the Heaviside step function17

uc(t) =

{

0 if t < c
1 if t ≥ c

.

Example For t > 0, solve the problem18

y′′ + 4y = f(t)

y(0) = 0, y′(0) = 3 ,

where19

f(t) =

{

0 if t < π/4

t+ 1 if t ≥ π/4
.

Physical interpretation: no external force is applied to the spring before the20

time t = π/4, and the force is equal to t+1 afterwards. The forcing function21

can be written as f(t) = uπ/4(t)(t+ 1).22
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The problem naturally breaks down into two parts. When 0 < t < π/4,1

we are solving2

y′′ + 4y = 0 .

Its general solution is y(t) = c1 cos 2t+c2 sin 2t. Using the initial conditions,3

calculate c1 = 0, c2 = 3
2 , so that4

y(t) =
3

2
sin 2t, for t ≤ π/4 .(11.4)

At later times, when t ≥ π/4, our equation is5

y′′ + 4y = t+ 1 .(11.5)

But what are the new initial conditions at the time t = π/4? Clearly, we6

can get them from (11.4):7

y(π/4) =
3

2
, y′(π/4) = 0 .(11.6)

The general solution of (11.5) is y(t) = 1
4 t+ 1

4 + c1 cos 2t+ c2 sin 2t. Calcu-8

lating c1 and c2 from the initial conditions in (11.6), gives y(t) = 1
4 t+ 1

4 +9

1
8 cos 2t+ ( 5

4 − π
16) sin2t. Answer:10

y(t) =











3
2 sin 2t, if t < π/4

1
4 t+ 1

4 + 1
8 cos 2t+ ( 5

4 − π
16 ) sin2t, if t ≥ π/4

.

Observe that the solution y(t) is continuous at t = π/4.11

2.11.3 Oscillations of a Pendulum12
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Gravity acting on a pendulum, ϕ = π
2
− θ

13
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Assume that a small ball of mass m is attached to one end of a rigid rod1

of length l, while the other end of the rod is attached to the ceiling. Assume2

also that the mass of the rod itself is so small, that it can be neglected.3

Clearly, the ball will move on an arch of a circle of radius l. Let θ = θ(t)4

be the angle that the pendulum makes with the vertical line, at the time5

t. We assume that θ > 0 if the pendulum is to the left of the vertical line,6

and θ < 0 to the right of the vertical. If the pendulum moves by an angle7

θ radians, it covers the distance lθ = lθ(t). It follows that lθ′(t) gives its8

velocity, and lθ′′(t) the acceleration. We assume that the only force acting9

on the mass is the force of gravity. Only the projection of this force on10

the tangent line to the circle is active, which is mg cos(π
2 − θ) = mg sin θ.11

Newton’s second law of motion gives12

mlθ′′(t) = −mg sin θ .

(Minus, because the force works to decrease the angle θ, when θ > 0, and to13

increase θ, if θ < 0.) Denoting g/l = ω2, we obtain the pendulum equation14

θ′′(t) + ω2 sin θ(t) = 0 .

If the oscillation angle θ(t) is small, then sin θ(t) ≈ θ(t), giving us again a15

harmonic oscillator16

θ′′(t) + ω2θ(t) = 0 ,

this time as a model of small oscillations of a pendulum.17

2.11.4 Sympathetic Oscillations18

Suppose that we have two pendulums hanging from the ceiling, and they are19

coupled (connected) through a weightless spring. Let x1 denote the angle20

the left pendulum makes with the vertical line. We consider this angle to21

be positive if the pendulum is to the left of the vertical line, and x1 < 0 if22

the pendulum is to the right of the vertical line. Let x2 be the angle the23

right pendulum makes with the vertical, with the same assumptions on its24

sign. We assume that x1 and x2 are small in absolute value, which means25

that each pendulum separately can be modeled by a harmonic oscillator.26

For the coupled pendulums the model is27

x′′1 + ω2x1 = −k(x1 − x2)(11.7)

x′′2 + ω2x2 = k(x1 − x2) ,

where k > 0 is a physical constant, describing the stiffness of the coupling28

spring. Indeed, if x1 > x2 > 0, then the coupling spring is extended, so that29
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the spring tries to contract, and in doing so it pulls back the left pendulum,1

while pulling forward (accelerating) the right pendulum. (Correspondingly,2

the forcing term is negative in the first equation, and positive in the second3

one.) In case 0 < x1 < x2, the spring is compressed, and as it tries to4

expand, it accelerates the first (left) pendulum, and slows down the second5

(right) pendulum. We shall solve the system (11.7), together with the simple6

initial conditions7

x1(0) = a, x′1(0) = 0, x2(0) = 0, x′2(0) = 0 ,(11.8)

which correspond to the first pendulum beginning with a small displacement8

angle a, and zero initial velocity, while the second pendulum is at rest.9

�
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q q
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a

t t

x1

x2

Two pendulums connected by a weightless spring

10

Add the equations in (11.7), and call z1 = x1 + x2. Obtain11

z′′1 + ω2z1 = 0, z1(0) = a, z′1(0) = 0 .

The solution of this initial value problem is z1(t) = a cosωt. Subtracting12

the second equation in (11.7) from the first one, and calling z2 = x1 − x2,13

gives z′′2 + ω2z2 = −2kz2, or14

z′′2 + (ω2 + 2k)z2 = 0, z2(0) = a, z′2(0) = 0 .

Denoting ω2 + 2k = ω2
1 , or ω1 =

√
ω2 + 2k, we have z2(t) = a cosω1t.15

Clearly, z1 + z2 = 2x1. Then16

x1 =
z1 + z2

2
=
a cosωt + a cosω1t

2
= a cos

ω1 − ω

2
t cos

ω1 + ω

2
t ,(11.9)

using a trigonometric identity on the last step. Similarly,17

x2 =
z1 − z2

2
=
a cosωt− a cosω1t

2
= a sin

ω1 − ω

2
t sin

ω1 + ω

2
t .(11.10)
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We now analyze the solution, given by the formulas (11.9) and (11.10).1

If k is small (the coupling is weak), then ω1 is close to ω, and so their2

difference ω1 − ω is small. It follows that both cos
ω1 − ω

2
t and sin

ω1 − ω

2
t3

change very slowly with time t. Rewrite the solution as4

x1 = A cos
ω1 + ω

2
t, and x2 = B sin

ω1 + ω

2
t ,

where we regard A = a cos
ω1 − ω

2
t, and B = a sin

ω1 − ω

2
t, as slowly vary-5

ing amplitudes. We interpret this by saying that the pendulums oscillate6

with the frequency
ω1 + ω

2
, and with slowly varying amplitudes A and B.7

(The amplitudes A and B are also periodic. Oscillations with periodically8

varying amplitudes are known as beats, see Figure 2.4.)9

At times t, when cos
ω1 − ω

2
t is zero, and the first pendulum is at rest10

(x1 = 0), the amplitude of the second pendulum satisfies | sin ω1 − ω

2
t| = 1,11

obtaining its largest possible absolute value. There is a complete exchange12

of energy: when one of the pendulums is doing the maximal work, the other13

one is resting. We see “sympathy” between the pendulums. Observe also14

that A2 +B2 = a2. This means that the point (x1(t), x2(t)) lies on the circle15

of radius a in the (x1, x2) plane, for all t.16

Example Using Mathematica, we solved a particular case of (11.7)17

x′′1 + x1 = −0.1(x1 − x2)

x′′2 + x2 = 0.1(x1 − x2)

x1(0) = 2 , x′1(0) = 0 , x2(0) = x′2(0) = 0 .

The graphs of x1(t) and x2(t) in Figure 2.4 both exhibit beats. Observe18

that maximal amplitude of each of these functions occurs at times when the19

amplitude of the other function is zero.20

2.12 Oscillations of a Spring Subject to a Periodic21

Force22

This section develops the Fourier series, one of the most important concepts23

of mathematics. Application is made to periodic vibrations of a spring.24
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Figure 2.4: Oscillations of coupled pendulums: beats

2.12.1 The Fourier Series1

For vectors in three dimensions, one of the central notions is that of the2

scalar product (also known as the “inner product”, or the “dot product”).3

Namely, if x =







x1

x2

x3





 and y =







y1
y2
y3





 , then their scalar product is4

(x, y) = x1y1 + x2y2 + x3y3 .

Scalar product can be used to compute the length of a vector ||x|| =
√

(x, x),5

and the angle θ between the vectors x and y6

cos θ =
(x, y)

||x|| ||y|| .

In particular, the vectors x and y are orthogonal (perpendicular) if (x, y) =7

0. If i, j and k are the unit coordinate vectors, then (x, i) = x1, (x, j) = x2,8

and (x, k) = x3. Writing x = x1i+ x2j + x3k, we express9

x = (x, i)i+ (x, j)j + (x, k)k .(12.1)
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This formula gives probably the simplest example of the Fourier Series.1

We shall now consider functions f(t) that are periodic, with period 2π.2

Such functions are determined by their values on any interval of length 2π.3

So let us consider them on the interval (−π, π). Given two functions f(t)4

and g(t), we define their scalar product as5

(f, g) =

∫ π

−π
f(t) g(t) dt .

We call the functions orthogonal if (f, g) = 0. For example, (sin t, cos t) =6

∫ π
−π sin t cos t dt = 0, so that sin t and cos t are orthogonal. (Observe that the7

orthogonality of these functions has nothing to do with the angle at which8

their graphs intersect.) The notion of scalar product allows us to define the9

norm of a function10

||f || =
√

(f, f) =

√

∫ π

−π
f2(t) dt .

For example,11

|| sin t|| =

√

∫ π

−π
sin2 t dt =

√

∫ π

−π

(

1

2
− 1

2
cos 2t

)

dt =
√
π .

Similarly, for any positive integer n, || sinnt|| =
√
π, || cosnt|| =

√
π, and12

||1|| =
√

2π.13

We now consider an infinite set of functions14

1, cos t, cos 2t, . . . , cosnt, . . . , sin t, sin 2t, . . . , sinnt, . . . .

They are all mutually orthogonal. This is because15

(1, cosnt) =

∫ π

−π
cosnt dt = 0 ,

16

(1, sinnt) =

∫ π

−π
sinnt dt = 0 ,

17

(cosnt, cosmt) =

∫ π

−π
cosnt cosmtdt = 0, for all n 6= m ,

18

(sinnt, sinmt) =

∫ π

−π
sinnt sinmtdt = 0, for all n 6= m,

19

(sinnt, cosmt) =

∫ π

−π
sinnt cosmtdt = 0, for any n and m.
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The last three integrals are computed by using trigonometric identities. If1

we divide these functions by their norms, we shall obtain an orthonormal2

set of functions3

1√
2π
,

cos t√
π
,

cos 2t√
π
, . . . ,

cosnt√
π
, . . . ,

sin t√
π
,

sin 2t√
π
, . . . ,

sinnt√
π
, . . . ,

which is similar to the coordinate vectors i, j and k. It is known that these4

functions form a complete set, so that “any” function f(t) can be represented5

as their linear combination. Similarly to the formula for vectors (12.1), we6

decompose an arbitrary function f(t) as7

f(t) = α0
1√
2π

+
∞
∑

n=1

(

αn
cosnt√

π
+ βn

sinnt√
π

)

,

where8

α0 = (f(t),
1√
2π

) =
1√
2π

∫ π

−π
f(t) dt ,

9

αn = (f(t),
cosnt√

π
) =

1√
π

∫ π

−π
f(t) cosnt dt ,

10

βn = (f(t),
sinnt√
π

) =
1√
π

∫ π

−π
f(t) sinnt dt .

It is customary to denote a0 = α0/
√

2π, an = αn/
√
π, and bn = βn/

√
π, so11

that the Fourier Series takes the final form12

f(t) = a0 +
∞
∑

n=1

(an cosnt+ bn sinnt) ,

with the coefficients given by13

a0 =
1

2π

∫ π

−π
f(t) dt ,

14

an =
1

π

∫ π

−π
f(t) cosnt dt ,

15

bn =
1

π

∫ π

−π
f(t) sinnt dt .

16

The Pythagorean theorem takes the form17

||f ||2 = α2
0 +

∞
∑

n=1

(

α2
n + β2

n

)

,
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or1

1

π

∫ π

−π
f2(x) dx = 2a2

0 +
∞
∑

n=1

(

a2
n + b2n

)

,

which is known as Parseval’s identity.2
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Example Let f(t) be a function of period 2π, which is equal to t+ π on4

the interval (−π, π). This is the saw-tooth function. It is not defined at the5

points nπ and −nπ, with n odd, but this does not affect the integrals that6

we need to compute. Compute7

a0 =
1

2π

∫ π

−π
(t+ π) dt =

1

4π
(t+ π)2

∣

∣

∣

π

−π
= π .

Integrating by parts (or using guess-and-check)8

an =
1

π

∫ π

−π
(t+ π) cosnt dt =

[

1

π
(t+ π)

sinnt

n
+

cosnt

n2π

]

∣

∣

∣

π

−π
= 0 ,

because sinnπ = 0, and cosine is an even function. Similarly9

bn =
1

π

∫ π

−π
(t+ π) sinnt dt =

[

1

π
(t+ π)(−cosnt

n
) +

sinnt

n2π

]

∣

∣

∣

π

−π

10

= −2

n
cosnπ = −2

n
(−1)n =

2

n
(−1)n+1 .

(Observe that cosnπ is equal to 1 for even n, and to −1 for odd n, which11

may be combined as cosnπ = (−1)n.) The Fourier series for the function12

f(t) is then13

f(t) = π +
∞
∑

n=1

2

n
(−1)n+1 sinnt ,
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which is valid on (−∞,∞) (with the exception of points nπ and −nπ, with1

n odd). Restricting to the interval (−π, π), gives2

t+ π = π +
∞
∑

n=1

2

n
(−1)n+1 sinnt, for −π < t < π .

It might look that we did not accomplish much by expressing a simple3

function t + π through an infinite series. However, one can now express4

solutions of differential equations through Fourier series.5

2.12.2 Vibrations of a Spring Subject to a Periodic Force6

Consider the model7

y′′ + ω2y = f(t) ,

where y = y(t) is the displacement of a spring, ω > 0 is a constant (the8

natural frequency), and f(t) is a given function of period 2π, the acceleration9

of an external force. This equation also models oscillations in electrical10

circuits. Expressing f(t) by its Fourier series, rewrite this model as11

y′′ + ω2y = a0 +
∞
∑

n=1

(an cosnt+ bn sinnt) .

Let us assume that ω 6= n, for any integer n (to avoid resonance). According12

to our theory, we look for a particular solution in the form Y (t) = A0 +13

∑∞
n=1 (An cosnt+ Bn sinnt). Substituting this in, we find14

Y (t) =
a0

ω2
+

∞
∑

n=1

(

an

ω2 − n2
cosnt+

bn
ω2 − n2

sinnt

)

.

The general solution is then15

y(t) =
a0

ω2
+

∞
∑

n=1

(

an

ω2 − n2
cosnt+

bn
ω2 − n2

sinnt

)

+ c1 cosωt + c2 sinωt .

We see that the coefficients in the m-th harmonics (in cosmt and sinmt)16

are large, provided that the natural frequency ω is selected to be close to m.17

That is basically what happens, when one is turning the tuning knob of a18

radio set. (The knob controls ω, while your favorite station broadcasts at a19

frequency m, so that its signal has the form f(t) = am cosmt+ bm sinmt.)20
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2.13 Euler’s Equation1

This section covers an important class of equations with variable coefficients.2

The understanding of Euler’s equations will play a crucial role when infinite3

series are used in Chapter 3 to solve differential equations.4

Preliminaries5

What is the meaning of 3
√

2 ? Or, more generally, what is the definition of6

the function tr, where r is any real number? Here it is: tr = eln tr = er ln t.7

We see that the function tr is defined only for t > 0. The function |t|r is8

defined for all t 6= 0, but what is the derivative of this function?9

More generally, if f(t) is a differentiable function, the function f(|t|) is10

differentiable for all t 6= 0 (|t| is not differentiable at t = 0). Let us define11

the following step function12

sign(t) =

{

1 if t > 0

−1 if t < 0
.

Observe that13

d

dt
|t| = sign(t) , for all t 6= 0 ,

as follows by considering separately the cases t > 0, and t < 0.14

The chain rule gives15

d

dt
f(|t|) = f ′(|t|) sign(t) , for all t 6= 0 .(13.1)

In particular, d
dt |t|r = r|t|r−1sign(t), for all t 6= 0. Also16

d

dt
ln |t| =

sign(t)

|t| =
1

t
, for all t 6= 0 .(13.2)

The Important Class of Equations17

Euler’s equation has the form (here y = y(t))18

at2y′′ + bty′ + cy = 0 ,(13.3)

where a, b and c are given numbers. Assume first that t > 0. We look19

for a solution in the form y = tr , with the constant r to be determined.20

Substituting this in, gives21

at2r(r− 1)tr−2 + btrtr−1 + ctr = 0 .
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Dividing by a positive quantity tr1

ar(r − 1) + br+ c = 0(13.4)

gives us a quadratic equation, called the characteristic equation. There are2

three possibilities with respect to its roots, which we consider next.3

Case 1 There are two real and distinct roots r1 6= r2. Then tr1 and tr2
4

are two solutions, which are not constant multiples of each other, and the5

general solution (valid for t > 0) is6

y(t) = c1t
r1 + c2t

r2 .

If r1 is either an integer, or a fraction with an odd denominator, then tr1
7

is also defined for t < 0. If the same is true for r2, then the above general8

solution is valid for all t 6= 0. For other r1 and r2, this solution is not even9

defined for t < 0.10

We claim that y(t) = |t|r1 gives a solution of Euler’s equation, which11

is valid for all t 6= 0. Indeed, calculate y′(t) = r1|t|r1−1sign(t), y′′(t) =12

r1(r1−1)|t|r1−2 (sign(t))2 = r1(r1−1)|t|r1−2, and then substituting y(t) into13

Euler’s equation (13.3) gives14

at2 r1(r1 − 1)|t|r1−2 + bt r1|t|r1−1sign(t) + c|t|r1

15

= |t|r1 (ar1(r1 − 1) + br1 + c) = 0 ,

because t sign(t) = |t|, and r1 is a root of characteristic equation. So that16

y(t) = c1|t|r1 + c2|t|r2

gives a general solution valid for all t 6= 0.17

Example 1 Solve 2t2y′′ + ty′ − 3y = 0.18

The characteristic equation19

2r(r− 1) + r− 3 = 0

has roots r1 = −1, and r2 = 3
2 . The general solution y(t) = c1t

−1 + c2t
3
2 is20

valid only for t > 0, while y(t) = c1|t|−1 + c2|t|
3
2 is valid for t 6= 0.21

Example 2 Solve t2y′′ + 2ty′ − 2y = 0.22

The characteristic equation23

r(r− 1) + 2r− 2 = 0
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has roots r1 = −2, and r2 = 1. The general solution y(t) = c1t
−2 + c2t is1

valid not just for t > 0, but for all t 6= 0. Another general solution valid for2

all t 6= 0 is y(t) = c1|t|−2 + c2|t| = c1t
−2 + c2|t|. This is a truly different3

function! Why such an unexpected complexity? If one divides this equation4

by t2, then the functions p(t) = 2/t and g(t) = −2/t2 from our general5

theory, are both discontinuous at t = 0. We have a singularity at t = 0,6

and, in general, the solution y(t) is not even defined at t = 0 (as we see in7

this example), and that is the reason for the complexity. However, when8

solving initial value problems, it does not matter which form of the general9

solution one uses. For example, if we prescribe some initial conditions at10

t = −1, then both forms of the general solution can be continued only on11

the interval (−∞, 0), and on that interval both forms are equivalent.12

We now turn to the cases of equal roots, and of complex roots, for the13

characteristic equation. One could proceed similarly to the linear equations14

with constant coefficients. Instead, to understand what lies behind the nice15

properties of Euler’s equation, we make a change of independent variables16

from t to a new variable s, by letting t = es, or s = ln t. By the chain rule17

dy

dt
=
dy

ds

ds

dt
=
dy

ds

1

t
.

Using the product rule, and then the chain rule,18

d2y

dt2
=

d

dt
(
dy

ds
)
1

t
− dy

ds

1

t2
=
d2y

ds2
ds

dt

1

t
− dy

ds

1

t2
=
d2y

ds2
1

t2
− dy

ds

1

t2
.

Then Euler’s equation (13.3) becomes19

a
d2y

ds2
− a

dy

ds
+ b

dy

ds
+ cy = 0 .

This is a linear equations with constant coefficients! It can be solved for any20

a, b and c. Let us use primes again to denote the derivatives in s in this21

equation. Then it becomes22

ay′′ + (b− a)y′ + cy = 0 .(13.5)

Its characteristic equation23

ar2 + (b− a)r + c = 0(13.6)

is exactly the same as (13.4).24
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We now return to Euler’s equation, and its characteristic equation (13.4).1

2

Case 2 r1 is a double root of the characteristic equation (13.4), i.e., r1 is3

a double root of (13.6). Then y = c1e
r1s + c2se

r1s is the general solution4

of (13.5). Returning to the original variable t, by substituting s = ln t, and5

simplifying (using that er1 ln t = tr1), obtain6

y(t) = c1t
r1 + c2t

r1 ln t .

This general solution of Euler’s equation is valid for t > 0. More generally,7

it is straightforward to verify that8

y(t) = c1|t|r1 + c2|t|r1 ln |t|

gives us the general solution of Euler’s equation, valid for all t 6= 0.9

Case 3 p± iq are complex roots of the characteristic equation (13.4). Then10

y = c1e
ps cos qs+ c2se

ps sin qs is the general solution of (13.5). Returning to11

the original variable t, by substituting s = ln t, we get the general solution12

of Euler’s equation13

y(t) = c1t
p cos(q ln t) + c2t

p sin(q ln t) ,

valid for t > 0. One verifies that replacing t by |t|, gives the general solution14

of Euler’s equation, valid for all t 6= 0:15

y(t) = c1|t|p cos(q ln |t|) + c2|t|p sin(q ln |t|) .

Example 3 Solve t2y′′ − 3ty′ + 4y = 0, t > 0.16

The characteristic equation17

r(r− 1)− 3r+ 4 = 0

has a double root r = 2. The general solution: y = c1t
2 + c2t

2 ln t.18

Example 4 Solve t2y′′ − 3ty′ + 4y = 0, y(1) = 4, y′(1) = 7.19

Using the general solution from the preceding example, calculate c1 = 4 and20

c2 = −1. Answer: y = 4t2 − t2 ln t.21

Example 5 Solve t2y′′ + ty′ + 4y = 0, y(−1) = 0, y′(−1) = 3.22

The characteristic equation23

r(r− 1) + r + 4 = 0
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has a pair of complex roots ±2i. Here p = 0, q = 2, and the general solution,1

valid for both positive and negative t, is2

y(t) = c1 cos(2 ln |t|) + c2 sin(2 ln |t|) .

From the first initial condition, y(−1) = c1 = 0, so that y(t) = c2 sin(2 ln |t|).3

Using the chain rule and the formula (13.2)4

y′(t) = c2 cos(2 ln |t|) 2

t
,

and then y′(−1) = −2c2 = 3, giving c2 = −3/2. Answer: y(t) = −3

2
sin(2 ln |t|).5

6

Example 6 Solve t2y′′ − 3ty′ + 4y = t− 2, t > 0.7

This is a non-homogeneous equation. Look for a particular solution in the8

form Y = At + B, and obtain Y = t − 1

2
. The fundamental solution set9

of the corresponding homogeneous equation is given by t2 and t2 ln t, as we10

saw in Example 3 above. The general solution is y = t− 1

2
+ c1t

2 + c2t
2 ln t.11

2.14 Linear Equations of Order Higher Than Two12

Differential equations of order higher than two occur frequently in applica-13

tions, for example when modeling vibrations of a beam.14

2.14.1 The Polar Form of Complex Numbers15

For a complex number x + iy, one can use the point (x, y) to represent it.16

This turns the usual plane into the complex plane. The point (x, y) can also17

be identified by its polar coordinates (r, θ). We shall always take r > 0.18

Then19

z = x+ iy = r cos θ + ir sin θ = r(cos θ + i sin θ)

gives us the polar form of a complex number z. Using Euler’s formula, we20

can also write z = reiθ. For example, −2i = 2ei
3π
2 , because the point (0,−2)21

has polar coordinates (2, 3π
2 ). Similarly, 1 + i =

√
2ei

π
4 , and −1 = eiπ (real22

numbers are just particular cases of complex ones).23

There are infinitely many ways to represent a complex number using po-24

lar coordinates z = rei(θ+2πm), where m is any integer (positive or negative).25

Let n be a positive integer. We now compute the n-th root(s) of z:26

z1/n = r1/nei(
θ
n

+ 2πm
n

), m = 0, 1, . . . , n− 1 .(14.1)
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Here r1/n is the positive n-th root of the positive number r. (The “high1

school” n-th root.) Clearly,
(

z1/n
)n

= z. When m varies from 0 to n − 1,2

we get different values, and then the roots repeat themselves. There are n3

complex n-th roots of any complex number (and in particular, of any real4

number). All of these roots lie on a circle of radius r1/n around the origin,5

and the difference in the polar angles between any two neighbors is 2π/n.6

-

6

&%
'$ss

ss 2

The four complex fourth roots of −16, on the circle of radius 2
7

Example 1 Solve the equation: z4 + 16 = 0.8

We need the four complex roots of −16 = 16ei(π+2πm). The formula (14.1)9

gives10

(−16)(1/4) = 2ei(
π
4
+πm

2
), m = 0, 1, 2, 3 .

When m = 0, the root is 2ei
π
4 = 2(cos π

4 + i sin π
4 ) =

√
2 + i

√
2. The other11

roots, 2ei
3π
4 , 2ei

5π
4 and 2ei

7π
4 , are computed similarly. They come in two12

complex conjugate pairs:
√

2± i
√

2 and −
√

2± i
√

2. In the complex plane,13

they all lie on the circle of radius 2, and the difference in the polar angles14

between any two neighbors is π/2.15

Example 2 Solve the equation: r3 + 8 = 0.16

We need the three complex cube roots of −8. One of them is r1 = −2 = 2eiπ,17

and the other two lie on the circle of radius 2, at an angle 2π/3 away, so18

that r2 = 2eiπ/3 = 1 +
√

3i, and r3 = 2e−iπ/3 = 1−
√

3i. (Alternatively, the19

root r = −2 is easy to guess. Then factor r3 + 8 = (r+ 2)(r2 − 2r+ 4), and20

set the second factor to zero, to find the other two roots.)21

2.14.2 Linear Homogeneous Equations22

Let us consider fourth order equations23

a0y
′′′′ + a1y

′′′ + a2y
′′ + a3y

′ + a4y = 0 ,(14.2)
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with given numbers a0, a1, a2, a3, and a4. Again, we search for a solution in1

the form y(t) = ert, with a constant r to be determined. Substituting this2

in, and dividing by the positive exponent ert, we obtain the characteristic3

equation4

a0r
4 + a1r

3 + a2r
2 + a3r + a4 = 0 .(14.3)

If one has an equation of order n5

a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0 ,(14.4)

with constant coefficients, then the corresponding characteristic equation is6

a0r
n + a1r

n−1 + · · ·+ an−1r + an = 0 .(14.5)

The fundamental theorem of algebra says that any polynomial of degree7

n has n roots in the complex plane, counted according to their multiplicity8

(double root is counted as two roots, and so on). The characteristic equation9

(14.3) has four roots.10

The theory is similar to the second order case. We need four different11

solutions of (14.2), so that every solution is not a linear combination of the12

other three (for the equation (14.4) we need n different solutions). Every root13

of the characteristic equation must “pull its weight”. If the root is simple,14

it brings in one solution, if it is repeated twice, then two solutions. (Three15

solutions, if the root is repeated three times, and so on.) The following cases16

may occur for the n-th order equation (14.4).17

Case 1 r1 is a simple real root. Then it brings er1t into the fundamental18

set.19

Case 2 r1 is a real root repeated s times. Then it brings the following s20

solutions into the fundamental set: er1t, ter1t, . . . , ts−1er1t.21

Case 3 p+iq and p−iq are simple complex roots. They contribute: ept cos qt22

and ept sin qt into the fundamental set.23

Case 4 p+iq and p−iq are repeated s times each. They bring the following24

2s solutions into the fundamental set: ept cos qt and ept sin qt, tept cos qt and25

tept sin qt, . . . , ts−1ept cos qt and ts−1ept sin qt.26

The cases 1 and 3 are justified as for the second order equations. The27

other two cases are discussed in the Problems.28

Example 1 Solve y′′′′ − y = 0.29
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The characteristic equation is1

r4 − 1 = 0 .

We solve it by factoring2

(r− 1)(r+ 1)(r2 + 1) = 0 .

The roots are −1, 1, −i, i. The general solution: y(t) = c1e
−t + c2e

t +3

c3 cos t+ c4 sin t.4

Example 2 Solve y′′′ − 3y′′ + 3y′ − y = 0.5

The characteristic equation is6

r3 − 3r2 + 3r− 1 = 0 .

This is a cubic equation. You probably did not study how to solve it by7

Cardano’s formula. Fortunately, you must remember that the quantity on8

the left is an exact cube:9

(r − 1)3 = 0 .

The root r = 1 is repeated 3 times. The general solution: y(t) = c1e
t +10

c2te
t + c3t

2et.11

Let us suppose that you did not know the formula for cube of a differ-12

ence. Then one can guess that r = 1 is a root. This means that the cubic13

polynomial can be factored, with one factor being r− 1. The other factor is14

then found by the long division. The other factor is a quadratic polynomial,15

and its roots are easy to find.16

Example 3 Solve y′′′ − y′′ + 3y′ + 5y = 0.17

The characteristic equation is18

r3 − r2 + 3r + 5 = 0 .

We need to guess a root. The procedure for guessing a root (for textbook19

examples) is a simple one: try r = 0, r = ±1, r = ±2, and then give up.20

One sees that r = −1 is a root, r1 = −1. It follows that the first factor is21

r + 1, and the second factor is found by the long division:22

(r+ 1)(r2 − 2r+ 5) = 0 .

The roots of the quadratic are r2 = 1 − 2i, and r3 = 1 + 2i. The general23

solution: y(t) = c1e
−t + c2e

t cos 2t+ c3e
t sin 2t.24
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Example 4 Solve y′′′′ + 2y′′ + y = 0.1

The characteristic equation is2

r4 + 2r2 + 1 = 0 .

It can be solved by factoring3

(r2 + 1)2 = 0 .

(Or one could set z = r2, and obtain a quadratic equation for z.) The4

roots are −i, i, each repeated twice. The general solution: y(t) = c1 cos t+5

c2 sin t+ c3t cos t+ c4t sin t.6

Example 5 Solve y′′′′ + 16y = 0.7

The characteristic equation is8

r4 + 16 = 0 .

Its solutions are the four complex roots of −16, computed earlier:
√

2±i
√

2,9

and −
√

2 ± i
√

2. The general solution:10

y(t) = c1e
√

2 t cos(
√

2 t)+c2e
√

2 t sin(
√

2 t)+c3e
−
√

2 t cos(
√

2 t)+c4e
−
√

2 t sin(
√

2 t) .

Example 6 Solve y(5) + 9y′′′ = 0.11

The characteristic equation is12

r5 + 9r3 = 0 .

Factoring r3(r2 + 9) = 0, we see that the roots are: 0, 0, 0, −3i, 3i. The13

general solution: y(t) = c1 + c2t+ c3t
2 + c4 cos 3t+ c5 sin 3t.14

2.14.3 Non-Homogeneous Equations15

The theory is parallel to the second order case. Again, a particular solu-16

tion is needed, to which we add the general solution of the corresponding17

homogeneous equation.18

Example Solve y(5) + 9y′′′ = 3t− sin 2t.19

General solution of the corresponding homogeneous equation was found in20

the Example 6. A particular solution is produced in the form Y (t) = Y1(t)+21

Y2(t), where Y1(t) is a particular solution of22

y(5) + 9y′′′ = 3t ,
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and Y2(t) is a particular solution of1

y(5) + 9y′′′ = − sin 2t .

We guess that Y1(t) = At4, and compute A = 1
72 , and that Y2(t) = B cos 2t,2

which gives B = − 1
40 . So that Y (t) = 1

72t
4 − 1

40 cos 2t.3

Answer: y(t) = 1
72 t

4 − 1
40 cos 2t+ c1 + c2t+ c3t

2 + c4 cos 3t+ c5 sin 3t.4

2.14.4 Problems5

I. Solve the non-homogeneous equations with discontinuous forcing function.6

7

1. y′′ + 9y = f(t), where f(t) = 0 for 0 < t < π, and f(t) = t for t > π,8

y(0) = 0, y′(0) = −2. Answer:9

y(t) =











−2
3 sin 3t, if t ≤ π

1
9 t+

π
9 cos 3t− 17

27 sin 3t, if t > π
.

10

2. y′′ + y = f(t), where f(t) = 0 for 0 < t < π, and f(t) = t for t > π,11

y(0) = 2, y′(0) = 0.12

II. Find the general solution, valid for t > 0.13

1. t2y′′ − 2ty′ + 2y = 0. Answer. y = c1t+ c2t
2.14

2. t2y′′ + ty′ + 4y = 0. Answer. y = c1 cos(2 ln t) + c2 sin(2 ln t).15

3. t2y′′ + 5ty′ + 4y = 0. Answer. y = c1t
−2 + c2t

−2 ln t.16

4. t2y′′ + 5ty′ + 5y = 0. Answer. y = c1t
−2 cos(ln t) + c2t

−2 sin(ln t).17

5. t2y′′ − 3ty′ = 0. Answer. y = c1 + c2t
4.18

6. y′′ +
1

4
t−2y = 0. Answer. y = c1

√
t+ c2

√
t ln t.19

7. 2t2y′′ + 5ty′ + y = 0. Answer. y = c1t
− 1

2 + c2t
−1.20

8. 9t2y′′ − 3ty′ + 4y = 0. Answer. y = c1t
2/3 + c2t

2/3 ln t.21

9. 4x2y′′(x) + 4xy′(x) + y(x) = 0, x > 0.22

Answer. y = c1 cos

(

1

2
lnx

)

+ c2 sin

(

1

2
lnx

)

.23
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10. Find the general solution of1

y′′ +
3

t
y′ +

5

t2
y =

1

t3
, t > 0 .

Hint: Look for a particular solution in the form y = A
t .2

Answer. y =
1

4t
+ c1

cos(2 ln t)

t
+ c2

sin(2 ln t)

t
.3

11. Use variation of parameters to find the general solution of4

y′′ +
3

t
y′ +

5

t2
y =

ln t

t3
, t > 0 .

Answer. y =
ln t

4t
+ c1

cos(2 ln t)

t
+ c2

sin(2 ln t)

t
.5

12. Find the general solution of6

t3y′′′ + t2y′′ − 2ty′ + 2y = 0 .

Hint: Look for a solution in the form y = tr .7

Answer. y = c1
1

t
+ c2t+ c3t

2.8

III. Find the general solution, valid for all t 6= 0.9

1. t2y′′ + ty′ + 4y = 0. Answer. y = c1 cos(2 ln |t|) + c2 sin(2 ln |t|).10

2. 2t2y′′ − ty′ + y = 0. Answer. y = c1

√

|t| + c2|t|. (y = c1

√

|t| + c2t is11

also a correct answer.)12

3. 4t2y′′−4ty′+13y = 0. Answer. y = c1|t| cos

(

3

2
ln |t|

)

+c2|t| sin
(

3

2
ln |t|

)

.13

14

4. 9t2y′′ + 3ty′ + y = 0. Answer. y = c1|t|1/3 + c2|t|1/3 ln |t|.15

5. 2ty′′ + y′ = 0. Answer. y = c1 + c2

√

|t|.16

6. 2t2y′′ − ty′ + y = t2 − 3.17

Hint: Look for a particular solution as Y = At2 + Bt+C.18

Answer. y =
1

3
t2 − 3 + c1

√

|t| + c2|t|.19

7. 2t2y′′ − ty′ + y = t3. Hint: Look for a particular solution as Y = At3.20

21
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Answer. y =
1

10
t3 + c1

√

|t|+ c2|t|.1

8. 2(t+ 1)2y′′ − 3(t+ 1)y′ + 2y = 0, t 6= −1.2

Hint: Look for a solution in the form y = (t+ 1)r.3

Answer. c1

√

|t+ 1|+ c2(t+ 1)2.4

9. Solve the following integro-differential equation5

4y′(t) +

∫ t

0

y(s)

(s+ 1)2
ds = 0 , t > −1 .

Hint: Differentiate the equation, and observe that y′(0) = 0.6

Answer. y = c
[

2 (t+ 1)1/2 − (t+ 1)1/2 ln (t+ 1)
]

.7

IV. Solve the following initial value problems.8

1. t2y′′− 2ty′ + 2y = 0, y(1) = 2, y′(1) = 5. Answer. y = −t+ 3t2.9

10

2. t2y′′−3ty′+4y = 0, y(−1) = 1, y′(−1) = 2. Answer. y = t2−4t2 ln |t|.11

12

3. t2y′′+3ty′−3y = 0, y(−1) = 1, y′(−1) = 2. Answer. y = −3

4
t−3−1

4
t.13

14

4. t2y′′−ty′+5y = 0, y(1) = 0, y′(1) = 2. Answer. y = t sin(2 ln t).15

16

5. t2y′′+ty′+4y = 0, y(−1) = 0, y′(−1) = 4. Answer. y = −2 sin (2 ln |t|).17

18

6. 6t2y′′+ty′+y = 0, y(2) = 0, y′(2) = 1. Answer. y = 12

[

(

t

2

)1/2

−
(

t

2

)1/3
]

.19

20

7. ty′′ + y′ = 0, y(−3) = 0, y′(−3) = 1. Answer. y = 3 ln3 − 3 ln |t|.21

8. 2t2y′′ − ty′ + y = 0, y(−1) = 0, y′(−1) = 1
2 . Answer. y = t+

√

|t|.22

V. Solve the polynomial equations.23

1. r3 − 1 = 0. Answer. The roots are 1, ei
2π
3 , ei

4π
3 .24

2. r3 + 27 = 0. Answer. −3, 3
2 − 3

√
3

2 i, 3
2 + 3

√
3

2 i.25

3. r4 − 16 = 0. Answer. ±2 and ±2i.26
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4. r3 − 3r2 + r + 1 = 0. Answer. 1, 1 −
√

2, 1 +
√

2.1

5. 2r3 − 5r2 + 4r − 1 = 0. Answer.
1

2
, 1, 1.2

6. r3 + 2r2 + r + 2 = 0. Answer. −2, −i, i.3

7. 3r4 + 5r3 + r2 − r = 0. Answer. 0,
1

3
, −1, −1.4

8. r4 + 1 = 0. Answer. ei
π
4 , ei

3π
4 , ei

5π
4 , ei

7π
4 .5

9. r4 + 4 = 0. Answer. 1 + i, 1 − i, −1 + i, −1 − i.6

10. r4 + 8r2 + 16 = 0. Answer. 2i and −2i are both double roots.7

11. r4 + 5r2 + 4 = 0. Answer. ±i and ±2i.8

12. r6 + r4 + 4r2 + 4 = 0.9

Hint: Write the equation as r2(r4 + 4) + r4 + 4 = 0.10

Answer. ±i, 1± i, −1 ± i.11

VI. Find the general solution.12

1. y′′′−y = 0. Answer. y = c1e
t+c2e

−t/2 cos

√
3

2
t+c3e

−t/2 sin

√
3

2
t.13

14

2. y′′′ − 5y′′ + 8y′ − 4y = 0. Answer. y = c1e
t + c2e

2t + c3te
2t.15

3. y′′′−3y′′+y′ +y = 0. Answer. y = c1e
t +c2e

(1−
√

2)t +c3e
(1+

√
2)t.16

17

4. y′′′ − 3y′′ + y′ − 3y = 0. Answer. y = c1e
3t + c2 cos t+ c3 sin t.18

5. y(4)−8y′′+16y = 0. Answer. y = c1e
−2t+c2e

2t+c3te
−2t+c4te

2t.19

20

6. y(4) + 8y′′ + 16y = 0.21

Answer. y = c1 cos 2t+ c2 sin 2t+ c3t cos 2t+ c4t sin 2t.22

7. y(4) + y = 0.23

Answer. y = c1e
t√
2 cos

t√
2

+c2e
t√
2 sin

t√
2

+c3e
− t√

2 cos
t√
2

+c4e
− t√

2 sin
t√
2
.24

25

8. y′′′−y = t2. Answer. y = −t2+c1et+c2e−t/2 cos

√
3

2
t+c3e

−t/2 sin

√
3

2
t.26

27
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9. y(6)−y′′ = 0. Answer. y = c1+c2t+c3e
−t+c4e

t+c5 cos t+c6 sin t.1

2

10. 2y′′′ − 5y′′ + 4y′ − y = 0. Answer. y = c1e
1
2
t + c2e

t + c3te
t.3

11. y(5) − 3y′′′′ + 3y′′′ − 3y′′ + 2y′ = 0.4

Answer. y = c1 + c2e
t + c3e

2t + c4 cos t+ c5 sin t.5

12. y(8) − y(6) = sin t.6

Answer. y =
1

2
sin t+ c1 + c2t+ c3t

2 + c4t
3 + c5t

4 + c6t
5 + c7e

−t + c8e
t.7

13. y′′′′ + 4y = 4t2 − 1.8

Answer. y = t2 − 1

4
+ c1e

t cos t+ c2e
t sin t+ c3e

−t cos t+ c4e
−t sin t.9

14. y′′′′ − 2y′′′ − 8y′ + 16y = 27e−t.10

Answer. y = e−t + c1e
2t + c2te

2t + c3e
−t cos

√
3t+ c4e

−t sin
√

3t.11

VII. Solve the following initial value problems.12

1. y′′′ + 4y′ = 0, y(0) = 1, y′(0) = −1, y′′(0) = 2.13

Answer. y = 3
2 − 1

2 cos 2t− 1
2 sin 2t.14

2. y′′′′ + 4y = 0, y(0) = 1, y′(0) = −1, y′′(0) = 2, y′′′(0) = 3.15

Answer. y = −1
8e

t (cos t− 5 sin t) + 3
8e

−t (3 cos t− sin t).16

3. y′′′ + 8y = 0, y(0) = 0, y′(0) = 1, y′′(0) = −2.17

Answer. y = −1
3e

−2t + 1
3e

t cos
√

3 t.18

4. y(5)+y(4) = 1, y(0) = 1, y′(0) = −1, y′′(0) = 1, y′′′(0) = −1, y′′′′(0) = 2.19

20

Answer. y =
t4

24
+ e−t.21

5. y′′′′ + y′′′ + y′′ + y′ = 0, y(0) = 0, y′(0) = 3, y′′(0) = −1, y′′′(0) = −1.22

Answer. y = 1− e−t + 2 sin t.23

6. y′′′′ − 3y′′ − 4y = 0, y(0) = 1, y′(0) = −1, y′′(0) = 4, y′′′(0) = 1.24

Answer. y = cosh2t− sin t.25

7. y(5) − y′ = 0, y(0) = 2, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0, y′′′′(0) = 1.26



132 CHAPTER 2. SECOND ORDER EQUATIONS

Hint: Write the general solution as y = c1 + c2 cos t + c3 sin t + c4 cosh t +1

c5 sinh t. Answer. y = 1 + cosh t.2

VIII.3

1. Write the equation (14.4) in the operator form4

L[y] = a0y
(n) + a1y

(n−1) + · · ·+ an−1y
′ + any = 0 .(14.6)

Here L[y] is a function of a function y(t), or an operator.5

(i) Show that6

L[ert] = ert
(

a0r
n + a1r

n−1 + · · ·+ an−1r + an

)

.(14.7)

(ii) Assume that r1 is a real root of the characteristic equation (14.5), which7

is repeated s times, so that8

a0r
n + a1r

n−1 + · · ·+ an−1r + an = a0(r − r1)
sq(r) ,

where q(r) is a polynomial of degree n − s, with q(r1) 6= 0. Differentiate9

the equation (14.7) in r, and set r = r1, to show that ter1t is a solution of10

(14.6). Show that er1t, ter1t, . . . , ts−1er1t are solutions of (14.6).11

(iii) Assume that p + iq and p − iq are roots of the characteristic equation12

(14.5), each repeated s times. By above, z1 = tke(p+iq)t and z2 = tke(p−iq)t
13

are solutions of (14.6), for k = 0, 1, . . . , s−1. By considering z1+z2
2 and z1−z2

2i ,14

justify that these roots bring the following 2s solutions into the fundamental15

set: ept cos qt and ept sin qt, tept cos qt and tept sin qt, . . ., ts−1ept cos qt and16

ts−1ept sin qt.17

2. Find the linear homogeneous differential equation of the lowest possible18

order, which has the following functions as its solutions: 1, e−2t, sin t.19

Answer. y′′′′ + 2y′′′ + y′′ + 2y′ = 0.20

3. Find the general solution of21

(t+ 1)2y′′ − 4(t+ 1)y′ + 6y = 0 .

Hint: Look for the solution in the form y = (t+ 1)r.22

Answer. y = c1(t+ 1)2 + c2(t+ 1)3.23

4. Find the general solution of24

ty′′′ + y′′ = 1 .
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Answer. y =
t2

2
+ c1 (t ln t− 1) + c2t+ c3.1

5. Solve the following nonlinear equation (y = y(t))2

2y′y′′′ − 3y′′2 = 0 .

(This equation is connected to the Schwarzian derivative, defined as S(y(t)) =3

y′′′(t)
y′(t) − 3

2

(

y′′(t)
y′(t)

)2
.)4

Hint: Write this equation as5

y′′′

y′′
=

3

2

y′′

y′
,

then integrate, to get6

y′′ = c1y
′(3/2)

.

Let y′ = v, and obtain a first order equation.7

Answer. y =
1

c1t+ c2
+ c3, and also y = c4t+ c5. (Equivalently, the answer8

can be written as y =
c1t+ c2
c3t+ c4

.)9

6. Consider the nonlinear equation10

y′′(t) + a(t)y3(t) = 0, 0 ≤ t <∞ ,

where a(t) is a continuously differentiable function, and a(t) ≥ a0 > 0 for11

all t ≥ 0, a0 is a constant. Assume that either a′(t) > 0, or a′(t) < 0 for all12

t ∈ [0,∞). Show that any solution remains bounded on [0,∞).13

Hint: Consider the “energy” function E(t) = 1
2y

′2(t) + 1
4a(t)y

4(t). Using14

the equation, E ′(t) = 1
4a

′(t)y4(t). In case a′(t) < 0 for all t, the energy15

is decreasing, and so y(t) is bounded. In case a′(t) > 0 for all t, we have16

E ′(t) = 1
4a

′(t)y4(t) ≤ a′(t)E(t)
a(t) , or

E′(t)
E(t) ≤ a′(t)

a(t) . Integrating this over (0, t),17

we get E(t) ≤ a(t)E(0)
a(0) , which implies that 1

4y
4(t) ≤ E(0)

a(0) = constant.18

7. Find the homoclinic solutions of (a is a given number, u = u(x))19

u′′−a2u+2u3 = 0, −∞ < x <∞, u(−∞) = u′(−∞) = u(∞) = u′(∞) = 0 .

Hint: Multiply the equation by u′, and integrate:20

u′2 − a2u2 + u4 = constant = 0.
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Solve this equation for u′, to obtain a first order separable equation.1

Answer. u(x) =
a

cosha(x− c)
, for any number c.2

8. (i) Solve the nonlinear equation (y = y(t))3

y′′ − 1

y3
= 0 , y(0) = q , y′(0) = p ,

with the given numbers q 6= 0 and p.4

Hint: Multiply the equation by y′ to get5

d

dt

(

y′2 + y−2
)

= 0 .

Integration gives6

y′2 + y−2 = p2 +
1

q2
.(14.8)

Now multiply the equation by y:7

yy′′ − y−2 = 0 .(14.9)

Using (14.8),8

yy′′ =
1

2

(

y2
)′′

− y′
2

=
1

2

(

y2
)′′

+ y−2 − p2 − 1

q2

Setting v = y2, obtain from (14.9)9

v′′ = 2

(

p2 +
1

q2

)

, v(0) = q2 , v′(0) = 2pq .

Answer. y = ±
√

(

p2 +
1

q2

)

t2 + 2pqt+ q2, with “plus” if q > 0, and “mi-10

nus” if q < 0.11

(ii) Solve Pinney’s equation (a > 0 is a constant)12

y′′ + a2y − 1

y3
= 0 , y(0) = q 6= 0 , y′(0) = p .

Hint: Proceed similarly, and show that v = y2 satisfies13

v′′ + 4a2v = 2

(

p2 + a2q2 +
1

q2

)

, v(0) = q2 , v′(0) = 2pq .
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Answer. y =

√

(a2q4 − p2q2 − 1) cos(2at) + 2apq3 sin(2at) + p2q2 + a2q4 + 1√
2aq

.1

2

(iii) Let u(x) and v(x) be the solutions of the linear equation3

y′′ + a(x)y = 0 ,(14.10)

for which u(x0) = q, u′(x0) = p, and v(x0) = 0, v′(x0) = 1
q . Here a(x) is a4

given function, q 6= 0, p and x0 are given numbers. Use the Theorem 2.4.25

to show that their Wronskian W (x) = W (u, v)(x) satisfies6

W (x) = u′(x)v(x)− u(x)v′(x) = 1 , for all x .

(iv) Consider Pinney’s equation (more general than the one in part (ii))7

y′′ + a(x)y +
c

y3
= 0 , y(x0) = q 6= 0 , y′(x0) = p ,

with a given function a(x) and a constant c 6= 0. Show that its solution is8

y(x) = ±
√

u2(x) − cv2(x) ,

where one takes “plus” if q > 0, and “minus” if q < 0.9

Hint: Substituting y =
√

u2(x)− cv2(x) into Pinney’s equation, and using10

that u′′ = −a(x)u and v′′ = −a(x)v, obtain11

y′′ + a(x)y +
c

y3
= −c [u′(x)v(x)− u(x)v′(x)]2 − 1

[u2(x)− cv2(x)]
3
2

= 0 .

2.15 Oscillation and Comparison Theorems12

The equation13

y′′ + n2y = 0

has a solution y(t) = sinnt. The larger is n, the more roots this solution has,14

and so it oscillates faster. In 1836, J.C.F. Sturm discovered the following15

theorem.16

Theorem 2.15.1 (The Sturm Comparison Theorem.) Let y(t) and v(t) be17

respectively non-trivial solutions of the following equations18

y′′ + b(t)y = 0 ,(15.1)
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1

v′′ + b1(t)v = 0 .(15.2)

Assume that the given continuous functions b(t), and b1(t) satisfy2

b1(t) ≥ b(t) for all t.(15.3)

In case b1(t) = b(t) on some interval (t1, t2), assume additionally that y(t)3

and v(t) are not constant multiples of one another on (t1, t2). Then v(t) has4

a root between any two consecutive roots of y(t).5

Proof: Let t1 < t2 be two consecutive roots of y(t),6

y(t1) = y(t2) = 0 .(15.4)

We may assume that y(t) > 0 on (t1, t2) (in case y(t) < 0 on (t1, t2), we7

may consider −y(t), which is also a solution of (15.1)). Assume, contrary to8

what we want to prove, that v(t) has no roots on (t1, t2). We may assume9

that v(t) > 0 on (t1, t2) (by considering −v(t), in case v(t) < 0).10

-

y(t)

v(t)

t1
t

t2

The functions y(t) and v(t)

11

Multiply the equation (15.2) by y(t), and subtract from that the equation12

(15.1), multiplied by v(t). The result may be written as13

(

v′y − vy′
)′

+ (b1 − b)yv = 0 .

Integrating this over (t1, t2), and using (15.4) gives14

−v(t2)y′(t2) + v(t1)y
′(t1) +

∫ t2

t1

[b1(t) − b(t)]y(t)v(t) dt = 0 .(15.5)

All three terms on the left are non-negative. If b1(t) > b(t) on some sub-15

interval of (t1, t2), then the third term is strictly positive, and we have a16

contradiction.17
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Now consider the remaining case when b1(t) = b(t) for all t ∈ (t1, t2),1

so that the equations (15.1) and (15.2) coincide on (t1, t2), and v(t) is a2

solution of (15.1). We claim that v(t) cannot vanish at t1 and at t2, so3

that v(t1) > 0, and v(t2) > 0. Indeed, in case v(t1) = 0, we consider4

the function z(t) =
y′(t1)
v′(t1)

v(t). This function is a solution of (15.1), and5

z(t1) = y(t1) = 0, z′(t1) = y′(t1), so that by the uniqueness of solutions6

for initial value problems, z(t) = y(t) for all t ∈ (t1, t2), and then y(t) and7

v(t) are constant multiples of one another on (t1, t2), which is not allowed.8

It follows that v(t1) > 0, and similarly we prove that v(t2) > 0. Clearly,9

y′(t1) ≥ 0 and y′(t2) ≤ 0. The uniqueness Theorem 2.4.1 for initial value10

problems implies that y′(t1) > 0, and y′(t2) < 0 (otherwise, if say y′(t1) = 0,11

then y(t) = 0 for all t, by Theorem 2.4.1). Then the first two terms in (15.5)12

are strictly positive, and we have a contradiction in (15.5). ♦13

In case y(t) and v(t) are two solutions of the same equation (15.1),14

which are not constant multiples of one another, the theorem implies that15

their roots interlace, which means that between any two roots of one of the16

solutions there is a root of the other one.17

By a similar argument, one proves the following version of the Sturm18

comparison theorem, involving a differential inequality.19

Lemma 2.15.1 Assume that the functions u(t) and v(t) are twice contin-20

uously differentiable, and they satisfy21

v′′ + q(t)v = 0, v(a) = 0 ,
22

u′′ + q(t)u ≥ 0, u(a) = 0, u′(a) > 0 ,(15.6)

on some interval (a, b) (with a given continuous function q(t)). Then v(t)23

oscillates faster than u(t), provided that both functions are positive. Namely,24

(i) if v(t) > 0 on (a, b), then u(t) > 0 on (a, b).25

(ii) If, on the other hand, u(t) > 0 on (a, b) and u(b) = 0, then v(t) must26

vanish on (a, b].27

Proof: As in Theorem 2.15.1, obtain28

(

v′u− vu′
)′ ≤ 0, for x ∈ (a, b) .(15.7)

Let us prove (i). Assume that v(t) > 0 on (a, b), and contrary to what we29

want to prove, u(ξ) = 0 at some ξ ∈ (a, b).30
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Case 1. The inequality in (15.6) is strict on some sub-interval of (a, ξ). The1

the same is then true for the inequality (15.7). Integrating (15.7) over (a, ξ),2

obtain3

−v(ξ)u′(ξ) < 0 ,

which is a contradiction (because v(ξ) > 0, u′(ξ) ≤ 0).4

Case 2. Assume that u′′ + q(t)u = 0 on (a, ξ). Then u(t) and v(t) are5

solutions of the same equation on (a, ξ), and u(a) = v(a) = 0. It follows6

that u(t) and v(t) are constant multiples of one another, but u(ξ) = 0, while7

v(ξ) > 0, a contradiction, proving the first part of the lemma.8

The second statement of the lemma is proved similarly. ♦9

We shall need the following formula from calculus, discovered by an10

Italian mathematician Mauro Picone in 1909.11

Lemma 2.15.2 (Picone’s Identity) Assume that the functions a(t) and a1(t)12

are differentiable, the functions u(t) and v(t) are twice differentiable, and13

v(t) > 0 for all t. Then14

[

u

v

(

vau′ − ua1v
′)
]′

= u(au′)′ − u2

v
(a1v

′)′ + (a− a1)u
′2 + a1

(

u′ − u

v
v′
)2

.

Proof: The derivative on the left is equal to15

u′v − uv′

v2

(

vau′ − ua1v
′)+

u

v

(

v(au′)′ − u(a1v
′)′
)

+(a−a1)
u

v
u′v′ ≡ A+B+C .

The middle term B is equal to the first two terms on the right in Picone’s16

identity. It remains to prove that A+C is equal to the sum of the last two17

terms on the right in Picone’s identity. We expand A and C, and after a18

cancellation, obtain19

A+C = (a−a1)u
′2+a1

[

u′2 − 2
u

v
u′v′ + v′2

(

u

v

)2
]

= (a−a1)u
′2+a1

(

u′ − u

v
v′
)2

,

completing the proof. ♦20

We now turn to the general second order equations21

p(t)u′′ + q(t)u′ + r(t)u = 0 .(15.8)
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Assume that the functions p(t), q(t) and r(t) are differentiable, with p(t) > 01

for all t. We divide this equation by p(t)2

u′′ +
q(t)

p(t)
u′ +

r(t)

p(t)
u = 0 ,

and then multiply by the integrating factor a(t) = e
∫

q(t)
p(t)

dt
. Denoting b(t) =3

a(t)
r(t)

p(t)
, we arrive at4

(

a(t)u′
)′

+ b(t)u = 0 ,(15.9)

which is known as the self-adjoint form of (15.8).5

With the help of his clever identity, M. Picone was able to give the6

following generalization of the Sturm comparison theorem.7

Theorem 2.15.2 Let u(t) and v(t) be respectively solutions of (15.9), and8

(

a1(t)v
′)′ + b1(t)v = 0 .

Assume that the differentiable functions a(t), a1(t), and the continuous func-9

tions b(t), b1(t) satisfy10

b1(t) ≥ b(t), and 0 < a1(t) ≤ a(t) for all t.

In case a1(t) = a(t) and b1(t) = b(t) on some interval (t1, t2), assume11

additionally that u(t) and v(t) are not constant multiples of one another on12

(t1, t2). Then v(t) has a root between any two consecutive roots of u(t).13

Proof: The proof is similar to that of the Sturm comparison theorem.14

Let t1 < t2 be two consecutive roots of u(t),15

u(t1) = u(t2) = 0 .(15.10)

Again, we may assume that u(t) > 0 on (t1, t2). Assume, contrary to what we16

want to prove, that v(t) has no roots on (t1, t2). We may assume that v(t) >17

0 on (t1, t2). Apply Picone’s identity to u(t) and v(t). Expressing from the18

corresponding equations, (a(t)u′)′ = −b(t)u and (a1(t)v
′)′ = −b1(t)v, we19

rewrite Picone’s identity as20

[

u

v

(

vau′ − ua1v
′)
]′

= (b1 − b)u2 + (a− a1)u
′2 + a1

(

u′ − u

v
v′
)2

.



140 CHAPTER 2. SECOND ORDER EQUATIONS

Integrating this over (t1, t2), and using (15.10), gives1

0 =

∫ t2

t1

(b1 − b)u2 dt+

∫ t2

t1

(a− a1)u
′2 dt+

∫ t2

t1

a1

(

u′ − u

v
v′
)2

dt .

(In case v(t1) = 0, we have v′(t1) > 0, by the uniqueness of solutions for2

initial value problems. Then lim
t→t1

u2

v
= lim

t→t1

2uu′

v′
= 0. Similarly, in case3

v(t2) = 0, the upper limit vanishes for the integral on the left.) The integrals4

on the right are non-negative. We obtain an immediate contradiction, unless5

a1(t) = a(t) and b1(t) = b(t) for all t ∈ (t1, t2). In such a case, we must also6

have u′ − u

v
v′ = 0 on (t1, t2) (so that all three integrals vanish). But then7

u′

u
=
v′

v
, and integrating we see that u(t) and v(t) are constant multiples of8

one another, contradicting our assumption. ♦9

Our next goal is the famous Lyapunov inequality. It will follow from the10

next lemma. Define q+(t) = max(q(t), 0), the positive part of the function11

q(t). Similarly, one defines q−(t) = min(q(t), 0), the negative part of the12

function q(t). Clearly, q(t) = q+(t) + q−(t).13

Lemma 2.15.3 Assume that u(t) is twice continuously differentiable, and14

it satisfies the following conditions on some interval (0, b) (here q(t) is a15

given continuous function)16

u′′ + q(t)u = 0, u(0) = u(b) = 0, u(t) > 0 on (0, b) .(15.11)

Then17
∫ b

0
q+(t) dt >

4

b
.

Proof: From (15.11) it follows that18

u′′ + q+(t)u = −q−(t)u ≥ 0 .

Let v(t) be the solution of (c is any positive number)19

v′′ + q+(t)v = 0, v(0) = 0, v′(0) = c > 0 .(15.12)

By Lemma 2.15.1, v(t) must vanish on (0, b]. Let t2 ∈ (0, b] be the first root20

of v(t), so that v(t) > 0 on (0, t2). (In case q−(t) ≡ 0, we have t2 = b,21

because v(t) is a constant multiple of u(t).) Integrating (15.12) (treating22

q+(t)v as a known quantity),23

v(t) = ct−
∫ t

0
(t− s)q+(s)v(s) ds, for t ∈ [0, t2] .(15.13)
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From v(t2) = 0, it follows that c =
1

t2

∫ t2

0
(t2 − s)q+(s)v(s) ds. Substituting1

this back into (15.13), we express2

v(t) =
t

t2

∫ t2

0
(t2 − s)q+(s)v(s) ds−

∫ t

0
(t− s)q+(s)v(s) ds , for t ∈ [0, t2] .

Breaking the first integral,
∫ t2
0 =

∫ t
0 +

∫ t2
t , we continue:3

t2v(t) =

∫ t

0
[t(t2 − s) − t2(t− s)] q+(s)v(s) ds+ t

∫ t2

t
(t2 − s)q+(s)v(s) ds

4

= (t2 − t)

∫ t

0
sq+(s)v(s) ds+ t

∫ t2

t
(t2 − s)q+(s)v(s) ds .

Let t0 be the point of maximum of v(t) on (0, t2), v(t0) > 0. Estimate5

v(s) < v(t0) in both integrals on the right, then evaluate the last formula at6

t0, and cancel v(t0). Obtain:7

t2 < (t2 − t0)

∫ t0

0
sq+(s) ds+ t0

∫ t2

t0

(t2 − s)q+(s) ds

8

<

∫ t0

0
(t2 − s)sq+(s) ds+

∫ t2

t0

s(t2 − s)q+(s) ds =

∫ t2

0
(t2 − s)sq+(s) ds .

Dividing by t2, gives9

1 <

∫ t2

0
(1− s

t2
)sq+(s) ds ≤

∫ b

0
(1− s

b
)sq+(s) ds <

∫ b

0

b

4
q+(s) ds ,

which implies our inequality. (On the last step we estimated the function10

(1 − s

b
)s by its maximum value of

b

4
.) ♦11

Theorem 2.15.3 (Lyapunov’s inequality) If a non-trivial solution of the12

equation13

u′′ + q(t)u = 0

has two roots on an interval [a, b], then14

∫ b

a
q+(t) dt >

4

b− a
.
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Proof: Let t1 and t2 be two consecutive roots of u(t), a ≤ t1 < t2 ≤ b.1

We may assume that u(t) > 0 on (t1, t2), and use the above lemma2

∫ b

a
q+(t) dt ≥

∫ t2

t1
q+(t) dt >

4

t2 − t1
≥ 4

b− a
.

(We may declare the point t1 to be the origin, to use the above lemma.) ♦3

4

Remarkably, the constant 4 appears in another well-known and useful5

inequality.6

Theorem 2.15.4 (Hardy’s inequality) Assume that f(x) is a continuously7

differentiable function on [0, b], where b > 0 is arbitrary, and f(0) = 0.8

Then9
∫ b

0

f2(x)

x2
dx ≤ 4

∫ b

0
f ′2(x) dx .

Proof: Write10

f ′2 =

[

1
2x

−1f + x1/2
(

x−1/2f
)′]2

= 1
4x

−2f2 +
(

x−1/2f
)(

x−1/2f
)′

+

(

x1/2
(

x−1/2f
)′)2

.

Integrating both sides, and dropping a non-negative term on the right11

∫ b

0
f ′2(x) dx ≥

∫ b

0

1

4
x−2f2 dx+

∫ b

0

(

x−1/2f
) (

x−1/2f
)′
dx ≥ 1

4

∫ b

0
x−2f2 dx ,

because
∫ b
0

(

x−1/2f
) (

x−1/2f
)′
dx = 1

2x
−1f2(x) |b

0
= 1

2b
−1f2(b) ≥ 0. (Ob-12

serve that limx→0 x
−1f2(x) = limx→0

f(x)
x · limx→0 f(x) = f ′(0) · 0 = 0.) ♦13

14
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Using Infinite Series to Solve2

Differential Equations3

“Most” differential equations cannot be solved by a formula. One traditional4

approach involves using infinite series to approximate solutions near some5

point a. (Another possibility is to use numerical methods, which is discussed6

in Chapters 1 and 9.) We begin with the case when the point a is regular,7

and it is possible to compute all derivatives of solutions at x = a, and then8

write down the corresponding Taylor’s series. Turning to singular a, we9

distinguish the easier case when a is a simple root of the leading coefficient10

(we call such equations mildly singular). Then we show that the case when11

a is a double root of the leading coefficient can often be reduced to a mildly12

singular case, by a change of variables.13

3.1 Series Solution Near a Regular Point14

3.1.1 Maclauren and Taylor Series15

Infinitely differentiable functions can often be represented by a series16

f(x) = a0 + a1x+ a2x
2 + · · ·+ anx

n + · · · .(1.1)

Letting x = 0, we see that a0 = f(0). Differentiating (1.1), and then letting17

x = 0, shows that a1 = f ′(0). Differentiating (1.1) twice, and then letting18

x = 0, gives a2 =
f ′′(0)

2
. Continuing this way, we see that an =

f (n)(0)

n!
,19

143
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giving us the Maclauren series1

f(x) = f(0) + f ′(0)x+
f ′′(0)

2!
x2 + · · ·+ f (n)(0)

n!
xn + · · · =

∞
∑

n=0

f (n)(0)

n!
xn .

It is known that for each f(x) there is a number R, so that the Maclauren2

series converges for x inside the interval (−R,R), and diverges outside of3

this interval, when |x| > R. We call R the radius of convergence. For some4

f(x), we have R = ∞ (for example, for sinx, cosx, ex), while for some series5

R = 0, and in general 0 ≤ R ≤ ∞.6

Computing the Maclauren series for some specific functions, gives:7

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · · =

∞
∑

n=0

(−1)n x2n+1

(2n+ 1)!
,

8

cos x = 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · =

∞
∑

n=0

(−1)n x2n

(2n)!
,

9

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · =

∞
∑

n=0

xn

n!
,

10

1

1 − x
= 1 + x+ x2 + · · ·+ xn + · · · =

∞
∑

n=0

xn .

The last series, called the geometric series, converges on the interval (−1, 1),11

so that R = 1.12

Maclauren’s series gives an approximation of f(x), for x close to zero.13

For example, sinx ≈ x gives a reasonably good approximation for |x| small.14

If we add one more term of the Maclauren series: sinx ≈ x− x3

6
, then, say15

on the interval (−1, 1), we get an excellent approximation, see Figure 3.1.16

If one needs the Maclauren series for sinx2, one begins with a series for17

sinx, and then replaces each x by x2, obtaining18

sinx2 = x2 − x6

3!
+
x10

5!
+ · · · =

∞
∑

n=0

(−1)n x4n+2

(2n+ 1)!
.

One can split Maclauren’s series into a sum of series with either even or19

odd powers:20

∞
∑

n=0

f (n)(0)

n!
xn =

∞
∑

n=0

f (2n)(0)

(2n)!
x2n +

∞
∑

n=0

f (2n+1)(0)

(2n+ 1)!
x2n+1 .
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Figure 3.1: The approximation of y = sinx by y = x− x3

6
near x = 0

In the following series only the odd powers have non-zero coefficients1

∞
∑

n=1

1 − (−1)n

n
xn =

2

1
x+

2

3
x3 +

2

5
x5 + · · ·

2

=
∞
∑

n=0

2

2n+ 1
x2n+1 = 2

∞
∑

n=0

1

2n+ 1
x2n+1 .

All of the series above were centered at 0. One can replace zero by any3

number a, obtaining Taylor’s series4

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (n)(a)

n!
(x− a)n + · · ·

5

=
∞
∑

n=0

f (n)(a)

n!
(x− a)n .

It converges on some interval (a − R, a+ R), centered at a. The radius of6

convergence satisfies 0 ≤ R ≤ ∞, as before. Taylor’s series allows us to7

approximate f(x), for x close to a. For example, one can usually expect8

(but this is not always true) that f(x) ≈ f(2) + f ′(2)(x− 2) + f ′′(2)
2! (x− 2)2,9

for x close to 2, say for 1.8 < x < 2.2.10

Clearly,
∞
∑

n=1

anx
n =

∞
∑

m=1

amx
m, so that the index n can be regarded as11

a “dummy” index of summation. It is often desirable to put a series like12
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∞
∑

n=1

n

n + 4
xn+1 into the form

∑

anx
n. We set n + 1 = m, or n = m − 1,1

and get2

∞
∑

n=1

n

n+ 4
xn+1 =

∞
∑

m=2

m− 1

m+ 3
xm =

∞
∑

n=2

n− 1

n+ 3
xn .

The same result can be accomplished in one step, by the shift of the index3

of summation: n → n − 1, or replacing each occurrence of n by n − 1, and4

incrementing by 1 the limit(s) of summation.5

3.1.2 A Toy Problem6

Let us begin with the equation (here y = y(x))7

y′′ + y = 0 ,

for which we already know the general solution. Let us denote by y1(x) the8

solution of the initial value problem9

y′′ + y = 0, y(0) = 1, y′(0) = 0 .(1.2)

By y2(x) we denote the solution of the same equation, together with the10

initial conditions y(0) = 0, y′(0) = 1. Clearly, y1(x) and y2(x) are not11

constant multiples of each other. Therefore, they form a fundamental set,12

giving us the general solution y(x) = c1y1(x) + c2y2(x).13

Let us now compute y1(x), the solution of (1.2). From the initial condi-14

tions, we already know the first two terms of its Maclauren series15

y(x) = y(0) + y′(0)x+
y′′(0)

2
x2 + · · ·+ y(n)(0)

n!
xn + · · · .

To get more terms, we need to compute the derivatives of y(x) at zero. From16

the equation (1.2), y′′(0) = −y(0) = −1. We now differentiate the equation17

(1.2), getting y′′′ + y′ = 0, and then set x = 0 to obtain18

y′′′(0) = −y′(0) = 0 .

Differentiating again, gives y′′′′ + y′′ = 0, and setting x = 0,19

y′′′′(0) = −y′′(0) = 1 .

On the next step:20

y(5)(0) = −y′′′(0) = 0 .
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We see that all derivatives of odd order vanish at x = 0, while the derivatives1

of even order alternate between 1 and −1. The Maclauren series is then2

y1(x) = 1 − x2

2!
+
x4

4!
− · · · = cos x .

Similarly, we compute the series representation for y2(x):3

y2(x) = x− x3

3!
+
x5

5!
− · · · = sinx .

We shall solve the equations with variable coefficients4

P (x)y′′ +Q(x)y′ + R(x)y = 0 ,(1.3)

where continuous functions P (x), Q(x) and R(x) are given. We shall always5

denote by y1(x) the solution of (1.3) satisfying the initial conditions y(0) = 1,6

y′(0) = 0, and by y2(x) the solution of (1.3) satisfying the initial conditions7

y(0) = 0, y′(0) = 1. If one needs to solve (1.3), together with the given8

initial conditions9

y(0) = α, y′(0) = β ,

then the solution is10

y(x) = αy1(x) + βy2(x) .

Indeed, y(0) = αy1(0) + βy2(0) = α, and y′(0) = αy′1(0) + βy′2(0) = β.11

3.1.3 Using Series When Other Methods Fail12

Let us try to find the general solution of the equation13

y′′ + xy′ + 2y = 0 .

This equation has variable coefficients, and none of the previously consid-14

ered methods will apply here. Our goal is to use the Maclauren series15

∑∞
n=0

y(n)(0)
n! xn to approximate solutions near x = 0.16

We shall derive a formula for y(n)(0), and use it to calculate the solutions17

y1(x) and y2(x), defined in the preceding subsection. From the equation we18

express y′′(0) = −2y(0). Differentiate the equation19

y′′′ + xy′′ + 3y′ = 0 ,

which gives y′′′(0) = −3y′(0). Differentiate the last equation again20

y′′′′ + xy′′′ + 4y′′ = 0 ,
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and get: y′′′′(0) = −4y′′(0). In general, we get a recurrence relation1

y(n)(0) = −ny(n−2)(0), n = 2, 3, . . . .(1.4)

By a convention, y(0)(x) = y(x), so that y(0)(0) = y(0).2

Let us begin with the computation of y2(x), for which we use the initial3

conditions y(0) = 0, y′(0) = 1. Then, using the recurrence relation (1.4),4

obtain5

y′′(0) = −2y(0) = 0 ,
6

y′′′(0) = −3y′(0) = −3 · 1 ,
7

y′′′′(0) = −4y′′(0) = 0 .

It is clear that all derivatives of even order are zero at x = 0. Let us continue8

with the derivatives of odd order:9

y(5)(0) = −5y′′′(0) = (−1)2 5 · 3 · 1 ,
10

y(7)(0) = −7y′′′(0) = (−1)3 7 · 5 · 3 · 1 .
And in general,11

y(2n+1)(0) = (−1)n (2n+ 1) · (2n− 1) · · · 3 · 1 .

Then the Maclauren series for y2(x) is12

y2(x) =
∞
∑

n=0

y(n)(0)

n!
xn = x+

∞
∑

n=1

y(2n+1)(0)

(2n+ 1)!
x2n+1

13

= x+
∞
∑

n=1

(−1)n (2n+ 1) · (2n− 1) · · · 3 · 1
(2n+ 1)!

x2n+1

14

= x+
∞
∑

n=1

(−1)n 1

2n · (2n− 2) · · · 4 · 2 x
2n+1 .

One can also write this solution as y2(x) =
∞
∑

n=0

(−1)n 1

2nn!
x2n+1.15

To compute y1(x), we use the initial conditions y(0) = 1, y′(0) = 0. Sim-16

ilarly to the above, we see from the recurrence relation that all derivatives17

of odd order vanish at x = 0, while the even ones satisfy18

y(2n)(0) = (−1)n 2n · (2n− 2) · · · 4 · 2 , for n = 1, 2, 3, . . . .
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This leads to1

y1(x) = 1+
∞
∑

n=1

(−1)n y
(2n)(0)

(2n)!
x2n = 1+

∞
∑

n=1

(−1)n 1

(2n− 1) · (2n− 3) · · ·3 · 1 x
2n .

The general solution:2

y(x) = c1

(

1 +
∞
∑

n=1

(−1)n

(2n− 1)(2n− 3) · · ·3 · 1x
2n

)

+ c2

∞
∑

n=0

(−1)n 1

2nn!
x2n+1 .

We shall need a formula for repeated differentiation of a product of two3

functions. Starting with the product rule (fg)′ = f ′g + fg′, express4

(fg)′′ = f ′′g + 2f ′g′ + fg′′ ,
5

(fg)′′′ = f ′′′g + 3f ′′g′ + 3f ′g′′ + fg′′′ ,

and in general, for the n-th derivative:6

(fg)(n) = f (n)g + nf (n−1)g′ +
n(n− 1)

2
f (n−2)g′′ + · · ·(1.5)

7

+
n(n − 1)

2
f ′′g(n−2) + nf ′g(n−1) + fg(n) .

(Convention: f (0) = f .) This formula is similar to the binomial formula for8

the expansion of (x + y)n. Using the summation notation, we can write it9

as10

(fg)(n) =
n
∑

k=0

(

n

k

)

f (n−k) g(k) ,

where

(

n

k

)

=
n!

k!(n− k)!
are the binomial coefficients.11

The formula (1.5) simplifies considerably in case f(x) = x, or if f(x) = x2:12

(xg)(n) = ng(n−1) + xg(n) ,
13

(x2g)(n) = n(n − 1)g(n−2) + 2nxg(n−1) + x2g(n) .

We shall use Taylor’s series centered at x = a, y(x) =
∞
∑

n=0

y(n)(a)

n!
(x−a)n,14

to solve linear second order equations with variable coefficients15

P (x)y′′ +Q(x)y′ + R(x)y = 0 ,



150CHAPTER 3. USING INFINITE SERIES TO SOLVE DIFFERENTIAL EQUATIONS

where the functions P (x), Q(x) and R(x) are given. A number a is called a1

regular point if P (a) 6= 0. If P (a) = 0, then x = a is called a singular point.2

If a is a regular point, we can compute y(n)(a) from the equation, as in the3

examples above. If the point a is singular, it is not even possible to compute4

y′′(a) from the equation.5

Example 1 (2 + x2)y′′ − xy′ + 4y = 0.6

For this equation, any a is a regular point. Let us find the general solution7

as an infinite series, centered at a = 0, the Maclauren series for y(x). We8

differentiate both sides of this equation n times. When we use the formula9

(1.5) to differentiate the first term, only the last three terms are non-zero,10

because the derivatives of 2+x2, of order three and higher, are zero. Obtain11

[

(2 + x2)y′′
](n)

=
n(n− 1)

2
2y(n) + n(2x)y(n+1) + (2 + x2)y(n+2) .

When we differentiate n times xy′, only the last two terms survive, giving12

[

xy′
](n)

= ny(n) + xy(n+1) .

It follows that n differentiations of our equation produce13

n(n− 1)

2
2y(n) + n(2x)y(n+1) + (2 + x2)y(n+2) −ny(n) − xy(n+1) + 4y(n) = 0 .

Set here x = 0. Several terms vanish. Combining the like terms, we get14

2y(n+2)(0) +
(

n2 − 2n+ 4
)

y(n)(0) = 0 ,

which gives us the recurrence relation15

y(n+2)(0) = −
(

n2 − 2n+ 4
)

2
y(n)(0) .

This relation is too involved to get a general formula for y(n)(0) as a function16

of n. However, it can be used to crank out the derivatives at zero, as many17

as you wish.18

To compute y1(x), we use the initial conditions y(0) = 1 and y′(0) = 0.19

It follows from the recurrence relation that all of the derivatives of odd order20

are zero at x = 0. Setting n = 0 in the recurrence relation, obtain21

y′′(0) = −2y(0) = −2 .
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When n = 2,1

y′′′′(0) = −2y′′(0) = 4 .

Using these derivatives in the Maclauren series, gives2

y1(x) = 1 − x2 +
1

6
x4 + · · · .

To compute y2(x), we use the initial conditions y(0) = 0 and y′(0) = 1.3

It follows from the recurrence relation that all of the derivatives of even4

order are zero. When n = 1, we get5

y′′′(0) = −3

2
y′(0) = −3

2
.

Setting n = 3, obtain6

y(5)(0) = −7

2
y′′′(0) =

21

4
.

Using these derivatives in the Maclauren series, we conclude7

y2(x) = x− 1

4
x3 +

7

160
x5 + · · · .

The general solution:8

y(x) = c1y1(x) + c2y2(x) = c1

(

1− x2 +
1

6
x4 + · · ·

)

9

+c2

(

x− 1

4
x3 +

7

160
x5 + · · ·

)

.

Suppose that we wish to solve the above equation, together with the10

initial conditions: y(0) = −2, y′(0) = 3. Then y(0) = c1y1(0) + c2y2(0) =11

c1 = −2, and y′(0) = c1y
′
1(0) + c2y

′
2(0) = c2 = 3. It follows that y(x) =12

−2y1(x) + 3y2(x). If one needs to approximate y(x) near x = 0, say on the13

interval (−0.3, 0.3), then14

y(x) ≈ −2

(

1 − x2 +
1

6
x4
)

+ 3

(

x− 1

4
x3 +

7

160
x5
)

will provide an excellent approximation.15

Example 2 y′′ − xy′ + y = 0, a = 0.16

Differentiating this equation n times gives17

y(n+2)(x) − ny(n)(x) − xy(n+1)(x) + y(n)(x) = 0 .
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Setting here x = 0, we obtain the recurrence relation1

y(n+2)(0) = (n− 1)y(n)(0) .

To compute y1(x), we use the initial conditions y(0) = 1, y′(0) = 0. Then2

all derivatives of odd order vanish, y(2n+1)(0) = 0, as follows by repeated3

application of the recurrence relation. We now compute the derivatives of4

even order. Setting n = 0 in the recurrence relation gives: y′′(0) = −y(0) =5

−1. When n = 2, we get y′′′′(0) = y′′(0) = −1, and then y(6)(0) = 3y′′′′(0) =6

−1 · 3, at n = 4. We continue, y(8)(0) = 5y(6)(0) = −1 · 3 · 5, and in general7

y(2n)(0) = −1 · 3 · 5 · · · (2n− 3) .

Then8

y1(x) = 1 +
∞
∑

n=1

y(2n)(0)

(2n)!
x2n +

∞
∑

n=0

y(2n+1)(0)

(2n+ 1)!
x2n+1

9

= 1−
∞
∑

n=1

1 · 3 · 5 · · · (2n− 3)

(2n)!
x2n = 1 −

∞
∑

n=1

1

2 · 4 · · ·2n(2n− 1)
x2n

10

= 1 −
∞
∑

n=1

1

2n n!(2n− 1)
x2n = −

∞
∑

n=0

1

2n n!(2n− 1)
x2n .

To compute y2(x), we use the initial conditions y(0) = 0, y′(0) = 1. Then11

all derivatives of even order vanish, y(2n)(0) = 0, as follows by repeated12

application of the recurrence relation. Setting n = 1 in the recurrence13

relation gives: y′′′(0) = 0, and so all derivatives of odd order vanish as well.14

We conclude that y2(x) = x. The general solution is15

y(x) = c1

∞
∑

n=0

1

2n n!(2n− 1)
x2n + c2x .

Example 3 Approximate the general solution of Airy’s equation16

y′′ − xy = 0 ,

near x = 1. This equation was encountered in 1838 by G.B. Airy, in his17

study of optics.18

We need to compute Taylor’s series about the regular point a = 1, which is19

y(x) =
∞
∑

n=0

y(n)(1)

n!
(x− 1)n. From the equation,20

y′′(1) = y(1) .
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To get higher derivatives, we differentiate our equation n times, and then1

set x = 1, to get the recurrence relation2

y(n+2)(x) − ny(n−1)(x) − xy(n)(x) = 0 ,
3

y(n+2)(1) = ny(n−1)(1) + y(n)(1), n = 1, 2, . . . .(1.6)

To compute y1(x), we use the initial conditions y(1) = 1, y′(1) = 0.4

Then5

y′′(1) = y(1) = 1 .

Setting n = 1 in the recurrence relation (1.6), gives6

y(3)(1) = y(1) + y′(1) = 1 .

When n = 2,7

y(4)(1) = 2y′(1) + y′′(1) = 1 .

Then, for n = 3,8

y(5)(1) = 3y′′(1) + y′′′(1) = 4 .

Obtain9

y1(x) = 1 +
(x− 1)2

2
+

(x− 1)3

6
+

(x− 1)4

24
+

(x− 1)5

30
+ · · · .

Again, it does not seem possible to get a general formula for the coefficients.10

To compute y2(x), we use the initial conditions y(1) = 0, y′(1) = 1.11

Then y′′(1) = y(1) = 0. Setting n = 1 in the recurrence relation (1.6), gives12

y(3)(1) = y(1)+ y′(1) = 1. When n = 2, y(4)(1) = 2y′(1)+ y′′(1) = 2. Then,13

for n = 3, y(5)(1) = 3y′′(1) + y′′′(1) = 1. Obtain14

y2(x) = x− 1 +
(x− 1)3

6
+

(x− 1)4

12
+

(x− 1)5

120
+ · · · .

The general solution is, of course, y(x) = c1y1(x) + c2y2(x).15

3.2 Solution Near a Mildly Singular Point16

We consider again the equation17

P (x)y′′ +Q(x)y′ + R(x)y = 0 ,

with given functions P (x), Q(x) and R(x) that are continuous near a point a,18

at which we wish to compute solution as a series y(x) =
∞
∑

n=0

y(n)(a)

n!
(x−a)n.19
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If P (a) = 0, we have a problem: one cannot compute y′′(a) from the equation1

(and the same problem occurs for higher derivatives). However, if a is a2

simple root of P (x), it turns out that one can still use series to produce a3

solution. Namely, we assume that P (x) = (x − a)P1(x), with P1(a) 6= 0.4

We call x = a a mildly singular point. Dividing the equation by P1(x), and5

calling q(x) = Q(x)
P1(x) , r(x) = R(x)

P1(x) , we put it into the form6

(x− a)y′′ + q(x)y′ + r(x)y = 0 .

The functions q(x) and r(x) are continuous near a. In case a = 0, the7

equation becomes8

xy′′ + q(x)y′ + r(x)y = 0 .(2.1)

For this equation we cannot expect to obtain two linearly independent so-9

lutions, by prescribing y1(0) = 1, y′1(0) = 0, and y2(0) = 0, y′2(0) = 1, the10

way we did before. This equation is singular at x = 0 (the functions q(x)
x11

and
r(x)
x are discontinuous at x = 0, and so the existence and uniqueness12

Theorem 2.4.1 from Chapter 2 does not apply).13

Example 1 Let us try to solve:14

xy′′ − y′ = 0, y(0) = 0, y′(0) = 1 .

Multiplying through by x, we obtain Euler’s equation with the general so-15

lution y(x) = c1x
2 + c2. Then y′(x) = 2c1x, and y′(0) = 0 6= 1. This initial16

value problem has no solution. However, if we change the initial conditions,17

and consider the problem18

xy′′ − y′ = 0, y(0) = 1, y′(0) = 0 ,

then there are infinitely many solutions y = 1 + c1x
2.19

We therefore lower our expectations, and we shall be satisfied to compute20

just one series solution of (2.1). It turns out that in most cases it is possible21

to calculate a series solution of the form y(x) =
∑∞

n=0 anx
n, starting with22

a0 = 1, which corresponds to y(0) = 1. (If a0 6= 1, then 1
a0
y(x) is another23

solution of (2.1), which begins with 1. So that we shall always assume that24

a0 = 1. The possibility of a0 = 0 is considered later.)25

Example 2 Find a series solution, centered at a = 0, of26

xy′′ + 3y′ − 2y = 0 .
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It is convenient to multiply this equation by x:1

x2y′′ + 3xy′ − 2xy = 0 .(2.2)

Look for a solution in the form2

y =
∞
∑

n=0

anx
n = a0 + a1x+ a2x

2 + a3x
3 + · · · ,

with a0 = 1. Calculate3

y′ =
∞
∑

n=1

annx
n−1 = a1 + 2a2x+ 3a3x

2 + · · · ,

4

y′′ =
∞
∑

n=2

ann(n− 1)xn−2 = 2a2 + 6a3x+ · · · .

Observe that each differentiation “kills” a term. Substituting y =
∑∞

n=0 anx
n

5

into the equation (2.2), gives6

∞
∑

n=2

ann(n − 1)xn +
∞
∑

n=1

3annx
n −

∞
∑

n=0

2anx
n+1 = 0 .(2.3)

The third series is not “lined up” with the other two. We therefore shift the7

index of summation, replacing n by n − 1 in that series, obtaining8

∞
∑

n=0

2anx
n+1 =

∞
∑

n=1

2an−1x
n .

Then (2.3) becomes9

∞
∑

n=2

ann(n − 1)xn +
∞
∑

n=1

3annx
n −

∞
∑

n=1

2an−1x
n = 0 .(2.4)

We shall use the following fact: if
∑∞

n=1 bnx
n = 0 for all x, then bn = 0 for10

all n = 1, 2, . . .. Our goal is to combine the three series in (2.4) into a single11

one, so that we can set all of the resulting coefficients to zero. The x term is12

present in the second and the third series, but not in the first. However, we13

can start the first series at n = 1, because at n = 1 the coefficient is zero.14

So that (2.4) becomes15

∞
∑

n=1

ann(n − 1)xn +
∞
∑

n=1

3annx
n −

∞
∑

n=1

2an−1x
n = 0 .
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Now for all n ≥ 1, the xn term is present in all three series, so that we can1

combine these series into one series. We therefore just set the sum of the2

coefficients to zero3

ann(n − 1) + 3ann − 2an−1 = 0 .

Solve for an, to get the recurrence relation4

an =
2

n(n+ 2)
an−1 , n ≥ 1 .

Starting with a0 = 1, compute a1 =
2

1 · 3 , then5

a2 =
2

2 · 4 a1 =
22

(1 · 2)(3 · 4)
=

23

2! 4!
,

6

a3 =
2

3 · 5 a2 =
24

3! 5!
,

and, in general, an =
2n+1

n! (n+ 2)!
.7

Answer: y(x) = 1 +
∞
∑

n=1

2n+1

n! (n+ 2)!
xn =

∞
∑

n=0

2n+1

n! (n+ 2)!
xn.8

Example 3 Find a series solution, centered at a = 0, of9

xy′′ − 3y′ − 2y = 0 .

This equation is a small modification of the preceding one, so that we can10

quickly derive the recurrence relation:11

an =
2

n(n− 4)
an−1 , n ≥ 1 .(2.5)

If we start with a0 = 1, and proceed as before, then at n = 4 the denominator12

is zero, and the computation stops! To avoid the trouble at n = 4, we look13

for the solution in the form y =
∞
∑

n=4

anx
n. Substituting this series into the14

equation15

x2y′′ − 3xy′ − 2xy = 0

(which is the original equation, multiplied by x), gives16

∞
∑

n=4

ann(n− 1)xn −
∞
∑

n=4

3annx
n −

∞
∑

n=4

2anx
n+1 = 0 .
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The coefficient in x4, which is a4(4 · 3 − 3 · 4), is zero for any choice of a4.1

We can then begin the first two series at n = 5:2

∞
∑

n=5

ann(n − 1)xn −
∞
∑

n=5

3annx
n −

∞
∑

n=4

2anx
n+1 = 0 .(2.6)

Shifting n → n − 1 in the last series in (2.6), we see that the recurrence3

relation (2.5) holds for n ≥ 5. We choose a4 = 1, and use the recurrence4

relation (2.5) to calculate a5, a6, etc.5

Compute: a5 =
2

5 · 1a4 =
2

5 · 1, a6 =
2

6 · 2a5 =
22

6 · 5 · 2 · 1 = 24
22

6!2!
, and in6

general, an = 24
2n−4

n!(n− 4)!
.7

Answer: y(x) = x4 + 24
∞
∑

n=5

2n−4

n!(n− 4)!
xn = 24

∞
∑

n=4

2n−4

n!(n− 4)!
xn.8

Our experience with the previous two problems can be summarized as9

follows (convergence of the series is proved in more advanced books).10

Theorem 3.2.1 Consider the equation (2.1). Assume that the functions11

q(x) and r(x) have convergent Maclauren series expansions on some in-12

terval (−δ, δ). If q(0) is not a non-positive integer (q(0) is not equal to13

0,−1,−2, . . .), one can find a series solution of the form y(x) =
∞
∑

n=0

anx
n,14

starting with a0 = 1. In case q(0) = −k, where k is a non-negative integer,15

one can find a series solution of the form y(x) =
∞
∑

n=k+1

anx
n, starting with16

ak+1 = 1. In both cases, the series for y(x) is convergent on (−δ, δ).17

We now turn to one of the most important examples of this chapter.18

Example 4 x2y′′ + xy′ + (x2 − ν2)y = 0.19

This is the Bessel equation, which is of great importance in mathematical20

physics! It depends on a real parameter ν. It is also called Bessel’s equation21

of order ν. Its solutions are called Bessel’s functions of order ν. We see22

that a = 0 is not a mildly singular point, for ν 6= 0. (Zero is a double root of23

x2.) But in case ν = 0, one can cancel x, putting Bessel’s equation of order24

zero into the form25

xy′′ + y′ + xy = 0 ,(2.7)

so that a = 0 is a mildly singular point. We shall find the solution of this26

equation, as a series centered at a = 0, the Maclauren series for y(x).27
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We put the equation (2.7) back into the form1

x2y′′ + xy′ + x2y = 0 ,

and look for solution in the form y =
∑∞

n=0 anx
n, with a0 = 1. Substitute2

this in:3 ∞
∑

n=2

ann(n− 1)xn +
∞
∑

n=1

annx
n +

∞
∑

n=0

anx
n+2 = 0 .

In the last series we replace n by n− 2:4

∞
∑

n=2

ann(n− 1)xn +
∞
∑

n=1

annx
n +

∞
∑

n=2

an−2x
n = 0 .

None of the three series has a constant term. The x term is present only in5

the second series. Its coefficient is a1, and so6

a1 = 0 .

The terms involving xn, starting with n = 2, are present in all series, so that7

(after combining the series)8

ann(n− 1) + ann + an−2 = 0 ,

giving9

an = − 1

n2
an−2 .

This recurrence relation tells us that all odd coefficients are zero, a2n+1 =10

0. Starting with a0 = 1, compute a2 = − 1

22
a0 = − 1

22
, a4 = − 1

42
a2 =11

(−1)2
1

22 42
, a6 = − 1

62
a4 = (−1)3

1

22 42 62
, and in general,12

a2n = (−1)n 1

22 42 62 · · · (2n)2
= (−1)n 1

(2 · 4 · 6 · · · 2n)2
= (−1)n 1

22n(n!)2
.

We then have13

y(x) = 1 +
∞
∑

n=1

a2nx
2n = 1 +

∞
∑

n=1

(−1)n 1

22n(n!)2
x2n =

∞
∑

n=0

(−1)n 1

22n(n!)2
x2n .

We obtained Bessel’s function of order zero of the first kind, with the cus-14

tomary notation: J0(x) =
∞
∑

n=0

(−1)n 1

22n (n!)2
x2n.15
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Figure 3.2: The graph of Bessel’s function J0(x)

3.2.1∗ Derivation of J0(x) by Differentiation of the Equation1

It turns out that one can obtain J0(x) by differentiating the equation, and2

using the initial conditions y(0) = 1 and y′(0) = 0, even though the point3

a = 0 is singular.4

Differentiate the equation (2.7) n times, and then set x = 0:5

ny(n+1) + xy(n+2) + y(n+1) + ny(n−1) + xy(n) = 0 ;

6

ny(n+1)(0) + y(n+1)(0) + ny(n−1)(0) = 0 .

(It is not always true that xy(n+2) → 0 as x → 0. However, in case of the7

initial conditions y(0) = 1, y′(0) = 0 that is true, as was justified in author’s8

paper [16].) We get the recurrence relation9

y(n+1)(0) = − n

n + 1
y(n−1)(0) .

We use the initial conditions y(0) = 1, y′(0) = 0. Then all derivatives of10

odd order vanish, while11

y(2n)(0) = −2n− 1

2n
y(2n−2)(0) = (−1)2

2n− 1

2n

2n− 3

2n− 4
y(2n−4)(0) = . . .

12

= (−1)n (2n− 1)(2n− 3) · · · 3 · 1
2n(2n− 2) · · ·2 y(0) = (−1)n (2n− 1)(2n− 3) · · · 3 · 1

2n n!
.
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Then1

y(x) =
∞
∑

n=0

y(2n)(0)

(2n)!
x2n =

∞
∑

n=0

(−1)n 1

22n (n!)2
x2n .

We obtained again Bessel’s function of order zero of the first kind, J0(x) =2

∞
∑

n=0

(−1)n 1

22n (n!)2
x2n.3

In case of the initial conditions y(0) = 0 and y′(0) = 1, there is no4

solution of Bessel’s equation (2.7) (the recurrence relation above is not valid,5

because the relation xy(n+2) → 0 as x→ 0 is not true in this case). In fact,6

the second solution of Bessel’s equation cannot possibly be continuously7

differentiable at x = 0. Indeed, by the Theorem 2.4.2 from Chapter 2,8

the Wronskian of any two solutions is equal to ce−
∫

1
x

dx =
c

x
, so that9

W (y1, y2) = y1y
′
2−y′1y2 = c

x . The solution J0(x) satisfies J0(0) = 1, J ′
0(0) =10

0. Therefore, the other solution, or its derivative, must be discontinuous11

at x = 0. It turns out that the other solution, called Bessel’s function of12

the second type, and denoted Y0(x), has a term involving lnx in its series13

representation, see the book of J. Bowman [3] for a concise introduction.14

Bessel’s function of order ν of the first kind is denoted by Jν(x). Sim-15

ilarly to J0(x), the function Jν(x) is continuous at x = 0, and it has an16

infinite sequence of roots, tending to infinity, see [3].17

3.3 Moderately Singular Equations18

This section deals only with series centered at zero, so that a = 0, and the19

general case is similar. We consider the equation20

x2y′′ + xp(x)y′ + q(x)y = 0 ,(3.1)

where the given functions p(x) and q(x) are assumed to be infinitely differ-21

entiable functions, that can be represented by their Maclauren series22

p(x) = p(0) + p′(0)x+ 1
2p

′′(0)x2 + · · ·(3.2)

q(x) = q(0) + q′(0)x+ 1
2q

′′(0)x2 + · · · .

(Observe the special form of the coefficient function in front of y′.) If it so23

happens that q(0) = 0, then q(x) has a factor of x, and one can divide24

the equation (3.1) by x, to obtain a mildly singular equation. So that25

the difference with the preceding section is that we now allow the case of26
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q(0) 6= 0. Observe also that in case p(x) and q(x) are constants, the equation1

(3.1) is Euler’s equation, that was studied in Section 2.13. This connection2

with Euler’s equation is the “guiding light” of the theory that follows.3

We change to a new unknown function v(x), by letting y(x) = xrv(x),4

with a constant r to be specified. With y′ = rxr−1v + xrv′, and5

y′′ = r(r−1)xr−2v+2rxr−1v′+xrv′′, we substitute y(x) into (3.1), obtaining6

xr+2v′′ + xr+1v′ (2r+ p(x)) + xrv [r(r− 1) + rp(x) + q(x)] = 0 .(3.3)

Now choose r to satisfy the following characteristic equation7

r(r − 1) + rp(0) + q(0) = 0 .(3.4)

(We shall only consider the case when this quadratic equation has two real8

and distinct roots.) In view of (3.2), the quantity in the square bracket in9

(3.3) then becomes10

rp′(0)x+ r
1

2
p′′(0)x2 + · · ·+ q′(0)x+

1

2
q′′(0)x2 + · · · ,

so that it has a factor of x. We take this factor out, and divide the equation11

(3.3) by xr+1, obtaining a mildly singular equation. We conclude that the12

substitution y(x) = xrv(x), with r being a root of (3.4), produces a mildly13

singular equation for v(x), that was analyzed in the preceding section.14

If r1 and r2 are real roots of the characteristic equation (3.4), then we get15

solutions of (3.1) in the form y1 = xr1v1(x) and y2 = xr2v2(x), where v1(x)16

and v2(x) are solutions of the corresponding mildly singular equations. This17

approach will produce a fundamental set of (3.1), except if r1 and r2 are18

either the same or differ by an integer. In those cases y1(x) and y2(x) may19

coincide, and one needs a different method to construct another solution,20

see the book of W.E. Boyce and R.C. DiPrima [4].21

Example 1 Solve 2x2y′′ − xy′ + (1 + x)y = 0.22

To put this equation into the right form (3.1), divide it by 2:23

x2y′′ − 1

2
xy′ + (

1

2
+

1

2
x)y = 0 .(3.5)

Here p(x) = −1
2 and q(x) = 1

2 + 1
2x. The characteristic equation is then24

r(r− 1)− 1

2
r+

1

2
= 0 .
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Its roots are r = 1
2 , and r = 1.1

The case r = 1
2 . We know that the substitution y = x

1
2 v will produce2

a mildly singular equation for v(x). Substituting this y into our equation3

(3.5) (or using (3.3)), gives4

x5/2v′′ +
1

2
x3/2v′ +

1

2
x3/2v = 0 .

Dividing by x3/2, produces a mildly singular equation5

xv′′ +
1

2
v′ +

1

2
v = 0 .

Multiply this equation by 2x, for convenience,6

2x2v′′ + xv′ + xv = 0 ,(3.6)

and look for a solution in the form v(x) =
∑∞

n=0 anx
n. Substituting v(x)7

into (3.6), gives8

∞
∑

n=2

2ann(n− 1)xn +
∞
∑

n=1

annx
n +

∞
∑

n=0

anx
n+1 = 0 .(3.7)

To line up the powers, shift n → n − 1 in the last series. The first series9

we may begin at n = 1, instead of n = 2, because its coefficient at n = 1 is10

zero. Then (3.7) becomes11

∞
∑

n=1

2ann(n− 1)xn +
∞
∑

n=1

annx
n +

∞
∑

n=1

an−1x
n = 0 .

Combine these series into a single series, and set its coefficients to zero12

2ann(n − 1) + ann+ an−1 = 0 ,

which gives us the recurrence relation13

an = − 1

n(2n− 1)
an−1 .

Starting with a0 = 1, compute a1 = − 1

1 · 1, a2 = − 1

2 · 3 a1 = (−1)2
1

(1 · 2) (1 · 3)
,14

a3 = − 1

3 · 5 a2 = (−1)3
1

(1 · 2 · 3) (1 · 3 · 5)
, and in general15

an = (−1)n 1

n! · 1 · 3 · 5 · · · (2n− 1)
.
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We obtained the first solution:1

y1(x) = x1/2v(x) = x1/2

[

1 +
∞
∑

n=1

(−1)n 1

n! · 1 · 3 · 5 · · · (2n− 1)
xn

]

.

The case r = 1. Set y = xv. Substituting this y into (3.5), and simplifying2

x3v′′ +
3

2
x2v′ +

1

2
x2v = 0 .

Dividing by x2, gives a mildly singular equation3

xv′′ +
3

2
v′ +

1

2
v = 0 .

Multiply this equation by 2x, for convenience,4

2x2v′′ + 3xv′ + xv = 0 ,(3.8)

and look for a solution in the form v =
∑∞

n=0 anx
n. Substituting v(x) into5

(3.8), obtain6

∞
∑

n=2

2ann(n− 1)xn +
∞
∑

n=1

3annx
n +

∞
∑

n=0

anx
n+1 = 0 .

We start the first series at n = 1, and make a shift n → n − 1 in the third7

series:8 ∞
∑

n=1

2ann(n− 1)xn +
∞
∑

n=1

3annx
n +

∞
∑

n=1

an−1x
n = 0 .

Setting the coefficient of xn to zero,9

2ann(n − 1) + 3ann + an−1 = 0 ,

gives us the recurrence relation10

an = − 1

n(2n + 1)
an−1 .

Starting with a0 = 1, compute a1 = − 1

1 · 3, a2 = − 1

2 · 5 a1 = (−1)2
1

(1 · 2) (1 · 3 · 5)
,11

a3 = − 1

3 · 7 a2 = (−1)3
1

(1 · 2 · 3) (1 · 3 · 5 · 7)
, and in general12

an = (−1)n 1

n! · 1 · 3 · 5 · · · (2n+ 1)
.
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The second solution is then1

y2(x) = x

[

1 +
∞
∑

n=1

(−1)n 1

n! · 1 · 3 · 5 · · · (2n+ 1)
xn

]

.

The general solution is, of course, y(x) = c1y1 + c2y2.2

Example 2 Solve x2y′′ + xy′ + (x2 − 1

9
)y = 0.3

This is Bessel’s equation of order 1
3 . Here p(x) = 1, and q(x) = x2 − 1

9 . The4

characteristic equation5

r(r − 1) + r − 1

9
= 0

has roots r = −1
3 , and r = 1

3 .6

The case r = −1
3 . Set y = x−

1
3 v. Compute y′ = −1

3x
− 4

3 v + x−
1
3 v′, y′′ =7

4
9x

− 7
3 v − 2

3x
− 4

3 v′ + x−
1
3 v′′. Substituting this y in and simplifying, produces8

a mildly singular equation9

xv′′ +
1

3
v′ + xv = 0 .

Multiply this equation by 3x10

3x2v′′ + xv′ + 3x2v = 0 ,(3.9)

and look for a solution in the form v =
∑∞

n=0 anx
n. Substituting this series11

into (3.9), gives12

∞
∑

n=2

3ann(n− 1)xn +
∞
∑

n=1

annx
n +

∞
∑

n=0

3anx
n+2 = 0 .

We shift n→ n− 2 in the last series:13

∞
∑

n=2

3ann(n− 1)xn +
∞
∑

n=1

annx
n +

∞
∑

n=2

3an−2x
n = 0 .

The x term is present only in the second series. Its coefficient must be zero,14

so that15

a1 = 0 .(3.10)

The term xn, with n ≥ 2, is present in all three series. Setting its coefficient16

to zero17

3ann(n− 1) + ann + 3an−2 = 0 ,
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gives us the recurrence relation1

an = − 3

n(3n − 2)
an−2 .

All odd coefficients are zero (because of (3.10)), while for the even ones our2

recurrence relation gives3

a2n = − 3

2n(6n− 2)
a2n−2 .

Starting with a0 = 1, compute a2 = − 3

2 · 4, a4 = (−1)2
32

(2 · 4) (4 · 10)
,4

a6 = (−1)3
32

(2 · 4 · 6) (4 · 10 · 16)
, and in general,5

a2n = (−1)n 3n

(2 · 4 · · ·2n) (4 · 10 · · ·(6n− 2))
.

The first solution is then6

y1(x) = x−1/3

[

1 +
∞
∑

n=1

(−1)n 3n

(2 · 4 · · ·2n) (4 · 10 · · ·(6n− 2))
x2n

]

.

7

The case r = 1
3 . Set y = x

1
3 v. Compute y′ = 1

3x
− 2

3 v + x
1
3 v′,8

y′′ = −2
9x

− 5
3 v + 2

3x
− 2

3 v′ + x
1
3 v′′. Substituting this y into our equation and9

simplifying, produces a mildly singular equation10

xv′′ +
5

3
v′ + xv = 0 .

Multiply the last equation by 3x11

3x2v′′ + 5xv′ + 3x2v = 0 ,

and look for a solution in the form v =
∑∞

n=0 anx
n. Substituting this in, we12

conclude again that a1 = 0, and that the following recurrence relation holds13

an = − 3

n(3n + 2)
an−2 .

It follows that all odd coefficients are zero, while the even ones satisfy14

a2n = − 3

2n(6n+ 2)
a2n−2 = − 1

2n(2n+ 2/3)
a2n−2 .

We then derive the second solution15

y2(x) = x1/3

[

1 +
∞
∑

n=1

(−1)n 1

(2 · 4 · · ·2n) ((2 + 2/3) · (4 + 2/3) · · ·(2n+ 2/3))
x2n

]

.

16
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3.3.1 Problems1

I. Find the Maclauren series of the following functions, and state their radius2

of convergence3

1. sinx2. 2.
1

1 + x2
. 3. xe−x3

.4

II. 1. Find the Taylor series of f(x) centered at a.5

(i) f(x) = sinx, a = π
2 . (ii) f(x) = ex, a = 1. (iii) f(x) =

1

x
, a = 1.6

7

2. Show that
∞
∑

n=1

1 + (−1)n

n2
xn =

1

2

∞
∑

n=1

1

n2
x2n.8

3. Show that
∞
∑

n=1

1 − cosnπ

n3
xn =

∞
∑

n=1

2

(2n− 1)3
x2n−1.9

Hint: cosnπ = (−1)n.10

4. Show that
∞
∑

n=0

n+ 3

n! (n+ 1)
xn+1 =

∞
∑

n=1

n+ 2

(n− 1)! n
xn.11

5. Show that
∞
∑

n=0

an x
n+2 =

∞
∑

n=2

an−2 x
n.12

6. Show that
∞
∑

n=0

n+ 3

n! (n+ 1)
xn+2 =

∞
∑

n=2

n+ 1

(n− 2)! (n− 1)
xn.13

7. Expand the n-th derivative:
[

(x2 + x)g(x)
](n)

.14

Answer. n(n− 1)g(n−2)(x) + n(2x+ 1)g(n−1)(x) + (x2 + x)g(n)(x).15

8. Find the n-th derivative:
[

(x2 + x)e2x
](n)

.16

Answer. 2n−2e2x
[

n(n− 1) + 2n(2x+ 1) + 4(x2 + x)
]

.17

9. Expand the n-th derivative:
[

xy′
](n)

.18

Answer. ny(n) + xy(n+1).19

10. Expand the n-th derivative:
[(

x2 + 1
)

y′′
](n)

.20

Answer. n(n− 1)y(n) + 2nxy(n+1) +
(

x2 + 1
)

y(n+2).21
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11. Let y(x) =
∞
∑

n=0

anx
n. Show that1

y′(x) =
∞
∑

n=1

annx
n−1, and y′′(x) =

∞
∑

n=2

ann(n− 1)xn−2.2

12. Let y(x) =
∞
∑

n=1

1

n!(n− 1)!
xn. Show that3

y′′(x) =
∞
∑

n=2

1

(n− 1)!(n− 2)!
xn−2, and xy′′(x) =

∞
∑

n=1

1

n!(n− 1)!
xn.4

Conclude that y(x) is a solution of5

xy′′ − y = 0 .

Can you solve this equation by another method? Hint: Probably not.6

III. Find the general solution, using power series centered at a (find the7

recurrence relation, and two linearly independent solutions).8

1. y′′ − xy′ − y = 0, a = 0.9

Answer. y1(x) =
∞
∑

n=0

x2n

2nn!
, y2(x) =

∞
∑

n=0

1

1 · 3 · 5 · · · (2n+ 1)
x2n+1.10

2. y′′ − xy′ + 2y = 0, a = 0.11

Answer. y1(x) = 1 − x2, y2(x) = x− 1

6
x3 − 1

120
x5 − · · · .12

3. (x2 + 1)y′′ + xy′ + y = 0, a = 0.13

Answer. The recurrence relation: y(n+2)(0) = −(n2 + 1)y(n)(0).14

y1(x) = 1 − 1
2x

2 + 5
24x

4 − · · ·, y2(x) = x− 1

3
x3 +

1

6
x5 − · · · .15

4. (x2 + 1)y′′ + 3xy′ + y = 0, a = 0.16

Answer. The recurrence relation: y(n+2)(0) = −(n+ 1)2y(n)(0).17

y1(x) =
∞
∑

n=0

(−1)n 1 · 3 · · · (2n− 1)

2nn!
x2n,18

y2(x) =
∞
∑

n=0

(−1)n 2 · 4 · · ·2n
1 · 3 · 5 · · · (2n+ 1)

x2n+1.19

5. (x2 + 1)y′′ − xy′ + y = 0, a = 0.20

Answer. The recurrence relation: y(n+2)(0) = −(n− 1)2y(n)(0).21
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y1(x) = 1 +
∞
∑

n=1

(−1)n 12 · 32 · · · (2n− 3)2

(2n)!
x2n, y2(x) = x.1

6. y′′ − xy = 0, a = 2.2

Answer. y1(x) = 1 + (x− 2)2 +
1

3
(x− 2)3 +

1

6
(x− 2)4 +

1

15
(x− 2)5 · · · ,3

y2(x) = (x− 2) +
1

3
(x− 2)3 +

1

12
(x− 2)4 +

1

30
(x− 2)5 + · · · .4

7. y′′ − xy′ − y = 0, a = 1.5

Answer. y1(x) = 1 +
1

2
(x− 1)2 +

1

6
(x− 1)3 +

1

6
(x− 1)4 + · · · ,6

y2(x) = (x− 1) +
1

2
(x− 1)2 +

1

2
(x− 1)3 +

1

4
(x− 1)4 + · · · .7

8. y′′ + (x+ 2)y′ + y = 0, a = −2.8

Answer. The recurrence relation: y(n+2)(−2) = −(n + 1)y(n)(−2). y1(x) =9

∞
∑

n=0

(−1)n 1

2nn!
(x+ 2)2n, y2(x) =

∞
∑

n=0

(−1)n 1

1 · 3 · 5 · · · (2n+ 1)
(x+ 2)2n+1.10

9. y′′ + (x+ 1)y′ − y = 0.11

Answer. The recurrence relation: y(n+2)(−1) = −(n− 1)y(n)(−1).12

y1(x) = 1 +
∞
∑

n=1

(−1)n−1 1

2nn!(2n− 1)
(x+ 1)2n, y2(x) = x+ 1.13

10. xy′′ + y = 0, a = −2.14

Answer. The recurrence relation: y(n+2)(−2) =
1

2

[

ny(n+1)(−2) + y(n)(−2)
]

.15

y1(x) = 1 +
1

4
(x+ 2)2 +

1

24
(x+ 2)3 + · · ·,16

17

y2(x) = x+ 2 +
1

12
(x+ 2)3 +

1

48
(x+ 2)4 + · · ·.18

11. y′′ + x2y = 0, a = 1.19

Hint: Before using the recurrence relation20

y(n+2)(1) = −n(n− 1)y(n−2)(1)− 2ny(n−1)(1)− y(n)(1) ,

calculate from the equation y′′(1) = −y(1), and y′′′(1) = −2y(1)− y′(1).21

Answer. y1(x) = 1 − 1

2
(x− 1)2 − 1

3
(x− 1)3 − 1

24
(x− 1)4 + · · ·,22

y2(x) = x− 1− 1

6
(x− 1)3 − 1

6
(x− 1)4 + · · ·.23
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IV. 1. Find the solution of the initial value problem, using power series1

centered at 02

y′′ − xy′ + 2y = 0, y(0) = 1, y′(0) = 2 .

Answer. y = 1 + 2x− x2 − 1

3
x3 + · · · .3

2. Find the solution of the initial value problem, using power series centered4

at 25

y′′ − 2xy = 0, y(2) = 1, y′(2) = 0 .

Answer. y = 1 + 2(x− 2)2 +
1

3
(x− 2)3 +

2

3
(x− 2)4 + · · · .6

3. Find the solution of the initial value problem, using power series centered7

at −18

y′′ + xy = 0, y(−1) = 2, y′(−1) = −3 .

Answer. y = 2− 3(x+ 1) + (x+ 1)2 − 5

6
(x+ 1)3 + · · · .9

4. Find the solution of the initial value problem, using power series centered10

at 011

(1 + x2)y′′ − 2xy′ + 2y = 0 , y(0) = 1, y′(0) = −2 .

Hint: Differentiate the equation to conclude that y′′′(x) = 0 for all x, so12

that y(x) is a quadratic polynomial. Answer. y = 1 − 2x− x2.13

V. Find one series solution of the following mildly singular equations, cen-14

tered at a = 015

1. 2xy′′ + y′ + xy = 0.16

Answer. y = 1− x2

2 · 3 +
x4

2 · 4 · 3 · 7 − x6

2 · 4 · 6 · 3 · 7 · 11
+ · · ·17

= 1 +
∞
∑

n=1

(−1)nx2n

2nn! 3 · 7 · 11 · · ·(4n− 1)
.18

2. xy′′ + y′ − y = 0.19

Answer. y =
∞
∑

n=0

xn

(n!)2
.20

3. xy′′ + 2y′ + y = 0.21

Answer. y =
∞
∑

n=0

(−1)n

n!(n+ 1)!
xn.22
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4. xy′′ + y′ − 2xy = 0.1

Answer. y = 1 +
∞
∑

n=1

1

2n(n!)2
x2n =

∞
∑

n=0

1

2n(n!)2
x2n.2

5. xy′′ + y′ + xy = 0.3

Answer. y =
∞
∑

n=0

(−1)n 1

22n(n!)2
x2n.4

VI. 1. Find one series solution in the form y =
∞
∑

n=5

anx
n of the following5

mildly singular equation, centered at a = 06

xy′′ − 4y′ + y = 0 .

Answer. y = x5 + 120
∞
∑

n=6

(−1)n−5

n!(n− 5)!
xn = 120

∞
∑

n=5

(−1)n−5

n!(n− 5)!
xn.7

2. Find one series solution of the following mildly singular equation, centered8

at a = 09

xy′′ − 2y′ − 2y = 0 .

Hint: Look for a solution in the form y =
∞
∑

n=3

anx
n, starting with a3 = 1.10

Answer. y = x3 + 6
∞
∑

n=4

2n−3

n!(n− 3)!
xn = 6

∞
∑

n=3

2n−3

n!(n− 3)!
xn.11

3. Find one series solution of the following mildly singular equation, centered12

at a = 013

xy′′ + y = 0 .

Hint: Look for a solution in the form y =
∞
∑

n=1

anx
n, starting with a1 = 1.14

Answer. y = x+
∞
∑

n=2

(−1)n−1

n!(n− 1)!
xn =

∞
∑

n=1

(−1)n−1

n!(n− 1)!
xn.15

4. Recall that Bessel’s function J0(x) is a solution of (for x > 0)16

xy′′ + y′ + xy = 0 .
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Show that the “energy” E(x) = y′2(x) + y2(x) is a decreasing function.1

Conclude that each maximum value of J0(x) is greater than the absolute2

value of the minimum value that follows it, which in turn is larger than the3

next maximum value, and so on (see the graph of J0(x)).4

5. Show that the absolute value of the slope of the tangent line decreases at5

each consecutive root of J0(x).6

Hint: Use the energy function E(x) from the preceding problem.7

VII. We assume that a = 0 for all problems of this set.8

1. Verify that the Bessel equation of order 1/29

x2y′′ + xy′ + (x2 − 1/4)y = 0

has a moderate singularity at zero. Write down the characteristic equation,10

and find its roots.11

(i) Corresponding to the root r = 1/2, perform a change of variables y =12

x1/2v, and obtain a mildly singular equation for v(x). Solve that equation,13

to obtain one of the solutions of the Bessel equation.14

Answer. y = x1/2

[

1 +
∞
∑

n=1

(−1)nx2n

(2n+ 1)!

]

= x−1/2

[

x+
∞
∑

n=1

(−1)nx2n+1

(2n+ 1)!

]

=15

x−1/2 sinx.16

(ii) Corresponding to the root r = −1/2, perform a change of variables17

y = x−1/2v, and obtain a mildly singular equation for v(x). Solve that18

equation, to obtain the second solution of the Bessel equation.19

Answer. y = x−1/2 cosx.20

(iii) Find the general solution.21

Answer. y = c1x
−1/2 sinx+ c2x

−1/2 cos x.22

2. Find the fundamental solution set of the Bessel equation of order 3/223

x2y′′ + xy′ + (x2 − 9/4)y = 0 .

Answer. y1 = x
3
2

[

1 +
∞
∑

n=1

(−1)n x2n

n! 22n (1 + 3
2 )(2 + 3

2 ) · · · (n+ 3
2 )

]

,24

y2 = x−
3
2

[

1 +
∞
∑

n=1

(−1)n x2n

n! 22n (1− 3
2)(2− 3

2 ) · · ·(n− 3
2)

]

.25
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3. Find the fundamental solution set of1

2x2y′′ + 3xy′ − (1 + x)y = 0 .

Answer. y1 = x
1
2

[

1 +
∞
∑

n=1

xn

n! 2n (1 + 3
2 )(2 + 3

2 ) · · · (n+ 3
2 )

]

,2

y2 = x−1

[

1− x−
∞
∑

n=2

xn

n! 1 · 3 · · ·(2n− 3)

]

.3

4. Find the fundamental solution set of4

9x2y′′ + (2 − x2)y = 0 .

Answer. y1 = x
1
3

(

1 +
x2

5 · 6 +
x4

5 · 6 · 11 · 12
+ · · ·

)

,5

y2 = x
2
3

(

1 +
x2

6 · 7 +
x4

6 · 7 · 12 · 13
+ · · ·

)

.6

5. Find the fundamental solution set of7

9x2y′′ + (2 + x)y = 0 .

6. Find the fundamental solution set of8

2x2y′′ + 3xy′ − (x2 + 1)y = 0 .

Answer. y1 = x
1
2

(

1 +
x2

14
+

x4

616
+ · · ·

)

, y2 = x−1

(

1 +
x2

2
+
x4

40
+ · · ·

)

.9



Chapter 41

The Laplace Transform2

The method of Laplace Transform is prominent in engineering, and in fact3

it was developed by an English electrical engineer - Oliver Heaviside (1850-4

1925). We present this method in great detail, show its many uses, and make5

an application to the historic tautochrone problem. The chapter concludes6

with a brief presentation of distribution theory.7

4.1 The Laplace Transform And Its Inverse8

4.1.1 Review of Improper Integrals9

The mechanics of computing the integrals, involving infinite limits, is similar10

to that for integrals with finite end-points. For example,11

∫ ∞

0
e−2t dt = −1

2
e−2t |∞

0
=

1

2
.

Here we did not set the upper limit t = ∞, but rather computed the limit12

as t → ∞ (the limit is zero). This is an example of a convergent integral.13

On the other hand, the integral14

∫ ∞

1

1

t
dt = ln t |∞

1

is divergent, because ln t has an infinite limit as t → ∞. When computing15

improper integrals, we use the same techniques of integration, in essentially16

the same way. For example17

∫ ∞

0
te−2t dt =

[

−1

2
te−2t − 1

4
e−2t

]

|∞
0

=
1

4
.

173
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Here the antiderivative is computed by the guess-and-check method (or by1

integration by parts). The limit at infinity is computed by L’Hospital’s rule2

to be zero.3

4.1.2 The Laplace Transform4

Let the function f(t) be defined on the interval [0,∞). Let s > 0 be a5

positive parameter. We define the Laplace transform of f(t) as6

F (s) =

∫ ∞

0
e−stf(t) dt = L(f(t)),

provided that this integral converges. It is customary to use the correspond-7

ing capital letters to denote the Laplace transform (so that the Laplace8

transform of g(t) is denoted by G(s), of h(t) by H(s), etc.). We also use the9

operator notation for the Laplace transform: L(f(t)).10

We now build up a collection of Laplace transforms.11

L(1) =

∫ ∞

0
e−st dt = −e

−st

s
|∞
0

=
1

s
,

12

L(t) =

∫ ∞

0
e−stt dt =

[

−e
−stt

s
− e−st

s2

]

|∞
0

=
1

s2
.

Using integration by parts (n is a positive integer)13

L(tn) =

∫ ∞

0
e−sttn dt = −e

−sttn

s
|∞
0

+
n

s

∫ ∞

0
e−sttn−1 dt =

n

s
L(tn−1) .

(Here limt→∞ e−sttn = limt→∞ tn

est = 0, after n applications of L’Hospital’s14

rule.) With this recurrence relation, we now compute L(t2) =
2

s
L(t) =15

2

s
· 1

s2
=

2

s3
, L(t3) =

3

s
L(t2) =

3!

s4
, and in general16

L(tn) =
n!

sn+1
.

The next class of functions are the exponentials eat, where a is some number:17

L(eat) =

∫ ∞

0
e−steat dt = − 1

s − a
e−(s−a)t |∞

0
=

1

s − a
, provided that s > a.

Here we had to assume that s > a, to obtain a convergent integral.18
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Next we observe that for any constants c1 and c21

L(c1f(t) + c2g(t)) = c1F (s) + c2G(s),(1.1)

because a similar property holds for integrals (and the Laplace transform2

is an integral). This formula expands considerably the set of functions for3

which one can write down the Laplace transform. For example, with a > 0,4

L(cosh at) = L(
1

2
eat +

1

2
e−at) =

1

2

1

s − a
+

1

2

1

s + a
=

s

s2 − a2
, for s > a .

Similarly,5

L(sinhat) =
a

s2 − a2
, for s > a .

The formula (1.1) holds with an arbitrary number of terms, and it allows to6

compute the Laplace transform of any polynomial. For example,7

L
(

2t5 − 3t2 + 5
)

= 2L(t5) − 3L(t2) + 5L(1) =
240

s6
− 6

s3
+

5

s
.

Compute8

L(cosat) =

∫ ∞

0
e−st cosat dt =

e−st(a sinat− s cosat)

s2 + a2
|∞
0

=
s

s2 + a2
.

(One guesses that the antiderivative of e−st cosat is of the formAe−st cosat+9

Be−st sin at, and then evaluates the constants A and B by differentiation.)10

Similarly,11

L(sinat) =

∫ ∞

0
e−st sinat dt = −e

−st(s sinat+ a cosat)

s2 + a2
|∞
0

=
a

s2 + a2
.

For example,12

L
(

cos2 3t
)

= L
(

1

2
+

1

2
cos 6t

)

=
1

2s
+

s

2(s2 + 36)
.

If c is some number, then13

L(ectf(t)) =

∫ ∞

0
e−stectf(t) dt =

∫ ∞

0
e−(s−c)tf(t) dt = F (s− c) .

We derived the shift formula:14

L(ectf(t)) = F (s− c) .(1.2)
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For example,1

L
(

e5t sin 3t
)

=
3

(s− 5)2 + 9
.

(Start with L (sin 3t) = 3
s2+9 , and then perform the shift s → s − 5, to2

account for the extra exponential factor e5t.) Another example:3

L
(

e−2t cosh3t
)

=
s+ 2

(s+ 2)2 − 9
.

In the last example c = −2, so that s− c = s+ 2. Similarly,4

L
(

ett5
)

=
5!

(s − 1)6
.

4.1.3 The Inverse Laplace Transform5

This is just going from F (s) back to f(t). We denote it by L−1 (F (s)) = f(t).6

We have7

L−1 (c1F (s) + c2G(s)) = c1f(t) + c2g(t) ,

corresponding to the formula (1.1), read backward. Each of the formulas for8

the Laplace Transform leads to the corresponding formula for its inverse:9

L−1
(

1

sn+1

)

=
tn

n!
,

10

L−1
(

s

s2 + a2

)

= cosat ,

11

L−1
(

1

s2 + a2

)

=
1

a
sinat ,

12

L−1
(

1

s− a

)

= eat ,

and so on. For example,13

L−1
(

1

4s2 + 1

)

=
1

4
L−1

(

1

s2 + 1
4

)

=
1

2
sin

t

2
.

To compute L−1, one often uses partial fractions, as well as the inverse14

of the shift formula (1.2)15

L−1(F (s− c)) = ectf(t) ,(1.3)
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which is also called the shift formula.1

Example 1 Find L−1
(

3s− 5

s2 + 4

)

.2

Breaking this fraction into a difference of two fractions, obtain3

L−1
(

3s− 5

s2 + 4

)

= 3L−1
(

s

s2 + 4

)

− 5L−1
(

1

s2 + 4

)

= 3 cos2t− 5

2
sin 2t .

4

Example 2 Find L−1
(

2

(s− 5)4

)

.5

We recognize that a shift by 5 is performed in the function
2

s4
. Begin by6

inverting this function, L−1
(

2

s4

)

=
t3

3
, and then account for the shift,7

according to the shift formula (1.3):8

L−1
(

2

(s− 5)4

)

= e5t t
3

3
.

9

Example 3 Find L−1
(

s + 7

s2 − s− 6

)

.10

Factor the denominator, and use partial fractions11

s+ 7

s2 − s − 6
=

s + 7

(s− 3)(s+ 2)
=

2

s− 3
− 1

s+ 2
,

which gives12

L−1
(

s+ 7

s2 − s − 6

)

= 2e3t − e−2t .

13

The method of partial fractions is reviewed in the Appendix.14

Example 4 Find L−1

(

s3 + 2s2 − s + 12

s4 + 10s2 + 9

)

.15

Again, we factor the denominator, and use partial fractions16

s3 + 2s2 − s+ 12

s4 + 10s2 + 9
=
s3 + 2s2 − s+ 12

(s2 + 1)(s2 + 9)
=

−1
4s+ 5

4

s2 + 1
+

5
4s + 3

4

s2 + 9
,

which leads to17

L−1

(

s3 + 2s2 − s+ 12

s4 + 10s2 + 9

)

=
1

4
(− cos t+ 5 sin t+ 5 cos3t+ sin3t) .
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Example 5 Find L−1
(

2s− 1

s2 + 2s+ 5

)

.1

One cannot factor the denominator, so we complete the square2

2s− 1

s2 + 2s+ 5
=

2s − 1

(s+ 1)2 + 4
=

2(s+ 1)− 3

(s+ 1)2 + 4
,

and then adjust the numerator, so that it involves the same shift as in the3

denominator. Without the shift, we have the function
2s− 3

s2 + 4
, with the4

inverse Laplace transform equal to 2 cos 2t − 3
2 sin 2t. By the shift formula5

(1.3), obtain6

L−1
(

2s− 1

s2 + 2s+ 5

)

= 2e−t cos 2t− 3

2
e−t sin 2t .

4.2 Solving The Initial Value Problems7

Integrating by parts,8

L(y′(t)) =

∫ ∞

0
e−sty′(t) dt =

[

e−sty(t)
]

|∞
0

+s

∫ ∞

0
e−sty(t) dt .

Let us assume that y(t) does not grow too fast, as t → ∞, so that |y(t)| ≤9

beat, for some positive constants a and b. If we now require that s > a, then10

the limit as t→ ∞ is zero, while the lower limit gives −y(0). We conclude11

L(y′(t)) = −y(0) + sY (s) .(2.1)

This formula shows that the Laplace transform of the derivative of y(t) is12

obtained from the Laplace transform of y(t) by a simple algebraic operation.13

To compute the Laplace transform of y′′(t), we use the formula (2.1) twice14

L(y′′(t)) = L((y′(t))′) = −y′(0)+sL(y′(t)) = −y′(0)−sy(0)+s2Y (s) .(2.2)

In general,15

L(y(n)(t)) = −y(n−1)(0) − sy(n−2)(0)− · · · − sn−1y(0) + snY (s) .(2.3)

Example 1 Solve y′′ + 3y′ + 2y = 0, y(0) = −1, y′(0) = 4.16

Apply the Laplace transform to both sides of the equation. Using the lin-17

earity of the Laplace transform (the formula (1.1)), and that L(0) = 0,18

obtain19

L(y′′) + 3L(y′) + 2L(y) = 0 .
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By the formulas (2.1), (2.2), and our initial conditions (L (y(t)) = Y (s)):1

−y′(0)− sy(0) + s2Y (s) + 3 (−y(0) + sY (s)) + 2Y (s) = 0 ,
2

−4 + s + s2Y (s) + 3 (1 + sY (s)) + 2Y (s) = 0 ,
3

(

s2 + 3s+ 2
)

Y (s) + s − 1 = 0 .

Solve for Y (s):4

Y (s) =
1− s

s2 + 3s + 2
.

To get the solution, it remains to find the inverse Laplace transform y(t) =5

L−1(Y (s)). We factor the denominator, and use partial fractions6

1 − s

s2 + 3s+ 2
=

1 − s

(s+ 1)(s+ 2)
=

2

s+ 1
− 3

s + 2
.

Answer: y(t) = 2e−t − 3e−2t.7

Of course, this problem could also be solved without using the Laplace8

transform. The Laplace transform gives an alternative solution method, it9

is more convenient for discontinuous forcing functions, and in addition, it10

provides a tool that can be used in more involved situations, for example,11

to solve partial differential equations.12

Example 2 Solve y′′ − 4y′ + 5y = 0, y(0) = 1, y′(0) = −2.13

Apply the Laplace transform to both sides of the equation. Using the initial14

conditions, obtain15

2 − s+ s2Y (s) − 4 (−1 + sY (s)) + 5Y (s) = 0 ,
16

Y (s) =
s− 6

s2 − 4s + 5
.

To invert the Laplace transform, we complete the square in the denominator,17

and then produce the same shift in the numerator:18

Y (s) =
s− 6

s2 − 4s+ 5
=

(s − 2) − 4

(s− 2)2 + 1
.

Using the shift formula, leads to the answer: y(t) = e2t cos t− 4e2t sin t.19

Example 3 Solve20

y′′ + ω2y = 5 cos2t, ω 6= 2,

y(0) = 1, y′(0) = 0 .
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This problem models a spring, with the natural frequency ω, subjected to1

an external force of frequency 2. Applying the Laplace transform to both2

sides of the equation, and using the initial conditions, we get3

−s + s2Y (s) + ω2Y (s) =
5s

s2 + 4
,

4

Y (s) =
5s

(s2 + 4)(s2 + ω2)
+

s

s2 + ω2
.

The second term is easy to invert. To find the inverse Laplace transform of5

the first term, we use the guess-and-check method (or partial fractions)6

s

(s2 + 4)(s2 + ω2)
=

1

ω2 − 4

[

s

s2 + 4
− s

s2 + ω2

]

.

Answer: y(t) =
5

ω2 − 4
(cos 2t− cosωt) + cosωt.7

When ω approaches 2, the amplitude of the oscillations becomes large.8

To treat the case of resonance, when ω = 2, we need one more formula.9

Differentiate in s both sides of the formula10

F (s) =

∫ ∞

0
e−stf(t) dt ,

to obtain11

F ′(s) = −
∫ ∞

0
e−sttf(t) dt = −L(tf(t)) ,

or12

L(tf(t)) = −F ′(s) .

For example,13

L(t sin 2t) = − d

ds
L(sin 2t) = − d

ds

(

2

s2 + 4

)

=
4s

(s2 + 4)2
.(2.4)

Example 4 Solve (a case of resonance)14

y′′ + 4y = 5 cos 2t,

y(0) = 0, y′(0) = 0 .

Using the Laplace transform, obtain15

s2Y (s) + 4Y (s) =
5s

s2 + 4
,
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1

Y (s) =
5s

(s2 + 4)2
.

Then, using (2.4), y(t) =
5

4
t sin 2t. We see that the amplitude of oscillations2

(which is equal to 5
4 t) tends to infinity with time.3

Example 5 Solve the initial value problem for the fourth order equation4

y′′′′ − y = 0,

y(0) = 1, y′(0) = 0, y′′(0) = 1, y′′′(0) = 0 .

Applying the Laplace transform, using the formula (2.3), and our initial5

conditions, obtain6

−y′′′(0)− sy′′(0)− s2y′(0) − s3y(0) + s4Y (s) − Y (s) = 0 ,

7

(s4 − 1)Y (s) = s3 + s ,
8

Y (s) =
s3 + s

s4 − 1
=

s(s2 + 1)

(s2 − 1)(s2 + 1)
=

s

s2 − 1
.

We conclude that y(t) = cosh t.9

4.2.1 Step Functions10

Sometimes an external force acts only over some time interval. One uses11

step functions to model such forces. The basic step function is the Heaviside12

function uc(t), defined for any positive constant c by13

uc(t) =











0 if 0 ≤ t < c

1 if t ≥ c
.

-

6

1

c

uc(t)

t

u

The Heaviside step function uc(t)

b14
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(Oliver Heaviside, 1850 - 1925, was a self-taught English electrical engineer.)1

Using uc(t), we can build up other step functions. For example, the function2

u1(t) − u3(t) is equal to 1 for 1 ≤ t < 3, and is zero otherwise. Indeed3

u1(t) − u3(t) =











0− 0 = 0 , if 0 ≤ t < 1
1− 0 = 1 , if 1 ≤ t < 3

1− 1 = 0 , if t ≥ 3

.

-

6

1

1 3

u1(t) − u3(t)

t

u

The graph of u1(t) − u3(t)

b
b

4

The function [u1(t) − u3(t)] t
2 models a force that is equal to t2 for 1 ≤5

t < 3, and is zero for other t.6

Compute:7

L(uc(t)) =

∫ ∞

0
e−stuc(t) dt =

∫ ∞

c
e−st dt =

e−cs

s
.

Correspondingly,8

L−1

(

e−cs

s

)

= uc(t) .

For example, if f(t) is equal to 3 for 2 ≤ t < 7, and is equal to zero for all9

other t ≥ 0, then f(t) = 3 [u2(t) − u7(t)], and10

L(f(t)) = 3L(u2(t))− 3L(u7(t)) = 3
e−2s

s
− 3

e−7s

s
.

We compute the Laplace transform of the following “shifted” function,11

which “begins” at t = c (it is zero for 0 < t < c):12

L (uc(t)f(t− c)) =

∫ ∞

0
e−stuc(t)f(t− c) dt =

∫ ∞

c
e−stf(t− c) dt .

In the last integral we change the variable t→ z, by setting t− c = z. Then13

dt = dz, and the integral becomes14

∫ ∞

0
e−s(c+z)f(z) dz = e−cs

∫ ∞

0
e−szf(z) dz = e−csF (s) .
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The result is another pair of shift formulas:1

L (uc(t)f(t− c)) = e−csF (s) ,(2.5)

2

L−1 (e−csF (s)
)

= uc(t)f(t− c) .(2.6)

-

6

t

y

-

6

t

y

c

y = f(t) y = uc(t)f(t− c)

b
The function y = uc(t)f(t− c)

3

For example,4

L (u1(t)(t− 1)) = e−sL(t) =
e−s

s2
.

Using that L−1
(

1
s2+1

)

= sin t, obtain5

L−1
(

e−πs 1

s2 + 1

)

= uπ(t) sin(t− π) = −uπ(t) sin t .

Example 1 Solve6

y′′ + 9y = u2(t) − u4(t), y(0) = 1, y′(0) = 0 .

Here the forcing term is equal to 1, for 2 ≤ t < 4, and is zero for other t.7

Taking the Laplace transform, then solving for Y (s), we have8

s2Y (s) − s + 9Y (s) =
e−2s

s
− e−4s

s
,

9

Y (s) =
s

s2 + 9
+ e−2s 1

s(s2 + 9)
− e−4s 1

s(s2 + 9)
.

Using the guess-and-check method (or partial fractions)10

1

s(s2 + 9)
=

1

9

[

1

s
− s

s2 + 9

]

,
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and therefore1

L−1
(

1

s(s2 + 9)

)

=
1

9
− 1

9
cos 3t .

Using (2.6), we conclude2

y(t) = cos 3t+ u2(t)

[

1

9
− 1

9
cos 3(t− 2)

]

− u4(t)

[

1

9
− 1

9
cos 3(t− 4)

]

.

Observe that the solution undergoes jumps in its behavior at t = 2, and3

at t = 4, which corresponds to the force being switched on at t = 2, and4

switched off at t = 4.5

Example 2 Solve6

y′′ + 4y = g(t), y(0) = 0, y′(0) = 0 ,

where g(t) is the ramp function:7

g(t) =

{

t if 0 ≤ t < 1

1 if t ≥ 1
.

Express8

g(t) = t (1− u1(t)) + u1(t) = t− u1(t)(t− 1) ,

so that by the shift formula (2.5) its Laplace transform is9

G(s) =
1

s2
− e−s 1

s2
.

Take the Laplace transform of the equation:10

s2Y (s) + 4Y (s) =
1

s2
− e−s 1

s2
,

11

Y (s) =
1

s2(s2 + 4)
− e−s 1

s2(s2 + 4)
=

1/4

s2
− 1/4

s2 + 4
− e−s

[

1/4

s2
− 1/4

s2 + 4

]

.

Using the shift formula (2.6), we conclude that12

y(t) =
1

4
t− 1

8
sin 2t− u1(t)

[

1

4
(t− 1)− 1

8
sin 2(t− 1)

]

.

-

6

1

�
�

�
�

1

y = g(t)

t

y

The ramp function y = g(t)

13
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4.3 The Delta Function and Impulse Forces1

Imagine a rod so thin that we may consider it to be one dimensional and so2

long that we assume it to extend for −∞ < t <∞, along the t axis. Assume3

that the function ρ(t) gives the density of the rod (weight per unit length).4

If we subdivide the interval (−N,N ), for some N > 0, using the points t1,5

t2, . . . , tn, at a distance ∆t = 2N
n apart, then the weight of the piece i can6

be approximated by ρ(ti)∆t, and
n
∑

i=1

ρ(ti)∆t gives an approximation of the7

total weight. Passing to the limit, letting ∆t → 0, and N → ∞, we get the8

exact value of the weight:9

w = lim
∆t→0

n
∑

i=1

ρ(ti)∆t =

∫ ∞

−∞
ρ(t) dt .

Assume now that the rod is moved to a new position in the (t, y) plane,10

with each point (t, 0) moved to a point (t, f(t)), where f(t) is a given func-11

tion. What is the work needed for this move? For the piece i, the work is12

approximated by f(ti)ρ(ti)∆t. The total work is then13

Work =

∫ ∞

−∞
ρ(t)f(t) dt .

Assume now that the rod has unit weight, w = 1, and the entire weight14

is pushed into a single point t = 0. The resulting distribution of weight is15

called the delta distribution or the delta function, and is denoted δ(t). In16

view of the discussion above, it has the following properties:17

(i) δ(t) = 0, for t 6= 0,18

(ii)

∫ ∞

−∞
δ(t) dt = 1 (unit weight),19

(iii)

∫ ∞

−∞
δ(t)f(t) dt = f(0).20

The last formula holds, because work is expended only to move the weight21

1 at t = 0, the distance of f(0). Observe that δ(t) is not a usual function,22

like the ones studied in calculus. (If a usual function is equal to zero, except23

at one point, its integral is zero, over any interval.) One can think of δ(t)24

as the limit of the following sequence of functions (a delta sequence)25

fε(t) =











1
2ε if −ε ≤ t ≤ ε

0 for other t

,
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as ε→ 0. (Observe that
∫∞
−∞ fε(t) dt = 1.)1

-

6

-

6

b b
fε(x)

x

y

The step function fε(x) A delta sequence

bb b b
f2(x)

f1(x)bb

f5(x)

x

y

2

For any number t0, the function δ(t− t0) gives a translation of the delta3

function, with the unit weight concentrated at t = t0. Correspondingly, its4

properties are5

(i) δ(t− t0) = 0, for t 6= t0,6

(ii)

∫ ∞

−∞
δ(t− t0) dt = 1,7

(iii)

∫ ∞

−∞
δ(t− t0)f(t) dt = f(t0).8

Using the properties (i) and (iii), we compute the Laplace transform,9

for any t0 ≥ 0,10

L (δ(t− t0)) =

∫ ∞

0
δ(t− t0)e

−st dt =

∫ ∞

−∞
δ(t− t0)e

−st dt = e−st0 .

In particular,11

L (δ(t)) = 1 .

Correspondingly,12

L−1
(

e−st0
)

= δ(t− t0), and L−1(1) = δ(t) .

For example,13

L−1
(

s+ 1

s+ 3

)

= L−1
(

1 − 2

s + 3

)

= δ(t) − 2e−3t .
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2 4 6 8
t

0.5

1.0

1.5

y

Figure 4.1: Spring’s response to an impulse force

Other physical quantities may be concentrated at a single point. In1

the following example we consider forced vibrations of a spring, with the2

external force concentrated at t = 2. We say that an external impulse force3

is applied at t = 2.4

Example Solve the initial value problem5

y′′ + 2y′ + 5y = 6 δ(t− 2), y(0) = 0, y′(0) = 0 .

Applying the Laplace transform, then solving for Y (s) and completing the6

square, obtain7

(s2 + 2s+ 5)Y (s) = 6e−2s ,
8

Y (s) =
6e−2s

s2 + 2s + 5
= e−2s 6

(s+ 1)2 + 4
.

By the shift formula L−1
(

1

(s+ 1)2 + 4

)

=
1

2
e−t sin 2t, and using the second9

shift formula (2.6), we conclude that10

y(t) = 3u2(t)e
−(t−2) sin 2(t− 2) .

Before the time t = 2, the external force is zero. Coupled with zero initial11

conditions, this leaves the spring at rest for t ≤ 2. The impulse force at t = 212

sets the spring in motion, but the vibrations quickly die down, because of13

the heavy damping; see the Figure 4.1 for the graph of y(t).14
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4.4 Convolution and the Tautochrone Curve1

The problem2

y′′ + y = 0, y(0) = 0, y′(0) = 1

has solution y = sin t. If we now add a forcing term g(t), and consider3

y′′ + y = g(t), y(0) = 0, y′(0) = 0 ,

then the solution is4

y(t) =

∫ t

0
sin(t− v)g(v) dv,(4.1)

as we saw in the section on convolution integrals. Motivated by this formula,5

we now define the concept of convolution of two functions f(t) and g(t)6

f ∗ g =

∫ t

0
f(t− v)g(v) dv .

The result is a function of t, which is also denoted as (f ∗ g) (t). The formula7

(4.1) can now be written as8

y(t) = sin t ∗ g(t) .

Another example of convolution:9

t ∗ t2 =

∫ t

0
(t− v)v2 dv = t

∫ t

0
v2 dv −

∫ t

0
v3 dv =

t4

3
− t4

4
=
t4

12
.

If you compute t2 ∗ t, the answer is the same. More generally, for any two10

continuous functions f(t) and g(t)11

g ∗ f = f ∗ g .

Indeed, making a change of variables v → u, by letting u = t−v, we express12

g ∗ f =

∫ t

0
g(t− v)f(v) dv = −

∫ 0

t
g(u)f(t− u) du

13

=

∫ t

0
f(t− u)g(u) du= f ∗ g .

It turns out that the Laplace transform of a convolution is equal to the14

product of the Laplace transforms:15

L (f ∗ g) = F (s)G(s) .
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Indeed,1

L (f ∗ g) =

∫ ∞

0
e−st

∫ t

0
f(t− v)g(v) dvdt =

∫ ∫

D
e−stf(t− v)g(v) dvdt ,

where the double integral on the right hand side is taken over the region D2

of the tv-plane, which is an infinite wedge 0 < v < t in the first quadrant.3

We now evaluate this double integral by using the reverse order of repeated4

integrations:5

∫ ∫

D
e−stf(t− v)g(v) dvdt =

∫ ∞

0
g(v)

(∫ ∞

v
e−stf(t− v) dt

)

dv .(4.2)

For the integral in the brackets, we make a change of variables t → u, by6

letting u = t− v,7

∫ ∞

v
e−stf(t− v) dt =

∫ ∞

0
e−s(v+u)f(u) du = e−svF (s) ,

and then the right hand side of (4.2) is equal to F (s)G(s).8

6

t

v

�
�

�
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�
�

�
�
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@
@
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The infinite wedge D

9

We conclude a useful formula10

L−1 (F (s)G(s)) = (f ∗ g)(t) .

For example,11

L−1

(

s2

(s2 + 4)2

)

= cos 2t ∗ cos 2t =

∫ t

0
cos 2(t− v) cos 2v dv .

Using that12

cos 2(t− v) = cos 2t cos 2v + sin2t sin 2v ,
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we conclude1

L−1

(

s2

(s2 + 4)2

)

= cos 2t

∫ t

0
cos2 2v dv + sin 2t

∫ t

0
sin 2v cos 2v dv

2

=
1

2
t cos 2t+

1

4
sin 2t .

Example Consider the vibrations of a spring at resonance3

y′′ + y = −3 cos t, y(0) = 0, y′(0) = 0 .

Taking the Laplace transform, compute4

Y (s) = −3
s

(s2 + 1)2
.

Writing Y (s) = −3 1
s2+1

· s
s2+1

, we invert it as5

y(t) = −3 sin t ∗ cos t = −3

2
t sin t ,

because6

sin t ∗ cos t =

∫ t

0
sin(t− v) cosv dv =

∫ t

0
[sin t cos v − cos t sin v] cos v dv

7

= sin t

∫ t

0
cos2 v dv − cos t

∫ t

0
sin v cos v dv

8

=
1

2
t sin t+

1

4
sin 2t sin t− 1

2
cos t sin2 t =

1

2
t sin t .

We see again that the amplitude of oscillations, which is 1
2t, tends to infinity9

with time t.10

The Tautochrone curve11

Assume that we have a curve through the origin in the first quadrant of the12

xy-plane, and a particle slides down this curve, under the influence of the13

force of gravity. The initial velocity at the starting point is assumed to be14

zero. We wish to find the curve so that the time T it takes to reach the15

bottom at (0, 0) is the same, for any starting point (x, y). This historic curve,16

called the tautochrone (which means loosely “the same time” in Latin), was17

found by Christian Huygens in 1673. He was motivated by the construction18

of a clock pendulum with the period independent of its amplitude.19
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Let (x1, v) be any intermediate position of the particle, v < y. Let1

s = f(v) be the length of the curve from (0, 0) to (x1, v). Of course, the2

length s depends also on the time t, and
ds

dt
gives the speed of the particle.3

The kinetic energy of the particle at (x1, v) is due to the decrease of its4

potential energy (m is the mass of the particle):5

1

2
m

(

ds

dt

)2

= mg(y − v) .

-

6

x

y

t
t (x, y)

(x1, v)
s

�	

The Tautochrone curve

6

By the chain rule,
ds

dt
=
ds

dv

dv

dt
= f ′(v)

dv

dt
, so that7

1

2

(

f ′(v)
dv

dt

)2

= g(y − v) ,

8

f ′(v)
dv

dt
= −

√

2g
√
y − v .

(Minus, because the function v(t) is decreasing, while f ′(v) > 0.) We sepa-9

rate the variables, and integrate10

∫ y

0

f ′(v)√
y − v

dv =

∫ T

0

√

2g dt =
√

2g T .(4.3)
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(Over the time interval (0, T ), the particle descends from v = y to v = 0.)1

To find the function f ′, we need to solve the integral equation (4.3), which2

may be written as3

y−1/2 ∗ f ′(y) =
√

2g T .(4.4)

Recall that in Problems we had the formula L
(

t−
1
2

)

=

√

π

s
, or in terms of4

the variable y5

L
(

y−
1
2

)

=

√

π

s
.(4.5)

Now apply the Laplace transform to the equation (4.4), and get6

√

π

s
L (f ′(y)) =

√

2g T
1

s
.

Solving for L (f ′(y)), gives7

L
(

f ′(y)
)

=
T

π

√

2g

√

π

s
=

√
a

√

π

s
,

where we denoted a =
T 2

π2
2g. Using (4.5) again8

f ′(y) =
√
ay−1/2 .(4.6)

We have ds =
√

dx2 + dy2, and so f ′(y) =
ds

dy
=

√

1 +

(

dx

dy

)2

. Use this9

expression in (4.6):10

√

1 +

(

dx

dy

)2

=
√
a

1√
y
.(4.7)

This is a first order differential equation. One could solve it for
dx

dy
, and11

then separate the variables. But it appears easier to use the parametric12

integration technique. To do that, we solve this equation for y13

y =
a

1 +
(

dx
dy

)2 ,(4.8)

and set14

dx

dy
=

1 + cos θ

sin θ
,(4.9)
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where θ is a parameter. Using (4.9) in (4.8), express1

y = a
sin2 θ

sin2 θ + (1 + cos θ)2
= a

sin2 θ

2 + 2 cos θ
=
a

2

1 − cos2 θ

1 + cos θ
=
a

2
(1 − cos θ) .

It follows that dy = a
2 sin θ dθ. Then from (4.9), we get2

dx =
1 + cos θ

sin θ
dy =

a

2
(1 + cos θ) dθ .

Compute x by integration, obtaining3

x =
a

2
(θ + sin θ), y =

a

2
(1− cos θ) ,

which is a parametric representation of the tautochrone. The name of this4

curve is cycloid, and it appears in many other applications.5

4.5 Distributions6

A function f(t) converts a number t into a number f(t). (Sometimes we do7

not use all real t, but restrict f(t) to a smaller domain.) Functionals convert8

functions into numbers. We shall allow only “nice” functions to be plugged9

into functionals.10

A function ϕ(t), defined on the interval (−∞,∞), is said to be of compact11

support if it is equal to zero outside of some bounded interval (a, b). Func-12

tions that are infinitely differentiable on (−∞,∞), and of compact support,13

are called test functions. We shall reserve writing ϕ(t) exclusively for test14

functions.15

Definition Distribution is a linear functional on test functions. Notation:16

(f, ϕ). (A test function ϕ(t) goes in, the number (f, ϕ) is the output. One17

usually also assumes (f, ϕ) to be continuous in ϕ, but we do not need that18

in a brief presentation.)19

Example 1 Let f(t) be any continuous function. Define the distribution20

(f, ϕ) =

∫ ∞

−∞
f(t)ϕ(t) dt .(5.10)

Convergence is not a problem here, because the integrand vanishes outside21

of some bounded interval. This functional is linear, because22

(f, c1ϕ1 + c2ϕ2) =

∫ ∞

−∞
f(t) (c1ϕ1 + c2ϕ2) dt
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1

= c1

∫ ∞

−∞
f(t)ϕ1 dt+ c2

∫ ∞

−∞
f(t)ϕ2 dt = c1(f, ϕ1) + c2(f, ϕ2) ,

for any two constants c1 and c2, and any two test functions ϕ1(t) and ϕ2(t).2

This way “usual” functions can be viewed as distributions. The formula3

(5.10) lets us consider f(t) in the sense of distributions.4

Example 2 The Delta distribution. Define5

(δ(t), ϕ) = ϕ(0) .

(Compare this with (5.10), and the intuitive formula
∫∞
−∞ δ(t)ϕ(t) dt = ϕ(0)6

from Section 4.3.) We see that in the realm of distributions the delta function7

δ(t) sits next to usual functions, as an equal member of the club.8

Assume that f(t) is a differentiable function. Viewing f ′(t) as a distri-9

bution, we have10

(f ′, ϕ) =

∫ ∞

−∞
f ′(t)ϕ(t) dt = −

∫ ∞

−∞
f(t)ϕ′(t) dt = −(f, ϕ′) ,

using integration by parts (recall that ϕ(t) is zero outside of some bounded11

interval). Motivated by this formula, we now define the derivative of any12

distribution f :13

(f ′, ϕ) = −(f, ϕ′) .

In particular,14

(δ′, ϕ) = −(δ, ϕ′) = −ϕ′(0) .

(So that δ′ is another distribution. We know how it acts on test functions.)15

Similarly, (δ′′, ϕ) = −(δ′, ϕ′) = ϕ′′(0), and in general16

(δ(n), ϕ) = (−1)nϕ(n)(0) .

We see that all distributions are infinitely differentiable! In particular, all17

continuous functions are infinitely differentiable, if we view them as distri-18

butions.19

Example 3 The Heaviside function20

H(t) =











0 if −∞ ≤ t < 0

1 if t ≥ 0
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has a jump at t = 0. Clearly, H(t) is not differentiable at t = 0. But, in the1

sense of distributions, we claim that2

H ′(t) = δ(t) .

Indeed,3

(H ′(t), ϕ) = −(H(t), ϕ′) = −
∫ ∞

0
ϕ′(t) dt = ϕ(0) = (δ(t), ϕ) .

Example 4 The function |t| is not differentiable at t = 0. But, in the4

sense of distributions,5

|t|′ = 2H(t)− 1 .

Indeed,6

(|t|′, ϕ) = −(|t|, ϕ′) = −
∫ 0

−∞
(−t)ϕ′(t) dt−

∫ ∞

0
tϕ′(t) dt .

Integrating by parts in both integrals, we continue7

(|t|′, ϕ) = −
∫ 0

−∞
ϕ(t) dt+

∫ ∞

0
ϕ(t) dt = (2H(t)− 1, ϕ) .

4.5.1 Problems8

I. Find the Laplace transform of the following functions.9

1. 5 + 2t3 − e−4t. Answer.
5

s
+

12

s4
− 1

s+ 4
.10

2. 2 sin 3t− t3. Answer.
6

s2 + 9
− 6

s4
.11

3. cosh 2t− e4t. Answer.
s

s2 − 4
− 1

s − 4
.12

4. e2(t−1). Answer.
1

e2(s− 2)
.13

5. e2t cos 3t. Answer.
s− 2

(s− 2)2 + 9
.14

6.
t3 − 3t

t
. Answer.

2

s3
− 3

s
.15

7. e−3tt4. Answer.
24

(s+ 3)5
16
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8. sin2 2t. Answer.
1

2s
− s

2(s2 + 16)
.1

9. sin 2t cos 2t. Answer.
2

s2 + 16
.2

10. sinh t cosh t. Answer.
1

s2 − 4
.3

11. |t− 2|. Answer.
2e−2s + 2s− 1

s2
.4

Hint: Split the integral into two pieces.5

12. f(t) = t for 1 < t < 3, and f(t) = 0 for all other t > 0.6

Answer. F (s) =
e−s(s+ 1)

s2
− e−3s(3s+ 1)

s2
.7

II. Find the inverse Laplace transform of the following functions.8

1.
1

s2 + 4
− 2

s3
. Answer.

1

2
sin 2t− t2.9

2.
s

s2 − 9
− 2

s + 3
. Answer. cosh3t− 2e−3t.10

3.
1

s2 + s
. Answer. 1 − e−t.11

4.
1

s2 − 3s
. Answer.

1

3
e3t − 1

3
.12

5.
1

s3 − 7s+ 6
. Answer.

1

5
e2t − 1

4
et +

1

20
e−3t.13

6.
1

s3 + s
. Answer. 1 − cos t.14

7.
1

(s2 + 1)(s2 + 4)
. Answer.

1

3
sin t− 1

6
sin 2t.15

8.
s

s4 + 5s2 + 4
. Answer.

1

3
cos t− 1

3
cos 2t.16

9.
1

s2 + 2s+ 10
. Answer.

1

3
e−t sin 3t.17

10.
1

s2 + s− 2
. Answer.

1

3
et − 1

3
e−2t.18

11.
s

s2 + s+ 1
. Answer. e−

1
2
t

[

cos

√
3

2
t− 1√

3
sin

√
3

2
t

]

.19
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12.
s− 1

s2 − s − 2
. Answer.

1

3
e2t +

2

3
e−t.1

13.
s+ 3

4s2 + 1
. Answer.

1

4
cos

t

2
+

3

2
sin

t

2
.2

14.
s

4s2 − 4s+ 5
. Answer. e

1
2
t
(

1

4
cos t+

1

8
sin t

)

.3

15.
s+ 2

s3 − 3s2 + 2s
. Answer. 1 − 3et + 2e2t.4

16.
s3 − s

s4 + 5s2 + 4
. Answer. −2

3
cos t+

5

3
cos 2t.5

17.
s2 + 2

s3 − 2s2 + 2s
. Answer. 1 + 2et sin t.6

18∗. (i) Consider
p(s)

q(s)
, where q(s) = (s − s1)(s− s2) · · · (s− sn) with some7

numbers s1, s2, . . . , sn, and p(s) is a polynomial of degree less than n. By8

the method of partial fractions9

p(s)

q(s)
=

a1

s− s1
+

a2

s − s2
+ · · ·+ an

s − sn
,(5.11)

for some numbers a1, a2, . . . , an. Show that a1 = p(s1)
q′(s1) , and derive similar10

formulas for the other ai’s.11

Hint: Multiply (5.11) by s−s1, take the limit as s→ s1, and use L’Hospital’s12

rule.13

(ii) Show that14

L−1
(

p(s)

q(s)

)

=
n
∑

i=1

p(si)

q′(si)
esit .

(iii) Calculate L−1

(

s2 + 5

(s− 1)(s− 2)(s− 3)

)

. Answer. y = 3et−9e2t+7e3t.15

16

III. Using the Laplace transform, solve the following initial value problems.17

18

1. y′′ + 3y′ + 2y = 0, y(0) = −1, y′(0) = 2. Answer. y = −e−2t.19

2. y′′ + 2y′ + 5y = 0, y(0) = 1, y′(0) = −2.20

Answer. 1
2e

−t (2 cos 2t− sin 2t).21
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3. y′′+y = sin2t, y(0) = 0, y′(0) = 1. Answer. y =
5

3
sin t−1

3
sin 2t.1

2

4. y′′ + 2y′ + 2y = et, y(0) = 0, y′(0) = 1.3

Answer. y =
1

5
et − 1

5
e−t (cos t− 3 sin t).4

5. y′′′′ − y = 0, y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = 0.5

Answer. y =
1

2
sin t+

1

2
sinh t.6

6. y′′′′ − 16y = 0, y(0) = 0, y′(0) = 2, y′′(0) = 0, y′′′(0) = 8.7

Answer. y = sinh 2t.8

7. y′′′ + 3y′′ + 2y′ = 0, y(0) = 0, y′(0) = 0, y′′(0) = −1.9

Answer. y = −1

2
− e−2t

2
+ e−t.10

8. y′′′ + 3y′′ + 3y′ + y = e−t, y(0) = 0, y′(0) = 0, y′′(0) = 0.11

Answer. y =
t3e−t

6
.12

IV.13

1. (a) Let s > 0. Show that14

∫ ∞

−∞
e−sx2

dx =

√

π

s
.

15

Hint: Denote I =

∫ ∞

−∞
e−sx2

dx. Then16

I2 =

∫ ∞

−∞
e−sx2

dx

∫ ∞

−∞
e−sy2

dy =

∫ ∞

−∞

∫ ∞

−∞
e−s(x2+y2) dA .

This is a double integral over the entire xy-plane. Evaluate it by using the17

polar coordinates, to obtain I2 = π
s .18

(b) Show that L
(

t−
1
2

)

=

√

π

s
.19

Hint: L
(

t−
1
2

)

=

∫ ∞

0
t−

1
2 e−st dt. Make a change of variables t → x, by20

letting x = t
1
2 . Then L

(

t−
1
2

)

= 2

∫ ∞

0
e−sx2

dx =

∫ ∞

−∞
e−sx2

dx =

√

π

s
.21
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2. Show that

∫ ∞

0

sinx

x
dx =

π

2
.1

Hint: Consider f(t) =

∫ ∞

0

sin tx

x
dx, and calculate its Laplace transform2

F (s) = π
2

1
s .3

3. Solve the following system of differential equations4

dx

dt
= 2x− y, x(0) = 4

5

dy

dt
= −x+ 2y, y(0) = −2 .

Answer. x(t) = et + 3e3t, y(t) = et − 3e3t.6

4. Solve the following non-homogeneous system of differential equations7

x′ = 2x− 3y + t, x(0) = 0

y′ = −2x + y, y(0) = 1 .

Answer. x(t) = e−t − 9

16
e4t +

1

16
(−7+ 4t), y(t) = e−t +

3

8
e4t +

1

8
(−3+ 4t).8

V.9

1. A function f(t) is equal to 1 for 1 ≤ t < 5, and is equal to 0 for all10

other t ≥ 0. Represent f(t) as a difference of two step functions, and find11

its Laplace transform.12

Answer. f(t) = u1(t) − u5(t), F (s) =
e−s

s
− e−5s

s
.13

2. A function g(t) is equal to 1 for 0 ≤ t < 5, and is equal to −2 for t ≥ 5.14

Represent g(t) using step functions, and find its Laplace transform.15

Answer. g(t) = 1 − 3u5(t), G(s) =
1

s
− 3

e−5s

s
.16

3. A function h(t) is equal to −2 for 0 ≤ t < 3, to 4 for 3 ≤ t < 7, and17

to zero for t ≥ 7. Represent h(t) using step functions, and find its Laplace18

transform.19

Answer. h(t) = −2 + 6u3(t) − 4u7(t), H(s) = −2

s
+ 6

e−3s

s
− 4

e−7s

s
.20

4. A function k(t) is equal to t for 0 ≤ t < 4, and to 4 for t ≥ 4. Represent21

k(t) using step functions, and find its Laplace transform.22



200 CHAPTER 4. THE LAPLACE TRANSFORM

Answer. k(t) = t (1 − u4(t)) + 4u4(t) = t− u4(t) (t− 4), K(s) =
1

s2
− e−4s

s2
,1

by using the second shift formula (2.5).2

5. Find the Laplace transform of t2−2u4(t). Answer. F (s) =
2

s3
−2

e−4s

s
.3

4

6. Sketch the graph of the function u2(t) − 2u3(t) + 4u6(t), and find its5

Laplace transform.6

7. Find the inverse Laplace transform of
1

s2

(

2e−s − 3e−4s
)

.7

Answer. 2u1(t)(t− 1)− 3u4(t)(t− 4).8

8. Find the inverse Laplace transform of e−2s 3s− 1

s2 + 4
.9

Answer. u2(t)

[

3 cos2(t− 2)− 1

2
sin 2(t− 2)

]

.10

9. Find the inverse Laplace transform of e−s 1

s2 + s− 6
.11

Answer. u1(t)

(

1

5
e2t−2 − 1

5
e−3t+3

)

.12

10. Find the inverse Laplace transform of e−
π
2
s 1

s2 + 2s+ 5
, and simplify the13

answer.14

Answer. −1

2
uπ/2(t)e

−t+π/2 sin 2t.15

11. Solve16

y′′ + y = 4u1(t) − u5(t), y(0) = 2, y′(0) = 0.

Answer. 2 cos t+ 4u1(t) [1 − cos(t− 1)]− u5(t) [1 − cos(t− 5)].17

12. Solve18

y′′ + 3y′ + 2y = u2(t), y(0) = 0, y′(0) = −1.

Answer. y(t) = e−2t − e−t + u2(t)

[

1

2
− e−(t−2) +

1

2
e−2(t−2)

]

.19

13. Solve20

y′′ + 4y = uπ(t) sin t, y(0) = −1, y′(0) = 1.

Hint: Write sin t = − sin(t− π), and use the shift formula (2.5).21

Answer. y(t) = − cos 2t+
1

2
sin 2t+ uπ(t)

(

1

3
sin t+

1

6
sin 2t

)

.22
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14. Solve1

y′′ + y = g(t), y(0) = 0, y′(0) = 0 ,

where2

g(t) =

{

t if 0 ≤ t < π
π if t ≥ π

.

Answer. y(t) = t− sin t− uπ(t) (t− π + sin t).3

VI.4

1. Show that L
(

u′c(t)
)

= L (δ(t− c)), c > 0.5

This formula shows that u′c(t) = δ(t− c).6

2. Find the Laplace transform of δ(t− 4)− 2u4(t).7

3. Find the inverse Laplace transform of
s+ 1

s+ 3
. Answer. δ(t) − 2e−3t.8

4. Find the inverse Laplace transform of
s2 + 1

s2 + 2s+ 2
.9

Answer. δ(t) − e−t(2 cos t− sin t).10

5. Solve11

y′′ + y = δ(t− π), y(0) = 0, y′(0) = 2.

Answer. y(t) = 2 sin t− uπ(t) sin t.12

6. Solve13

y′′ + 2y′ + 10y = δ(t− π), y(0) = 0, y′(0) = 0.

Answer. y(t) = −1

3
uπ(t)e−t+π sin 3t.14

7. Solve15

4y′′ + y = δ(t), y(0) = 0, y′(0) = 0.

Answer. y(t) =
1

2
sin

1

2
t.16

8. Solve17

4y′′ + 4y′ + 5y = δ(t− 2π), y(0) = 0, y′(0) = 1.

Answer. y(t) = e−
1
2
t sin t+

1

4
u2π(t) e−

1
2
(t−2π) sin t.18

9. Show that L (δ(t− t0)f(t)) = e−st0f(t0).19

10. Solve20

y′′ + 4y = δ(t− π

3
) cos t, y(0) = 0, y′(0) = 0.
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Answer. y(t) =
1

4
uπ/3(t) sin2(t− π

3
).1

VII.2

1. Show that sin t ∗ 1 = 1 − cos t. (Observe that sin t ∗ 1 6= sin t.)3

2. Show that f(t) ∗ δ(t) = f(t), for any f(t).4

(So that the delta function plays the role of unity for convolution.)5

3. Find the convolution t ∗ t. Answer.
t3

6
.6

4. Find the convolution t ∗ sinat. Answer.
at− sin at

a2
.7

5. Find the convolution cos t ∗ cos t.8

Hint: cos(t− v) = cos t cos v+ sin t sin v. Answer.
1

2
t cos t+

1

2
sin t.9

10

6. Using convolutions, find the inverse Laplace transform of the following11

functions12

(a)
1

s3(s2 + 1)
. Answer.

t2

2
∗ sin t =

t2

2
+ cos t− 1.13

(b)
s

(s+ 1)(s2 + 9)
. Answer. −e

−t

10
+

1

10
cos 3t+

3

10
sin 3t.14

(c)
s

(s2 + 1)2
. Answer.

1

2
t sin t.15

(d)
1

(s2 + 9)2
. Answer.

1

54
sin 3t− 3

54
t cos 3t.16

7. Solve the following initial value problem at resonance17

y′′ + 9y = cos 3t, y(0) = 0, y′(0) = 0.

Answer. y(t) =
1

6
t sin 3t.18

8. Solve the initial value problem with a given forcing term g(t)19

y′′ + 4y = g(t), y(0) = 0, y′(0) = 0.

Answer. y(t) =
1

2

∫ t

0
sin 2(t− v)g(v) dv.20
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9. Find f(t) given that1

L (t ∗ f(t)) =
1

s4(s2 + 1)
.

Answer. t− sin t.2

10. Find the Laplace transform of

∫ t

0
e−(t−v) cos v dv.3

Answer. L
(

e−t
)

L (cos t) =
s

(s+ 1)(s2 + 1)
.4

11. Solve the following Volterra’s integral equation5

y(t) +

∫ t

0
(t− v)y(v) dv = cos 2t .

Answer. y(t) = −1

3
cos t+

4

3
cos 2t.6

12. By using the Laplace transform, calculate t ∗ t ∗ t. Answer.
t5

5!
.7

VIII.8

1. Find the second derivative of |t| in the sense of distributions.9

Answer. 2δ(t).10

2. Find f(t), such that (n is a positive integer)11

f (n)(t) = δ(t) .

Answer. f(t) =

{

0 if t < 0
tn−1

(n−1)! if t ≥ 0
.12

3. Let f(t) =

{

t2 if t < 0
t2 + 5 if t ≥ 0

.13

Show that f ′(t) = 2t+ 5δ(t).14

Hint: f(t) = t2 + 5H(t).15

4. Consider a family of functions fε(t) =
ε

π (t2 + ε2)
, ε > 0. Show that in16

the sense of distributions17

lim
ε→0

fε(t) = δ(t) .
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One refers to fε(t) as a delta sequence. (Other delta sequences can be found1

in the book of M. Renardy and R.C. Rogers [25].)2

Hint: (fε, ϕ) =

∫ ∞

−∞

εϕ(t)

π (t2 + ε2)
dt =

∫ ∞

−∞

ϕ(εz)

π (z2 + 1)
dz3

→ ϕ(0)

∫ ∞

−∞

1

π (z2 + 1)
dz = ϕ(0) = (δ, ϕ) .

5. (i) The function K(x, t) = 1
2
√

πkt
e−

x2

4kt is known as the heat kernel (k > 04

is a constant). Show that in the sense of distributions5

lim
t→0

K(x, t) = δ(x) .

(ii) Conclude that6

lim
t→0

K(x, t) ∗ f(x) = lim
t→0

1

2
√
πkt

∫ ∞

−∞
e−

(x−y)2

4kt f(y) dy = f(x) .

(iii) Show that the function K(x, t) satisfies the heat equation7

Kt = kKxx .

(iv) Conclude that the function u(x, t) = K(x, t) ∗ f(x) satisfies8

ut = kuxx , u(x, 0) = f(x) .



Chapter 51

Linear Systems of2

Differential Equations3

We begin this chapter by solving systems of linear differential equations4

with constant coefficients, using the eigenvalues and eigenvectors of the cor-5

responding coefficient matrices. Then we study the long term properties of6

these systems, and the notion of the exponential of a matrix. We develop7

the Floquet theory for systems with periodic coefficients, and make an appli-8

cation to Massera’s theorem. We classify the pictures at the origin for 2× 29

systems, and discuss the controllability and observability of linear systems.10

5.1 The Case of Distinct Eigenvalues11

The case when the coefficient matrix has distinct eigenvalues turns out to12

be the easiest. We begin by recalling the basic notions of matrix theory.13

5.1.1 Review of Vectors and Matrices14

Recall that given two vectors15

C1 =







a1

a2

a3






, C2 =







b1
b2
b3






,
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we can add them as C1 + C2 =







a1 + b1
a2 + b2
a3 + b3






, or multiply by a constant x:1

xC1 =







xa1

xa2

xa3






. More generally, we can compute the linear combination2

x1C1 + x2C2 =







x1a1 + x2b1
x1a2 + x2b2
x1a3 + x2b3






,

for any two constants x1 and x2.3

We shall be dealing only with the square matrices, like the following 3×34

matrix5

A =







a11 a12 a13

a21 a22 a23

a31 a32 a33






.(1.1)

We shall view A as a row of column vectors A =
[

C1 C2 C3

]

, where6

C1 =







a11

a21

a31






, C2 =







a12

a22

a32






, C3 =







a13

a23

a33






.

The product of a matrix A and of a vector x =







x1

x2

x3






is defined as the7

vector8

Ax = C1x1 + C2x2 +C3x3 .

(This definition is equivalent to the more traditional one, that you might9

have seen before.) We get10

Ax =







a11x1 + a12x2 + a13x3

a21x1 + a22x2 + a23x3

a31x1 + a32x2 + a33x3






.

Two vectors C1 and C2 are called linearly dependent if one of them is a11

constant multiple of the other, so that C2 = aC1, for some number a. (The12

zero vector is linearly dependent with any other vector.) Linearly dependent13

vectors C1 and C2 go along the same line. If the vectors C1 and C2 do not14
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go along the same line, they are linearly independent. Three vectors C1, C21

and C3 are called linearly dependent if one of them is a linear combination2

of the others, e.g., if C3 = aC1 + bC2, for some numbers a, b. This means3

that C3 lies in the plane determined by C1 and C2, so that all three vectors4

lie in the same plane. If C1, C2 and C3 do not lie in the same plane, they5

are linearly independent.6

A system of 3 equations with 3 unknowns7

a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

(1.2)

can be written in the matrix form8

Ax = b ,

where A is the 3×3 matrix above, and b =







b1
b2
b3





 is the given vector of the9

right hand sides. Recall that the system (1.2) has a unique solution for any10

vector b if and only if the columns of the matrix A are linearly independent.11

(In that case, the determinant |A| 6= 0, and the inverse matrix A−1 exists.)12

5.1.2 Linear First Order Systems with Constant Coefficients13

We wish to find the functions x1(t), x2(t) and x3(t) that solve the following14

system of equations, with given constant coefficients a11, . . . , a33,15

x′1 = a11x1 + a12x2 + a13x3(1.3)

x′2 = a21x1 + a22x2 + a23x3

x′3 = a31x1 + a32x2 + a33x3 ,

subject to the given initial conditions16

x1(t0) = α, x2(t0) = β, x3(t0) = γ .

We may write this system using matrix notation:17

x′ = Ax, x(t0) = x0 ,(1.4)
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where x(t) =







x1(t)
x2(t)

x3(t)






is the unknown vector function, A is the 3 × 31

matrix (1.1) of the coefficients, and x0 =







α

β
γ






is the vector of initial2

conditions. Indeed, on the left in (1.3) we have components of the vector3

x′(t) =







x′1(t)
x′2(t)
x′3(t)






, while on the right we see the components of the vector4

Ax.5

Let us observe that given two vector functions y(t) and z(t), which are6

solutions of the system x′ = Ax, their linear combination c1y(t) + c2z(t) is7

also a solution of the same system, for any constants c1 and c2. Our system8

of differential equations is linear, because it involves only linear combinations9

of the unknown functions.10

We now search for a solution of (1.4) in the form11

x(t) = eλtξ ,(1.5)

with a constant λ, and a vector ξ, with entries independent of t. Substituting12

this into (1.4), we have13

λeλtξ = A
(

eλtξ
)

,

giving14

Aξ = λξ .

So that if λ is an eigenvalue of A, and ξ the corresponding eigenvector, then15

(1.5) gives us a solution of the problem (1.4). Observe that the same is true16

for any square n× n matrix A. Let λ1, λ2 and λ3 be the eigenvalues of our17

3 × 3 matrix A. There are several cases to consider.18

Case 1 The eigenvalues of A are real and distinct. It is known from matrix19

theory that the corresponding eigenvectors ξ1, ξ2 and ξ3 are then linearly20

independent. We know that eλ1tξ1, e
λ2tξ2 and eλ3tξ3 are solutions of our21

system (1.4), so that their linear combination22

x(t) = c1e
λ1tξ1 + c2e

λ2tξ2 + c3e
λ3tξ3(1.6)

also solves the system (1.4). We claim that (1.6) gives the general solution23

of our system, meaning that it is possible to determine the constants c1, c2,24
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and c3 to satisfy any initial conditions:1

x(t0) = c1e
λ1t0ξ1 + c2e

λ2t0ξ2 + c3e
λ3t0ξ3 = x0 .(1.7)

This is a system of three linear equations with three unknowns c1, c2, and2

c3. The matrix of this system is non-singular, because its columns, eλ1t0ξ1,3

eλ2t0ξ2 and eλ3t0ξ3, are linearly independent (observe that these columns4

are constant multiples of the linearly independent vectors ξ1, ξ2 and ξ3).5

Therefore, we can find a unique solution triple c̄1, c̄2, and c̄3 of the system6

(1.7). Then x(t) = c̄1e
λ1tξ1 + c̄2e

λ2tξ2 + c̄3e
λ3tξ3 is the desired solution of7

our initial value problem (1.4).8

Example 1 Solve the system9

x′ =

[

2 1
1 2

]

x, x(0) =

[

−1
2

]

.

10

This is a 2×2 system, so that there are only two terms in (1.6). We compute11

the eigenvalues λ1 = 1, and the corresponding eigenvector ξ1 =

[

−1
1

]

, and12

λ2 = 3, with the corresponding eigenvector ξ2 =

[

1

1

]

. The general solution13

is then14

x(t) = c1e
t

[

−1

1

]

+ c2e
3t

[

1

1

]

,

or in components15

x1(t) = −c1et + c2e
3t

x2(t) = c1e
t + c2e

3t .

Turning to the initial conditions,16

x1(0) = −c1 + c2 = −1

x2(0) = c1 + c2 = 2 .

Calculate c1 = 3/2, c2 = 1/2. Answer:17

x1(t) = −3
2e

t + 1
2e

3t

x2(t) = 3
2e

t + 1
2e

3t .
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Case 2 The eigenvalue λ1 is double, λ2 = λ1, λ3 6= λ1, however, λ1 has1

two linearly independent eigenvectors ξ1 and ξ2. Let ξ3 denote again an2

eigenvector corresponding to λ3. This vector cannot lie in the plane spanned3

by ξ1 and ξ2, and then the vectors ξ1, ξ2 and ξ3 are linearly independent.4

The general solution is given again by the formula (1.6), with λ2 replaced5

by λ1:6

x(t) = c1e
λ1tξ1 + c2e

λ1tξ2 + c3e
λ3tξ3 .

To satisfy the initial conditions, we get a linear system for c1, c2 and c37

c1e
λ1t0ξ1 + c2e

λ1t0ξ2 + c3e
λ3t0ξ3 = x0 ,

which has a unique solution, because its matrix has linearly independent8

columns. (Linearly independent eigenvectors is the key here!)9

Example 2 Solve the system10

x′ =







2 1 1
1 2 1
1 1 2






x , x(0) =







1
0

−4






.

Expanding the determinant of A− λI in the first row, we write the charac-11

teristic equation as12

(2− λ)
[

(2− λ)2 − 1
]

− (2 − λ− 1) + 1 + λ− 2 = 0 ,

13

(2 − λ)(1− λ)(3− λ) − 2(1− λ) = 0 ,
14

(1− λ) [(2 − λ)(3− λ)− 2] = 0 .

The roots are: λ1 = 1, λ2 = 1, λ3 = 4. We calculate that the double15

eigenvalue λ1 = 1 has two linearly independent eigenvectors ξ1 =







−1
0

1






16

and ξ2 =







0

−1
1






. The other eigenvalue λ3 = 4 has the corresponding17

eigenvector ξ3 =







1
1

1






. The general solution is then18

x(t) = c1e
t







−1
0

1






+ c2e

t







0
−1

1






+ c3e

4t







1
1

1






.
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Or, in components,1

x1(t) = −c1et + c3e
4t

x2(t) = −c2et + c3e
4t

x3(t) = c1e
t + c2e

t + c3e
4t .

Using the initial conditions, calculate c1 = −2, c2 = −1, and c3 = −1.2

Answer:3

x1(t) = 2et − e4t

x2(t) = et − e4t

x3(t) = −3et − e4t .

Proceeding similarly, we can solve the initial value problem (1.4) for any4

n×n matrix A, provided that all of its eigenvalues are real, and it has a full5

set of n linearly independent eigenvectors. Recall that if an n× n matrix A6

is symmetric (aij = aji, for all i and j), then all of its eigenvalues are real.7

The eigenvalues of a symmetric matrix may be repeated, but there is always8

a full set of n linearly independent eigenvectors. So that one can solve the9

initial value problem (1.4) for any system with a symmetric matrix.10

Case 3 The eigenvalue λ1 has multiplicity two (λ1 is a double root of the11

characteristic equation, λ2 = λ1), λ3 6= λ1, but λ1 has only one linearly12

independent eigenvector ξ. The eigenvalue λ1 brings in only one solution13

eλ1tξ. By analogy with the second order equations, we try teλ1tξ for the14

second solution. However, this vector function is a scalar multiple of the15

first solution, so that it is linearly dependent with it, at any t = t0. We16

modify our guess:17

x(t) = teλ1tξ + eλ1tη ,(1.8)

and choose a vector η, to obtain a second linearly independent solution.18

Substituting (1.8) into our system (1.4), and using that Aξ = λ1ξ, obtain19

eλ1tξ + λ1te
λ1tξ + λ1e

λ1tη = λ1te
λ1tξ + eλ1tAη.

Cancelling a pair of terms, and dividing by eλ1t, we simplify this to20

(A− λ1I)η = ξ .(1.9)

Even though the matrix A− λ1I is singular (its determinant is zero), it can21

be shown (using the Jordan normal form) that the linear system (1.9) always22

has a solution η, called generalized eigenvector. We see from (1.9) that η23
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is not a multiple of ξ. Using this η in (1.8), gives us the second linearly1

independent solution, corresponding to λ = λ1. (Observe that c η is not a2

generalized eigenvector for any constant c 6= 1, unlike the usual eigenvectors.3

If η is a generalized eigenvector, then so is η + cξ, for any constant c.)4

Example 3 Solve the system5

x′ =

[

1 −1
1 3

]

x .

This matrix has a double eigenvalue λ1 = λ2 = 2, and only one linearly inde-6

pendent eigenvector ξ =

[

1
−1

]

. We have one solution: x1(t) = e2t

[

1
−1

]

.7

The system (1.9) to determine the vector η =

[

η1

η2

]

takes the form8

−η1 − η2 = 1

η1 + η2 = −1 .

Discard the second equation, because it is a multiple of the first. The first9

equation has infinitely many solutions. But all we need is just one solution,10

that is not a multiple of ξ. So we set η2 = 0, which gives η1 = −1. We11

computed the second linearly independent solution:12

x2(t) = te2t

[

1
−1

]

+ e2t

[

−1
0

]

.

The general solution is then13

x(t) = c1e
2t

[

1

−1

]

+ c2

(

te2t

[

1

−1

]

+ e2t

[

−1

0

])

.

5.2 A Pair of Complex Conjugate Eigenvalues14

5.2.1 Complex Valued and Real Valued Solutions15

Recall that one differentiates complex valued functions much the same way,16

as the real ones. For example,17

d

dt
eit = ieit ,
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where i =
√
−1 is treated the same way as any other constant. Any complex1

valued function f(t) can be written in the form f(t) = u(t)+iv(t), where u(t)2

and v(t) are real valued functions. It follows by the definition of derivative3

that f ′(t) = u′(t) + iv′(t). For example, using Euler’s formula,4

d

dt
eit =

d

dt
(cos t+ i sin t) = − sin t+ i cos t = i(cos t+ i sin t) = ieit .

Any complex valued vector function x(t) can also be written as x(t) =5

u(t) + iv(t), where u(t) and v(t) are real valued vector functions. Again, we6

have x′(t) = u′(t) + iv′(t).7

If x(t) = u(t) + iv(t) is a complex valued solution of our system (1.4),8

then9

u′(t) + iv′(t) = A (u(t) + iv(t)) .

Equating the real and imaginary parts, we see that both u(t) and v(t) are10

real valued solutions of our system (1.4).11

5.2.2 The General Solution12

Assume that the matrix A has a pair of complex conjugate eigenvalues p+iq13

and p−iq. They need to contribute two linearly independent solutions. The14

eigenvector corresponding to p+ iq is complex valued, which we may write15

as ξ+ iη, where ξ and η are real valued vectors. Then x(t) = e(p+iq)t(ξ+ iη)16

is a solution of our system. To get two real valued solutions, we take the17

real and the imaginary parts of this solution. Obtain:18

x(t) = ept(cos qt+ i sin qt)(ξ + iη)

= ept(cos qt ξ − sin qt η) + iept(sin qt ξ + cos qt η) .

So that19

u(t) = ept(cos qt ξ − sin qt η) ,
20

v(t) = ept(sin qt ξ + cos qt η)

give us two real valued solutions. In case of a 2 × 2 matrix (when there are21

no other eigenvalues), the general solution is22

x(t) = c1u(t) + c2v(t) .(2.1)

(If one uses the other eigenvalue p− iq, and the corresponding eigenvector,23

the answer is the same.) We show in the exercises that one can choose the24

constants c1 and c2 to satisfy any initial condition x(t0) = x0.25
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Example 1 Solve the system1

x′ =

[

1 −2
2 1

]

x, x(0) =

[

2
1

]

.

Calculate the eigenvalues λ1 = 1 + 2i and λ2 = 1 − 2i. The eigenvector2

corresponding to λ1 is

[

i

1

]

. So that we have a complex valued solution3

e(1+2i)t

[

i
1

]

. Using Euler’s formula, rewrite it as4

et(cos 2t+ i sin 2t)

[

i
1

]

= et
[

− sin 2t
cos 2t

]

+ iet
[

cos 2t
sin 2t

]

.

The real and imaginary parts give us two linearly independent solutions, so5

that the general solution is6

x(t) = c1e
t

[

− sin 2t
cos 2t

]

+ c2e
t

[

cos 2t
sin 2t

]

.

In components7

x1(t) = −c1et sin 2t+ c2e
t cos 2t

x2(t) = c1e
t cos 2t+ c2e

t sin 2t .

From the initial conditions8

x1(0) = c2 = 2

x2(0) = c1 = 1 ,

so that c1 = 1, and c2 = 2. Answer:9

x1(t) = −et sin 2t+ 2et cos 2t

x2(t) = et cos 2t+ 2et sin 2t .

Example 2 Solve the system10

x′ =







2 −1 2
1 0 2

−2 1 −1






x .
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1

One calculates the eigenvalue λ1 = 1, and the corresponding eigenvector2






0

2
1





. One of the solutions is then et







0

2
1





. The other two eigenvalues are3

λ2 = i and λ3 = −i. The eigenvector corresponding to λ2 = i is







−1 − i
−1 − i

1






.4

giving us a complex valued solution eit







−1 − i

−1 − i
1





. We rewrite it as5

(cos t+ i sin t)







−1 − i

−1 − i
1






=







− cos t+ sin t

− cos t+ sin t
cos t






+ i







− cos t− sin t

− cos t− sin t
sin t







Taking its real and imaginary parts gives us two more linearly independent6

solutions, so that the general solution is7

x(t) = c1e
t







0

2
1






+ c2







− cos t+ sin t

− cos t+ sin t
cos t






+ c3







− cos t− sin t

− cos t− sin t
sin t






.

8

Examining the form of the solutions in all of the above cases, we see9

that if all eigenvalues of a matrix A are either negative or have negative real10

parts, then limt→∞ x(t) = 0 (all components of the vector x(t) tend to zero).11

5.2.3 Non-Homogeneous Systems12

Similarly to the case of a single equation, the general solution of a non-13

homogeneous system14

x′ = Ax+ f(t) ,

with a given vector-function f(t), is the sum of any particular solution Y (t)15

of this system and the general solution of the corresponding homogeneous16

system17

x′ = Ax .

Sometimes one can guess the form of Y (t).18
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Example 3 Solve the system1

x′ =

[

2 1
1 2

]

x+

[

e−t

0

]

.

We look for a particular solution in the form Y (t) =

[

Ae−t

Be−t

]

, and calculate2

A = −3
8 , B = 1

8 , so that Y (t) =

[

−3
8e

−t

1
8e

−t

]

. The general solution of the3

corresponding homogeneous system was found in the Example 1.4

Answer. x(t) =

[

−3
8e

−t

1
8e

−t

]

+ c1e
t

[

−1
1

]

+ c2e
3t

[

1
1

]

.5

Later on we shall develop the method of variation of parameters for6

non-homogeneous systems.7

5.3 The Exponential of a Matrix8

In matrix notation, a linear system with a square matrix A,9

x′ = Ax, x(0) = x0(3.1)

looks like a single equation. In case A and x0 are constants, the solution of10

(3.1) is11

x(t) = eAtx0 .(3.2)

In order to write the solution of our system in the form (3.2), we shall define12

the notion of the exponential of a matrix. First, we define powers of a matrix:13

A2 = A · A, A3 = A2 · A, and so on, using repeated matrix multiplications.14

Starting with the Maclauren series15

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · · =

∞
∑

n=0

xn

n!
,

we define (I is the identity matrix)16

eA = I +A +
A2

2!
+
A3

3!
+
A4

4!
+ · · · =

∞
∑

n=0

An

n!
.

So that eA is the sum of infinitely many matrices, and each entry of eA is17

an infinite series. It can be shown that all of these series are convergent for18
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any matrix A, so that we can compute eA for any square matrix A (we shall1

prove this fact for diagonalizable matrices). If O denotes a square matrix2

with all entries equal to zero, then eO = I .3

We have4

eAt = I +At+
A2t2

2!
+
A3t3

3!
+
A4t4

4!
+ · · · ,

and then5

d

dt
eAt = A+A2t+

A3t2

2!
+
A4t3

3!
+ · · · = AeAt .

We conclude by a direct substitution that the formula (3.2) gives the solution6

of the initial-value problem (3.1). (Observe that x(0) = eOx0 = x0.)7

Example 1 Let A =

[

a 0
0 b

]

, where a and b are constants. Then8

An =

[

an 0

0 bn

]

, and we have9

eA =

[

1 + a+ a2

2! + a3

3! + · · · 0

0 1 + b+ b2

2! + b3

3! + · · ·

]

=

[

ea 0
0 eb

]

.

10

Example 2 Let A =

[

0 −1
1 0

]

. Calculate: A2 = −I , A3 = −A, A4 = I .11

Then for any constant t12

eAt =

[

1 − t2/2! + t4/4! + · · · −t+ t3/3!− t5/5! + · · ·
t− t3/3! + t5/5! + · · · 1 − t2/2! + t4/4! + · · ·

]

=

[

cos t − sin t
sin t cos t

]

.

The last example lets us express the solution of the system13

x′1 = −x2, x1(0) = α(3.3)
14

x′2 = x1, x2(0) = β

in the form15

[

x1(t)
x2(t)

]

= eAt

[

α
β

]

=

[

cos t − sin t
sin t cos t

][

α
β

]

,

which is rotation of the initial vector

[

α
β

]

by the angle t, counterclockwise.16

We see that the integral curves of our system are circles in the (x1, x2) plane.17
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This makes sense, because the velocity vector

[

x′1
x′2

]

=

[

−x2

x1

]

is always1

perpendicular to the position vector

[

x1

x2

]

.2

Observe that the system (3.3) is equivalent to the equation3

x′′1 + x1 = 0 ,

modeling a harmonic oscillator.4

Recall that we can write a square matrix5

A =







a11 a12 a13

a21 a22 a23

a31 a32 a33







as a row of column vectors A = [C1 C2 C3], where C1 =







a11

a21

a31






, C2 =6







a12

a22

a32





, and C3 =







a13

a23

a33





. Then the product of the matrix A and of a7

vector x =







x1

x2

x3






is defined as the vector8

Ax = C1x1 + C2x2 +C3x3 .

If B is another 3× 3 matrix, whose columns are the vectors K1,K2 and K3,9

we define the product of the matrices A and B as follows:10

AB = A [K1 K2 K3] = [AK1 AK2 AK3] .

(This definition is equivalent to the traditional one, which is giving the ij-11

element of the product: (AB)ij =
3
∑

k=1

aikbkj.) In general, AB 6= BA.12

Let Λ be a diagonal matrix Λ =







λ1 0 0

0 λ2 0
0 0 λ3






. Compute the product13

AΛ =






A







λ1

0

0






A







0
λ2

0






A







0
0

λ3












= [λ1C1 λ2C2 λ3C3] .
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So that multiplying a matrix A from the right by a diagonal matrix Λ,1

results in the columns of A being multiplied by the corresponding entries2

of Λ. (Multiplication of a matrix A from the left by a diagonal matrix Λ,3

results in the rows of A being multiplied by the corresponding entries of Λ.)4

5

Assume now that the matrix A has three linearly independent eigenvec-6

tors E1, E2, and E3, so that AE1 = λ1E1, AE2 = λ2E2, and AE3 = λ3E37

(the eigenvalues λ1, λ2 and λ3 are not necessarily different). Form a matrix8

S = [E1 E2 E3]. Observe that S has an inverse matrix S−1. Calculate9

AS = [AE1 AE2 AE3] = [λ1E1 λ2E2 λ3E3] = S Λ .

Multiplying both sides from the left by S−1, obtain10

S−1AS = Λ .(3.4)

Similarly,11

A = S Λ S−1 .(3.5)

One refers to the formulas (3.4) and (3.5) as giving the diagonalization of the12

matrix A. We see that any matrix with a full set of three linearly indepen-13

dent eigenvectors can be diagonalized. An n×n matrix A is diagonalizable,14

if it has a complete set of n linearly independent eigenvectors. In particular,15

symmetric matrices are diagonalizable.16

If A is diagonalizable, so that the formula (3.5) holds, then A2 = AA =17

S Λ S−1 S Λ S−1 = S Λ2 S−1, and in general An = S Λn S−1. We then have18

(for any real scalar t)19

eAt =
∞
∑

n=0

Antn

n!
=

∞
∑

n=0

S Λntn S−1

n!
= S

∞
∑

n=0

Λn tn

n!
S−1 = S eΛtS−1 .

The following important theorem holds for any n × n matrix.20

Theorem 5.3.1 Assume that all eigenvalues of the matrix A are either21

negative or have negative real parts. Then all solutions of the system22

x′ = Ax

tend to zero as t→ ∞.23



220CHAPTER 5. LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

We can prove this theorem in the case when A is diagonalizable. Indeed,1

then we have2

x(t) = eAtx(0) = S eΛt S−1x(0) .

The matrix eΛt is a diagonal one, and its entries, eλ1t, eλ2t, . . . , eλnt, tend3

to zero as t→ ∞, so that x(t) → 0 as t→ ∞.4

In general, eA+B 6= eA eB. This is because AB 6= BA for matrices,5

in general. (One way to show that ex+y = ex ey is to expand all three6

exponentials in power series, and show that the series on the left is the same7

as the one on the right. In the process, we use that xy = yx for numbers.)8

But eaI+A = eaIeA, because (aI)A = A(aI) (a is any number). For example,9

if A =

[

2 −1

1 2

]

, then A = 2I +

[

0 −1

1 0

]

, and we have10

eAt = e2tIe

[

0 −t
t 0

]

= e2tI

[

cos t − sin t
sin t cos t

]

11

=

[

e2t 0
0 e2t

] [

cos t − sin t
sin t cos t

]

= e2t

[

cos t − sin t
sin t cos t

]

.

Non-Homogeneous Systems12

We shall solve the initial value problem13

x′ = Ax + f(t), x(t0) = x0 ,(3.6)

where f(t) is a given vector function, and A is a constant square matrix.14

The solution is15

x(t) = eA(t−t0)x0 + eAt
∫ t

t0

e−Asf(s) ds .(3.7)

How does one think of this formula? In case of one equation (when A is a16

number) we have an easy linear equation (with the integrating factor µ =17

e−At), for which (3.7) gives the solution. We use that d
dte

A(t−t0) = AeA(t−t0)
18

to justify this formula for matrices.19

Example 3 Solve20

x′ =

[

0 −1
1 0

]

x+

[

1
t

]

, x(0) =

[

0
3

]

.
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By (3.7)1

x(t) = eAt

[

0

3

]

+ eAt
∫ t

0
e−As

[

1

s

]

ds .

We have2

eAt =

[

cos t − sin t
sin t cos t

]

, e−As =

[

cos s sin s
− sin s cos s

]

,

3

e−As

[

1
s

]

=

[

cos s sin s
− sin s cos s

] [

1
s

]

=

[

cos s + s sin s
− sin s+ s cos s

]

.

Then4

∫ t

0
e−As

[

1
s

]

ds =

[

∫ t
0 (cos s+ s sin s) ds

∫ t
0 (− sin s+ s cos s) ds

]

=

[

−t cos t+ 2 sin t
−2 + 2 cos t+ t sin t

]

;

5

eAt
∫ t

0
e−As

[

1
s

]

ds =

[

−t+ 2 sin t
2 − 2 cos t

]

.

We conclude that6

x(t) =

[

−3 sin t
3 cos t

]

+

[

−t+ 2 sin t
2 − 2 cos t

]

=

[

−t− sin t
2 + cos t

]

,

or, in components, x1(t) = −t− sin t, x2(t) = 2 + cos t.7

An easier approach for this particular system is to convert it to a single8

equation9

x′′1 + x1 = −t, x1(0) = 0, x′1(0) = −2 ,

with the solution x1(t) = −t− sin t, and then x2 = −x′1 + 1 = 2 + cos t.10

5.3.1 Problems11

I. Solve the following systems of differential equations.12

1. x′ =

[

1 −2

2 −4

]

x. Answer. x(t) = c1e
−3t

[

1

2

]

+ c2

[

2

1

]

.13

2. x′ =

[

1 −1

2 −1

]

x. Answer. x(t) = c1

[

cos t− sin t

2 cos t

]

+c2

[

cos t+ sin t

2 sin t

]

.14

15

3. x′ =







2 1 1
1 2 1

1 1 2






x.16
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Answer. x(t) = c1e
4t







1
1
1






+ c2e

t







−1
0
1






+ c3e

t







−1
1
0






.1

4. x′ =

[

3 1
0 3

]

x. Check your answer by reducing this system to a second2

order equation for x1(t).3

Answer. x(t) = c1e
3t

[

1

0

]

+ c2e
3t

(

t

[

1

0

]

+

[

0

1

])

.4

5. x′ =







−1 0 0
0 2 1

0 0 2






x.5

Answer. x(t) = c1e
−t







1
0
0






+ c2e

2t







0
1
0






+ c3e

2t






t







0
1
0






+







0
0
1












.6

6. x′ =

[

3 1
1 3

]

x, x(0) =

[

1
−3

]

. Answer.7

x1(t) = 2e2t − e4t

x2(t) = −2e2t − e4t .

7. x′ =

[

0 1

1 0

]

x, x(0) =

[

2

1

]

. Check your answer by reducing this8

system to a second order equation for x1(t). Answer.9

x1(t) = 1
2e

−t + 3
2e

t

x2(t) = −1
2e

−t + 3
2e

t .

8. x′ =







−2 2 3

−2 3 2
−4 2 5






x, x(0) =







0

1
2






. Answer.10

x1(t) = −3et − 2e2t + 5e3t

x2(t) = −4e2t + 5e3t

x3(t) = −3et + 5e3t .
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9. x′ =







4 0 1
−2 1 0

−2 0 1






x, x(0) =







−2
5

0






. Answer.1

x1(t) = 2e2t − 4e3t

x2(t) = 5et − 4e2t + 4e3t

x3(t) = −4e2t + 4e3t .

10. x′ =







2 1 1

1 2 1
1 1 2






x, x(0) =







−2

3
2






. Answer.2

x1(t) = −3et + e4t

x2(t) = 2et + e4t

x3(t) = et + e4t .

11. x′ =







1 4 0

−4 −7 0
0 0 5






x, x(0) =







−2

6
1






. Answer.3

x1(t) = 2e−3t(−1 + 8t)

x2(t) = −2e−3t(−3 + 8t)

x3(t) = e5t .

12. x′ =

[

0 −2
2 0

]

x, x(0) =

[

−2
1

]

. Check your answer by reducing4

this system to a second order equation for x1(t). Answer.5

x1(t) = −2 cos 2t− sin 2t

x2(t) = cos 2t− 2 sin2t .

13. x′ =

[

3 −2

2 3

]

x, x(0) =

[

0

1

]

. Answer.6

x1(t) = −e3t sin 2t

x2(t) = e3t cos 2t .

14. x′ =







1 2 2
−1 1 0

0 −2 −1






x, x(0) =







−1
1

2






. Answer.7

x1(t) = − cos t+ 5 sin t
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x2(t) = −et + 2 cos t+ 3 sin t

x3(t) = et + cos t− 5 sin t .

15. x′ =







0 −3 0
3 0 4

0 −4 0






x, x(0) =







1
0

3






. Answer.1

x1(t) = 1
5 (9 cos 5t− 4)

x2(t) = 3 sin 5t

x3(t) = 3
5 (4 cos 5t+ 1) .

16. Solve the second order system2

x′′ =

[

6 2

−5 −1

]

x .

Hint: The system3

x′′ = Ax(3.8)

has a solution of the form x = eλtξ, provided that λ2 is an eigenvalue of4

A, and ξ the corresponding eigenvector. If λ1 > 0 and λ2 > 0 are the5

eigenvalues of a 2 × 2 matrix A with the corresponding eigenvectors ξ1 and6

ξ2, then the general solution of (3.8) is7

x = c1e
−
√

λ1 tξ1 + c2e
√

λ1 tξ1 + c3e
−
√

λ2 tξ2 + c4e
√

λ2 tξ2 .

Answer. x = c1e
−2t

[

−1
1

]

+ c2e
2t

[

−1
1

]

+ c3e
−t

[

−2
5

]

+ c4e
t

[

−2
5

]

.8

17. (i) Solve the second order system9

x′′ =

[

0 4
4 0

]

x .

Hint: If the matrix A has a negative eigenvalue λ = −p2, corresponding10

to an eigenvector ξ, then x = cos pt ξ and x = sinpt ξ are solutions of the11

system (3.8).12

Answer. x = c1e
−2t

[

1

1

]

+ c2e
2t

[

1

1

]

+ c3 cos 2t

[

1

−1

]

+ c4 sin 2t

[

1

−1

]

.13

14
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(ii) Verify the answer by converting this system to a single equation:1

x′′′′1 − 16x1 = 0 .

18. Solve the non-homogeneous system2

x′ =

[

0 −1

3 4

]

x+

[

e2t

−5e2t

]

.

Answer. x(t) = e2t

[

−3

7

]

+ c1e
t

[

−1

1

]

+ c2e
3t

[

−1

3

]

.3

19. Solve the non-homogeneous system4

x′ =

[

1 −1

1 1

]

x +

[

1

t

]

, x(0) =

[

4

1

]

.

Hint: Look for a particular solution in the form Y (t) =

[

At+ B

Ct+D

]

.5

Answer. x1 = − t
2 + 5et cos t− 1

2e
t sin t− 1, x2 = 1−t

2 + 1
2e

t(cos t+ 10 sin t).6

II.7

1. Show that all solutions of the system x′ =

[

−a b

−b −a

]

x, with positive8

constants a and b, satisfy9

lim
t→∞

x1(t) = 0, and lim
t→∞

x2(t) = 0 .

2. Write the equation (here b and c are constants, y = y(t))10

y′′ + by′ + cy = 0

as a system of two first order equations, by letting x1(t) = y(t), x2(t) =11

y′(t). Compute the eigenvalues for the matrix of this system. Show that12

all solutions tend to zero, as t → ∞, provided that b and c are positive13

constants.14

3. Consider the system15

x′1 = ax1 + bx2
16

x′2 = cx1 + dx2 ,

with given constants a, b, c and d. Assume that a+ d < 0 and ad− bc > 0.17

Show that all solutions tend to zero, as t → ∞ (x1(t) → 0, and x2(t) → 0,18

as t→ ∞).19
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Hint: Show that the eigenvalues for the matrix of this system are either1

negative, or have negative real parts.2

4. (i) Let A be a 3 × 3 constant matrix. Suppose that all solutions of3

x′ = Ax are bounded as t → +∞, and as t → −∞. Show that every4

solution is periodic, and there is a common period for all solutions.5

Hint: One of the eigenvalues of A must be zero, and the other two purely6

imaginary.7

(ii) Assume that a constant 3×3 matrix A is skew-symmetric, which means8

that AT = −A. Show that one of the eigenvalues of A is zero, and the other9

two are purely imaginary.10

Hint: Observe that aji = −aij , aii = 0, and then calculate the characteristic11

polynomial.12

5. Let x(t) and y(t) be two solutions of the system13

x′ = Ax ,

with an n×n matrix A. Show that 5x(t), and x(t)+y(t) are also solutions.14

Show that the same is true for c1x(t) + c2y(t), with any numbers c1 and c2.15

Are the above conclusions true if the entries of A depend on t ?16

6. (i) Suppose that p+iq is an eigenvalue of A, and ξ+iη is a corresponding17

eigenvector. Show that p − iq is also an eigenvalue of A, and ξ − iη is a18

corresponding eigenvector. (A is an n× n matrix with real entries.)19

(ii) Show that ξ and η are linearly independent. (There is no complex20

number c, such that η = c ξ.)21

Hint: Linear dependence of ξ and η would imply linear dependence of the22

eigenvectors ξ + iη and ξ − iη.23

(iii) Show that the formula (2.1) gives the general solution of the 2×2 system24

x′ = Ax, so that we can choose c1 and c2, with x(t0) = x0, for any initial25

condition.26

Hint: Decompose x0 as a linear combination of ξ and η, and then find c127

and c2.28

7. Consider the following system with a non-constant matrix29

x′ =

[

−1 + 3
2 cos2 t 1 − 3

2 cos t sin t
−1 − 3

2 cos t sin t −1 + 3
2 sin2 t

]

x .
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Show that the eigenvalues of the matrix are −1
4 ±

√
7

4 i, yet it has an un-1

bounded solution x(t) = e
t
2

[

− cos t
sin t

]

.2

This example shows that for systems with variable coefficients3

x′ = A(t)x

the assumption that the eigenvalues of A(t) are either negative or have4

negative real parts does not imply that all solutions tend to zero (not even5

if A(t) is a periodic matrix).6

Hint: To compute the eigenvalues, calculate the trace and the determinant7

of A(t).8

III.9

1. Let A =

[

0 1

0 0

]

. Show that10

eAt =

[

1 t
0 1

]

.

2. Let A =







0 1 0

0 0 1
0 0 0





. Show that11

eAt =







1 t 1
2t

2

0 1 t

0 0 1






.

3. Let A =







−3 1 0

0 −3 1
0 0 −3






. Show that12

eAt = e−3t







1 t 1
2t

2

0 1 t

0 0 1






.

4. Let A =







0 −1 0

1 0 0
0 0 2






. Show that13

eAt =







cos t − sin t 0
sin t cos t 0

0 0 e2t






.
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5. Let A =







3 −1 0
1 3 0

0 0 2






. Show that1

eAt =







e3t cos t −e3t sin t 0

e3t sin t e3t cos t 0
0 0 e2t






.

6. Let A =







0 −1 0
0 0 0
0 0 −2






. Show that2

eAt =







1 −t 0
0 1 0

0 0 e−2t






.

7. Let A =

[

0 1

1 0

]

. Show that3

eAt =

[

cosh t sinh t
sinh t cosh t

]

.

8. Consider4

J =











−2 1 0 0

0 −2 1 0
0 0 −2 1

0 0 0 −2











,

a Jordan block. Show that5

eJt = e−2t













1 t 1
2 t

2 1
3! t

3

0 1 t 1
2 t

2

0 0 1 t
0 0 0 1













.

9. Show that the series for eA converges for any diagonalizable matrix A.6

Hint: If A = SΛS−1, then eA = SeΛS−1.7

10. Show that for any square matrix A8

AeAt = eAtA .

Is it true that A2eAt = eAtA2 ?9
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11. Show that for any square matrix A, and any constants t and s1

eAteAs = eAseAt = eA(t+s) .

12. Two square matrices of the same size, A and B, are said to commute if2

AB = BA. Show that then3

eAeB = eA+B .

13. Show that for any n× n matrix A4

(

eA
)−1

= e−A .

14. Show that for any positive integer m5

(

eA
)m

= emA .

15. Let A be a square matrix. Show that all entries of eAt are non-negative6

for t ≥ 0 if and only if7

aij ≥ 0 , for all i 6= j .(3.9)

Hint: For small t, eAt ≈ I+At, so that if all entries of eAt are non-negative,8

then (3.9) holds. The same formula also shows that if (3.9) holds, then all9

entries of eAt are non-negative, if t > 0 is small. To see that the same is10

true for all t > 0, write11

eAt =
(

eA
t
m

)m
,

for any integer m > 0, and observe that the product of two matrices with12

all entries non-negative has all entries non-negative.13

16. Show that14
(

eA
)T

= eA
T
.

17. (i) Let λ be an eigenvalue of a square matrix A, corresponding to an15

eigenvector x. Show that eA has an eigenvalue eλ, corresponding to the16

same eigenvector x.17

Hint: If Ax = λx, then18

eAx =
∞
∑

k=0

Akx

k!
=

∞
∑

k=0

λk

k!
x = eλx .
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(ii) Show that there is no 2 × 2 matrix A with real entries, such that1

eA =

[

−1 0

0 −2

]

.

(iii) Show that the determinant |eA| of the matrix eA is positive, so that eA2

is non-singular.3

5.4 Floquet Theory and Massera’s Theorem4

Logs of Negative Numbers, and Logs of Matrices5

We wish to give a meaning to the natural logarithm ln(−2). We regard −26

as a complex number −2 + 0 i. Writing it in the polar form −2 = 2eiπ =7

2ei(π+2πm), where m is any integer, suggests that8

ln(−2) = ln 2 + i(π + 2πm), m = 0,±1,±2, . . . .

If z = reiθ 6= 0 is any complex number, we define9

ln z = ln r+ i(θ + 2πm), m = 0,±1,±2, . . . .

Observe that ln z is a multi-valued function.10

Given any non-singular square matrix C (so that the determinant |C| =11

detC 6= 0), it is known that one can find a square matrix B, such that12

eB = C. It is natural to write: B = lnC. For example,13

ln

[

cos t − sin t

sin t cos t

]

=

[

0 −t
t 0

]

.

In case C is a diagonal matrix, just take the logs of the diagonal entries,14

to compute lnC. If C is diagonalizable, so that C = SΛS−1, and the15

diagonal matrix Λ has non-zero entries, then lnC = S ln ΛS−1. Observe16

that the entries of lnC are complex valued, and that lnC is not unique. For17

a general matrix C, one needs the Jordan normal form to compute lnC,18

which is outside of the scope of this book.19

Linear Dependence and Independence of Vectors20

Given n-dimensional vectors x1, x2, . . . , xk, we play the following game:21

choose the numbers c1, c2, . . . , ck so that22

c1x1 + c2x2 + · · ·+ ckxk = 0 .(4.1)
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There is an easy way to “win”: take all ci = 0. We declare this way to be1

illegal (like off-side in soccer, or false start in football). If we can choose2

the constants so that at least one of them is not zero, and (4.1) holds, we3

call the vectors x1, x2, . . . , xk linearly dependent. Otherwise, if the only way4

to make (4.1) hold is by “cheating”, or by taking c1 = c2 = · · · = ck = 0,5

then the vectors are called linearly independent. Assume that the vectors6

x1, x2, . . . , xk are linearly dependent, and say c1 6= 0. Then from (4.1)7

x1 = −c2
c1
x2 − · · · − ck

c1
xk ,

so that one of the vectors is a linear combination of the others.8

Recall that if the columns of n × n matrix A are linearly independent,9

then the determinant detA 6= 0, and the inverse matrix A−1 exists. In such10

a case, the system11

Ax = b(4.2)

is solvable for any vector b (x = A−1b). In case detA = 0, the system (4.2)12

is solvable only for “lucky” b, which we describe next. Consider the system13

AT v = 0 ,(4.3)

where AT is the transpose matrix. In case detA = 0, the system (4.2) is14

solvable if and only if (b, v) = 0, where v is any solution (4.3). (Observe15

that detAT = detA = 0, so that (4.3) has non-zero solutions.) This fact is16

known as the Fredholm alternative. Here (b, v) = bTv is the scalar (inner)17

product. (The book by G. Strang [32] has more details.)18

Recall also that (Ax, y) = (x, ATy) for any square matrix A, and vectors19

x and y.20

The Fundamental Solution Matrix21

We consider systems of the form (here x = x(t) is an n-dimensional vector)22

x′ = A(t)x(4.4)

where the n× n matrix A(t) depends on t. Assume that the vectors23

x1(t), x2(t), . . . , xn(t) are linearly independent (at all t) solutions of this24

system. We use these vectors as columns of the matrix25

X(t) = [x1(t) x2(t) . . . xn(t)] .

This n × n matrix X(t) is called a fundamental solution matrix or a fun-26

damental matrix, for short. If, moreover, X(0) = I (the identity matrix),27
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we call X(t) the normalized fundamental matrix. We claim that the general1

solution of (4.4) is2

x(t) = c1x1(t) + c2x2(t) + · · ·+ cnxn(t) = X(t)c ,

where c is the column vector c = [c1 c2 . . . cn]T , and ci’s are arbitrary con-3

stants. Indeed, if y(t) is any solution of (4.4), we choose the vector c0, so4

that X(0)c0 = y(0) (or c0 = X−1(0)y(0)). Then the two solutions of (4.4),5

X(t)c0 and y(t), have the same initial values at t = 0. By the uniqueness of6

solution theorem (see the Theorem 6.1.1 below), y(t) = X(t)c0.7

Let Y (t) be another fundamental matrix Y (t) = [y1(t) y2(t) . . . yn(t)].8

Its first column y1(t) is a solution of (4.4), and so y1(t) = X(t)d1, where9

d1 is a constant n-dimensional vector. Similarly, y2(t) = X(t)d2, and so on.10

Form an n× n matrix D = [d1 d2 . . . dn], with constant entries. Then11

Y (t) = X(t)D,(4.5)

by the rules of matrix multiplication. Observe that the matrix D is non-12

singular (det(Y (t)) = det(X(t)) det(D), and det(Y (t)) 6= 0).13

Observe that any fundamental matrix X satisfies the equation (4.4), so14

that15

X ′ = A(t)X .(4.6)

Indeed, the first column on the left, which is x′1, is equal to the first column16

on the right, which is Ax1, etc.17

We now develop the variation of parameters method for the non-homogeneous18

system19

x′ = A(t)x+ f(t) .(4.7)

Since X(t)c is the general solution of the corresponding homogeneous system20

(4.4), the general solution of (4.7) has the form21

x(t) = X(t)c+ Y (t) ,

where Y (t) is any particular solution of (4.7). We search for Y (t) in the22

form x = X(t)c(t), with the appropriate vector-function c(t). Substituting23

this into (4.7), and using (4.6), we see that c(t) must satisfy24

X(t)c′(t) = f(t) ,
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so that c(t) =
∫ t
t0
X−1(s)f(s) ds, with arbitrary number t0. It follows that1

the general solution of (4.7) is given by2

x(t) = X(t)c+X(t)

∫ t

t0

X−1(s)f(s) ds .(4.8)

In case the matrix A of the system (4.4) has constant entries, one can use3

X(t) = eAt as the fundamental solution matrix, and recover the solution4

formula (3.7) above.5

If X(t) is the normalized fundamental matrix, and t0 = 0, then c = x(0),6

and (4.8) becomes7

x(t) = X(t)x(0) +X(t)

∫ t

0
X−1(s)f(s) ds .(4.9)

Periodic Systems8

We now consider n× n systems with periodic coefficients9

x′ = A(t) x, with A(t+ p) = A(t) .(4.10)

We assume that all entries of the n × n matrix A(t) are functions of the10

period p. Any solution x(t) of (4.10) satisfies this system at all times t, in11

particular at the time t+ p, so that12

x′(t+ p) = A(t+ p) x(t+ p) ,

which implies that13

x′(t+ p) = A(t) x(t+ p) .

We conclude that x(t+ p) is also a solution of (4.10). Let X(t) be a funda-14

mental matrix of (4.10), then so is X(t+ p), and by (4.5)15

X(t+ p) = X(t)D,(4.11)

with some non-singular n×nmatrixD, with constant entries. Let the matrix16

B be such that eBp = D, so that e−Bp = D−1, and B = 1
p lnD (the entries17

of B are complex numbers, in general). Define the matrix P (t) = X(t)e−Bt.18

Then X(t) = P (t)eBt. We claim that P (t+p) = P (t). Indeed, using (4.11),19

P (t+ p) = X(t+ p)e−B(t+p) = X(t)DE−BpeBt = X(t)eBt = P (t) .

We have just derived the following Floquet Theorem.20
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Theorem 5.4.1 Any fundamental matrix of the system (4.10) is of the form1

X(t) = P (t)eBt, where the matrix P (t) is p-periodic, and B is a constant2

matrix. (The entries of B and P (t) are complex numbers, in general.)3

The eigenvalues (possibly complex) of the matrix D = eBp are called4

the Floquet multipliers. Assume that ρi is a Floquet multiplier, and ci is5

a corresponding eigenvector of eBp. Consider x(t) = X(t)ci = P (t)eBtci, a6

solution of our system (4.10). It satisfies7

x(t+ p) = P (t+ p)eB(t+p)ci = P (t)eBteBpci = ρiP (t)eBtci = ρix(t) ,

so that8

x(t+ p) = ρix(t) .(4.12)

In particular, the system (4.10) has a periodic solution (satisfying x(t+p) =9

x(t)), exactly when one of the Floquet multipliers is equal to 1. (If one of10

the Floquet multipliers is equal to −1, then the system (4.10) has a solution11

of the period 2p.)12

The general solution of the periodic system (4.10) is13

x(t) = P (t)eBtc .(4.13)

The matrix P (t) is periodic, and therefore it is bounded. We see that14

x(t) → 0, as t → ∞, exactly when the eigenvalues of B are either nega-15

tive or have negative real parts. The eigenvalues λi’s of B are called the16

characteristic exponents. The Floquet multipliers ρi’s are the eigenvalues17

of eBp, so that ρi = eλip, or λi =
1

p
lnρi. It follows that if the (complex)18

modulus of all Floquet multipliers is < 1, then all characteristic exponents19

λi are either negative or have negative real parts, and then all solutions20

of the system (4.10) tend to zero, as t → ∞. On the other hand, if some21

Floquet multiplier ρi has complex modulus greater than one, then iterating22

(4.12) gives x(t+np) = ρn
i x(t), for any integer n, concluding that x(t) is an23

unbounded solution of the system (4.10).24

Returning to the formula (4.13), denote y(t) = eBtc. Then25

y′ = By .(4.14)

It follows that the change of variables x(t) → y(t), given by26

x = P (t)y ,
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transforms the periodic system (4.10) into the system (4.14) with constant1

coefficients.2

In case X(t) is the normalized fundamental matrix, D = X(p) by (4.11),3

so that4

X(t+ p) = X(t)X(p) ,

and the matrix X(p) is called the monodromy matrix.5

Mathieu’s and Hill’s equations6

Mathieu’s equation for y = y(t) has the form7

y′′ + (δ + ε cos 2t) y = 0 ,(4.15)

depending on two constant parameters δ > 0 and ε. If ε = 0, one obtains8

a harmonic oscillator which models small vibrations of pendulum attached9

to the ceiling (discussed in Chapter 2). If the support of the pendulum (or10

the ceiling itself) moves periodically in the vertical direction, one is led to11

Mathieu’s equation (4.15). We shall discuss a more general Hill’s equation12

y′′ + a(t)y = 0 ,(4.16)

with a given p-periodic function a(t), so that a(t+ p) = a(t) for all t. For13

Mathieu’s equation, p = π.14

Let y1(t) be the solution of (4.16), satisfying the initial conditions y(0) =15

1 and y′(0) = 0, and let y2(t) be the solution of (4.16), with y(0) = 0 and16

y′(0) = 1, the normalized solutions. Letting x1(t) = y(t), and x2(t) = y′(t),17

one converts Hill’s equation (4.16) into a system18

x′ = A(t)x ,(4.17)

with x(t) =

[

x1(t)
x2(t)

]

, and A(t) =

[

0 1
−a(t) 0

]

. Since A(t + p) = A(t),19

the Floquet theory applies. The matrix X(t) =

[

y1(t) y2(t)

y′1(t) y′2(t)

]

gives the20

normalized fundamental solution matrix of (4.17), and so the Floquet mul-21

tipliers are the eigenvalues ρ1 and ρ2 of the monodromy matrix D = X(p).22

The sum of the eigenvalues, ρ1 + ρ2 = trX(p) = y1(p) + y′2(p) ≡ β, a quan-23

tity which is easily computed numerically. Since trA(t) = 0, it follows by24

Liouville’s formula (presented in Problems) that25

ρ1ρ2 = |X(p)| = |X(0)| = |I | = 1 .(4.18)
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It follows that ρ1 and ρ2 are roots of the quadratic equation1

ρ2 − βρ+ 1 = 0 ,

which are ρ =
β±

√
β2−4
2 .2

Case 1. Assume that |β| > 2. The Floquet multipliers are ρ1 and ρ2 real3

and distinct, and by (4.18), one of them is greater than 1 in absolute value.4

By the Floquet theory, the system (4.17), and hence Hill’s equation has5

unbounded solutions. One says that Hill’s equation is unstable in this case.6

Case 2. Assume that |β| < 2. The Floquet multipliers ρ1 and ρ2 are7

complex and distinct, and by (4.18), both have complex modulus equal to8

one, |ρ1| = |ρ2| = 1. Since ρ2 6= ρ1, one can diagonalize X(p):9

X(p) = S

[

ρ1 0
0 ρ2

]

S−1 ,

where the entries of S and S−1 are complex constants. Any number t can10

be written in the form t = t0 +np, with some integer n and t0 ∈ [0, p). Then11

iterating the relation X(t0 + p) = X(t0)X(p), obtain12

X(t) = X(t0 + np) = X(t0)X(p)n = X(t0)S

[

ρn
1 0

0 ρn
2

]

S−1 .

Clearly, |ρn
1 | = |ρn

2 | = 1, for any n. It follows that the fundamental matrix13

X(t) has bounded entries for all t, and then all solutions of the system14

(4.17) (which are given by x(t) = X(t)c) are bounded. One says that Hill’s15

equation is stable in this case.16

Case 3. β = 2. Then ρ1 = ρ2 = 1. The system (4.17) has a p-periodic solu-17

tion. (The other solution in the fundamental set is known to be unbounded.)18

19

Case 4. β = −2. Then ρ1 = ρ2 = −1. The system (4.17) has a solution20

of period 2p. (The other solution in the fundamental set is known to be21

unbounded.)22

Massera’s Theorem23

We now consider non-homogeneous periodic systems24

x′ = A(t)x+ f(t), with A(t+ p) = A(t), f(t+ p) = f(t) ,(4.19)
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where f(t) is a given p-periodic vector function. The following spectacular1

theorem is due to the Uruguayan mathematician J.L. Massera (published in2

1950).3

Theorem 5.4.2 Assume that the system (4.19) has a bounded solution, for4

t ≥ 0. Then the system (4.19) has a p-periodic solution.5

Observe that this theorem provides a strong conclusion, with the mini-6

mum of assumptions.7

Proof: Let z(t) be a bounded solution, whose existence is assumed in8

the statement of the theorem, and let X(t) be the normalized fundamental9

matrix of x′ = A(t)x, so that by (4.9)10

z(t) = X(t)z(0) +X(t)

∫ t

0
X−1(s)f(s) ds .

In particular,11

z(p) = X(p)z(0)+ b ,

where we denoted b = X(p)
∫ p
0 X

−1(s)f(s) ds. By the periodicity of our12

system, z(t+ p) is also a solution of (4.19), which is equal to z(p) at t = 0.13

Therefore, using (4.9) again,14

z(t+ p) = X(t)z(p) +X(t)

∫ t

0
X−1(s)f(s) ds .

Then15

z(2p) = X(p)z(p) + b = X(p) (X(p)z(0) + b) + b = X2(p)z(0) +X(p)b+ b .

By induction, for any integer m > 0,16

z(mp) = Xm(p)z(0) +
m−1
∑

k=0

Xk(p)b .(4.20)

For any solution of (4.19),17

x(t) = X(t)x(0) +X(t)

∫ t

0
X−1(s)f(s) ds .

We obtain a p-periodic solution, with x(p) = x(0), provided that the initial18

vector x(0) satisfies19

(I −X(p))x(0) = b ,(4.21)
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where, as before, b = X(p)
∫ p
0 X

−1(s)f(s) ds.1

Assume, contrary to what we want to prove, that the system (4.19) has no2

p-periodic solutions. Then the system (4.21) has no solutions. This implies3

that det (I −X(p)) = 0, and then det (I −X(p))T = det (I −X(p)) = 0. It4

follows that the system5

(I −X(p))T v = 0(4.22)

has non-trivial solutions, and, by the Fredholm alternative, we can find a6

non-trivial solution v0 of (4.22), which satisfies7

(b, v0) 6= 0 .(4.23)

(Otherwise, the system (4.21) would have solutions.) From (4.22), v0 =8

X(p)Tv0, then X(p)Tv0 = X2(p)Tv0, which gives v0 = X2(p)Tv0, and in-9

ductively we get10

v0 = Xk(p)Tv0, for all positive integers k.(4.24)

We now take the scalar product of (4.20) with v0, and use (4.24):11

(z(mp), v0) = (Xm(p)z(0), v0) +
m−1
∑

k=0

(Xk(p)b, v0)

12

= (z(0), Xm(p)Tv0) +
m−1
∑

k=0

(b, Xk(p)Tv0) = (z(0), v0) +m(b, v0) → ∞ ,

as m → ∞, in view of (4.23). But z(t) is bounded (and so (z(mp), v0) is13

bounded). We have a contradiction, which implies that the system (4.19)14

has a p-periodic solution. ♦15

There is a similar Massera’s theorem that deals with second order non-16

linear equations (here x = x(t))17

x′′ + f(t, x) = 0 ,(4.25)

where the function f(x, t) is assumed to be continuous, differentiable in x,18

and p-periodic in t, so that19

f(t+ p, x) = f(t, x) , for all t and x.(4.26)

Theorem 5.4.3 In addition to (4.26), assume that all solutions of (4.25)20

continue for all t > 0, and one of the solutions, x0(t), is bounded for all21

t > 0 (so that |x0(t)| < M for some M > 0, and all t > 0). Then (4.25)22

has a p-periodic solution.23

For a proof, and an interesting historical discussion, see P. Murthy [20].24
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5.5 Solutions of Planar Systems Near the Origin1

We now describe the solution curves in the x1x2-plane, near the origin (0, 0),2

of the system3

x′ = Ax ,(5.1)

with a constant 2 × 2 matrix A =

[

a11 a12

a21 a22

]

, and x =

[

x1

x2

]

.4

If the eigenvalues of A are real and distinct, λ1 6= λ2, with the corre-5

sponding eigenvectors ξ1 and ξ2, we know that the general solution is6

x(t) = c1e
λ1tξ1 + c2e

λ2tξ2 .

We study the behavior of solutions as t→ ±∞, and distinguish between the7

following cases.8

(i) Both eigenvalues are negative, λ1 < λ2 < 0. The values of c1 and c2 are9

determined by the initial conditions. If c2 = 0, then x(t) = c1e
λ1tξ1 tends10

to the origin (0, 0) as t→ ∞, along the vector ξ1 (or −ξ1). If c2 6= 0, then11

x(t) ≈ c2e
λ2tξ2 , for large t > 0 .

The solution curves (x1(t), x2(t)) tend to the origin (0, 0) as t → ∞, and12

they are tangent to the vector ξ2. The origin is called a stable node.13
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(ii) Both eigenvalues are positive, λ1 > λ2 > 0. If c2 = 0, then x(t) =15

c1e
λ1tξ1 tends to the origin (0, 0) as t→ −∞, along the vector ξ1 (or −ξ1).16

So that solutions emerge from the origin along the vectors ±ξ1. If c2 6= 0,17

then18

x(t) ≈ c2e
λ2tξ2, as t→ −∞ .
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The solution curves (x1(t), x2(t)) emerge from the origin (0, 0), and they are1

tangent to the vector ξ2. The origin is called an unstable node.2

(iii) The eigenvalues have different sign, λ1 > 0 > λ2. In case the initial3

point lies along the vector ξ2 (so that c1 = 0), the solution curve (x1(t), x2(t))4

tends to the origin (0, 0), as t→ ∞. All other solutions (when c1 6= 0) tend5

to infinity, and they are tangent to the vector ξ1, as t → ∞. The origin is6

called a saddle . For example, if A =

[

1 0

0 −1

]

, we have λ1 = 1, λ2 = −1,7

and x1 = c1e
t, x2 = c2e

−t. Express: x2 = c2
1

et
= c2

1

x1/c1
=
c1c2
x1

. Denoting8

c = c1c2, we see that solutions are the hyperbolas x2 =
c

x1
, which form a9

saddle near the origin.10
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Turning to the case of complex eigenvalues, we begin with a special12

matrix B =

[

p q
−q p

]

, with the eigenvalues p±iq, and consider the system13

y′ = By .(5.2)

Its solutions are14

y(t) = eBt

[

c1
c2

]

= ept

[

cos qt sin qt
− sin qt cos qt

] [

c1
c2

]

.
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If p = 0, then any initial vector

[

c1
c2

]

is rotated clockwise around the origin1

(infinitely many times, as t → ∞). We say that the origin is a center. If2

p < 0, the solutions spiral into the origin. The origin is called a stable spiral.3

If p > 0, we have an unstable spiral.4

Assume now that A is a 2 × 2 matrix with complex eigenvalues p ± iq,5

q 6= 0. Let ξ = u+iv be an eigenvector corresponding to p+iq, where u and6

v are real vectors. We have A(u+iv) = (p+iq)(u+iv) = pu−qv+i(pv+qu),7

and separating the real and imaginary parts8

Au = pu− qv, and Av = qu+ pv .(5.3)

We form a 2 × 2 matrix P = [u v], which has the vectors u and v as its9

columns. Then, using (5.3)10

AP = [Au Av] = [pu− qv qu+ pv] = [u v]

[

p q
−q p

]

= PB ,

where B is the special matrix considered above. We now make a change of11

variables x = Py, transforming (5.1) to12

Py′ = APy = PBy ,

and then to the system (5.2), that we have analyzed above (P−1, the inverse13

of P exists, because the vectors u and v are linearly independent, which is14

justified in the exercises). We conclude that the origin is a center if p = 0,15

a stable spiral if p < 0, and an unstable spiral if p > 0. If the determinant16

|P | > 0, the motion on these curves is clockwise, and in case |P | < 0, the17

motion is counterclockwise. (Recall that the solution curves of y′ = By18

move clockwise.)19
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One often denotes the unknown functions by x(t) and y(t). Then the1

system (5.1) takes the form2

dx
dt = a11x+ a12y

dy
dt = a21x+ a22y .

Dividing the second equation by the first, we can write this system as a3

single equation4

dy

dx
=
a21x+ a22y

a11x+ a12y
,

although one can no longer distinguish the direction along the integral5

curves.6

5.5.1 Linearization and the Hartman-Grobman Theorem7

We now briefly discuss nonlinear planar systems. Chapter 6 will be entirely8

devoted to nonlinear systems.9

Suppose that a nonlinear system (for x = x(t) and y = y(t))10

x′ = f(x, y)(5.4)

y′ = g(x, y) ,

with differentiable functions f(x, y) and g(x, y), has a rest point (x0, y0),11

which is defined by12

f(x0, y0) = g(x0, y0) = 0 .

By Taylor’s formula, we approximate for (x, y) near (x0, y0)13

f(x, y) ≈ fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0) ,

g(x, y) ≈ gx(x0, y0)(x− x0) + gy(x0, y0)(y − y0) .

Letting x−x0 = u and y−y0 = v, with x′ = u′ and y′ = v′, we approximate14

the system (5.4) by the linear system15

u′ = fx(x0, y0)u+ fy(x0, y0)v(5.5)

v′ = gx(x0, y0)u+ gy(x0, y0)v

This approximation is valid for (u, v) close to (0, 0), which corresponds to16

(x, y) being near (x0, y0). One calls (5.5) the linearized system. Its matrix17

A =

[

fx(x0, y0) fy(x0, y0)
gx(x0, y0) gy(x0, y0)

]
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is called the Jacobian matrix. We analyzed the behavior of linear systems1

near the rest point (0, 0) in the preceding section. The natural question2

is whether the picture near (0, 0) for the linearized system (5.4) remains3

similar for the nonlinear system (5.4) near (x0, y0). The Hartman-Grobman4

theorem says that this is the case if the Jacobian matrix A does not have5

purely imaginary or zero eigenvalues. So that if the linearized system has a6

stable or unstable node, or a stable or unstable spiral, or a saddle at (0, 0),7

the picture remains similar for the nonlinear system near (x0, y0). On the8

other hand, in case of a center, the picture may be different.9

The Hartman-Grobman theorem also holds for n × n matrices, and the10

rest point which does not have purely imaginary or zero eigenvalues is called11

hyperbolic. For the proof, and the precise statement, see the book of M.W.12

Hirsh and S. Smale [13].13

Example 1 The system14

x′ = −y − x
(

x2 + y2
)

(5.6)

y′ = x− y
(

x2 + y2
)

has a unique rest point at x0 = 0, y0 = 0. Indeed, to find the rest points we15

solve16

−y − x
(

x2 + y2
)

= 0

x− y
(

x2 + y2
)

= 0 .

Multiplying the first equation by x, the second one by y, and adding the17

results gives18

−
(

x2 + y2
)2

= 0 ,

or x = y = 0. The linearized system at the rest point (0, 0),19

u′ = −v(5.7)

v′ = u ,

has a center at (0, 0), and its trajectories are circles around (0, 0). The20

Hartman-Grobman theorem does not apply. It turns out that the trajec-21

tories of (5.6) spiral into (0, 0) (so that (0, 0) is a stable spiral). Indeed,22

multiplying the first equation of (5.6) by x, the second one by y, adding23

the results, and calling ρ = x2 + y2, we see that 1
2ρ

′ = −ρ2. This gives24

ρ(t) = 1
2t+c → 0, as t→ ∞.25
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Example 2 The system1

x′ = −y + xy2(5.8)

y′ = x− x2y

has a rest point (0, 0). The linearized system at the rest point (0, 0) is again2

given by (5.7), so that (0, 0) is a center. We claim that (0, 0) is a center3

for the original system (5.8) too. Indeed, multiplying the first equation4

in (5.8) by x, the second one by y, and adding the results, we see that5

d

dt

(

x2 + y2
)

= 0, or6

x2 + y2 = c ,

and all trajectories are circles around the origin.7

The system (5.8) has another rest point: (1, 1). The Jacobian matrix at8

(1, 1) is

[

1 1

−1 −1

]

. It has zero as a double eigenvalue, and so it does not9

belong to any of the types of the rest points that we considered.10

Example 3 The rest points of the system11

x′ = 2x− y + 2(5.9)

y′ = xy

are (0, 2) and (−1, 0). (xy = 0 implies that either x = 0, or y = 0.) The12

Jacobian matrix at (0, 2) is

[

2 −1

2 0

]

. Its eigenvalues are 1± i, so that the13

linearized system has an unstable spiral at (0, 0). By the Hartman-Grobman14

theorem, solutions of (5.9) spiral out of (0, 2). The Jacobian matrix at15

(−1, 0) is

[

2 −1
0 −1

]

. Its eigenvalues are 2 and −1. The linearized system16

has a saddle at (0, 0), and by the Hartman-Grobman theorem, the system17

(5.9) has a saddle at (−1, 0).18

5.5.2 Phase Plane and the Prüfer Transformation19

We saw that some 2 × 2 systems can be transformed into a single second20

order equation. Often one transforms the opposite way. For example, in the21

equation22

y′′(t) − a(t)y(t) = 0(5.10)
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we let y′ = v, then v′ = y′′ = a(t)y, and we convert this equation into an1

equivalent system, with the variables (y, v) depending on t :2

y′ = v(5.11)

3

v′ = a(t)y .

One calls the (y, v) plane, or the (y, y′) plane, the phase plane. Solutions of4

(5.11) define curves (called trajectories) in the (y, y′) phase plane.5

It is often useful to use polar coordinates in the phase plane, a technique6

known as the Prüfer transformation. We set7

y = r cos θ(5.12)

y′ = r sin θ ,

with r = r(t), θ = θ(t). Using that θ(t) = arctan y′

y , compute8

θ′ =
1

1 +
(

y′

y

)2

y′′y − y′2

y2
=
y′′y − y′2

y2 + y′2
=
a(t)y2 − y′2

y2 + y′2
.

Using (5.12), we have (observe that y2 + y′2 = r2)9

θ′(t) = a(t) cos2 θ(t) − sin2 θ(t) .(5.13)

The point here is that this equation for θ(t) is decoupled from the other polar10

coordinate r(t) (it does not contain r(t)).11

To give an application, let us assume that some solution of the equation12

(5.10) satisfies y(t) > 0, y′(t) < 0 for t > t0 ≥ 0, and limt→∞ y(t) = 0.13

Assume also that a(t) ≥ a1 > 0 for t > t0. We shall show that y(t) decays14

exponentially as t → ∞.15

6

-`̀ `̀ `̀ `̀ `̀ `̀ `̀A

B
y

y′

The regions A and B

16



246CHAPTER 5. LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

We are given that the trajectory (y(t), y′(t)) lies in the fourth quadrant1

of the phase plane. Consider the line θ = 2π − ε, or2

y′ = tan (2π − ε) y = − tan ε y(5.14)

in the fourth quadrant of the phase plane (the dashed line in the picture).3

We claim that for ε small, the trajectory (y(t), y′(t)) cannot go above this4

line (or into the region B in the picture). Indeed, assuming the contrary, we5

can find6

θ(t) ∈ (2π − ε, 2π) ,(5.15)

with ε small, so that cos θ(t) ≈ 1 and sin θ(t) ≈ 0. It follows from (5.13)7

that8

θ′(t) >
1

2
a1 .(5.16)

The function θ(t) is increasing, which implies that (5.16) continues to hold,9

so long as (5.15) does. Then at some finite time t1, we have θ(t1) = 2π, which10

corresponds to y′(t1) = 0, contradicting our assumption that y′(t) < 0 for11

all t. It follows that the trajectory has to stay below the dashed line (or in12

the region A), so that13

y′(t) < − tan ε y .

Integrating this inequality over (t0, t), we conclude14

y(t) < y(t0)e
− tan ε (t−t0) ,

which implies the exponential decay.15

5.5.3 Problems16

I.17

1. Consider a 2 × 2 system18

x′ = Ax .(5.17)

Assume that λ1 is repeated eigenvalue of A (λ2 = λ1), which has two linearly19

independent eigenvectors. Show that the solutions are x(t) = eλ1tc, which20

are straight lines through the origin in the x1x2-plane (c is an arbitrary21

vector). (If λ1 < 0, solutions along all of these lines tend to the origin, as22

t → ∞, and we say that the origin is a stable degenerate node. If λ1 > 0,23

the origin is called an unstable degenerate node.)24

2. Assume that λ1 is repeated eigenvalue of A (λ2 = λ1), which has only25

one linearly independent eigenvector ξ. If λ1 < 0 show that all solutions of26
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(5.17) approach the origin in the x1x2-plane as t→ ∞, and they are tangent1

to ξ (again one says that the origin is a stable degenerate node). If λ1 > 02

show that all solutions of (5.17) approach the origin in the x1x2-plane as3

t→ −∞, and they are tangent to ξ (an unstable degenerate node).4

Hint: Recall that using the generalized eigenvector η, the general solution5

of (5.17) is6

x(t) = c1e
λ1t ξ + c2

(

teλ1t ξ + eλ1tη
)

.

7

3. Consider the system8

dx

dt
= ax+ by(5.18)

9

dy

dt
= mx+ ny ,

where a, b, m and n are real numbers.10

(i) Put this system into the form11

(mx+ ny) dx− (ax+ by)dy = 0 .(5.19)

Hint: Express
dy

dx
.12

(ii) Assume that (0, 0) is a center for (5.18). Show that the equation (5.19)13

is exact, and solve it.14

Hint: One needs n = −a (and also that b and m have the opposite signs),15

in order for the matrix of (5.18) to have purely imaginary eigenvalues.16

Answer. mx2 + nxy − by2 = c, a family of closed curves around (0, 0).17

(iii) Justify that the converse statement is not true.18

Hint: For example, if one takes a = 1, b = 1, m = 3, and n = −1, then the19

equation (5.19) is exact, but (0, 0) is a saddle.20

II. Identify the rest point at the origin (0, 0). Sketch the integral curves21

near the origin, and indicate the direction in which they are traveled for22

increasing t.23

1. x′ =

[

3 2
2 3

]

x. Answer. Unstable node.24

2. x′ =

[

−2 1
4 1

]

x. Answer. Saddle.25
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3. x′ =

[

0 1
−4 0

]

x. Answer. Center.1

4.2
x′ = 2x+ 4y

y′ = −5x− 7y .

Answer. Stable node. (Observe that the variables here are x and y, rather3

than x1 and x2.)4

5.5

dx
dt = x − 2y

dy
dt = 4x− 3y .

Answer. Stable spiral.6

6.
dy

dx
=

x− y

4x+ y
.7

Hint: Convert to a system form for x(t) and y(t), with A =

[

1 −1

4 1

]

.8

Answer. Unstable spiral.9

7. x′ =

[

−1 5
−2 1

]

x. Answer. Center.10

8.
dy

dx
=
x

y
. Answer. Saddle. Solution: y2 − x2 = c.11

9. x′ =

[

−3 0

0 −3

]

x.12

Answer. Stable degenerate node. Solution: x1(t) = c1e
−3t, x2(t) = c2e

−3t.13

10.
dy

dx
=
y

x
. Answer. Degenerate node.14

11. x′ =

[

1 1

α 1

]

x, α is a constant.15

Answer. Saddle for α > 1, unstable node for 0 < α < 1, unstable degenerate16

node when α = 0, unstable spiral if α < 0.17

III. Find all of the rest points for the following systems, and identify their18

type, for both the corresponding linearized system and the original system.19

20
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1.1 x′ = 2x+ y2 − 1

y′ = 6x− y2 + 1 .

Answer. (0, 1) is a saddle, (0,−1) is an unstable spiral for both systems.2

2.3

x′ = y − 2

y′ = x2 − 2y .

Answer. (2, 2) is a saddle, (−2, 2) is a stable spiral for both systems.4

3.5

x′ = y − x

y′ = (x− 2)(y + 1) .

Answer. (−1,−1) is a stable node, (2, 2) is a saddle for both systems.6

4.7

x′ = −3y + x
(

x2 + y2
)

y′ = 3x+ y
(

x2 + y2
)

.

Answer. (0, 0) is a center for the linearized system, and an unstable spiral8

for the nonlinear system.9

IV. 1. (i) Justify the formula for differentiation of a determinant10

d

dt

∣

∣

∣

∣

∣

a(t) b(t)
c(t) d(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a′(t) b′(t)
c(t) d(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

a(t) b(t)
c′(t) d′(t)

∣

∣

∣

∣

∣

.

(ii) Consider a system11

x′ = A(t)x ,(5.20)

with a 2 × 2 matrix A = [aij(t)]. Let X(t) =

[

x11(t) x12(t)
x21(t) x22(t)

]

be its12

fundamental matrix, so that the vectors

[

x11(t)
x21(t)

]

and

[

x12(t)
x22(t)

]

are two13

linearly independent solutions of (5.20). The determinant W (t) = |X(t)| is14

called the Wronskian of (5.20). Show that for any number t015

W (t) = W (t0)e

∫ t

t0
trA(s) ds

,(5.21)

where the trace trA(t) = a11(t) + a22(t).16
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Hint: Calculate1

W ′ =

∣

∣

∣

∣

∣

x′11(t) x′12(t)
x21(t) x22(t)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

x11(t) x12(t)
x′21(t) x′22(t)

∣

∣

∣

∣

∣

.(5.22)

Using properties of determinants, calculate2

∣

∣

∣

∣

∣

x′11(t) x′12(t)

x21(t) x22(t)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

a11x11 + a12x21 a11x12 + a12x22

x21 x22

∣

∣

∣

∣

∣

3

=

∣

∣

∣

∣

∣

a11x11 a11x12

x21 x22

∣

∣

∣

∣

∣

= a11W .

Similarly, the second determinant in (5.22) is equal to a22W . Then4

W ′ = (a11 + a22)W = trAW .

(iii) Show that the formula (5.21), called Liouville’s formula, holds also in5

case of n× n systems (5.20).6

2. Consider the system7

x′ = Ax ,(5.23)

where A is an n × n matrix with constant entries. Show that eAt is the8

normalized fundamental solution matrix.9

Hint: Recall that x(t) = eAtc gives the general solution. Choosing the first10

entry of the vector c to be one, and all other entries zero, conclude that the11

first column of eAt is a solution of (5.23).12

3. (i) Consider the system13

x′ = A(t)x ,(5.24)

where A(t) is an n×n matrix with all entries continuous on (t0,∞). Derive14

the following Ważewski inequality (for t > t0)15

||x(t0)||e
∫ t

t0
λ(s)ds ≤ ||x(t)|| ≤ ||x(t0)||e

∫ t

t0
Λ(s) ds

,

where λ(t) and Λ(t) are the smallest and the largest eigenvalues of the matrix16

1
2

(

A+ AT
)

, and ||x(t)|| is the length of the vector x(t).17

Hint: Observe that the matrix 1
2

(

A+ AT
)

is symmetric, so that all of its18

eigenvalues are real. Then integrate the inequality19

d

dt
||x(t)||2 =

d

dt
xTx = xT

(

A+ AT
)

x ≤ 2Λ(t)||x(t)||2 .

(ii) Let A(t) =

[

−et t3

−t3 −3

]

. Show that all solutions of (5.24) tend to zero,20

as t→ ∞.21
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5.6 Controllability and Observability1

5.6.1 The Cayley-Hamilton Theorem2

Recall that the eigenvalues λ1 , λ2 , . . . , λn of an n× n matrix A are roots of3

the characteristic equation4

|A− λI | = 0 .

The determinant |A − λI | is an n-th degree polynomial in λ, called the5

characteristic polynomial :6

p(λ) = a0λ
n + a1λ

n−1 + · · ·+ an−1λ+ an ,

with some coefficients a0 , a1 , . . . , an.7

Cayley-Hamilton Theorem Any square matrix A is a root of its own8

characteristic polynomial, so that9

p(A) = a0A
n + a1A

n−1 + · · ·+ an−1A + anI = O ,

where O is the zero matrix.10

Proof: We begin by assuming that the matrix A is diagonalizable, so that11

A = S diag (λ1 , λ2 , . . . , λn)S−1. Here diag (λ1 , λ2 , . . . , λn) is the diagonal12

matrix with entries λ1 , λ2 , . . . , λn, and S is a non-singular matrix. Recall13

that Ak = S diag
(

λk
1 , λ

k
2 , . . . , λ

k
n

)

S−1, for any integer k, and then14

p(A) = S diag (p(λ1), p(λ2) , . . . , p(λn))S−1 = SOS−1 = O .

The proof for the general case can be given by a continuity argument,15

which we sketch next. An arbitrarily small perturbation of any matrix A16

produces a matrix B with distinct eigenvalues, and hence diagonalizable17

(over complex numbers). We have p(B) = O, by above, while the matrix18

p(A) is arbitrarily close to p(B), and therefore p(A) = O. ♦19

We shall use the following corollary of this theorem.20

Proposition 5.6.1 (i) For any integer s ≥ n, the matrix As is a linear21

combination of I, A , A2 , . . . , An−1.22

(ii) The matrix eA is also a linear combination of I, A , A2 , . . . , An−1.23

Proof: Performing the long division of polynomials, write24

λs = p(λ)q(λ) + r(λ) ,
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where q(λ) is a polynomial of degree s − n, and r(λ) is a polynomial of1

degree n − 1, r(λ) = r0λ
n−1 + · · · + rn−2λ + rn−1, with some coefficients2

r0 , . . . , rn−2 , rn−1. Then, using the Cayley-Hamilton theorem3

As = p(A)q(A) + r(A) = r(A) = r0A
n−1 + · · ·+ rn−2A+ rn−1I ,

concluding the proof of the first part. The second part follows from the4

definition of the exponential eA =
∑∞

s=0
As

s! . ♦5

5.6.2 Controllability of Linear Systems6

We consider the linear system7

x′ = Ax+ Bu(t) .(6.1)

Here x(t) ∈ Rn is the unknown vector function, with the components x1(t),8

x2(t), . . . , xn(t), while the vector function u(t) ∈ Rm, m ≥ 1, is at our9

disposal, the control. The n × n matrix A and the n × m matrix B have10

constant coefficients, and are given. If we regard u(t) as known, then solving11

the non-homogeneous system (6.1) with the initial condition x(0) = x0 gives12

x(t) = eAtx0 +

∫ t

0
eA(t−s)Bu(s) ds .

One says that the integral curve x(t) is generated by the control vector u(t),13

with x(0) = x0.14

Definition We say that the system (6.1) is controllable if, given any duration15

p and two arbitrary points x0, xp ∈ Rn, there exists a continuous vector16

function ū(t) from [0, p] to Rm, such that the integral curve x̄(t) generated17

by ū(t) with x̄(0) = x0 satisfies x̄(p) = xp.18

In other words, controllability means that19

xp = eApx0 +

∫ p

0
eA(p−s)Bū(s) ds ,

for some ū(t), or20

∫ p

0
eA(p−t)Bū(t) dt = xp − eApx0 .(6.2)

We form Kalman’s controllability matrix21

K =
(

B AB A2B . . . An−1B
)

.
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(The first m columns of K are those of B, the next m columns are given1

by AB, and so on.) The type (or size) of K is n × nm. Observe that2

rankK ≤ n.3

Theorem 5.6.1 (R. Kalman) The system (6.1) is controllable if and only4

if5

rankK = n .

Proof: Define the matrices6

C(t) = eA(p−t)B , and G =

∫ p

0
C(t)CT (t) dt ,

where CT is the transpose of C. The matrix function C(t) is of type n×m,7

while the constant matrix G is of type n × n.8

We claim that controllability of (6.1) is equivalent to G being invertible.9

Assume that G is invertible. We shall show that the vector10

ū(t) = BT eA
T (p−t)G−1

(

xp − eApx0

)

gives the desired control. Indeed,11

∫ p

0
eA(p−t)Bū(t) dt =

(∫ p

0
eA(p−t)BBT eA

T (p−t) dt

)

G−1
(

xp − eApx0

)

12

= GG−1
(

xp − eApx0

)

= xp − eApx0 ,

and the system (6.1) is controllable by (6.2).13

Conversely, assume now that the system (6.1) is controllable. We wish to14

show that G is invertible. Assume, on the contrary, that G is not invertible.15

Then its rows are linearly dependent. Therefore there exists a non-zero16

column vector v ∈ Rn, such that17

vTG = 0 .(6.3)

(If v1, v2 , . . . , vn are the entries of v, while g1, g2 , . . . , gn are the rows of G,18

then (6.3) is equivalent to v1g1 + v2g2 + · · ·+ vngn = 0.) Then19

0 = vTGv =

∫ p

0
vTC(t)CT (t)v dt =

∫ p

0
||vTC(t)||2 dt .

It follows that20

vTC(t) = 0 , for all t ∈ [0, p] .(6.4)
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Because the system (6.1) is controllable, for any x0 and xp we can find ū(t)1

so that (6.2) holds, or2

∫ p

0
C(t)ū(t) dt = xp − eApx0 .

Choose now x0 = 0, and any xp such that vTxp 6= 0. Using (6.4), we have3

0 =

∫ p

0
vTC(t)ū(t) dt = vTxp 6= 0 ,

a contradiction, proving that G is invertible.4

We complete the proof by showing that G being invertible is equivalent5

to rankK = n. Assume that G is not invertible. Then (6.4) holds for some6

vector v 6= 0, as we saw above. Write7

vTC(t) = vT eA(p−t)B =
∞
∑

i=0

vTAiB

i!
(p− t)i = 0 , for all t ∈ [0, p] .(6.5)

It follows that vTAiB = 0 for all i ≥ 0, which implies that vTK = 0.8

(Recall that vTK is a linear combination of the rows of K.) This means9

that the rows of K are linearly dependent, so that rankK < n. By the10

logical contraposition, if rankK = n, then G is invertible.11

Conversely, assume that rankK < n. Then we can find a non-zero vector12

v ∈ Rn, such that13

vTK = 0 .

By the definition of K this implies that vTAiB = 0 for i = 0, 1, . . . , n − 1.14

By the Proposition 5.6.1 we conclude that vTAiB = 0 for all i ≥ 0. Then15

by (6.5), vTC(t) = 0. It follows that16

vTG =

∫ p

0
vTC(t)CT (t) dt = 0 ,

so that that the rows of G are linearly dependent, and then G is not invert-17

ible. Hence, if G is invertible, then rankK = n. ♦18

19

Example 1 The system (we use (x, y) instead of (x1, x2))20

x′ = u(t)

y′ = x
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is controllable. Here B =

[

1

0

]

, A =

[

0 0

1 0

]

, K =

[

1 0

0 1

]

, rankK = 2.1

2

Writing this system as a single equation y′′ = u(t), we see that the height3

y(t) of an object, and its velocity y′(t) = x(t), can be jointly controlled with4

a jet pack (which controls the acceleration function u(t)).5

Example 2 The system6

x′ = u(t)

y′ = −u(t)

is not controllable. Here B =

[

1

−1

]

, A =

[

0 0

0 0

]

, K =

[

1 0

−1 0

]

, and7

rankK = 1.8

Writing this system as (x+ y)′ = 0, we conclude that x(t) + y(t) =9

constant, independently of the control u(t). It follows that, for example,10

the point (1, 1) cannot be possibly be steered to (2,−3), since 1+1 6= 2−3.11

5.6.3 Observability12

We now consider a control-observation process13

x′ = Ax +Bu(6.6)

v = Cx .

Here the first equation corresponds to using the control vector u(t) to steer14

the solution x(t), as in the preceding section, so that x ∈ Rn, u ∈ Rm, and15

we assume that the given matrices A of type n×n and B of type n×m have16

constant entries. The second equation involves a q × n observation matrix17

C with constant entries, and an observation vector v(t) ∈ Rq. (If C is the18

n × n identity matrix, then v(t) is just x(t).)19

Definition We say that the system (6.6) is observable if for every time20

interval (t0, t1) the knowledge of the input-output pair (u(t), v(t)) over (t0, t1)21

uniquely determines the initial state x(t0).22

Define the following n× n matrix function23

P (t) =

∫ t

t0

eA
T (s−t0)CTCeA(s−t0) ds .

Lemma 5.6.1 The system (6.6) is observable if and only if P (t) is invert-24

ible for all t > t0.25
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Proof: Assume that the system (6.6) is observable, but P (t1) is singular,1

at some t1 > t0, contrary to the statement of the lemma. Then we can find2

a non-zero vector x0 ∈ Rn satisfying P (t1)x0 = 0. It follows that3

0 = xT
0 P (t1)x0 =

∫ t1

t0

||CeA(t−t0)x0||2 ds ,

and then4

CeA(t−t0)x0 = 0 , for all t ∈ (t0, t1) .(6.7)

Set ū(t) ≡ 0. Then x̄(t) = eA(t−t0)x̄(t0) is the corresponding solution of5

(6.6), for any initial vector x̄(t0). We have, in view of (6.7),6

v̄(t) = CeA(t−t0)x̄(t0) = CeA(t−t0) (x̄(t0) + αx0) ,

for any constant α. Hence, the input-output pair (0, v̄(t)) does not determine7

uniquely the initial state at t0, contrary to the assumption of observability.8

It follows that P (t) is invertible for all t > t0.9

Conversely, assume that P (t1) is invertible, at some t1 > t0. Express10

v(t) = CeA(t−t0)x(t0) + C

∫ t

t0

eA(t−s)Bu(s) ds .

Multiplying both sides by eA
T (t−t0)CT , and integrating over (t0, t1) gives11

P (t1)x(t0) =
∫ t1
t0
eA

T (t−t0)CT v(t) dt

− ∫ t1
t0
eA

T (t−t0)CT
(

C
∫ t
t0
eA(t−s)Bu(s) ds

)

dt .

Since P (t1) is invertible, x(t0) is uniquely determined by the values of u(t)12

and v(t) over the interval (t0, t1), and so (6.6) is observable. ♦13

We now consider Kalman’s observability matrix, of type qn× n,14

N =













C

CA
...
CAn−1













.

(Its first q rows are those of C, CA gives the next q rows, and so on.) Clearly,15

rankN ≤ n.16

Theorem 5.6.2 (R. Kalman) The system (6.6) is observable if and only if17

rankN = n.18
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Proof: If the rank of N is less than n, its columns are linearly dependent,1

so that for some non-zero vector a ∈ Rn we have Na = 0, or equivalently2

Ca = CAa = · · · = CAn−1a = 0 .

The Proposition 5.6.1 implies that3

CeA(s−t0)a = 0 , for all s > t0 .

Multiplying by eA
T (s−t0)CT , and integrating over (t0, t), we conclude that4

P (t)a = 0 for all t > t0, which implies that P (t) is not invertible, and the5

system (6.6) is not observable by Lemma 5.6.1. By logical contraposition, if6

the system (6.6) is observable, then rankN = n.7

Conversely, assume that rankN = n. Let x(t0) and x̂(t0) be two initial8

states corresponding to the same input-output pair (u(t), v(t)). We wish9

to show that x(t0) = x̂(t0), so that the system (6.6) is observable. The10

difference z(t) ≡ x(t)−x̂(t) satisfies z′ = Az, and also Cz = Cx(t)−Cx̂(t) =11

v(t) − v(t) = 0, so that12

CeA(t−t0) [x(t0) − x̂(t0)] = 0 , for all t ≥ t0 .

(Notice that z(t) = eA(t−t0)z(t0).) By taking the first n− 1 derivatives, and13

setting t = t0, we conclude14

CAk [x(t0) − x̂(t0)] = 0 , k = 0, 1, . . . , n− 1 ,

which is equivalent to N [x(t0) − x̂(t0)] = 0. Since N has full rank, its15

columns are linearly independent, and therefore x(t0)− x̂(t0) = 0. ♦16

Notice that observability does not depend on the matrix B.17

Problems18

1. Calculate the controllability matrix K, and determine if the system is19

controllable.20

(i)21 x′1 = x1 + 2x2 + u(t)

x′2 = 2x1 + x2 + u(t) .

Answer. K =

[

1 3

1 3

]

, rankK = 1, not controllable.22

(ii)23
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x′ = x1 + 2x2 − 2u(t)

x′2 = 2x1 + x2 .

Answer. K =

[

−2 −2

0 −4

]

, rankK = 2, controllable.1

2. Let A =

[

1 2
4 3

]

. Calculate eA.2

Hint: By the Proposition 5.6.13

eA = αA+ βI ,

for some constants α and β. The eigenvalues of A are −1 and 5, which4

implies that the eigenvalues of eA are e−1 and e5, while the eigenvalues of5

αA + βI are −α+ β and 5α + β. It follows that6

e−1 = −α+ β

e5 = 5α+ β .

Solve this system for α and β.7

Answer. 1
6

[

2e5 + 4e−1 2e5 − 2e−1

4e5 − 4e−1 4e5 + 2e−1

]

.8



Chapter 61

Non-Linear Systems2

We begin this chapter with applications to ecology of two species, including3

both competing species and predator-prey interactions, and to epidemiolog-4

ical modeling. Then we study some important general aspects of non-linear5

systems, including Lyapunov’s stability and limit cycles. Finally, we include6

an in-depth presentation of periodic ecological models.7

6.1 The Predator-Prey Interaction8

In 1925, Vito Volterra’s future son-in-law, biologist Umberto D’Ancona, told9

him of the following puzzle. During the World War I, when ocean fishing10

almost ceased, the ratio of predators (like sharks) to prey (like tuna) had11

increased. Why did sharks benefit more from the decreased fishing? (While12

the object of fishing is tuna, sharks are also caught in the nets.)13

The Lotka-Volterra Equations14

Let x(t) and y(t) give respectively the numbers of prey (tuna) and predators15

(sharks), as functions of time t. Let us assume that in the absence of sharks,16

tuna would obey the Malthusian model17

x′(t) = ax(t),

with some growth rate a > 0. (It would grow exponentially, x(t) = x(0)eat.)18

In the absence of tuna, we assume that the number of sharks would decrease19

exponentially, and satisfy20

y′(t) = −cy(t),

259



260 CHAPTER 6. NON-LINEAR SYSTEMS

with some c > 0, because its other prey is less nourishing. Clearly, the1

presence of sharks will decrease the rate of growth of tuna, while tuna is2

good for sharks. The model is:3

x′(t) = a x(t)− b x(t) y(t)(1.1)

y′(t) = −c y(t) + d x(t) y(t) ,

with two more given positive constants b and d. The x(t)y(t) term is pro-4

portional to the number of encounters between sharks and tuna. These5

encounters decrease the growth rate of tuna, and increase the growth rate6

of sharks. Notice that both equations are nonlinear, and we are interested7

in solutions with x(t) > 0, and y(t) > 0. The system (1.1) represents the8

famous Lotka-Volterra model. Alfred J. Lotka was an American mathemati-9

cian, who developed similar ideas at about the same time as V. Volterra.10

A fascinating story of Vito Volterra’s life and work, and of life in Italy11

in the first half of the 20-th Century, is told in a very nice book of Judith12

R. Goodstein [14].13

Analysis of the Model14

Remember the energy being constant for a vibrating spring? We have some-15

thing similar here. It turns out that any solution (x(t), y(t)) of (1.1) satisfies16

a ln y(t) − b y(t) + c lnx(t) − d x(t) = C = constant ,(1.2)

for all time t. To justify that, let us introduce the function F (x, y) =17

a ln y − b y + c lnx − d x. We wish to show that F (x(t), y(t)) = constant.18

Using the chain rule, and expressing the derivatives from the equations (1.1),19

we have20

d

dt
F (x(t), y(t)) = Fxx

′ + Fyy
′ = c

x′(t)
x(t)

− dx′(t) + a
y′(t)
y(t)

− by′(t)

21

= c(a−by(t))−d(ax(t)−bx(t)y(t))+a(−c+dx(t))−b(−cy(t)+dx(t)y(t))
22

= 0 ,

proving that F (x(t), y(t)) does not change with time t.23

We assume that the initial numbers of both sharks and tuna are given:24

x(0) = x0 > 0, y(0) = y0 > 0 .(1.3)

The Lotka-Volterra system, together with the initial conditions (1.3), de-25

termines both populations (x(t), y(t)) at all time t, by the existence and26
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uniqueness Theorem 6.1.1 below. Letting t = 0 in (1.2), we calculate the1

value of C2

C0 = a ln y0 − b y0 + c lnx0 − d x0 .(1.4)

In the xy-plane, the solution (x(t), y(t)) defines a parametric curve, with3

time t being the parameter. The same curve is described by the implicit4

relation5

a ln y − b y + c lnx− d x = C0 .(1.5)

?

The level lines of z = F (x, y)

z = F (x, y)

6

This curve is just a level curve of the function F (x, y) = a ln y−b y+c lnx−7

d x, introduced earlier (F (x, y) = C0). How does the graph of z = F (x, y)8

look? Like a mountain with a single peak, because F (x, y) is a sum of a9

function of y, a ln y − by, and of a function of x, c lnx − dx, and both of10

these functions are concave (down). It is clear that all level lines of F (x, y)11

are closed curves. Following these closed curves in Figure 6.1, one can see12

how dramatically the relative fortunes of sharks and tuna change, just as a13

result of their interaction, and not because of any external influences.14
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1 2 3 4
Prey

0.5

1.0

1.5

2.0

2.5

3.0

Predator

Figure 6.1: The integral curves of the Lotka-Volterra system

Properties of the Solutions1

In Figure 6.1 we present a picture of three integral curves, computed by2

Mathematica in the case when a = 0.7, b = 0.5, c = 0.3 and d = 0.2. All3

solutions are closed curves, and there is a dot in the middle (corresponding4

to a rest point at (1.5, 1.4)).5

When x0 = c/d, and y0 = a/b, or when the starting point is (c/d, a/b),6

we calculate from the Lotka-Volterra equations that x′(0) = 0, and y′(0) =7

0. The solution is then x(t) = c/d, and y(t) = a/b for all t, as follows8

by the existence and uniqueness Theorem 6.1.1, which is reviewed at the9

end of this section. The point (c/d, a/b) is called a rest point. (In the10

above example, the coordinates of the rest point were x0 = c/d = 1.5, and11

y0 = a/b = 1.4.) All other solutions (x(t), y(t)) are periodic, because they12

represent closed curves. For each trajectory, there is a number T , a period,13

so that x(t+T ) = x(t) and y(t+T ) = y(t). This period changes from curve14

to curve, and it is larger the further the solution curve is from the rest point.15

(This monotonicity property of the period was proved only around 1985 by16

Franz Rothe [26], and Jorg Waldvogel [34].) The motion along the integral17

curves is counterclockwise (at the points due east of the rest point, one has18

x′ = 0, and y′ > 0).19

Divide the first of the Lotka-Volterra equations by the solution x(t), and20

then integrate over its period T :21

x′(t)
x(t)

= a− by(t) ,

22
∫ T

0

x′(t)
x(t)

dt = aT − b

∫ T

0
y(t) dt .
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But

∫ T

0

x′(t)
x(t)

dt = lnx(t) |T
0

= 0, because x(T ) = x(0), by periodicity. It1

follows that2

1

T

∫ T

0
y(t) dt = a/b .

Similarly, we derive3

1

T

∫ T

0
x(t) dt = c/d .

We have a remarkable fact: the averages of both x(t) and y(t) are the same4

for all solutions. Moreover, these averages are equal to the coordinates of5

the rest point.6

The Effect of Fishing7

Extensive fishing decreases the growth rate of both tuna and sharks. The8

new model is9

x′(t) = (a− α)x(t) − b x(t) y(t)

y′(t) = −(c+ β)y(t) + d x(t) y(t) ,

where α and β are two more given positive constants, related to the intensity10

of fishing. (There are other ways to model fishing.) As before, we compute11

the average numbers of both tuna and sharks12

1

T

∫ T

0
x(t) dt = (c+ β)/d,

1

T

∫ T

0
y(t) dt = (a− α)/b .

We see an increase for the average number of tuna, and a decrease for the13

sharks, as a result of moderate amount of fishing (assuming that α < a).14

Conversely, decreased fishing increases the average number of sharks, giving15

us an explanation of U. D’Ancona’s data. This result is known as Volterra’s16

principle. It applies also to insecticide treatments. If such a treatment17

destroys both the pests and their predators, it may be counter-productive,18

and produce an increase of the number of pests!19

Biologists have questioned the validity of both the Lotka-Volterra model,20

and of the way we have accounted for fishing (perhaps, they cannot accept21

the idea of two simple differential equations ruling the oceans). In fact, it is22

more common to model fishing, using the system23

x′(t) = ax(t) − b x(t) y(t)− h1(t)

y′(t) = −cy(t) + d x(t) y(t)− h2(t) ,

with some given positive functions h1(t) and h2(t).24
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The Existence and Uniqueness Theorem for Systems1

Similarly to the case of one equation, we can expect (under some mild con-2

ditions) that an initial value problem for a system of differential equations3

has a solution, and exactly one solution.4

Theorem 6.1.1 Consider an initial value problem for the system5

x′(t) = f(t, x(t), y(t)) , x(t0) = x0

y′(t) = g(t, x(t), y(t)) , y(t0) = y0 ,

with given numbers x0 and y0. Assume that the functions f(t, x, y), g(t, x, y),6

and their partial derivatives fx, fy, gx and gy are continuous in some three-7

dimensional region containing the point (t0, x0, y0). Then this system has a8

unique solution (x(t), y(t)), defined on some interval |t− t0| < h.9

The statement is similar in case of n equations10

x′i = fi(t, x1, x2, . . . , xn) , xi(t0) = x0
i , i = 1, 2, . . . , n ,

where x0
i are given numbers. If the functions fi, and all of their partial11

derivatives ∂fi
∂xj

are continuous in some n + 1-dimensional region containing12

the initial point
(

t0, x
0
1, x

0
2, . . . , x

0
n

)

, then this system has a unique solution13

(x1(t), x2(t), . . . , xn(t)), defined on some interval |t− t0| < h.14

One can find the proof in the book of D.W. Jordan and P. Smith [15].15

6.2 Competing Species16

-

6

t

x

a

Solution curves for the logistic model

17



6.2. COMPETING SPECIES 265

When studying the logistic population model (here x = x(t) > 0 gives1

the number of rabbits)2

x′ = x(a− x) ,(2.1)

we were able to analyze the behavior of solutions, even without solving3

this equation. Indeed, the quadratic polynomial x(a − x) is positive for4

0 < x < a, and then x′(t) > 0, so that x(t) is an increasing function.5

The same quadratic is negative for x > a, and so x(t) is decreasing in this6

range. If x(0) = a, then x(t) = a, for all t, by the uniqueness part of the7

existence and uniqueness Theorem 1.8.1. So that the solution curves look as8

in the figure above. Here a is the carrying capacity, which is the maximum9

sustainable number of rabbits. (In Chapter 2 the logistic model had the10

form x′ = ax − bx2. Letting here x = 1
b z, gives z′ = az − z2, which is the11

equation (2.1).)12

If x(0) is small, the solution grows exponentially at first, and then the13

rate of growth gets smaller and smaller, which is a typical logistic curve.14

The point x = a is a rest point, and we can describe the situation by the15

following one-dimensional picture (the arrows indicate that solutions tend16

to a):17

-c c
a0

x
- �

The logistic equation has a stable rest point x = a, and an unstable one x = 0

18

The rest point x = a is called stable rest point, because solutions of the19

equation (2.1), with x(0) close to a, tend to a as t → ∞ (limt→∞ x(t) = a).20

The point x = 0 is an unstable rest point, because solutions of (2.1), starting21

near x = 0, tend away from it.22

In general, the point x0 is called a rest point of the equation (x = x(t))23

x′ = g(x) ,(2.2)

with a differentiable function g(x), if g(x0) = 0. It is stable (or attractive) if24

g′(x0) < 0. The solutions of (2.2), with x(0) near x0, tend to x0 as t → ∞.25

The rest point x0 is unstable (or repellent) if g′(x0) > 0. The solutions of26

(2.2) move away from it. In case g′(x0) = 0, further analysis is needed.27
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Suppose now that we also have a population y(t) of deer, modeled by a1

logistic equation2

y′ = y(d− y) ,

with the carrying capacity d > 0. Suppose that rabbits and deer live on the3

same tropical island, and they compete (for food, water and hiding places).4

The Lotka-Volterra model of their interaction is5

x′ = x (a− x− by)(2.3)

y′ = y (d− cx− y) .

The first equation tells us that the presence of deer effectively decreases the6

carrying capacity of rabbits (making it a − by), and the positive constant7

b quantifies this influence. Similarly, the positive constant c measures how8

detrimental the presence of rabbits is for deer. What predictions will follow9

from the model (2.3)? And how do we analyze this model, since solving the10

nonlinear system (2.3) is not possible? We shall consider the system (2.3)11

together with the initial conditions12

x(0) = α, y(0) = β .(2.4)

The given initial numbers of the animals, α > 0 and β > 0, determine the13

initial point (α, β) in the xy-plane. We claim that any solution of (2.3),14

(2.4) satisfies x(t) > 0 and y(t) > 0 for all t > 0. Indeed, write the first15

equation in (2.3) as16

x′ = A(t)x , where A(t) = a− x(t) − by(t) .

Then x(t) = α e
∫ t

0
A(s) ds > 0. One shows similarly that y(t) > 0. We shall17

consider the system (2.3) only in the first quadrant of the xy-plane, where18

x > 0 and y > 0.19

Similarly to the case of a single logistic equation, we look at the points20

where the right hand sides of (2.3) are zero:21

a− x− by = 0(2.5)

d− cx− y = 0 .

These equations give us two straight lines, called the null-clines of the system22

(2.3). Both of these lines have negative slopes in the (x, y) plane. In the first23

quadrant these lines may intersect either once, or not at all, depending on24
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the values of a, b, c and d, and that will determine the long turn predictions.1

The point of intersection of null-clines is a rest point. It follows that there2

is at most one rest point in the first quadrant.3

We shall denote by I the null-cline a − x − by = 0. Above this straight4

line, we have a−x− by < 0, which implies that x′(t) < 0, and the motion is5

to the left in the first quadrant. Below the null-cline I, the motion is to the6

right. We denote by II the null-cline d − cx − y = 0. Above II, y′(t) < 0,7

and the motion is down, while below II the point (x(t), y(t)) moves up.8

(For example, if a point lies above both I and II, the motion is to the left9

and down, in the “southwest” direction. If a point is above I but below10

II, the motion is northwest, etc.) The system (2.3) has the trivial solution11

(0, 0) (x = 0, and y = 0), and two semi-trivial solutions (a, 0) and (0, d).12

The solution (a, 0) corresponds to deer becoming extinct, while (0, d) means13

there are no rabbits. Observe that the semi-trivial solution (a, 0) is the x-14

intercept of the null-cline I, while the second semi-trivial solution (0, d) is15

the y-intercept of the null-cline II. The behavior of solutions, in the long16

turn, will depend on whether the null-clines intersect in the first quadrant17

or not. We consider the following cases.18
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19

Case 1: The null-clines do not intersect (in the first quadrant). Assume20

first that the null-cline I lies above of II, so that a/b > d and a > d/c. The21

null-clines divide the first quadrant into three regions. In the region 1 (above22

both clines), the motion is southwest, in the region 2 it is southeast, and in23
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the region 3 northeast. On the cline I, the motion is due south, and on the1

cline II due east. Regardless of the initial point (α, β), all trajectories tend2

to the semi-trivial solution (a, 0), as t→ ∞. (The trajectories starting in the3

region 3, will enter the region 2, and then tend to (a, 0). The trajectories4

starting in the region 2, will stay in that region and tend to (a, 0). The5

trajectories starting in the region 1, will tend to (a, 0) by either staying in6

this region, or through the region 2.)7

This case corresponds to the extinction of deer, and rabbits reaching8

their maximum sustainable number a.9

In case the null cline II lies above of I, when a/b < d and a < d/c,10

a similar analysis shows that all solutions tend to the semi-trivial solution11

(0, d), as t → ∞. So that the species, which has its null-cline on top, wins12

the competition, and drives the other one to extinction.13

Case 2: The null-clines intersect (in the first quadrant). Their point of14

intersection (
a− bd

1− bc
,
d− ac

1 − bc
) is a solution of the system (2.5), a rest point.15

Its stability depends on which of the following sub-cases hold. Observe16

that the null clines intersect the x and y axes at four points, two of which17

correspond to the semi-trivial solutions.18
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19

Sub-case (a): The semi-trivial solutions lie on the inside (relative to the20

other two points of intersection), so that a < d/c, and d < a/b. The null21

clines divide the first quadrant into four regions. In all four regions, the22
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motion is eventually toward the rest point. Solutions starting in the region 2,1

will always stay in this region. Indeed, on the boundary between the regions2

1 and 2, the motion is due south, and on the border between the regions3

2 and 3, the trajectories travel due east. So that solutions, starting in the4

region 2, stay in this region, and they tend to the rest point (
a− bd

1− bc
,
d− ac

1− bc
).5

Similarly, solutions starting in the region 4, never leave this region, and they6

tend to the same rest point, as t→ ∞. If a solution starts in the region 1, it7

may stay in this region, and tend to the rest point, or it may enter either one8

of the regions 2 or 4, and then tend to the rest point. Similarly, solutions9

which begin in the region 3, will tend to the rest point (
a− bd

1− bc
,
d− ac

1− bc
),10

either by staying in this region, or through the regions 2 or 4 (depending on11

the initial conditions).12

This is the case of co-existence of the species. For any initial point (α, β),13

with α > 0 and β > 0, we have lim
t→∞

x(t) =
a− bd

1− bc
, and lim

t→∞
y(t) =

d− ac

1 − bc
.14

Sub-case (b): The semi-trivial solutions are on the outside, so that a > d/c15

and d > a/b. In the regions 2 and 4, the motion is now away from the rest16

point. On the lower boundary of the region 2, the motion is due north, and17

on the upper border, the motion is due west. So that the trajectories starting18

in the region 2, stay in this region, and tend to the semitrivial solution (0, d).19

Similarly, solutions starting in the region 4, will stay in this region, and tend20

to the semitrivial solution (a, 0). A typical solution starting in the region 1,21

will either enter the region 2 and tend to (0, d), or it will enter the region22

4 and tend to (a, 0) (this will depend on the initial conditions). The same23

conclusion holds for the region 3. The result is that one of the species dies24

out, what is known as competitive exclusion of the species. (Linearizing the25

Lotka-Volterra system (2.3) at the rest point, one calculates that the rest26

point is a saddle, in view of the Hartman-Grobman theorem. Hence, there27

is a solution curve entering the rest point, while a typical trajectory tends28

to one of the semi-trivial solutions.)29

What is the reason behind the drastic difference in the long time dy-30

namics for the above sub-cases? The second equation in (2.3) tells us that31

the effective carrying capacity of the second species is d− cx(t) < d, so that32

y(t) < d in the long run. For the first species, the effective carrying capacity33

is a− by(t), and in the sub-case (a) (when bd < a), we have34

a− by(t) > a− bd > 0 ,
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so that the first species can survive even when the number of the second1

species is at its maximum sustainable level. Similarly, one checks that the2

second species can survive, assuming that the number of the first species is3

at its maximum sustainable level. In this sub-case, the competing species4

do not affect each other too strongly, and so they can co-exist.5
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6.3 An Application to Epidemiology7

Suppose that a group of people comes down with an infectious disease. Will8

the number of sick people grow and cause an epidemic? What measures9

should public health officials take? We shall analyze a way to model the10

spread of an infectious disease.11

Let I(t) be the number of infected people at time t that live in the12

community (sick people that are hospitalized, or otherwise removed from13

the community, do not count in I(t)). Let S(t) be the number of susceptible14

people, the ones at risk of catching the disease. The following model was15

proposed in 1927 by W.O. Kermack and A.G. McKendrick16

dS

dt
= −rSI(3.1)

17

dI

dt
= rSI − γI ,
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with some positive constants r and γ. The first equation reflects the fact1

that the number of susceptible people decreases, as some people catch the2

infection (and so they join the group of infected people). The rate of decrease3

of S(t) is proportional to the number of “encounters” between the infected4

and susceptible people, which in turn is proportional to the product SI . The5

number r > 0 gives the infection rate. The first term in the second equation6

tells us that the number of infected people would increase at exactly the7

same rate, if it was not for the second term. The second term, −γI , is due8

to some infected people being removed from the population (people who9

died from the disease, people who have recovered and developed immunity,10

and sick people who are isolated from the community), which decreases the11

infection rate dI/dt. The coefficient γ is called the removal rate. To the12

equations (3.1) we add the initial conditions13

S(0) = S0, I(0) = I0 ,(3.2)

with given numbers S0 - the initial number of susceptible people, and I0 -14

the initial number of infected people. Solving the equations (3.1) and (3.2),15

will give us a pair of functions (S(t), I(t)), which determines a parametric16

curve in the (S, I) plane. Alternatively, this curve can be described, if we17

express I as a function of S.18
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Express1

dI

dS
=
dI/dt

dS/dt
=
rSI − γI

−rSI = −1 +
γ

r

1

S
= −1 + ρ

1

S
,

denoting γ/r = ρ. Taking the antiderivative, and using the initial conditions2

(3.2), we obtain3

I = −S + ρ lnS + I0 + S0 − ρ lnS0 .(3.3)

Depending on the initial point (S0, I0), we get a different integral curve from4

(3.3). On all of these curves, the maximum value of I is achieved at S = ρ5

( dI
dS (ρ) = 0). The motion on the integral curves is from right to left, because6

we see from the first equation in (3.1) that S(t) is a decreasing function of7

time t. If the initial point (S0, I0) satisfies S0 > ρ, then the function I(t)8

grows at first, and then declines, see the picture. In this case we say that9

an epidemic occurs. If, on the other hand, the initial number of susceptible10

people is below ρ, then the number of infected people I(t) declines and tends11

to zero, and we say that the initial outbreak has been successfully contained.12

The number ρ is called the threshold value.13

To avoid an epidemic, public health officials should try to increase the14

threshold value ρ (to make it more likely that S0 < ρ), by increasing the15

removal rate γ (recall that ρ = γ/r), which is achieved by isolating sick16

people. Notice also the following harsh conclusion: if a disease kills people17

quickly, then the removal rate γ is high, and such a disease may be easier18

to contain.19

In some cases it is easy to estimate the number of people, that will get20

sick during an epidemic. Assume that I0 is so small that we can take I0 = 0,21

while S0 is a little larger than the threshold value ρ, so that S0 = ρ + ν,22

where ν > 0 is a small value. As time t increases, I(t) tends to zero, while23

S(t) approaches some final number, call it Sf (look at the integral curves24

again). We conclude from (3.3) that25

Sf − ρ lnSf = S0 − ρ lnS0 .(3.4)

The function I(S) = S − ρ lnS takes its global maximum at S = ρ. Such a26

function is almost symmetric with respect to ρ, for S close to ρ, as can be27

seen from the three term Taylor series expansion of I(S) at S = ρ. It follows28

from (3.4) that the points S0 and Sf are approximately equidistant from ρ,29

so that Sf ≈ ρ − ν. The total number of people, who will get sick during30

an epidemic is then S0 − Sf ≈ 2ν. (This fact is known as the Threshold31

Theorem of epidemiology, see for example M. Braun [5].)32
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6.4 Lyapunov’s Stability1

We consider a nonlinear system of equations for the unknown functions x(t)2

and y(t):3

x′ = f(x, y), x(0) = α(4.1)

y′ = g(x, y), y(0) = β ,

with some given differentiable functions f(x, y) and g(x, y), and the initial4

values α and β. By the existence and uniqueness Theorem 6.1.1, the problem5

(4.1) has a unique solution.6

Recall that a point (x0, y0) is called rest point if7

f(x0, y0) = g(x0, y0) = 0 .

Clearly, the pair of constant functions x(t) = x0 and y(t) = y0 is a solution8

of (4.1). If we solve the system (4.1) with the initial data x(0) = x0 and9

y(0) = y0, then x(t) = x0 and y(t) = y0 for all t (by uniqueness of the10

solution), so that our system is at rest for all time. Now suppose that the11

initial conditions are perturbed from (x0, y0). Will our system come back to12

rest at (x0, y0)?13

A differentiable function L(x, y) is called Lyapunov’s function at (x0, y0),14

if the following two conditions hold:15

L(x0, y0) = 0 ,

L(x, y) > 0, for (x, y) in some neighborhood of (x0, y0) .

How do the level lines16

L(x, y) = c(4.2)

look, near the point (x0, y0)? If c = 0, then (4.2) is satisfied only at (x0, y0).17

If c > 0, and small, the level lines are closed curves around (x0, y0), and the18

smaller c is, the closer the level line is to (x0, y0).19

Along a solution (x(t), y(t)) of our system (4.1), Lyapunov’s function is20

a function of t: L(x(t), y(t)). Now assume that for all solutions (x(t), y(t))21

starting near (x0, y0), we have22

d

dt
L(x(t), y(t))< 0 , for all t > 0 ,(4.3)

so that the function L(x, y) is decreasing along the solutions. Then one23

expects that (x(t), y(t)) → (x0, y0), as t → ∞, and we say that the rest24
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point (x0, y0) is asymptotically stable. (As t increases, the solution point1

(x(t), y(t)) moves to the level lines that are closer and closer to (x0, y0).)2

Using the chain rule and the equations (4.1), we rewrite (4.3) as3

d

dt
L(x(t), y(t)) = Lxx

′ + Lyy
′ = Lxf(x, y) + Lyg(x, y)< 0 .(4.4)

The following Lyapunov’s theorem is now intuitively clear (a proof can be4

found in the book of M.W. Hirsh and S. Smale [13]).5

Theorem 6.4.1 The rest point (x0, y0) is asymptotically stable, provided6

that there is a Lyapunov function, satisfying7

Lx(x, y)f(x, y) + Ly(x, y)g(x, y)< 0 , for all (x, y) near (x0, y0) .
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JĴ

8

One typically assumes that (x0, y0) = (0, 0), which can always be ac-9

complished by declaring the point (x0, y0) to be the origin. Then L(x, y) =10

ax2 + cy2, with suitable positive constants a and c, is often a good choice of11

a Lyapunov’s function.12

Example 1 The system13

x′ = −2x+ xy2

y′ = −y − 3x2y

has a unique rest point (0, 0). With L(x, y) = ax2 + cy2, calculate14

d

dt
L(x(t), y(t)) = 2axx′ + 2cyy′ = 2ax(−2x+ xy2) + 2cy(−y − 3x2y) .
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If we choose a = 3 and c = 1, this simplifies to1

d

dt
L(x(t), y(t)) = −12x2 − 2y2 < 0 , for all (x, y) 6= (0, 0) .

The rest point (0, 0) is asymptotically stable.2

Observe that the integral curves of this system cut inside of any ellipse3

3x2 + y2 = A, and as we vary the positive constant A, these ellipses fill out4

the entire xy-plane. It follows that all solutions of this system tend to (0, 0),5

as t→ ∞. One says that the domain of attraction of the rest point (0, 0) is6

the entire xy-plane.7

Example 2 The system8

x′ = −2x+ y4

y′ = −y + x5

has a rest point (0, 0). (There is one more rest point at
(

21/19, 25/19
)

.) For9

small |x| and |y|, the nonlinear terms (y4 and x5) are negligible. If we drop10

these nonlinear terms, then both of the resulting equations, x′ = −2x and11

y′ = −y, have all solutions tending to zero as t→ ∞. Therefore, we expect12

the asymptotic stability of (0, 0). Choosing L(x, y) = x2 + y2, compute13

d
dtL(x(t), y(t)) = 2xx′ + 2yy′ = 2x(−2x+ y4) + 2y(−y + x5)

= −4x2 − 2y2 + 2xy4 + 2x5y < −2(x2 + y2) + 2xy4 + 2x5y

= −2r2 + 2r5 cos θ sin4 θ + 2r6 cos5 θ sin θ < 0 ,

provided that the point (x, y) belongs to a disc Bδ : x2 + y2 < δ2, with a14

sufficiently small δ, as is clear by using the polar coordinates (r is small,15

r < δ). Hence, any solution, with the initial point (x(0), y(0)) in Bδ, and16

δ sufficiently small, tends to zero as t → ∞. The rest point (0, 0) is in-17

deed asymptotically stable. Its domain of attraction includes Bδ , with δ18

sufficiently small. (If the initial point (x(0), y(0)) is not close to the origin,19

solutions of this system will typically go to infinity in finite time.)20

Example 3 If we drop the nonlinear terms in the system,21

x′ = y − x3(4.5)

y′ = −x − y5 ,

with a unique rest point at (0, 0), the resulting linear system22

x′ = y(4.6)

y′ = −x
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is equivalent to the harmonic oscillator x′′+x = 0, for which all solutions are1

periodic, and do not tend to zero. (The point (0, 0) is a center for (4.6).) It2

is the nonlinear terms that make the rest point (0, 0) asymptotically stable3

for the original system (4.5). Indeed, taking L(x, y) = x2 + y2, we have4

d

dt
L(x(t), y(t)) = 2xx′ + 2yy′ = −2x4 − 2y6 < 0 , for all (x, y) 6= (0, 0) .

The domain of attraction of the rest point (0, 0) is the entire xy-plane.5

Example 4 The system6

x′ = −y + y
(

x2 + y2
)

(4.7)

y′ = x− x
(

x2 + y2
)

has a rest point (0, 0). Multiply the first equation by x, the second one by7

y, and add the results. Obtain:8

xx′ + yy′ = 0 ,

9

d

dt

(

x2 + y2
)

= 0 ,

10

x2 + y2 = c2 .

The solution curves (x(t), y(t)) are circles around the origin. (If x(0) = a11

and y(0) = b, then x2(t)+y2(t) = a2 + b2.) If a solution starts near (0, 0), it12

stays near (0, 0), but it does not tend to (0, 0). In such a case, we say that13

the rest point (0, 0) is stable, although it is not asymptotically stable.14

Here is a more formal definition: a rest point (x0, y0) of (4.1) is called15

stable in the sense of Lyapunov if given any ε > 0 one can find δ > 0,16

so that the solution curve (x(t), y(t)) lies within the distance ε of (x0, y0)17

for all t > 0, provided that (x(0), y(0)) is within the distance δ of (x0, y0).18

Otherwise, the rest point (x0, y0) is called unstable. In addition to the rest19

point (0, 0), the system (4.7) has a whole circle x2 + y2 = 1 of rest points.20

All of them are unstable, because the solutions on nearby circles move away21

from any point on x2 + y2 = 1.22

Example 5 The system23

x′ = −y + x
(

x2 + y2
)

(4.8)

y′ = x+ y
(

x2 + y2
)
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has a unique rest point (0, 0). Again, we multiply the first equation by x,1

the second one by y, and add the results. Obtain:2

xx′ + yy′ =
(

x2 + y2
)2

.

Denoting ρ = x2 + y2, we rewrite this as3

1

2

dρ

dt
= ρ2 .

Then
dρ

dt
> 0, so that the function ρ = ρ(t) is increasing. Integration gives4

ρ(t) =
ρ0

1 − 2ρ0t
, where ρ0 = x2(0) + y2(0) > 0 .

Solutions do not remain near (0, 0), no matter how close to this point we5

start. In fact, solutions move infinitely far away from (0, 0), as t → 1

2ρ0
. It6

follows that the rest point (0, 0) is unstable. It turns out that solutions of7

the system (4.8) spiral out of the rest point (0, 0).8

To show that solutions move on spirals, we compute the derivative of the9

polar angle, θ = tan−1 y

x
, along the solution curves. Using the chain rule10

dθ

dt
= θxx

′ + θyy
′ =

1

1 + y2

x2

(

− y

x2

)

x′ +
1

1 + y2

x2

(

1

x

)

y′

11

=
xy′ − yx′

x2 + y2
=
x
(

x+ y(x2 + y2)
)

− y
(

−y + x(x2 + y2)
)

x2 + y2
= 1 ,

so that θ = t + c. It follows that θ → −∞ as t → −∞, and the point12

(x(t), y(t)) moves on a spiral. We see that solutions of the system (4.8) spiral13

out (counterclockwise) of the rest point (0, 0) (corresponding to t → −∞),14

and tend to infinity, as t→ 1

2ρ0
.15

Example 6 For the system with three variables16

x′ = −3x+ y
(

x2 + z2 + 1
)

y′ = −y − 2x
(

x2 + z2 + 1
)

z′ = −z − x2z3 ,
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one checks that (0, 0, 0) is the only rest point. We search for a Lyapunov1

function in the form L(x, y, z) = 1
2

(

ax2 + by2 + cz2
)

. Compute2

dL

dt
= axx′+byy′+czz′ = −3ax2+xy

(

x2 + z2 + 1
)

(a−2b)−by2−cx2z4−cz2 .

We have
dL

dt
< 0 for (x, y, z) 6= (0, 0, 0), if a = 2b. In particular, we may3

select b = 1, a = 2, and c = 1, to prove that (0, 0, 0) is asymptotically4

stable. (Lyapunov’s theorem holds for systems with three or more variables5

too. Solutions cut inside the level surfaces of L(x, y, z).)6

6.4.1 Stable Systems7

An n×n matrix A is called a stable matrix, if all of its eigenvalues are either8

negative, or they are complex numbers with negative real parts (which can9

also be stated as Reλi < 0, for any eigenvalue of A). For a stable matrix A,10

all entries of eAt tend exponentially to zero as t→ ∞:11

|
(

eAt
)

ij
| ≤ ae−bt ,(4.9)

for some positive constants a and b, and for all i and j. (Here
(

eAt
)

ij
denotes12

the ij-element of eAt.) Indeed, x(t) = eAtx(0) gives solution of the system13

x′ = Ax ,(4.10)

so that eAt is the normalized fundamental solution matrix, and each column14

of eAt is a solution of (4.10). On the other hand, each solution of (4.10)15

contains factors of the type eRe λi t, as was developed in Chapter 5, justifying16

(4.9). For a stable matrix A, all solutions of the system x′ = Ax tend to17

zero, as t→ ∞, exponentially fast. If a matrix A is stable, so is its transpose18

AT , because the eigenvalues of AT are the same as those of A, and so the19

estimate (4.9) holds for AT too.20

We now solve the following matrix equation: given a stable matrix A,21

find a positive definite matrix B so that22

ATB +BA = −I ,(4.11)

where I is the identity matrix. We shall show that a solution of (4.11) is23

given by24

B =

∫ ∞

0
eA

T teAt dt .(4.12)
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By definition, to integrate a matrix, we integrate all of its entries. In view of1

the estimate (4.9), all of these integrals in (4.12) are convergent as t → ∞.2

We have BT = B (using that
(

eAt
)T

= eA
T t), and3

xTBx =

∫ ∞

0
xT eA

T teAtx dt =

∫ ∞

0

(

eAtx
)T

eAtx dt =

∫ ∞

0
||eAtx||2 dt > 0 ,

for any x 6= 0, proving that the matrix B is positive definite. (Recall that4

||y|| denotes the length of a vector y.) Express5

ATB + BA =

∫ ∞

0

[

AT eA
T teAt + eA

T teAtA
]

dt

6

=

∫ ∞

0

d

dt

[

eA
T teAt

]

dt = eA
T teAt|∞

0
= −I,

as claimed (the upper limit vanishes by (4.9)).7

We now consider a nonlinear system8

x′ = Ax+ h(x) ,(4.13)

with a constant n × n matrix A, and a column vector function9

h(x) = [h1(x) h2(x) . . . hn(x)]T , where x = (x1, x2, . . . , xn). (So that h(x)10

is a given vector function of the variables x1, x2, . . . , xn.) We assume that11

h(0) = 0, so that the system (4.13) has a trivial solution x = 0 (x = 0 is a12

rest point). We shall denote by ||x|| and ||h(x)||, the length of the vectors x13

and h(x) respectively.14

Theorem 6.4.2 Assume that the matrix A is stable, h(0) = 0, and15

lim
x→0

||h(x)||
||x|| = 0 .(4.14)

Then the trivial solution of (4.13), x = 0, is asymptotically stable, so that16

any solution x(t), with ||x(0)|| small enough, satisfies limt→∞ x(t) = 0.17

Proof: Let the positive definite matrixB be given by (4.12), so that (4.11)18

holds. The quadratic form L(x) = xTBx is a Lyapunov function, because19

L(0) = 0 and L(x) > 0 for all x 6= 0. We shall show that d
dtL(x(t)) < 0,20

so that Lyapunov’s theorem applies. Taking the transpose of the equation21

(4.13), obtain22

(

xT
)′

= xTAT + hT .
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Using (4.11), and then the condition (4.14), gives1

d

dt
L(x(t)) =

(

xT
)′
Bx + xTBx′ =

(

xTAT + hT
)

Bx + xTB(Ax+ h)

2

= xT
(

ATB + BA
)

x+ hTBx + xTBh = −||x||2 + hTBx + xTBh < 0 ,

provided that ||x|| is small enough. (By (4.14), for any ε > 0, we have3

||h(x)|| < ε||x||, for ||x|| small enough. Then ||hTBx|| ≤ ||h|| ||B|| ||x|| <4

ε||B|| ||x||2, and the term xTBh is estimated similarly. The norm of a matrix5

is defined as ||B|| =
√

∑n
i,j=1 b

2
ij, see the Appendix.) ♦6

6.5 Limit Cycles7

We consider the system (with x = x(t), y = y(t))8

x′ = f(x, y) , x(0) = x0(5.1)

y′ = g(x, y) , y(0) = y0 .

Here f(x, y) and g(x, y) are given differentiable functions. Observe that9

these functions do not change with t (unlike f(t, x, y) and g(t, x, y)). Sys-10

tems like (5.1) are called autonomous. The initial point (x0, y0) is also given.11

By the existence and uniqueness Theorem 6.1.1, this problem has a solution12

(x(t), y(t)), which defines a curve (a trajectory) in the (x, y) plane, parame-13

terized by t. If this curve is closed, we call the solution a limit cycle. (The14

functions x(t) and y(t) are then periodic.) If (x(t), y(t)) is a solution of (5.1),15

the same is true for (x(t− α), y(t− α)), where α is any number. Indeed,16

(x(t), y(t)) satisfies the system (5.1) at any t, and in particular at t− α.17

Example 1 One verifies directly that the unit circle x = cos t, y = sin t is18

a limit cycle for the system19

x′ = −y + x
(

1 − x2 − y2
)

(5.2)

y′ = x+ y
(

1 − x2 − y2
)

.

To see the dynamical significance of this limit cycle, we multiply the first20

equation by x, the second one by y, add the results, and call ρ = x2 +y2 > 021

(ρ is the square of the distance from the point (x, y) to the origin). Obtain22

1

2
ρ′ = ρ(1− ρ) .(5.3)
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The origin (0, 0) is a rest point of (5.2), corresponding to the rest point ρ = 01

of (5.3). The equation (5.3) also has a rest point ρ = 1, corresponding to the2

limit cycle x = cos t, y = sin t. When 0 < ρ < 1, it follows from the equation3

(5.3) that ρ′(t) > 0 and ρ(t) is increasing. When ρ > 1, ρ′(t) < 0 and ρ(t)4

is decreasing. It follows that ρ(t) → 1 as t → ∞ for all solutions of (5.3)5

(with ρ(0) > 0). We conclude that all solutions of (5.2) tend to the limit6

cycle, which is called asymptotically orbitally stable. Notice that asymptotic7

orbital stability does not imply asymptotic stability (which means that all8

solutions, starting sufficiently close to some solution, tend to it as t → ∞).9

Indeed, a solution tending to the unit circle may tend to x = cos(t − α),10

y = sin(t− α) for some 0 < α < 2π, instead of x = cos t, y = sin t.11

The vector field F (x, y) = (f(x, y), g(x, y)) is tangent to the solution12

curves of (5.1), and so F (x, y) gives the direction in which the solution curve13

travels at the point (x, y) (observe that F (x, y) = (x′, y′), the velocity).14

The following classical theorem gives conditions for the existence of a15

stable limit cycle.16
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Poincare-Bendixson Theorem Suppose that D is a region of the xy −18

plane lying between two simple closed curves C1 and C2. Assume that the19

system (5.1) has no rest points in D, and that at all points of C1 and C2 the20

vector field F (x, y) points toward the interior of D. Then (5.1) has a limit21

cycle inside of D. Moreover, each trajectory of (5.1), originating in D, is22

either a limit cycle, or it tends to a limit cycle, which is contained in D.23

A proof can be found in I.G. Petrovskii [22]. The region D is often called24

the trapping region.25
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For practice, let us apply the Poincare-Bendixson theorem to the system1

(5.2) (we already know that x = cos t, y = sin t is a limit cycle). One checks2

that (0, 0) is the only rest point. (Setting the right hand sides of (5.2) to3

zero, one gets y/x = −x/y, so that x = y = 0.) Let C1 be the circle of radius4

1/2 around the origin, C2 the circle of radius 2 around the origin, and D5

the region between them. On C1, F (x, y) =
(

−y + 3
4x, x+ 3

4y
)

. The scalar6

product of this vector with (x, y) is 3
4x

2 + 3
4y

2 > 0. Hence, F (x, y) points7

outside of C1, and into D. On C2, F (x, y) = (−y − 3x, x− 3y). The scalar8

product of this vector with (x, y) is −3x2 − 3y2 < 0, and F (x, y) points into9

D. We conclude that there is a limit cycle in D, confirming what we already10

know.11

Example 2 To model oscillations connected to glycolysis (the process12

of cells breaking down sugar to obtain energy) the following model was13

proposed by E.E. Sel’kov [28]14

x′ = −x + ay + x2y(5.4)

y′ = b− ay − x2y .

Here a and b are positive parameters. The unknown functions x(t) and y(t)15

represent some biological quantities, and are also assumed to be positive.16
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a

b + b
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D̄

C1

The trapping region D̄ \D1 (D1 is the disc inside C1)

17

To prove the existence of a limit cycle, we shall construct a trapping18

region. Consider the four-sided polygon D̄ in the xy-plane bounded by the19

part of x-axis, 0 < x < b + b
a , by the part of y-axis, 0 < y < b

a , by the20

horizontal line y = b
a , with 0 < x < b, and finally by the line x+ y = b+ b

a ,21
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see the figure. We claim that the vector field of this system, F (x, y) =1
(

−x + ax+ x2y, b− ay − x2y
)

, points inside of D̄, on the boundary of D̄.2

Indeed, y′ > 0 when y = 0 (on the lower side) and the trajectories go up,3

y′ < 0 when y = b
a (on the upper side) and the trajectories go down. On4

the left side, x = 0, we have x′ > 0, and the trajectories travel to the right.5

Turning to the right hand side, observe that by adding the equations in6

(5.4), we get7

(x+ y)′ = b− x < 0 , for x > b .

Hence, the trajectories travel from the line x + y = b + b
a (the right side)8

toward the lines x+y = c, with c < b+ b
a , which corresponds to the interior9

of D̄.10

We now look for the rest points. Setting the right hand side of the11

first equation to zero, we get y = x
x2+a . Similarly, from the second equa-12

tion, y = b
x2+a

. We conclude that x = b, and y = b
b2+a

< b
a . The13

only rest point (b, b
b2+a

) lies inside D̄. To determine the stability of this14

rest point, we consider its linearized system, with the Jacobian matrix15

A =

[

fx(x, y) fy(x, y)
gx(x, y) gy(x, y)

]

evaluated at the rest point (b, b
b2+a

) :16

A =

[

−1 + 2xy a+ x2

−2xy −a− x2

]

∣

∣

∣

∣

(

b, b
b2+a

) =

[

−1 + 2 b2

b2+a
a + b2

−2 b2

b2+a
−a − b2

]

.

The eigenvalues of A satisfy λ1 λ2 = detA = a+ b2 > 0, λ1 + λ2 = trA. If17

trA = −b
4 + (2a− 1)b2 + a+ a2

b2 + a
> 0 ,(5.5)

then λ1 and λ2 are either both positive, or both are complex numbers with18

positive real parts. In the first case, the rest point (b, b
b2+a) is an unstable19

node, and in the second case it is an unstable spiral, for both the linearized20

system and for (5.3), in view of the Hartman-Grobman theorem. Hence,21

on a small circle C1 around the rest point, bounding the disc we call D1,22

trajectories point out of D1 (outside of C1). Let now D denote the region23

D̄, with the disc D1 removed, D = D̄ \D1. Then, under the condition (5.5),24

D is a trapping region, and by the Poincare-Bendixson theorem there exists25

a stable limit cycle of (5.2), lying in D.26

The condition (5.5) is equivalent to27

b2 − b4 − 2ab2 − a− a2 > 0 ,
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Figure 6.2: The limit cycle of Sel’kov system (5.4) for a = 0.07, b = 0.5

which holds if b is small, and a is even smaller. Still this result is biologically1

significant. Computations show that the limit cycle is unique, and it attracts2

all trajectories originating in the first quadrant of the xy-plane. In Figure 6.23

we present Mathematica’s computation of the limit cycle (thick) for Sel’kov4

system (5.4), with a = 0.07, b = 0.5. One sees that the trajectories both on5

the inside and on outside of the limit cycle converge quickly to it. The rest6

point at (0.5, 1.5625) is marked.7

Sometimes one wishes to prove that limit cycles do not exist in some8

region. Recall that a region is called simply-connected if it has no holes.9

Dulac-Bendixson Criterion Assume that f(x, y), fx(x, y) and gy(x, y)10

are continuous in some simply-connected region R of the xy-plane, and11

fx(x, y) + gy(x, y)

does not change sign on R (it is either positive for all points in R, or negative12

everywhere on R). Then the system (5.1) has no closed trajectories inside13

R.14

Proof: Any solution (x(t), y(t)) of (5.1), for a ≤ t ≤ b, determines a curve15
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C (or a trajectory) in the xy-plane. We evaluate the following line integral1

∫

C
g(x, y) dx−f(x, y) dy =

∫ b

a

[

g(x(t), y(t)) x′(t) − f(x(t), y(t)) y′(t)
]

dt = 0 ,

(5.6)
using the equations (5.1). If (x(t), y(t)) is a limit cycle inside R, then (5.6)2

holds, moreover the curve C is closed, and it encloses some region P inside3

R. By Green’s formula, the line integral4

∫

C
g(x, y) dx− f(x, y) dy = −

∫∫

P
[fx(x, y) + gy(x, y)] dA

is either positive or negative, contradicting (5.6). ♦5

Exactly the same proof produces a more general result.6

Theorem 6.5.1 (Dulac-Bendixson Criterion) Assume that f(x, y), fx(x, y)7

and gy(x, y) are continuous in some region R of the xy-plane, and there is8

a differentiable function h(x, y), which is positive on R, so that9

∂

∂x
[h(x, y)f(x, y)]+

∂

∂y
[h(x, y)g(x, y)](5.7)

does not change sign on R. Then the system (5.1) has no closed trajectories10

inside R.11

Example 3 The Lotka-Volterra model of two competing species12

x′ = x (a− bx− cy)(5.8)

y′ = y (d− ex − ky) ,

with positive constants a,b,c,d,e and k, has no limit cycles in the first quad-13

rant of the xy-plane. Indeed, select h(x, y) = 1
xy > 0 for x, y > 0. Then the14

expression (5.7) becomes15

∂

∂x

(

a− bx− cy

y

)

+
∂

∂y

(

d− ex − ky

x

)

= − b
y
− k

x
< 0 ,

for x, y > 0. It follows that the system (5.8) has no limit cycles in the first16

quadrant of the xy-plane.17
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6.6 Periodic Population Models1

Population models become much harder to analyze in case the coefficients2

vary with time t. However, if all coefficients are periodic functions of the3

same period, it is still possible to obtain detailed description of the solutions.4

5

We begin by considering the logistic equation6

x′ = x (a(t) − b(t)x) ,(6.1)

modeling the number of rabbits x(t) at time t. We are only interested in7

positive solutions, x(t) > 0 for all t. The given continuous functions a(t) and8

b(t) are assumed to be periodic, with the period p, so that a(t+ p) = a(t),9

and b(t+p) = b(t) for all t. The periodicity of a(t) and b(t) can be attributed10

to seasonal variations. For example, the carrying capacity a(t) is likely to11

be higher in summer, and lower, or even negative, in winter. We assume12

that the average value of a(t) is positive, so that13

∫ p

0
a(s) ds > 0 ,(6.2)

and that the self-limitation coefficient b(t) satisfies14

b(t) > 0 , for all t .(6.3)

This equation is of Bernoulli’s type. We divide it by x2
15

x′

x2
=
a(t)

x
− b(t) ,

and set y =
1

x
. Then y′ = − x′

x2
, and we obtain a linear equation16

y′ + a(t)y = b(t)(6.4)

that is easy to analyze.17

Lemma 6.6.1 The problem (6.4) has a positive solution of period p. This18

solution is unique, and it attracts all other solutions of (6.4), as t→ ∞.19

Proof: With the integrating factor µ = e
∫ t

0
a(s)ds, the solution of (6.4),20

satisfying an initial condition y(0) = y0, is found as follows21

d

dt
[µ(t)y(t)] = µ(t)b(t) ,
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1

y(t) =
1

µ(t)
y0 +

1

µ(t)

∫ t

0
µ(s)b(s) ds .

This solution is periodic, provided that y(p) = y(0) = y0 (as justified in2

Problems), implying that3

y0 =
1

µ(p)
y0 +

1

µ(p)

∫ p

0
µ(s)b(s) ds ,

which we write as4

(µ(p)− 1)y0 =

∫ p

0
µ(s)b(s) ds .

Since µ(p) > 1 (by the assumption (6.2)), we can solve this equation for y05

y0 =
1

µ(p)− 1

∫ p

0
µ(s)b(s) ds > 0 ,

obtaining the initial value y0, which leads to a positive solution y(t) of period6

p.7

If z(t) is another solution of (6.4), the difference w(t) = z(t) − y(t)8

satisfies9

w′ + a(t)w = 0 .

Integrating, w(t) = e−
∫ t

0
a(s)dsw(0) → 0, as t → ∞ (by the assumption10

(6.2)), proving that all solutions tend to y(t). In particular, this fact implies11

that the periodic solution y(t) is unique. ♦12

This lemma makes possible the following complete description of the13

dynamics for the logistic equation.14

Theorem 6.6.1 Assume that the continuous p-periodic functions a(t), b(t)15

satisfy the conditions (6.2) and (6.3). Then the equation (6.1) has a positive16

solution of period p. This solution is unique, and it attracts all other positive17

solutions of (6.1), as t→ ∞.18

Proof: By Lemma 6.6.1, there is a positive p-periodic solution y(t) of19

(6.4). Then x(t) =
1

y(t)
gives a positive p-periodic solution of (6.1). If20

z(t) is another positive solution of (6.1), then the same lemma tells us that21

1

x(t)
− 1

z(t)
→ 0 as t → ∞, which implies that x(t) − z(t) → 0 as t → ∞.22

(Observe that z(t) is bounded. Indeed, it follows from the equation (6.1)23

that z(t) is decreasing for large enough z, so that a(t) − b(t)z < 0, which24
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holds if z > max a(t)
min b(t) . Then z ≤ maxa(t)

min b(t) .) It follows that the p-periodic1

solution x(t) attracts all other positive solutions of (6.1), and there is only2

one p-periodic solution. ♦3

The following corollary says that an increase in carrying capacity will4

increase the p-periodic solution of (6.1). This is natural, because the p-5

periodic solution attracts all other solutions (“a rising tide lifts all boats”).6

Corollary 6.6.1 Let x1(t) be the positive p-periodic solution of7

x′1 = x1(a1(t) − b(t)x1) ,

where the p-periodic function a1(t) satisfies a1(t) > a(t) for all t. Then8

x1(t) > x(t) for all t (x(t) is the positive p-periodic solution of (6.1)). More-9

over, if a1(t) is close to a(t), then x1(t) is close to x(t).10

Proof: Set y1 =
1

x1
, and y =

1

x
. As before, y′ + a(t)y = b(t), and11

y′1 + a1(t)y1 = b(t) .

Let z(t) = y(t) − y1(t). Then z(t) is a p-periodic solution of12

z′ + a(t)z = (a1(t) − a(t))y1(t) > 0 .(6.5)

By Lemma 6.6.1, the periodic solution of this equation is positive, so that13

z(t) > 0 for all t, and then y(t) > y1(t), which implies that x(t) < x1(t) for14

all t.15

Turning to the second statement, we are now given that the right hand16

side of (6.5) is small. Going over the construction of the p-periodic solution17

in Lemma 6.6.1, we see that z(t) is small as well. ♦18

We consider next another model for a population x(t) > 0 of rabbits19

x′ = x (x− a(t)) (b(t)− x) .(6.6)

The given continuous functions a(t) and b(t) are assumed to be positive,20

periodic with period p, and satisfying 0 < a(t) < b(t) for all t. If 0 < x(t) <21

a(t), it follows from the equation that x′(t) < 0, and x(t) decreases. When22

a(t) < x(t) < b(t), the population grows. So that a(t) gives a threshold23

for population growth. (If the number of rabbits falls too low, they have a24

problem meeting the “significant others”.)25

Let us assume additionally that the maximum value of a(t) lies below26

the minimum value of b(t):27

max
−∞<t<∞

a(t) < min
−∞<t<∞

b(t) .(6.7)
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Theorem 6.6.2 If a(t) and b(t) are continuous p-periodic functions sat-1

isfying (6.7), then the equation (6.6) has exactly two positive solutions of2

period p.3

Proof: We denote by x(t, x0) the solution of (6.6), satisfying the initial4

condition x(0) = x0, so that x(0, x0) = x0. To prove the existence of two5

solutions, we define the Poincaré map x0 → T (x0), by setting T (x0) =6

x(p, x0). The function T (x0) is continuous (by the continuous dependence7

of solutions, with respect to the initial condition). Define the numbers A =8

min−∞<t<∞ b(t)− ε, B = max−∞<t<∞ b(t)+ ε, and the interval I = (A,B).9

If ε > 0 is chosen so small that max−∞<t<∞ a(t) < min−∞<t<∞ b(t) − ε,10

then we claim that the map T takes the interval I into itself. Indeed, if11

x0 = A, then from the equation x′(0) > 0, and x(t, x0) is increasing, for12

small t. At future times, the solution curve cannot cross below x0, because13

again we have x′(t) > 0, if x(t) = x0. It follows that x(p, x0) > x0, or14

T (A) > A. Similarly, we show that T (B) < B. The continuous function15

T (x) − x is positive at x = A, and negative at x = B. By the intermediate16

value theorem T (x) − x has a root x̄ on the interval I = (A,B), so that17

there is a fixed point x̄ such that T (x̄) = x̄. Then x(p, x̄) = x̄, which implies18

that x(t, x̄) is a p-periodic solution.19

The second periodic solution is obtained by considering the map T1,20

defined by setting T1(x0) = x(−p, x0), corresponding to solving the equation21

(6.6) backward in time. As in the case of T , we see that T1 is a continuous22

map, taking the interval T1 = ( min
−∞<t<∞

a(t)− ε, max
−∞<t<∞

a(t) + ε) into itself23

(for small ε > 0). T1 has a fixed point on I1, giving us the second p-periodic24

solution. So that the equation (6.6) has at least two positive p-periodic25

solutions.26

To prove that there are at most two positive p-periodic solutions of (6.6),27

we need the following two lemmas, which are also of independent interest.28

Lemma 6.6.2 Consider the equation (for w(t))29

w′ = c(t)w ,(6.8)

with a given continuous p-periodic function c(t). This equation has a non-30

zero p-periodic solution, if and only if31

∫ p

0
c(s) ds = 0 .
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Proof: Integrating the equation (6.8), gives w(t) = w(0)e
∫ t

0
c(s) ds. Using1

the periodicity of c(t), we see that2

w(t+ p) = w(0)e
∫ t+p

0
c(s) ds = w(0)e

∫ t

0
c(s) ds+

∫ t+p

t
c(s) ds

3

= w(0)e
∫ t

0
c(s) dse

∫ p

0
c(s) ds = w(0)e

∫ t

0
c(s) ds = w(t) ,

exactly when
∫ p
0 c(s) ds = 0. ♦4

Lemma 6.6.3 Consider the nonlinear equation (with a continuous function5

f(t, x), which is twice differentiable in x)6

x′ = f(t, x) .(6.9)

Assume that the function f(t, x) is p-periodic in t, and convex in x:7

f(t+ p, x) = f(t, x), for all t, and x > 0 ,
8

fxx(t, x) > 0, for all t, and x > 0 .

Then the equation (6.9) has at most two positive p-periodic solutions.9

Proof: Assume, on the contrary, that we have three positive p-periodic10

solutions: x1(t) < x2(t) < x3(t) (solutions of (6.9) do not intersect, by the11

existence and uniqueness theorem). Set w1 = x2 − x1, and w2 = x3 − x2.12

These functions are p-periodic, and they satisfy13

w′
1 = f(t, x2)− f(t, x1) =

∫ 1

0

d

dθ
f (t, θx2 + (1 − θ)x1) dθ

14

=

∫ 1

0
fx (t, θx2 + (1− θ)x1) dθ w1 ≡ c1(t)w1 ,

15

w′
2 = f(t, x3)− f(t, x2) =

∫ 1

0

d

dθ
f (t, θx3 + (1 − θ)x2) dθ

16

=

∫ 1

0
fx (t, θx3 + (1− θ)x2) dθ w2 ≡ c2(t)w2 .

(We denoted by c1(t) and c2(t) the corresponding integrals.) The function17

fx is increasing in x (because fxx > 0). It follows that c2(t) > c1(t) for all18

t, and so c1(t) and c2(t) cannot both satisfy the condition of Lemma 6.6.2.19

We have a contradiction with Lemma 6.6.2. (Observe that w1(t) and w2(t)20

are p-periodic solutions of the equations w′
1 = c1(t)w1, and w′

2 = c2(t)w2.)21

♦22
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Returning to the proof of the theorem, we rewrite (6.6) as1

x′ = −x3 + (a(t) + b(t))x2 − a(t)b(t)x .

Divide by x3:2

x′

x3
= −1 +

(a(t) + b(t))

x
− a(t)b(t)

x2
.

We set here u =
1

x2
, so that u′ = −2x−3x′, and obtain3

u′ = 2 − 2(a(t) + b(t))
√
u+ 2a(t)b(t)u .(6.10)

Clearly, the positive p-periodic solutions of the equations (6.6) and (6.10) are4

in one-to-one correspondence. But the right hand side in (6.10) is convex in5

u. By Lemma 6.6.3, both of the equations (6.10) and (6.6) have at most two6

positive p-periodic solutions. It follows that the equation (6.6) has exactly7

two positive p-periodic solutions. ♦8

Let x1(t) < x2(t) denote the two positive p-periodic solutions of (6.6),9

provided by the above theorem, and let x(t, x0) denote again the solution of10

this equation, with the initial condition x(0) = x0. It is not hard to show11

that x(t, x0) → x2(t) as t → ∞, if x0 belongs to either one of the intervals12

(x2(0),∞), or (x1(0), x2(0)). On the other hand, x(t, x0) → 0 as t → ∞, if13

x0 ∈ (0, x1(0)). So that the larger p-periodic solution x2(t) is asymptotically14

stable, while the smaller one x1(t) is unstable.15

We consider next the case of two competing species, with the populations16

x(t) and y(t), satisfying the Lotka-Volterra system17

x′ = x(a(t) − bx− cy)(6.11)
18

y′ = y(d(t)− ex− fy) .

The given functions a(t) and d(t) are assumed to be periodic, with the pe-19

riod p, so that a(t+p) = a(t), and d(t+p) = d(t) for all t. We do not assume20

a(t) and d(t) to be positive, but assume that they have positive averages21

over (0, p). The positive numbers b, c, e and f are given. As before, the22

periodicity of a(t) and d(t) may be attributed to seasonal variations. The23

numbers c and e are called the interaction coefficients. They quantify how24

detrimental are the species for each other. It seems reasonable to assume25

that the self-limitation coefficients b and f , as well as the interaction coeffi-26

cients c and e change less with the seasons than the carrying capacities, and27

so we assumed them to be constants in this model.28
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We may regard the first equation as a logistic equation for x(t), with the1

carrying capacity equal to a(t) − cy(t). We see that each species in effect2

diminishes the carrying capacity of the other one, as they compete for food,3

hiding places, etc. The largest population of the first species occurs, if the4

second one goes extinct, so that y(t) = 0 for all t. Then the first equation5

becomes6

x′ = x(a(t) − bx) .(6.12)

By the Theorem 6.6.1, this equation has a unique positive p-periodic solu-7

tion, which we denote by X(t). The pair (X(t), 0) is a p-periodic solution of8

our system (6.11), called a semi-trivial solution. If Y (t) denotes the unique9

positive p-periodic solution of10

y′ = y(d(t)− fy) ,(6.13)

then (0, Y (t)) is the other semi-trivial solution.11

The following theorem describes a case, when the dynamics of the Lotka-12

Volterra system is similar to that of a single logistic equation.13

Theorem 6.6.3 Denoting A =
∫ p
0 a(t) dt, D =

∫ p
0 d(t) dt, assume that A >14

0, D > 0, and15

fA − cD > 0, and bD− eA > 0 .(6.14)

Then the system (6.11) has a unique positive (in both components) p-periodic16

solution, to which all other positive solutions of (6.11) tend, as t→ ∞.17

Proof: The largest possible periodic solutions X(t) and Y (t) (defined by18

(6.12) and (6.13)) occur when the competitor species is extinct. Denote by19

ξ(t) the positive p-periodic solution of the logistic equation20

x′ = x(a(t) − bx− cY (t)) .

Here the first species is forced to compete with the maximal periodic solution21

for the second species. Similarly, we denote by η(t) the positive p-periodic22

solution of the logistic equation23

y′ = y(d(t)− eX − fy) .

(To prove the existence of ξ(t), we need to show that
∫ p
0 (a(t) − cY (t)) dt >24

0. Dividing the equation Y ′ = Y (d(t) − fY ) by Y and integrating, we25

have
∫ p
0 Y (t) dt = D

f . Then
∫ p
0 (a(t) − cY (t)) dt = A − cD

f > 0, by the first26

condition in (6.14). The existence of η(t) is proved similarly.)27
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We shall construct a p-periodic solution of our system (6.11) as the limit1

of the p-periodic approximations (xn, yn), defined as follows: x1 = X(t),2

y1 = η(t), while (x2(t), y2(t)) are respectively the p-periodic solutions of the3

following two logistic equations4

x′2 = x2(a(t)− bx2 − cy1) ,

5

y′2 = y2(d(t)− ex2 − fy2) .

So that we compute x2(t), and immediately use it to compute y2(t). Using6

the Corollary 6.6.1, we see that7

x2(t) < x1(t), and y1(t) < y2(t) for all t .

(Or think “ecologically”: x2 is computed when the first species faces some8

competition, while x1 = X(t) was computed without competition, so that9

x2(t) < x1(t); y2 is computed when the second species faces weaker com-10

petition, than when y1 was computed, so that y1(t) < y2(t).) In general,11

once (xn(t), yn(t)) is computed, we obtain (xn+1(t), yn+1(t)) by finding the12

p-periodic solutions of the logistic equations13

x′n+1 = xn+1(a(t) − bxn+1 − cyn) ,(6.15)

14

y′n+1 = yn+1(d(t)− exn+1 − fyn+1) .

By the same reasoning as above, we show that for all t15

ξ(t) < xn(t) < · · · < x2(t) < x1(t), and y1(t) < y2(t) < · · · < yn(t) < Y (t) .

At each t, xn(t) is a monotone and bounded sequence of numbers, which has16

a limit. We denote xp(t) = limt→∞ xn(t), and similarly yp(t) = limt→∞ yn(t).17

Passing to the limit in the equations (6.15) (or rather in their integral ver-18

sions), we see that (xp(t), yp(t)) is a positive p-periodic solution of (6.11).19

20

Next, we prove that there is only one positive p-periodic solution of21

(6.11). Let (x(t), y(t)) be any positive p-periodic solution of (6.11). We22

divide the first equation in (6.11) by x(t), and integrate over (0, p). By23

periodicity,

∫ p

0

x′(t)
x(t)

dt = lnx(t)|p
0

= 0. Then24

b

∫ p

0
x(t) dt+ c

∫ p

0
y(t) dt = A .



294 CHAPTER 6. NON-LINEAR SYSTEMS

Similarly, from the second equation in (6.11)1

e

∫ p

0
x(t) dt+ f

∫ p

0
y(t) dt = D .

Solving these two equations for the integrals, we get2

∫ p

0
x(t) dt =

fA − cD

bf − ce
> 0,

∫ p

0
y(t) dt =

bD − eA

bf − ec
> 0 .(6.16)

(Observe that our conditions (6.14) imply that bf − ec > 0.) Let now3

(x̄(t), ȳ(t)) be another positive p-periodic solution of (6.11). Clearly, x̄(t) <4

x1(t) = X(t), ȳ(t) > y1(t) = η(t). We prove inductively that x̄(t) < xn(t),5

and ȳ(t) > yn(t). Letting n → ∞, we have x̄(t) ≤ xp(t), and ȳ(t) ≥ yp(t).6

Since by (6.16),7

∫ p

0
xp(t) dt =

∫ p

0
x̄(t) dt , and

∫ p

0
yp(t) dt =

∫ p

0
ȳ(t) dt ,

we conclude that x̄(t) = xp(t), and ȳ(t) = yp(t).8

Turning to the stability of (xp(t), yp(t)), we now define another sequence9

of iterates (x̂n, ŷn). Beginning with x̂1 = ξ(t), ŷ1 = Y (t), once the iterate10

(x̂n(t), ŷn(t)) is computed, we obtain (x̂n+1(t), ŷn+1(t)) by calculating the11

p-periodic solutions of the following two logistic equations12

ŷ′n+1 = ŷn+1(d(t)− ex̂n − fŷn+1) ,
13

x̂′n+1 = x̂n+1(a(t)− bx̂n+1 − cŷn+1) .

(So that we compute ŷn+1(t), and immediately use it to compute x̂n+1(t).)14

By the same reasoning as above, we show that for all n15

x̂1 < x̂2 < · · · < x̂n < xn(t) < · · ·< x2(t) < x1(t) ,

and16

y1(t) < y2(t) < · · ·< yn(t) < ŷn(t) < · · ·< ŷ2(t) < ŷ1(t) .

As before, (x̂n, ŷn) tends to a positive p-periodic solution of (6.11), which by17

the uniqueness must be (xp(t), yp(t)). We conclude that the periodic solution18

is approximated from both below and above by the monotone sequences,19

xp(t) = lim
n→∞

xn(t) = lim
n→∞

x̂n(t), and yp(t) = lim
n→∞

yn(t) = lim
n→∞

ŷn(t).20

Next, we sketch a proof that any positive solution, (x(t), y(t)) of (6.11),21

tends to the unique positive p-periodic solution (xp(t), yp(t)), as t → ∞.22

The idea is to show inductively that for any integer n, and any ε > 023

x̂n(t) − ε < x(t) < xn(t) + ε, and yn(t) − ε < y(t) < ŷn(t) + ε ,(6.17)
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for t large enough. Indeed, the inequality yn(t) − ε < y(t) implies that1

x′ < x(a(t) − bx− cyn + cε) .

Then x(t) lies below the solution of2

x′ = x(a(t) − bx− cyn + cε) ,(6.18)

with the same initial condition. Any positive solution of (6.18) tends to the3

p-periodic solution of that equation, which, by the Corollary 6.6.1, is close4

to the p-periodic solution of5

x′ = x(a(t) − bx− cyn) ,

or close to xn+1. So that the estimate of y(t) from below in (6.17) leads to6

the estimate of x(t) from above in (6.17), at n + 1. This way we establish7

the inequalities (6.17) at the next value of n. ♦8

This theorem appeared first in the author’s paper [17]. The idea to use9

monotone iterations, to prove that all positive solutions tend to the periodic10

one, is due to E.N. Dancer [7], who used it in another context.11

6.6.1 Problems12

I.13

1. (i) Find and classify the rest points of14

x′(t) = x(x+ 1)(x− 2) .

Hint: The sign of x′(t) changes at x = −1, x = 0, and x = 2.15

Answer. The rest points are x = −1 (unstable), x = 0 (stable), and x = 216

(unstable).17

(ii) Let y(t) be the solution of18

y′(t) = y(y + 1)(y − 2) , y(0) = 3 .

Find limt→∞ y(t), and limt→−∞ y(t).19

Answer. ∞, and 2.20

(iii) What is the domain of attraction of the rest point x = 0?21

Answer. (−1, 2).22
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2. Consider a population model with a threshold for growth1

x′ = x(x− 1)(5− x) .

(i) Find and classify the rest points.2

Answer. The rest points are x = 0 (stable), x = 1 (unstable), and x = 53

(stable).4

(ii) Calculate limt→∞ x(t) for the following cases:5

(a) x(0) ∈ (0, 1), (b) x(0) > 1.6

Answer. (a) limt→∞ x(t) = 0, (b) limt→∞ x(t) = 5.7

3. (i) Find and classify the rest points of8

x′ = x2(2 − x) .

Answer. The rest points are x = 2 (stable) and x = 0 (neither stable or9

unstable).10

(ii) Calculate limt→∞ x(t) for the following cases:11

(a) x(0) < 0, (b) x(0) > 0.12

Answer. (a) limt→∞ x(t) = 0, (b) limt→∞ x(t) = 2.13

4. (i) Find and classify the rest point(s) of14

x′ = −x2 .

(ii) Solve this equation to show that limt→∞ x(t) = 0, for any value of x(0).15

16

5. (i) Show that the rest point (0, 0) is asymptotically stable for the system17

x′1 = −2x1 + x2 + x1x2

x′2 = x1 − 2x2 + x3
1 .

(ii) Find the general solution of the corresponding linearized system18

x′1 = −2x1 + x2

x′2 = x1 − 2x2 ,

and discuss its behavior as t→ ∞.19
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6. Show that the rest point (0, 0) is asymptotically stable for the system1

x′ = −5y − x(x2 + y2)

y′ = x− y(x2 + y2) ,

and its domain of attraction is the entire xy-plane.2

Hint: Use L(x, y) = 1
5x

2 + y2.3

7. (i) The equation (for y = y(t))4

y′ = y2(1− y)

has the rest points y = 0 and y = 1. Discuss their Lyapunov’s stability.5

Answer: y = 1 is asymptotically stable, y = 0 is unstable.6

(ii) Find lim
t→∞

y(t) in the following cases:7

(a) y(0) < 0, (b) 0 < y(0) < 1, (c) y(0) > 1.8

Answer. (a) limt→∞ y(t) = 0, (b) limt→∞ y(t) = 1, (c) limt→∞ y(t) = 1.9

8. Show that the rest point (0, 0) is stable, but not asymptotically stable,10

for the system11

x′ = −y
y′ = x3 .

Hint: Use L(x, y) = 1
2x

4 + y2.12

9. (i) Convert the nonlinear equation13

y′′ + f(y)y′ + y = 0

into a system, by letting y = x1, and y′ = x2. Answer:14

x′1 = x2

x′2 = −x1 − f(x1)x2 .

(ii) Show that the rest point (0, 0) of this system is asymptotically stable,15

provided that f(x1) > 0 for all x1 6= 0. What does this imply for the original16

equation?17

Hint: Use L = 1
2x

2
1 + 1

2x
2
2.18
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10. Show that the rest point (0, 0) is asymptotically stable for the system1

x′1 = x2

x′2 = −g(x1) − f(x1)x2 ,

provided that f(x1) > 0, and x1g(x1) > 0, for all x1 6= 0.2

Hint: Use L =
∫ x1
0 g(s) ds + 1

2x
2
2. Observe that L(x1, x2) > 0, for all3

(x1, x2) 6= (0, 0).4

What conclusion can one draw for the equation5

y′′ + f(y)y′ + g(y) = 0 ?

11. Consider the system6

x′ = −x3 + 4y
(

z2 + 1
)

y′ = −y5 − x
(

z2 + 1
)

z′ = −z − x4z3 .

(i) Show that (0, 0, 0) is the only rest point, and it is asymptotically stable.7

8

(ii) If we drop the nonlinear terms, we get a linear system9

x′ = 4y

y′ = −x
z′ = −z .

Show that any solution of this system moves on an elliptic cylinder, and it10

tends to the xy-plane, as t → ∞. Conclude that the rest point (0, 0, 0) is11

not asymptotically stable. Is it stable?12

12. (i) Show that the rest point (0, 0, 0) is Lyapunov stable, but not asymp-13

totically stable for the system14

x′1 = x2 + x3 + x2x3(6.19)

x′2 = −x1 + x3 − 2x1x3

x′3 = −x1 − x2 + x1x2 .

Hint: Solutions of (6.19) lie on spheres x2
1 + x2

2 + x2
3 = c (where c = x2

1(0) +15

x2
2(0) + x2

3(0)).16

(ii) Find all of the rest points of (6.19).17
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Consider the 3×3 algebraic system obtained by setting the right hand sides1

of (6.19) to zero. If one of the variables is zero, so are the other two. In2

case x1 6= 0, x2 6= 0, and x3 6= 0, obtain a linear system with infinitely many3

solutions for y1 = 1
x1

, y2 = 1
x2

, y3 = 1
x3

dividing the first equation by x2x3,4

the second one by x1x3, and the third one by x1x2.5

Answer. (x1, x2, x3) =
(

t, t
t−1 ,

t
1−2t

)

, where t is arbitrary, but t 6= 1, t 6= 1
2 .6

13. Show that the rest point (1, 1) is asymptotically stable for the system7

x′ = −3x− y + xy + 3

y′ = −2x− y + x2 + 2 .

Hint: Set x = X + 1, y = X + 1, to get a system for (X, Y ).8

II.9

1. Show that for any positive solution of the system10

x′ = x (5 − x− 2y)

y′ = y (2 − 3x− y)

we have lim
t→∞

(x(t), y(t)) = (5, 0).11

2. Show that for any positive solution of the system12

x′ = x
(

2 − x− 1
2y
)

y′ = y (3− x− y)

we have lim
t→∞

(x(t), y(t)) = (1, 2).13

3. Find lim
t→∞

(x(t), y(t)) for the initial value problem14

x′ = x (3 − x− y) , x(0) = 5
2

y′ = y (4 − 2x− y) , y(0) = 1
4 .

What if the initial conditions are x(0) = 0.1 and y(0) = 3 ?15

Answer. (3, 0). For the other initial conditions: (0, 4).16

4. Discuss the long term behavior (as t → ∞) of positive solutions of the17

system18

x′ = x (3 − x− y)

y′ = y (4 − 2x− y) .
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5. Show that any solution with x(0) > 0 and y(0) > 0 satisfies x(t) > 0 and1

y(t) > 0 for all t > 0, and then discuss the long term behavior of positive2

solutions of the system3

x′ = x (6 − 3x− 2y)

y′ = y
(

2 − 1
8x

2 − y
)

.

Hint: The second null-cline is a parabola, but the same analysis applies.4

Answer. Any positive solution satisfies limt→∞ x(t) = 6−2
√

7, and limt→∞ y(t) =5

3
√

7 − 6.6

III.7

1. Show that the ellipse x = 2 cos t, y = sin t is a stable limit cycle for the8

system9

x′ = −2y + x
(

1 − 1
4x

2 − y2
)

y′ = 1
2x+ y

(

1 − 1
4x

2 − y2
)

.

Hint: Show that ρ = 1
4x

2 + y2 satisfies ρ′ = 2ρ(1− ρ).10

2. Consider the system11

x′ = x− y − x3

y′ = x+ y − y3 .

(i) Show that the origin (0, 0) is the only rest point.12

Hint: Show that the curves x− y−x3 = 0 and x+ y− y3 = 0 intersect only13

at the origin. This can be done either by hand, or (better) by computer.14

(ii) Show that the origin (0, 0) is an unstable spiral.15

(iii) Show that the system has a limit cycle.16

Hint: Compute the scalar product of F =
(

x− y − x3, x+ y − y3
)

, and the17

vector (x, y), then switch to the polar coordinates. Obtain18

x2 +y2 −x4 −y4 = x2 +y2 −
(

x2 + y2
)2

+2x2y2 = r2− r4 +2r4 cos2 θ sin2 θ

19

< r2 − 1

2
r4 < 0 , for r large .

Conclude that the annulus ρ2 ≤ x2 +y2 ≤ R2 is a trapping region, provided20

that ρ > 0 is small, and R > 0 is large. Apply the Hartman-Grobman21

theorem.22
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3. Show that the system1

x′ = x
(

2 − x− y3
)

y′ = y
(

4x− 3y − x2
)

has no limit cycles in the positive quadrant x, y > 0.2

Hint: Use the Theorem 6.5.1, with h(x, y) =
1

xy
.3

4. Show that the equation (for x = x(t))4

x′′ + f(x)x′ + g(x) = 0

has no periodic solutions, provided that either f(x) > 0, or f(x) < 0, for all5

real x.6

Hint: Periodic solutions would imply limit cycles for the corresponding sys-7

tem (for x1 = x and x2 = x′). Use the Dulac-Bendixson criterion.8

5. Show that the condition (5.5) holds, provided that a < 1
8 , and b2 lies9

between the roots of the quadratic x2 + (2a− 1)x+ a+ a2.10

6. Consider a gradient system11

x′1 = −Vx1(x1, x2)(6.20)

x′2 = −Vx2(x1, x2) ,

where V (x1, x2) is a given twice differentiable function. (Denoting x =12

(x1, x2) and V = V (x), one may write this system in the gradient form13

x′ = −∇V (x).)14

(i) Show that a point P = (x0
1, x

0
2) is a rest point of (6.20) if and only if P15

is a critical point of V (x1, x2).16

(ii) Show that V (x1(t), x2(t)) is a strictly decreasing function of t for any17

solution (x1(t), x2(t)), except if (x1(t), x2(t)) is a rest point.18

(iii) Show that no limit cycles are possible for gradient system (6.20).19

(iv) Let (a, b) be a point of strict local minimum of V (x1, x2). Show that20

(a, b) is asymptotically stable rest point of (6.20).21

Hint: Use L(x1, x2) = V (x1, x2) − V (a, b) as Lyapunov’s function.22

(v) Show that the existence and uniqueness Theorem 6.1.1 applies to (6.20).23

24
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7. Consider a Hamiltonian system1

x′1 = Vx1(x1, x2)(6.21)

x′2 = −Vx2(x1, x2) ,

where V (x1, x2) is a given twice differentiable function.2

(i) Show that3

V (x1(t), x2(t)) = constant ,

for any solution (x1(t), x2(t)).4

(ii) Show that a point P = (x0
1, x

0
2) is a rest point of (6.21) if and only if P5

is a critical point of V (x1, x2).6

(iii) Show that no asymptotically stable rest points are possible for Hamil-7

tonian system (6.21).8

(iv) Let (a, b) be a point of strict local minimum or maximum of V (x1, x2).9

Show that (a, b) is a center for (6.21).10

(v) Show that the trajectories of (6.20) are orthogonal to the trajectories of11

(6.21), at all points (x1, x2).12

8. In the Lotka-Volterra predator-prey system (1.1) let p = lnx, and13

q = ln y. Show that for the new unknowns p(t) and q(t) one obtains a14

Hamiltonian system, with V (p, q) = c p− d ep + a q − b eq.15

9. Consider the system (x(t) is a vector in Rn)16

x′ = [A +B(t)] x , t > t0 ,(6.22)

where A is an n×n matrix with constant entries, and the n×n matrix B(t)17

satisfies
∫∞
t0

||B(t)|| dt < ∞. Assume that the eigenvalues of A are either18

negative or have negative real parts (recall that such matrices are called19

stable). Show that limt→∞ x(t) = 0, for any solution of (6.22).20

Hint: Treating the B(t)x(t) term as known, one can regard (6.22) as a21

non-homogeneous system, and write its solution as22

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−s)B(s)x(s) ds .

By (4.9), the norm ||eAt|| ≤ ae−bt, for some constants a > 0 and b > 0, with23

t > 0. Then24

||x(t)|| ≤ Ke−bt + a

∫ t

t0

e−b(t−s)||B(s)|| ||x(s)|| ds ,



6.6. PERIODIC POPULATION MODELS 303

where K = aebt0 ||x(t0)||. Letting u(t) = ebt||x(t)||, obtain1

||u(t)|| ≤ K + a

∫ t

t0

||B(s)|| ||u(s)|| ds .

Apply the Bellman-Gronwall lemma.2

IV. 1. Consider the linear equation3

x′ = a(t)x+ b(t) ,(6.23)

with given p-periodic functions a(t) and b(t).4

(i) Let x(t) be some solution of (6.23). Show that x(t+ p) is also a solution5

of (6.23).6

Hint: x(t) satisfies (6.23) at all t, in particular at t+ p.7

(ii) Let x(t) be a solution of (6.23), such that x(p) = x(0). Show that x(t)8

is a p-periodic function.9

Hint: x(t) and x(t+ p) are two solutions of (6.23) that coincide at t = 0.10

2. Consider a generalized logistic model11

x′ = x2 (a(t) − b(t)x) ,

with positive p-periodic functions a(t) and b(t). Show that there is a unique12

positive p-periodic solution, which attracts all other positive solutions, as13

t→ ∞.14

Hint: Show that the Poincaré map x0 → x(p, x0) takes the interval (ε,M)15

into itself, provided that ε > 0 is small and M is large. For the uniqueness16

part, show that y(t) = 1
x(t) satisfies17

y′ = −a(t) + b(t)
1

y
.

The difference of any two positive p-periodic solutions of the last equation18

satisfies w′ = c(t)w, with a negative c(t).19

3. (Another example of Fredholm alternative.) Consider the equation20

x′ + a(t)x = 1 ,(6.24)

with a p-periodic function a(t).21
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(i) Assume that
∫ p
0 a(t) dt = 0. Show that the problem (6.24) has no p-1

periodic solution.2

Hint: Let z(t) > 0 be a p-periodic solution of3

z′ − a(t)z = 0 .

Combining this equation with (6.24), conclude that
∫ p
0 z(t) dt = 0, which is4

a contradiction.5

(ii) Assume that
∫ p
0 a(t) dt 6= 0. Show that the problem (6.24) has a p-6

periodic solution, and moreover this solution satisfies
∫ p
0 x(t) dt 6= 0.7

Hint: Solve (6.24), with initial condition x(0) = α, and select α so that8

x(p) = x(0) = α.9

4. Consider the logistic model10

x′ = a(t)x− b(t)x2 ,

with p-periodic functions a(t) and b(t). Assume that
∫ p
0 a(t) dt = 0, and11

b(t) > 0 for all t. Show that this equation has no non-trivial p-periodic12

solutions.13

Hint: Any non-trivial solution satisfies either x(t) > 0 or x(t) < 0, for all t.14

Divide the equation by x(t), and integrate over (0, p).15



Chapter 71

The Fourier Series and2

Boundary Value Problems3

The central theme of this chapter involves various types of Fourier series,4

and the method of separation of variable, which is prominent in egineering5

and science. The three main equations of mathematical physics, the wave,6

the heat, and the Laplace equations, are derived and studied in detail. The7

Fourier transform method is developed, and applied to problems on infinite8

domains. Non-standard applications include studying temperatures inside9

the Earth, and the isoperimetric inequality.10

7.1 The Fourier Series for Functions of an Arbi-11

trary Period12

Recall that in Chapter 2 we studied the Fourier series for functions of period13

2π. Namely, if a function g(t) has period 2π, it can be represented by the14

Fourier series15

g(t) = a0 +
∞
∑

n=1

(an cosnt+ bn sinnt) ,

with the coefficients given by16

a0 =
1

2π

∫ π

−π
g(t) dt ,

17

an =
1

π

∫ π

−π
g(t) cosnt dt ,

18

bn =
1

π

∫ π

−π
g(t) sinnt dt .

305
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Observe that the knowledge of a 2π-periodic function g(t) over the interval1

(−π, π] is sufficient to describe this function for all t ∈ (−∞,∞).2

Suppose now that f(x) has a period 2L, where L > 0 is any number.3

Consider an auxiliary function g(t) = f(
L

π
t). Then g(t) has period 2π, and4

we can represent it by the Fourier series5

f(
L

π
t) = g(t) = a0 +

∞
∑

n=1

(an cosnt+ bn sinnt) ,

with the coefficients6

a0 =
1

2π

∫ π

−π
g(t) dt =

1

2π

∫ π

−π
f(
L

π
t) dt ,

7

an =
1

π

∫ π

−π
g(t) cosnt dt =

1

π

∫ π

−π
f(
L

π
t) cosnt dt ,

8

bn =
1

π

∫ π

−π
g(t) sinnt dt =

1

π

∫ π

−π
f(
L

π
t) sinnt dt .

Set here9

x =
L

π
t, or t =

π

L
x .

Then the Fourier series takes the form10

f(x) = a0 +
∞
∑

n=1

(

an cos
nπ

L
x+ bn sin

nπ

L
x

)

,(1.1)

and making a change of variables t→ x, by setting t =
π

L
x with dt =

π

L
dx,11

we express the coefficients as12

a0 =
1

2L

∫ L

−L
f(x) dx ,

13

an =
1

L

∫ L

−L
f(x) cos

nπ

L
x dx ,(1.2)

14

bn =
1

L

∫ L

−L
f(x) sin

nπ

L
x dx .

The formula (1.1) gives the desired Fourier series for functions of period15

2L. Its coefficients are computed using the formulas (1.2). Observe that one16

needs the values of f(x) only on the interval (−L, L), when computing the17

coefficients.18
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Suppose that a function g(x) is defined on some interval (−L, L). The1

function G(x) is called the periodic extension of g(x), provided that2

(i) G(x) = g(x) , for −L < x < L

(ii) G(x) is periodic with period 2L .

Observe that G(x) is defined for all x, except for x = nπ with integer n.3

Example Let f(x) be the function of period 6, which on the interval4

(−3, 3) is equal to x.5

Here L = 3, and f(x) = x on the interval (−3, 3). The Fourier series has6

the form7

f(x) = a0 +
∞
∑

n=1

(

an cos
nπ

3
x+ bn sin

nπ

3
x

)

.

The functions x, and x cos nπ
3 x are odd, and so8

a0 =
1

6

∫ 3

−3
x dx = 0 ,

9

an =
1

3

∫ 3

−3
x cos

nπ

3
x dx = 0 .

The function x sin nπ
3 x is even, giving10

bn =
1

3

∫ 3

−3
x sin

nπ

3
x dx =

2

3

∫ 3

0
x sin

nπ

3
x dx

11

=
2

3

[

− 3

nπ
x cos

nπ

3
x+

9

n2π2
sin

nπ

3
x

]

∣

∣

∣

3

0
= − 6

nπ
cosnπ =

6

nπ
(−1)n+1 ,

because cosnπ = (−1)n. We conclude that12

f(x) =
∞
∑

n=1

6

nπ
(−1)n+1 sin

nπ

3
x .

Restricting to the interval (−3, 3), we have13

x =
∞
∑

n=1

6

nπ
(−1)n+1 sin

nπ

3
x, for −3 < x < 3 .

Outside of the interval (−3, 3) this Fourier series converges not to x, but to14

the periodic extension of x, which is the function f(x) that we started with.15

16
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We see that it is sufficient to know f(x) on the interval (−L, L), in order1

to compute its Fourier coefficients. If f(x) is defined only on (−L, L), it can2

still be represented the Fourier series (1.1). Outside of (−L, L), this Fourier3

series converges to the 2L-periodic extension of f(x).4

7.1.1 Even and Odd Functions5

Our computations in the preceding example were aided by the nice proper-6

ties of even and odd functions, which we review next.7

A function f(x) is called even if8

f(−x) = f(x) for all x .

Examples include cos x, x2, x4, and in general x2n, for any even power 2n.9

The graph of an even function is symmetric with respect to the y axis. It10

follows that11
∫ L

−L
f(x) dx = 2

∫ L

0
f(x) dx ,

for any even function f(x), and any constant L.12

A function f(x) is called odd if13

f(−x) = −f(x) for all x 6= 0 .

(This definition allows f(x) to be discontinuous at x = 0; but if f(x) is14

continuous at x = 0, then it implies that f(0) = 0.) Examples include sinx,15

tanx, x, x3, and in general x2n+1, for any odd power 2n + 1. (The even16

functions “eat” minus, while the odd ones “pass it through.”) The graph of17

an odd function is symmetric with respect to the origin. It follows that18

∫ L

−L
f(x) dx = 0 ,

for any odd function f(x), and any constant L. Products of even and odd19

functions are either even or odd:20

even · even = even , even · odd = odd , odd · odd = even .

If f(x) is even, then bn = 0 for all n (as integrals of odd functions), and21

the Fourier series (1.1) becomes22

f(x) = a0 +
∞
∑

n=1

an cos
nπ

L
x ,
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with1

a0 =
1

L

∫ L

0
f(x) dx ,

2

an =
2

L

∫ L

0
f(x) cos

nπ

L
x dx .

If f(x) is odd, then a0 = 0 and an = 0 for all n, and the Fourier series (1.1)3

becomes4

f(x) =
∞
∑

n=1

bn sin
nπ

L
x ,

with5

bn =
2

L

∫ L

0
f(x) sin

nπ

L
x dx .

6
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The periodic extension of |x| as a function of period 2

7

Example Let f(x) be a function of period 2, which on the interval (−1, 1)8

is equal to |x|.9

Here L = 1, and f(x) = |x| on the interval (−1, 1). The function f(x) is10

even, so that11

f(x) = a0 +
∞
∑

n=1

an cosnπx .

Observing that |x| = x on the interval (0, 1), we compute the coefficients12

a0 =

∫ 1

0
x dx =

1

2
,

13

an = 2

∫ 1

0
x cosnπx dx = 2

[

x sinnπx

nπ
+

cosnπx

n2π2

]

∣

∣

∣

1

0
=

2(−1)n − 2

n2π2
.
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Restricting to the interval (−1, 1)1

|x| = 1

2
+

∞
∑

n=1

2(−1)n − 2

n2π2
cosnπx, for −1 < x < 1 .

Outside of the interval (−1, 1), this Fourier series converges to the periodic2

extension of |x|, or to the function f(x).3

Observing that an = 0 for even n, one can also write the answer as4

|x| =
1

2
−

∞
∑

k=0

4

(2k + 1)2π2
cos(2k + 1)πx , for −1 < x < 1 .

(All odd n can be obtained in the form n = 2k + 1, with k = 0, 1, 2, . . ..)5

7.1.2 Further Examples and the Convergence Theorem6

Even and odd functions are very special. A “general” function is neither7

even nor odd.8

Example 1 On the interval (−2, 2), represent the function9

f(x) =

{

1 for −2 < x ≤ 0

x for 0 < x < 2

by its Fourier series.10

This function is neither even nor odd (and also it is not continuous, with a11

jump at x = 0). Here L = 2, and the Fourier series has the form12

f(x) = a0 +
∞
∑

n=1

(

an cos
nπ

2
x+ bn sin

nπ

2
x

)

.

Compute13

a0 =
1

4

∫ 0

−2
1 dx+

1

4

∫ 2

0
x dx = 1 ,

where we broke the interval of integration into two pieces, according to the14

definition of f(x). Similarly15

an =
1

2

∫ 0

−2
cos

nπ

2
x+

1

2

∫ 2

0
x cos

nπ

2
x dx =

2 (−1 + (−1)n)

n2π2
,

16

bn =
1

2

∫ 0

−2
sin

nπ

2
x+

1

2

∫ 2

0
x sin

nπ

2
x dx =

(−1 − (−1)n)

nπ
.
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On the interval (−2, 2) we have1

f(x) = 1 +
∞
∑

n=1

(

2 (−1 + (−1)n)

n2π2
cos

nπ

2
x+

(−1 − (−1)n)

nπ
sin

nπ

2
x

)

.

The quantity −1 + (−1)n is equal to zero if n is even, and to −2 if n is odd.2

The quantity −1− (−1)n is equal to zero if n is odd, and to −2 if n is even.3

All even n can be obtained in the form n = 2k, with k = 1, 2, 3, . . ., and all4

odd n can be obtained in the form n = 2k − 1, with k = 1, 2, 3, . . .. We can5

then rewrite the Fourier series as6

f(x) = 1−
∞
∑

k=1

(

4

(2k − 1)2π2
cos

(2k − 1)π

2
x+

1

kπ
sinkπx

)

, for −2 < x < 2 .

Outside of the interval (−2, 2), this series converges to the extension of f(x),7

as a function of period 4.8

Example 2 Find the Fourier series of f(x) = 2 sinx + sin2 x, on the9

interval (−π, π).10

Here L = π, and the Fourier series takes the form11

f(x) = a0 +
∞
∑

n=1

(an cosnx+ bn sinnx) .

Let us spell out several terms of this series:12

f(x) = a0 + a1 cosx+ a2 cos 2x+ a3 cos 3x+ · · ·+ b1 sinx + b2 sin 2x+ · · · .

Using the trigonometric formula sin2 x = 1
2 − 1

2 cos 2x, write13

f(x) =
1

2
− 1

2
cos 2x+ 2 sinx .

This is the desired Fourier series! Here a0 = 1
2 , a2 = −1

2 , b1 = 2, and all14

other coefficients are zero. In effect, this function is its own Fourier series.15

Example 3 Find the Fourier series of f(x) = 2 sinx + sin2 x, on the16

interval (−2π, 2π).17

This time L = 2π, and the Fourier series has the form18

f(x) = a0 +
∞
∑

n=1

(

an cos
n

2
x+ bn sin

n

2
x

)

.
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As before, we rewrite f(x)1

f(x) =
1

2
− 1

2
cos 2x+ 2 sinx .

And again this is the desired Fourier series! This time a0 = 1
2 , a4 = −1

2 ,2

b2 = 2, and all other coefficients are zero.3

To discuss the convergence properties of Fourier series, we need the con-4

cept of piecewise smooth functions. These are functions that are continuous5

and differentiable, except for discontinuities at some isolated points. In case6

a discontinuity happens at some point x0, we assume that the limit from7

the left f(x0−) exists, as well as the limit from the right f(x0+). (So that8

at a point of discontinuity either f(x0) is not defined, or f(x0−) 6= f(x0+),9

or f(x0) 6= limx→x0 f(x).)10

Theorem 7.1.1 Let f(x) be a piecewise smooth function of period 2L. Then11

its Fourier series12

a0 +
∞
∑

n=1

(

an cos
nπ

L
x+ bn sin

nπ

L
x

)

converges to f(x) at any point x where f(x) is continuous. If f(x) has a13

discontinuity at x, the Fourier series converges to14

f(x−) + f(x+)

2
.

The proof can be found in the book of H.F. Weinberger [36]. (At jump15

points, the Fourier series tries to be fair, and it converges to the average of16

the limits from the left and from the right.)17

Let now f(x) be defined on [−L, L]. Let us extend it as a function of18

period 2L. Unless it so happens that f(−L) = f(L), the extended function19

will have jumps at x = −L and x = L. Then this theorem implies the next20

one.21

Theorem 7.1.2 Let f(x) be a piecewise smooth function defined on [−L, L].22

Let x be a point inside (−L, L). Then its Fourier series23

a0 +
∞
∑

n=1

(

an cos
nπ

L
x+ bn sin

nπ

L
x

)
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converges to f(x) at any point x where f(x) is continuous. If f(x) has a1

discontinuity at x, the Fourier series converges to2

f(x−) + f(x+)

2
.

At both end points, x = −L and x = L, the Fourier series converges to3

f(−L+) + f(L−)

2
.

(The average of the limits from the right and from the left, at −L and L4

respectively.)5

7.2 The Fourier Cosine and the Fourier Sine Series6

Suppose a function f(x) is defined on the interval (0, L). How do we repre-7

sent f(x) by a Fourier series? We can compute Fourier series for functions8

defined on (−L, L), but f(x) “lives” only on (0, L).9

One possibility is to extend f(x) as an arbitrary function on (−L, 0) (by10

drawing randomly any graph on (−L, 0)). This gives us a function defined11

on (−L, L), which we may represent by its Fourier series, and then use12

this series only on the interval (0, L), where f(x) lives. So that there are13

infinitely many ways to represent f(x) by a Fourier series on the interval14

(0, L). However, two of these Fourier series stand out, the ones when the15

extension produces either an even or an odd function.16

Let f(x) be defined on the interval (0, L). We define its even extension17

to the interval (−L, L), as follows18

fe(x) =

{

f(x) for 0 < x < L
f(−x) for −L < x < 0

.

(Observe that fe(0) is left undefined.) The graph of fe(x) is obtained by19

reflecting the graph of f(x) with respect to the y-axis. The function fe(x)20

is even on (−L, L), and so its Fourier series has the form21

fe(x) = a0 +
∞
∑

n=1

an cos
nπ

L
x ,(2.1)

with the coefficients22

a0 =
1

L

∫ L

0
fe(x) dx =

1

L

∫ L

0
f(x) dx ,
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1

an =
2

L

∫ L

0
fe(x) cos

nπ

L
x dx =

2

L

∫ L

0
f(x) cos

nπ

L
x dx ,

because fe(x) = f(x) on the interval of integration (0, L). We now restrict2

the series (2.1) to the interval (0, L), obtaining3

f(x) = a0 +
∞
∑

n=1

an cos
nπ

L
x , for 0 < x < L ,(2.2)

with4

a0 =
1

L

∫ L

0
f(x) dx ,(2.3)

5

an =
2

L

∫ L

0
f(x) cos

nπ

L
x dx .(2.4)

The series (2.2), with the coefficients computed using the formulas (2.3) and6

(2.4), is called the Fourier cosine series of f(x).7

Where is fe(x) now? It disappeared. We used it as an artifact of con-8

struction, like scaffolding.9

Example 1 Find the Fourier cosine series of f(x) = x+2, on the interval10

(0, 3).11

The series has the form12

f(x) = a0 +
∞
∑

n=1

an cos
nπ

3
x for 0 < x < 3 .

Compute13

a0 =
1

3

∫ 3

0
(x+ 2) dx =

7

2
,

14

an =
2

3

∫ 3

0
(x+ 2) cos

nπ

3
x dx =

6 (−1 + (−1)n)

n2π2
.

Answer:15

x+2 =
7

2
+

∞
∑

n=1

6 (−1 + (−1)n)

n2π2
cos

nπ

3
x =

7

2
−12

∞
∑

k=1

1

(2k − 1)2π2
cos

(2k − 1)π

3
x .

Assume again that f(x) is defined only on the interval (0, L). We now16

define its odd extension to the interval (−L, L), as follows17

fo(x) =

{

f(x) for 0 < x < L
−f(−x) for −L < x < 0

.
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The graph of fo(x) is obtained by reflecting the graph of f(x) with respect1

to the origin. Observe that fo(0) is not defined. (If f(0) is defined, but2

f(0) 6= 0, this extension is still discontinuous at x = 0.) The function fo(x)3

is odd on (−L, L), and so its Fourier series has only the sine terms:4

fo(x) =
∞
∑

n=1

bn sin
nπ

L
x ,(2.5)

with the coefficients5

bn =
2

L

∫ L

0
fo(x) sin

nπ

L
x dx =

2

L

∫ L

0
f(x) sin

nπ

L
x dx ,

because on the interval of integration (0, L), fo(x) = f(x). We restrict the6

series (2.5) to the interval (0, L), obtaining7

f(x) =
∞
∑

n=1

bn sin
nπ

L
x , for 0 < x < L ,(2.6)

with8

bn =
2

L

∫ L

0
f(x) sin

nπ

L
x dx .(2.7)

The series (2.6), with the coefficients computed using the formula (2.7), is9

called the Fourier sine series of f(x).10

Example 2 Find the Fourier sine series of f(x) = x + 2, on the interval11

(0, 3).12

Compute13

bn =
2

3

∫ 3

0
(x+ 2) sin

nπ

3
x dx =

4 − 10(−1)n

nπ
.

We conclude that14

x+ 2 =
∞
∑

n=1

4 − 10(−1)n

nπ
sin

nπ

3
x, for 0 < x < 3 .

Clearly this series does not converge to f(x) at the end points x = 0 and15

x = 3 of our interval (0, 3). But inside (0, 3), we do have convergence.16

We now discuss the convergence issue. The Fourier sine and cosine series17

were developed by using the Fourier series on (−L, L). It follows from the18

convergence Theorem 7.1.1 that inside of (0, L), both of these series converge19

to f(x) at points of continuity, and to
f(x−) + f(x+)

2
if f(x) is discontin-20

uous at x. At both end points x = 0 and x = L, the Fourier sine series21

converges to 0 (as can be seen directly from the series), while the Fourier22

cosine series converges to f(0+) and f(L−) respectively. (The extension of23

fe(x) as a function of period 2L has no jumps at x = 0 and x = L.)24
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7.3 Two Point Boundary Value Problems1

We shall need to find non-trivial solutions y = y(x) of the problem2

y′′ + λy = 0, 0 < x < L(3.1)

y(0) = y(L) = 0 ,

on an interval (0, L). Here λ is a real number. Unlike initial value problems,3

where the values of the solution and its derivative are prescribed at some4

point, here we prescribe that the solution vanishes at x = 0 and at x = L,5

which are the end-points (the boundary points) of the interval (0, L). The6

problem (3.1) is an example of a boundary value problem. Of course, y(x) = 07

is a solution of our problem (3.1), which is called the trivial solution. We8

wish to find non-trivial solutions. What are the values of the parameter λ,9

for which non-trivial solutions are possible?10

The form of the general solution depends on whether λ is positive, neg-11

ative or zero, so that there are three cases to consider.12

Case 1. λ < 0. We may write λ = −ω2, with some ω > 0 (ω =
√
−λ), and13

our equation takes the form14

y′′ − ω2y = 0 .

Its general solution is y = c1e
−ωx + c2e

ωx. The boundary conditions15

y(0) = c1 + c2 = 0 ,
16

y(L) = e−ωLc1 + eωLc2 = 0 ,

give us two equations to determine c1 and c2. From the first equation c2 =17

−c1, and then from the second equation c1 = 0. So that c1 = c2 = 0, and18

the only solution is y = 0, the trivial solution.19

Case 2. λ = 0. The equation takes the form20

y′′ = 0 .

Its general solution is y = c1 + c2x. The boundary conditions21

y(0) = c1 = 0 ,
22

y(L) = c1L+ c2 = 0 ,

give us c1 = c2 = 0, so that y = 0. We struck out again in the search for a23

non-trivial solution.24
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Case 3. λ > 0. We may write λ = ω2, with some ω > 0 (ω =
√
λ), and our1

equation takes the form2

y′′ + ω2y = 0 .

Its general solution is y = c1 cosωx+c2 sinωx. The first boundary condition,3

y(0) = c1 = 0 ,

tells us that c1 = 0. We update the general solution: y = c2 sinωx. The4

second boundary condition gives5

y(L) = c2 sinωL = 0 .

One possibility for this product to be zero, is c2 = 0. That would lead again6

to the trivial solution. What saves us is that sinωL = 0, for some “lucky”7

ω’s, namely when ωL = nπ, or ω = ωn =
nπ

L
, and then λn = ω2

n =
n2π2

L2
,8

n = 1, 2, 3, . . .. The corresponding solutions are c2 sin
nπ

L
x, or we can simply9

write them as sin
nπ

L
x, because a constant multiple of a solution is also a10

solution of (3.1).11

To recapitulate, non-trivial solutions of the boundary value problem (3.1)12

occur at the infinite sequence of λ’s, λn =
n2π2

L2
, called the eigenvalues, and13

the corresponding solutions yn = sin
nπ

L
x are called the eigenfunctions.14

Next, we search for non-trivial solutions of the problem15

y′′ + λy = 0, 0 < x < L

y′(0) = y′(L) = 0 ,

in which the boundary conditions are different. As before, we see that in16

case λ < 0, there are no non-trivial solutions. The case λ = 0 turns out17

to be different: any non-zero constant is a non-trivial solution. So that18

λ0 = 0 is an eigenvalue, and y0 = 1 is the corresponding eigenfunction.19

In case λ > 0, we get infinitely many eigenvalues λn =
n2π2

L2
, with the20

corresponding eigenfunctions yn = cos
nπ

L
x, n = 1, 2, 3, . . ..21
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7.3.1 Problems1

I. 1. Is the integral

∫ 3/2

−1
tan15 x dx positive or negative?2

Hint: Consider first
∫ 1
−1 tan15 x dx. Answer. Positive.3

2. Show that any function can be written as a sum of an even function and4

an odd function.5

Hint: f(x) = f(x)+f(−x)
2 + f(x)−f(−x)

2 .6

3. Let g(x) = x on the interval [0, 3).7

(i) Find the even extension of g(x). Answer. ge(x) = |x|, defined on (−3, 3).8

9

(ii) Find the odd extension of g(x). Answer. go(x) = x, defined on (−3, 3).10

11

4. Let h(x) = −x3 on the interval [0, 5). Find its even and odd extensions,12

and state the interval on which they are defined.13

Answer. he(x) = −|x|3 and h0(x) = −x3, both defined on (−5, 5).14

5. Let f(x) = x2 on the interval [0, 1). Find its even and odd extensions,15

and state the interval on which they are defined.16

Answer. fo(x) = x|x|, defined on (−1, 1).17

6. Differentiate the functions f(x) = x|x|p−1 and g(x) = |x|p, with p > 1.18

Hint: The function f(x) is odd, so that f ′(x) is even. Begin by computing19

f ′(x) for x > 0.20

Answer. f ′(x) = p|x|p−1, g′(x) = px|x|p−2.21

7. Assume that f(x) has period 2π. Show that the function
∫ x
0 f(t) dt is22

also 2π-periodic, if and only if
∫ 2π
0 f(t) dt = 0.23

8. Assume that f(x) has period T . Show that for any constant a24

∫ T+a

a
f ′(x)ef(x) dx = 0 .

II. Find the Fourier series of a given function over the indicated interval.25

1. f(x) = sinx cosx+ cos2 2x on (−π, π).26

Answer. f(x) = 1
2 + 1

2 cos 4x+ 1
2 sin 2x.27

2. f(x) = sinx cosx+ cos2 2x on (−2π, 2π).28
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Answer. f(x) = 1
2 + 1

2 cos 4x+ 1
2 sin 2x.1

3. f(x) = sinx cosx+ cos2 2x on (−π/2, π/2).2

Answer. f(x) = 1
2 + 1

2 cos 4x+ 1
2 sin 2x.3

4. f(x) = x+ x2 on (−π, π).4

Answer. f(x) =
π2

3
+

∞
∑

n=1

(

4(−1)n

n2
cosnx +

2(−1)n+1

n
sinnx

)

.5

5. (i) f(x) =

{

1 for 0 < x < π

−1 for −π < x < 0
on (−π, π).6

Answer. f(x) = 4
π

(

sinx+ 1
3 sin 3x+ 1

5 sin 5x+ 1
7 sin 7x+ · · ·

)

.7

(ii) Set x = π
2 in the last series, to conclude that8

π

4
= 1 − 1

3
+

1

5
− 1

7
+ · · · .

6. f(x) = 1 − |x| on (−2, 2).9

Answer. f(x) =
∞
∑

n=1

4

n2π2
(1 − (−1)n) cos

nπ

2
x.10

7. f(x) = x|x| on (−1, 1).11

Answer. f(x) =
∞
∑

n=1

−2
(

n2π2 − 2
)

(−1)n − 4

n3π3
sinnπx.12

8. Let f(x) =

{

1 for −1 < x < 0

0 for 0 < x < 1
on (−1, 1). Sketch the graphs of f(x)13

and of its Fourier series. Then calculate the Fourier series of f(x) on (−1, 1).14

15

Answer. f(x) =
1

2
−

∞
∑

k=1

2

(2k − 1)π
sin(2k− 1)πx.16

9. Let f(x) =

{

x for −2 < x < 0

−1 for 0 < x < 2
on (−2, 2). Sketch the graphs of17

f(x) and of its Fourier series. Then calculate the Fourier series of f(x) on18

(−2, 2).19

III. Find the Fourier cosine series of a given function over the indicated20

interval.21
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1. f(x) = cos 3x− sin2 3x on (0, π).1

Answer. f(x) = −1

2
+ cos 3x+

1

2
cos 6x.2

2. f(x) = cos 3x− sin2 3x on (0, π
3 ).3

Answer. f(x) = −1

2
+ cos 3x+

1

2
cos 6x.4

3. f(x) = x on (0, 2).5

Answer. f(x) = 1 +
∞
∑

n=1

−4 + 4(−1)n

n2π2
cos

nπ

2
x.6

4. f(x) = sinx on (0, 2).7

Hint: sin ax cos bx = 1
2 sin(a− b)x+ 1

2 sin(a+ b)x.8

Answer. f(x) =
1

2
(1− cos 2) +

∞
∑

n=1

4 ((−1)n cos 2 − 1)

n2π2 − 4
cos

nπ

2
x.9

5. f(x) = sin4 x on (0, π
2 ).10

Answer. f(x) =
3

8
− 1

2
cos 2x+

1

8
cos 4x.11

IV. Find the Fourier sine series of a given function over the indicated interval.12

13

1. f(x) = 5 sinx cosx on (0, π).14

Answer. f(x) =
5

2
sin 2x.15

2. f(x) = 1 on (0, 3).16

Answer. f(x) =
∞
∑

n=1

2

nπ
(1 − (−1)n) sin

nπ

3
x.17

3. f(x) = x on (0, 2).18

Answer. f(x) =
∞
∑

n=1

4

nπ
(−1)n+1 sin

nπ

2
x.19

4. f(x) = sinx on (0, 2).20

Hint: sin ax sin bx = 1
2 cos(a− b)x− 1

2 cos(a+ b)x.21

Answer. f(x) =
∞
∑

n=1

(−1)n+1 2nπ sin 2

n2π2 − 4
sin

nπ

2
x.22
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5. f(x) = sin3 x on (0, π).1

Hint: ei3x =
(

eix
)3

. Use Euler’s equation on both sides, then compare the2

imaginary parts.3

Answer.
3

4
sinx− 1

4
sin 3x.4

6. f(x) =

{

x for 0 < x < π
2

π − x for π
2 < x < π

on (0, π).5

Answer. f(x) =
∞
∑

n=1

4

πn2
sin

nπ

2
sinnx.6

7. f(x) = x− 1 on (0, 3).7

Answer. f(x) = −
∞
∑

n=1

2 + 4(−1)n

nπ
sin

nπ

3
x.8

V.9

1. Find the eigenvalues and the eigenfunctions of10

y′′ + λy = 0, 0 < x < L, y′(0) = y(L) = 0 .

Answer. λn =
π2(n+ 1

2 )2

L2
, yn = cos

π(n+ 1
2 )

L
x.11

2. Find the eigenvalues and the eigenfunctions of12

y′′ + λy = 0, 0 < x < L, y(0) = y′(L) = 0 .

Answer. λn =
π2(n+ 1

2 )2

L2
, yn = sin

π(n+ 1
2 )

L
x.13

3. Find the eigenvalues and the eigenfunctions of14

y′′ + λy = 0, y(x) is a 2π periodic function .

Answer. λ0 = 0 with y0 = 1, and λn = n2 with yn = an cosnx+ bn sinnx.15

4. Find all non-trivial solutions of an integro-differential equation16

y′′ +
(∫ 1

0
y2(x) dx

)

y = 0, 0 < x < 1, y(0) = y(1) = 0 .

Hint:
∫ 1
0 y

2(x) dx is a constant.17

Answer. y = ±
√

2n sinnπx, with integer n ≥ 1.18
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5∗. Show that the fourth order problem (with a > 0)1

y′′′′ − a4y = 0, 0 < x < 1, y(0) = y′(0) = y(1) = y′(1) = 0

has non-trivial solutions (eigenfunctions) if and only if a satisfies2

cosa =
1

cosh a
.

Show graphically that there are infinitely many such a’s, and calculate the3

corresponding eigenfunctions.4

Hint: The general solution is y(x) = c1 cosax + c2 sinax + c3 coshax +5

c4 sinh ax. From the boundary conditions obtain two equation for c3 and c4.6

7.4 The Heat Equation and the Method of Sepa-7

ration of Variables8

6

- x
x Lx+ ∆x

u

u(x, t)

��

Heat flows in at x+ ∆x, and escapes at x

9

Suppose we have a rod of length L, so thin that we may assume it to be one10

dimensional, extending along the x-axis, for 0 ≤ x ≤ L. Assume that the11

surface of the rod is insulated, so that heat can travel only to the left or to12

the right along the rod. We wish to determine the temperature u = u(x, t)13

at any point x of the rod, and at any time t > 0. Consider an element14

(x, x+ ∆x) of the rod, of length ∆x. The amount of heat (in calories) that15

this element holds we approximate by16

cu(x, t)∆x .
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Indeed, the amount of heat ought to be proportional to the temperature1

u = u(x, t), and to the length ∆x. A physical constant c > 0 reflects the2

rod’s capacity to store heat (c also makes the physical units right, so that3

the product is in calories). The rate of change of the amount of heat is4

cut(x, t)∆x ,

where ut(x, t) denotes the partial derivative in t. The change in the amount5

of heat occurs because of the heat flow through the end-points of the interval6

(x, x + ∆x). The function u(x, t) is likely to be monotone over the small7

interval (x, x + ∆x), so let us assume that u(x, t) in increasing in x over8

(x, x+ ∆x) (think of t as fixed). At the right end-point x+ ∆x, heat flows9

into our element, because to the right of this point the temperatures are10

higher. The heat flow per unit time (called the heat flux) is assumed to be11

c1ux(x+ ∆x, t) ,

or proportional to the rate of temperature increase (c1 > 0 is another phys-12

ical constant). Similarly, at the left end-point x13

c1ux(x, t)

calories of heat are lost per unit time. The equation of heat balance is then14

cut(x, t)∆x = c1ux(x+ ∆x, t)− c1ux(x, t) .

Divide by c∆x, and call
c1
c

= k15

ut(x, t) = k
ux(x+ ∆x, t) − ux(x, t)

∆x
.

And finally, we let ∆x→ 0, obtaining the heat equation16

ut = kuxx .

It gives an example of a partial differential equation, or a PDE for short.17

(So far we studied ordinary differential equations, or ODE’s, with unknown18

functions depending on only one variable.)19

If u1(x, t) and u2(x, t) are two solutions of the heat equation, then so is20

c1u1(x, t)+c2u2(x, t), for any constants c1 and c2, as can be seen by a direct21

substitution. The situation is similar in case of three or more solutions. This22

superposition property of solutions could be taken as a definition of linear23
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PDE. More formally, an equation is called linear if it depends linearly on the1

unknown function and its derivatives. We shall consider only linear PDE’s2

in this chapter.3

Suppose now that initially, or at the time t = 0, the temperatures inside4

the rod could be obtained from a given function f(x), while the temperatures5

at the end-points, x = 0 and x = L, are kept at 0 degree Celsius at all time6

t (think that the end-points are kept on ice). To determine the temperature7

u(x, t) at all points x ∈ (0, L), and all time t > 0, we need to solve8

ut = kuxx for 0 < x < L, and t > 0(4.1)

u(x, 0) = f(x) for 0 < x < L

u(0, t) = u(L, t) = 0 for t > 0 .

Here the second line represents the initial condition, and the third line gives9

the boundary conditions.10

Separation of Variables11

We search for a solution of (4.1) in the form u(x, t) = F (x)G(t), with the12

functions F (x) and G(t) to be determined. From the equation (4.1)13

F (x)G′(t) = kF ′′(x)G(t) .

Divide by kF (x)G(t):14

G′(t)
kG(t)

=
F ′′(x)
F (x)

.

On the left we have a function of t only, while on the right we have a function15

of x only. In order for them to be the same, they must be both equal to the16

same constant, which we denote by −λ17

G′(t)
kG(t)

=
F ′′(x)
F (x)

= −λ .

This gives us two differential equations, for F (x) and G(t),18

G′(t)
kG(t)

= −λ ,(4.2)

and19

F ′′(x) + λF (x) = 0 .
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From the boundary condition at x = 0,1

u(0, t) = F (0)G(t) = 0 .

This implies that F (0) = 0 (setting G(t) = 0, would give u = 0, which does2

not satisfy the initial condition in (4.1)). Similarly, we have F (L) = 0, using3

the other boundary condition. So that F (x) satisfies4

F ′′(x) + λF (x) = 0, F (0) = F (L) = 0 .(4.3)

We studied this problem in the preceding section. Non-trivial solutions occur5

only at λ = λn =
n2π2

L2
. Corresponding solutions are6

Fn(x) = sin
nπ

L
x (and their multiples) .

With λ = λn = n2π2

L2 the equation (4.2) becomes7

G′(t)
G(t)

= −kn
2π2

L2
.(4.4)

Solving these equations for all n8

Gn(t) = bne
−k n2π2

L2 t ,

where bn’s are arbitrary constants. We have constructed infinitely many9

functions10

un(x, t) = Gn(t)Fn(x) = bne
−k n2π2

L2 t
sin

nπ

L
x ,

which satisfy the PDE in (4.1), and the boundary conditions. By linearity,11

their sum12

u(x, t) =
∞
∑

n=1

un(x, t) =
∞
∑

n=1

bne
−k n2π2

L2 t sin
nπ

L
x(4.5)

also satisfies the PDE in (4.1), and the boundary conditions. We now turn13

to the initial condition:14

u(x, 0) =
∞
∑

n=1

bn sin
nπ

L
x = f(x) .(4.6)

We need to represent f(x) by its Fourier sine series, which requires15

bn =
2

L

∫ L

0
f(x) sin

nπ

L
x dx .(4.7)
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Conclusion: the series1

u(x, t) =
∞
∑

n=1

bne
−k n2π2

L2 t
sin

nπ

L
x ,(4.8)

with bn’s calculated using (4.7), gives the solution of our problem (4.1).2

Observe that going from the Fourier sine series of f(x) to the solution of3

our problem (4.1) involves just putting in the additional factors e−k n2π2

L2 t.4

In practice, one should memorize the formula (4.8).5

Example 1 Find the temperature u(x, t) satisfying6

ut = 5uxx for 0 < x < 2π, and t > 0

u(x, 0) = 2 sinx− 3 sinx cosx for 0 < x < 2π

u(0, t) = u(2π, t) = 0 for t > 0 .

Here k = 5, and L = 2π. The Fourier sine series on (0, 2π) has the form7

∑∞
n=1 bn sin n

2 x. Writing the initial temperatures as8

2 sinx− 3 sinx cosx = 2 sinx− 3

2
sin 2x ,

we see that this function is its own Fourier sine series, with b2 = 2, b4 = −3
2 ,9

and all other coefficients equal to zero. According to (4.8), the solution is10

u(x, t) = 2e
−5 22π2

(2π)2
t
sinx− 3

2
e
−5 42π2

(2π)2
t
sin 2x = 2e−5t sinx− 3

2
e−20t sin 2x .

By the time t = 1, the first term of the solution totally dominates the second11

one, so that u(x, t) ≈ 2e−5t sinx for t > 1.12

Example 2 Solve13

ut = 2uxx for 0 < x < 3, and t > 0

u(x, 0) = x− 1 for 0 < x < 3

u(0, t) = u(3, t) = 0 for t > 0 .

Here k = 2, and L = 3. We begin by calculating the Fourier sine series14

x− 1 =
∞
∑

n=1

bn sin
nπ

3
x ,

with15

bn =
2

3

∫ 3

0
(x− 1) sin

nπ

3
x dx = −2 + 4(−1)n

nπ
.
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Then, we put in the appropriate exponential factors, according to (4.8).1

Solution:2

u(x, t) = −
∞
∑

n=1

2 + 4(−1)n

nπ
e−2 n2π2

9
t sin

nπ

3
x .

What is the value of this solution? The initial temperatures, u(x, 0) =3

x − 1, are negative for 0 < x < 1, and positive for 1 < x < 3. Again, very4

quickly (by the time t = 1), the first term (n = 1) dominates all others, and5

then6

u(x, t) ≈ 2

π
e−

2π2

9
t sin

π

3
x ,

so that the temperatures become positive at all points, because the first7

harmonic sin π
3 x > 0, on the interval (0, 3). For large t, the temperatures8

tend exponentially to zero, while retaining the shape of the first harmonic.9

Assume now that the rod is insulated at the end-points x = 0 and x = L.10

Recall that the flux at x = 0 (the amount of heat flowing per unit time) is11

proportional to ux(0, t). Since there is no heat flow at x = 0 for all t, we12

have ux(0, t) = 0, and similarly ux(L, t) = 0. If the initial temperatures are13

prescribed by f(x), one needs to solve14

ut = kuxx for 0 < x < L, and t > 0(4.9)

u(x, 0) = f(x) for 0 < x < L

ux(0, t) = ux(L, t) = 0 for t > 0 .

It is natural to expect that in the long run the temperatures inside the rod15

will average out, and be equal to the average of the initial temperatures,16

1
L

∫ L
0 f(x) dx.17

Again, we search for a solution in the form u(x, t) = F (x)G(t). Sepa-18

ration of variables shows that G(t) still satisfies (4.4), while F (x) needs to19

solve20

F ′′(x) + λF (x) = 0, F ′(0) = F ′(L) = 0 .

Recall that nontrivial solutions of this problem occur only at λ = λ0 = 0,21

and at λ = λn = n2π2

L2 . The corresponding solutions are22

F0(x) = 1, Fn(x) = cos
nπ

L
x (and their multiples) .

Solving (4.4) for n = 0, and for all n = 1, 2, 3, . . ., gives23

G0 = a0, Gn(t) = ane
−k n2π2

L2 t ,
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where a0 and an’s are arbitrary constants. We constructed infinitely many1

functions2

u0(x, t) = G0(t)F0(x) = a0, un(x, t) = Gn(t)Fn(x) = ane
−k n2π2

L2 t cos
nπ

L
x ,

satisfying the PDE in (4.9), and the boundary conditions. By linearity, their3

sum4

u(x, t) = u0(x, t) +
∞
∑

n=1

un(x, t) = a0 +
∞
∑

n=1

ane
−k n2π2

L2 t cos
nπ

L
x(4.10)

also satisfies the PDE in (4.9), and the boundary conditions. To satisfy the5

initial condition6

u(x, 0) = a0 +
∞
∑

n=1

an cos
nπ

L
x = f(x)

one needs to represent f(x) by its Fourier cosine series, for which we calculate7

a0 =
1

L

∫ L

0
f(x) dx, an =

2

L

∫ L

0
f(x) cos

nπ

L
x dx .(4.11)

Conclusion: the series8

u(x, t) = a0 +
∞
∑

n=1

ane
−k n2π2

L2 t cos
nπ

L
x ,(4.12)

with an’s computed using (4.11), gives the solution of our problem (4.9).9

Observe that going from the Fourier cosine series of f(x) to the solution of10

the problem (4.9) involves just putting in the additional factors e−k n2π2

L2 t.11

As t → ∞, u(x, t) → a0, which is equal to the average of the initial12

temperatures. The first term of the series dominates all others, and so13

u(x, t) ≈ a0 + a1e
−k π2

L2 t
cos π

Lx, for t not too small, say for t > 1.14

Example 3 Solve15

ut = 3uxx for 0 < x < π/2, and t > 0

u(x, 0) = 2 cos2 x − 3 cos2 2x for 0 < x < π/2

ux(0, t) = ux(π/2, t) = 0 for t > 0 .

Here k = 3, and L = π/2. The Fourier cosine series has the form a0 +16

∑∞
n=1 an cos 2nx. Writing17

2 cos2 x− 3 cos2 2x = −1

2
+ cos 2x− 3

2
cos 4x ,
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we see that this function is its own Fourier cosine series, with a0 = −1
2 ,1

a1 = 1, a2 = −3
2 , and all other coefficients equal to zero. Putting in the2

exponential factors, according to (4.12), we arrive at the solution:3

u(x, t) = −1

2
+ e−12t cos 2x− 3

2
e−48t cos 4x .

Example 4 Solve4

ut = 3uxx − au for 0 < x < π, and t > 0

u(x, 0) = 2 cosx+ x2 for 0 < x < π

ux(0, t) = ux(π, t) = 0 for t > 0 ,

where a is a positive constant. The extra term −au is an example of a lower5

order term. Its physical significance is that the rod is no longer insulated,6

and heat freely radiates through its side, with the ambient temperature7

outside of the rod being zero. Indeed, the heat balance relation leading to8

this equation is9

ut ∆x = 3 [ux(x+ ∆x, t)− ux(x, t)]− au(x, t)∆x .

If u(x, t) > 0, heat radiates out, and if u(x, t) < 0, heat enters through the10

side of the rod.11

Let v(x, t) be the new unknown function, defined by12

u(x, t) = e−atv(x, t) .

Calculate ut = −ae−atv+e−atvt, and uxx = e−atvxx. Then v(x, t) solves the13

problem14

vt = 3vxx for 0 < x < π, and t > 0(4.13)

v(x, 0) = 2 cosx+ x2 for 0 < x < π

vx(0, t) = vx(π, t) = 0 for t > 0 ,

which we know how to handle. Because 2 cosx is its own Fourier cosine15

series on the interval (0, π), we expand x2 in the Fourier cosine series (and16

then add 2 cosx). Obtain17

x2 = a0 +
∞
∑

n=1

an cosnx ,

where18

a0 =
1

π

∫ π

0
x2 dx =

π2

3
,
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1

an =
2

π

∫ π

0
x2 cosnx dx =

4(−1)n

n2
.

Then2

2 cosx+x2 = 2 cosx+
π2

3
+

∞
∑

n=1

4(−1)n

n2
cosnx =

π2

3
−2 cos x+

∞
∑

n=2

4(−1)n

n2
cosnx .

Using (4.12), the solution of (4.13) is3

v(x, t) =
π2

3
− 2e−3t cos x+

∞
∑

n=2

4(−1)n

n2
e−3n2t cosnx .

Answer: u(x, t) =
π2

3
e−at − 2e−(3+a)t cos x+

∞
∑

n=2

4(−1)n

n2
e−(3n2+a)t cosnx.4

7.5 Laplace’s Equation5

We now study heat conduction in a thin two-dimensional rectangular plate:6

0 ≤ x ≤ L, 0 ≤ y ≤M . Assume that both sides of the plate are insulated, so7

that heat travels only in the xy-plane. Let u(x, y, t) denote the temperature8

at a point (x, y), and time t > 0. It is natural to expect that the heat9

equation in two dimensions takes the form10

ut = k (uxx + uyy) .(5.1)

Indeed, one can derive (5.1) similarly to the way we have derived the one-11

dimensional heat equation, see e.g., the book of L. Evans [9].12

The boundary of our plate consists of four line segments. Let us assume13

that the side lying on the x-axis is kept at 1 degree Celsius, so that u(x, 0) =14

1 for 0 ≤ x ≤ L, while the other three sides are kept at 0 degree Celsius15

(they are kept on ice), so that u(x,M) = 0 for 0 ≤ x ≤ L, and u(0, y) =16

u(L, y) = 0 for 0 ≤ y ≤M . The heat will flow from the warmer side toward17

the three sides on ice. While the heat will continue its flow indefinitely,18

eventually the temperatures will stabilize (we can expect temperatures to19

be close to 1 near the warm side, and close to 0 near the icy sides). Stable20

temperatures do not change with time, so that u = u(x, y). Then ut = 0,21

and the equation (5.1) becomes Laplace’s equation:22

uxx + uyy = 0 .(5.2)
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one of the three main equations of mathematical physics (along with the heat1

and the wave equations). Mathematicians use the notation: ∆u = uxx+uyy ,2

while engineers seem to prefer ∇2u = uxx + uyy . The latter notation has3

to do with the fact that computing the divergence of the gradient of u(x, y)4

gives ∇·∇u = uxx+uyy. Solutions of Laplace’s equation are called harmonic5

functions.6

To find the steady state temperatures u = u(x, y) for our example, we7

need to solve the problem8

uxx + uyy = 0 for 0 < x < L, and 0 < y < M

u(x, 0) = 1 for 0 < x < L

u(x,M) = 0 for 0 < x < L

u(0, y) = u(L, y) = 0 for 0 < y < M .

We apply the separation of variables technique, looking for a solution in the9

form10

u(x, y) = F (x)G(y) ,

with the functions F (x) and G(y) to be determined. Substitution into the11

Laplace equation gives12

F ′′(x)G(y) = −F (x)G′′(y) .

Divide both sides by F (x)G(y):13

F ′′(x)
F (x)

= −G
′′(y)
G(y)

.

The function on the left depends on x only, while the one the right depends14

only on y. In order for them to be the same, they must be both equal to15

the same constant, which we denote by −λ16

F ′′(x)
F (x)

= −G
′′(y)
G(y)

= −λ .

Using the boundary conditions, we obtain17

F ′′ + λF = 0, F (0) = F (L) = 0 ,(5.3)
18

G′′ − λG = 0, G(M) = 0 .(5.4)

Nontrivial solutions of (5.3) occur at λ = λn = n2π2

L2 , and they are Fn(x) =19

Bn sin nπ
L x, with arbitrary constants Bn. We solve the problem (5.4) with20
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λ = n2π2

L2 , obtaining Gn(y) = sinh nπ
L (y − M). (Recall that the general1

solution of the equation in (5.4) may be taken in the form G = c1 sinh nπ
L (y+2

c2).) We conclude that the functions3

un(x, y) = Fn(x)Gn(y) = Bn sin
nπ

L
x sinh

nπ

L
(y −M)

satisfy Laplace’s equation, and the three zero boundary conditions. The4

same is true for their sum5

u(x, y) =
∞
∑

n=1

Fn(x)Gn(y) =
∞
∑

n=1

Bn sinh
nπ

L
(y −M) sin

nπ

L
x .

It remains to satisfy the boundary condition at the warm side:6

u(x, 0) =
∞
∑

n=1

Bn sinh
nπ

L
(−M) sin

nπ

L
x = 1 .

We need to choose Bn’s, so that Bn sinh nπ
L (−M) are the Fourier sine series7

coefficient of f(x) = 1, i.e.,8

Bn sinh
nπ

L
(−M) =

2

L

∫ L

0
sin

nπ

L
x dx =

2 (1 − (−1)n)

nπ
,

which gives9

Bn = −2 (1 − (−1)n)

nπ sinh nπM
L

.

Answer:10

u(x, y) = −
∞
∑

n=1

2 (1 − (−1)n)

nπ sinh nπM
L

sinh
nπ

L
(y −M) sin

nπ

L
x .

Recall that the general solution of (ω is a constant, y = y(x))11

y′′ − ω2y = 0

can be written in three ways: y = c1e
−ωx+c2e

ωx, y = c1 coshωx+c2 sinhωx,12

and y = c1 sinhω(x + c2). We used the third form when solving for G(y),13

while the second one is convenient if the initial conditions are prescribed at14

x = 0.15
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Example Find the steady state temperatures1

uxx + uyy = 0 for 0 < x < 1, and 0 < y < 2

u(x, 0) = 0 for 0 < x < 1

u(x, 2) = 0 for 0 < x < 1

u(0, y) = 0 for 0 < y < 2

u(1, y) = y for 0 < y < 2 .

(The warm side is now x = 1.) Look for a solution in the form u(x, y) =2

F (x)G(y). After separating the variables, it is convenient to use λ (instead3

of −λ) to denote the common value of two functions4

F ′′(x)
F (x)

= −G
′′(y)
G(y)

= λ .

Using the boundary conditions, obtain5

G′′ + λG = 0, G(0) = G(2) = 0 ,
6

F ′′ − λF = 0, F (0) = 0 .

The first problem has non-trivial solutions at λ = λn = n2π2

4 , and they are7

Gn(y) = Bn sin nπ
2 y. We then solve the second equation with λ = n2π2

4 ,8

obtaining Fn(x) = sinh nπ
2 x. It follows that the functions9

un(x, y) = Fn(x)Gn(y) = Bn sinh
nπ

2
x sin

nπ

2
y

satisfy the Laplace equation, and the three zero boundary conditions. The10

same is true for their sum11

u(x, y) =
∞
∑

n=1

Fn(x)Gn(y) =
∞
∑

n=1

Bn sinh
nπ

2
x sin

nπ

2
y .

It remains to satisfy the boundary condition at the fourth side:12

u(1, y) =
∞
∑

n=1

Bn sinh
nπ

2
sin

nπ

2
y = y .

We need to choose Bn’s, so that Bn sinh nπ
2 are the Fourier sine series coef-13

ficient of y on the interval (0, 2):14

Bn sinh
nπ

2
=

∫ 2

0
y sin

nπ

2
y dy =

4(−1)n+1

nπ
,
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which gives1

Bn =
4(−1)n+1

nπ sinh nπ
2

.

Answer: u(x, y) =
∞
∑

n=1

4(−1)n+1

nπ sinh nπ
2

sinh
nπ

2
x sin

nπ

2
y.2

Our computations in the above examples were aided by the fact that3

three out of the four boundary conditions were zero (homogeneous). A4

general boundary value problem has the form5

uxx + uyy = 0 for 0 < x < L, and 0 < y < M(5.5)

u(x, 0) = f1(x) for 0 < x < L

u(x,M) = f2(x) for 0 < x < L

u(0, y) = g1(y) for 0 < y < M

u(L, y) = g2(y) for 0 < y < M,

with given functions f1(x), f2(x), g1(y) and g2(y). Because this problem is6

linear, we can break it into four sub-problems, each time keeping one of the7

boundary conditions, and setting the other three to zero. Namely, we look8

for solution in the form9

u(x, y) = u1(x, y) + u2(x, y) + u3(x, y) + u4(x, y) ,

where u1 is found by solving10

uxx + uyy = 0 for 0 < x < L, and 0 < y < M

u(x, 0) = f1(x) for 0 < x < L

u(x,M) = 0 for 0 < x < L

u(0, y) = 0 for 0 < y < M

u(L, y) = 0 for 0 < y < M,

u2 is computed from11

uxx + uyy = 0 for 0 < x < L, and 0 < y < M

u(x, 0) = 0 for 0 < x < L

u(x,M) = f2(x) for 0 < x < L

u(0, y) = 0 for 0 < y < M

u(L, y) = 0 for 0 < y < M,
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u3 is computed from1

uxx + uyy = 0 for 0 < x < L, and 0 < y < M

u(x, 0) = 0 for 0 < x < L

u(x,M) = 0 for 0 < x < L

u(0, y) = g1(y) for 0 < y < M

u(L, y) = 0 for 0 < y < M,

and u4 is obtained by solving2

uxx + uyy = 0 for 0 < x < L, and 0 < y < M

u(x, 0) = 0 for 0 < x < L

u(x,M) = 0 for 0 < x < L

u(0, y) = 0 for 0 < y < M

u(L, y) = g2(y) for 0 < y < M.

We solve each of these four problems, using separation of variables, as in the3

examples considered previously.4

7.6 The Wave Equation5

We consider vibrations of a guitar string (or a similar elastic string). We6

assume that the motion of the string is transverse, so that it goes only up7

and down (and not sideways). Let u(x, t) denote the displacement of the8

string at a point x and time t, and our goal is to calculate u(x, t). The9

motion of an element of the string (x, x + ∆x) is governed by Newton’s10

second law of motion11

ma = f .(6.1)

The acceleration a = utt(x, t). If ρ denotes the density of the string, then12

the mass of the element is m = ρ∆x. (The string is assumed to be uniform,13

so that ρ > 0 is a constant.) We also assume that the internal tension is the14

only force acting on this element, and that the magnitude of the tension T15

is constant throughout the string. Our final assumption is that the slope of16

the string ux(x, t) is small, for all x and t. Observe that ux(x, t) = tan θ, the17

slope of the tangent line to the function u = u(x), with t fixed. The vertical18

(acting) component of the force at the right end-point of our element is19

T sin θ ≈ T tan θ = Tux(x+ ∆x, t) ,
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because for small angles θ, sin θ ≈ tan θ ≈ θ. At the left end-point, the1

vertical component of the force is Tux(x, t), and the equation (6.1) becomes2

ρ∆x utt(x, t) = Tux(x+ ∆x, t) − Tux(x, t) .

Divide both sides by ρ∆x, and denote T/ρ = c23

utt(x, t) = c2
ux(x+ ∆x, t)− ux(x, t)

∆x
.

Letting ∆x→ 0, we obtain the wave equation4

utt(x, t) = c2uxx(x, t) .

-

6

x

u

�
��>

��9

T
θ

T

x x+ ∆x

Forces acting on an element of a string

5

We consider now the vibrations of a string of length L, which is fixed at6

the end-points x = 0 and x = L, with given initial displacement f(x), and7

given initial velocity g(x):8

utt = c2uxx for 0 < x < L, and t > 0

u(0, t) = u(L, t) = 0 for t > 0

u(x, 0) = f(x) for 0 < x < L

ut(x, 0) = g(x) for 0 < x < L .

Perform separation of variables, by setting u(x, t) = F (x)G(t), and obtaining9

F (x)G′′(t) = c2F ′′(x)G(t) ,
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1

G′′(t)
c2G(t)

=
F ′′(x)
F (x)

= −λ .

Using the boundary conditions, gives2

F ′′ + λF = 0, F (0) = F (L) = 0 ,

3

G′′ + λc2G = 0 .

Nontrivial solutions of the first problem occur at λ = λn = n2π2

L2 , and they4

are Fn(x) = sin nπ
L x. The second equation then takes the form5

G′′ +
n2π2

L2
c2G = 0 .

Its general solution is6

Gn(t) = bn cos
nπc

L
t+Bn sin

nπc

L
t ,

where bn and Bn are arbitrary constants. The function7

u(x, t) =
∞
∑

n=1

Fn(x)Gn(t) =
∞
∑

n=1

(

bn cos
nπc

L
t+ Bn sin

nπc

L
t

)

sin
nπ

L
x

satisfies the wave equation, and the boundary conditions. It remains to8

satisfy the initial conditions. Compute9

u(x, 0) =
∞
∑

n=1

bn sin
nπ

L
x = f(x) ,

which requires that10

bn =
2

L

∫ L

0
f(x) sin

nπ

L
x dx ,(6.2)

and11

ut(x, 0) =
∞
∑

n=1

Bn
nπc

L
sin

nπ

L
x = g(x) ,

which implies that12

Bn =
2

nπc

∫ L

0
g(x) sin

nπ

L
x dx .(6.3)
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Answer:1

u(x, t) =
∞
∑

n=1

(

bn cos
nπc

L
t+Bn sin

nπc

L
t

)

sin
nπ

L
x ,(6.4)

with bn’s computed by (6.2), and Bn’s by (6.3).2

The last formula shows that the motion of the string is periodic in time,3

similarly to the harmonic motion of a spring (the period is 2πL
πc ). This is4

understandable, because we did not account for the dissipation of energy in5

our model of vibrating string.6

Example Find the displacements u = u(x, t)7

utt = 9uxx for 0 < x < π, and t > 0

u(0, t) = u(π, t) = 0 for t > 0

u(x, 0) = 2 sinx for 0 < x < π

ut(x, 0) = 0 for 0 < x < π .

Here c = 3 and L = π. Because g(x) = 0, all Bn = 0, while bn’s are the8

Fourier sine series coefficients of 2 sinx on the interval (0, π), so that b1 = 2,9

and all other bn = 0. Using (6.4), gives the answer: u(x, t) = 2 cos 3t sinx.10

To interpret this answer, we use a trigonometric identity to write11

u(x, t) = sin(x− 3t) + sin(x+ 3t) .

The graph of y = sin(x− 3t) in the xy-plane is obtained by translating the12

graph of y = sinx by 3t units to the right. Drawing these graphs on the13

same screen, for different times t, we see a wave traveling to the right with14

speed 3. Similarly, the graph of sin(x+3t) is a wave traveling to the left with15

speed 3. Our solution is the sum, or the superposition, of these two waves.16

For the general wave equation, the wave speed is given by c.17

7.6.1 Non-Homogeneous Problems18

Let us solve the following problem19

utt − 4uxx = x for 0 < x < 3, and t > 0

u(0, t) = 1 for t > 0

u(3, t) = 2 for t > 0

u(x, 0) = 0 for 0 < x < 3

ut(x, 0) = 1 for 0 < x < 3 .
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This problem does not fit the pattern studied so far. Indeed, the x term1

on the right makes the equation non-homogeneous, and the boundary con-2

ditions are non-homogeneous (non-zero) too. We look for solution in the3

form4

u(x, t) = U(x) + v(x, t) .

We ask of the function U(x) to take care of all of our problems (to remove5

the non-homogeneous terms), and satisfy6

−4U ′′ = x

U(0) = 1, U(3) = 2 .

Integrating twice, gives7

U(x) = − 1

24
x3 +

17

24
x+ 1 .

Then the function v(x, t) = u(x, t)− U(x) satisfies8

vtt − 4vxx = 0 for 0 < x < 3, and t > 0

v(0, t) = 0 for t > 0

v(3, t) = 0 for t > 0

v(x, 0) = −U(x) = 1
24x

3 − 17
24x− 1 for 0 < x < 3

vt(x, 0) = 1 for 0 < x < 3 .

This is a homogeneous problem, of the type considered in the preceding9

section! Here c = 2 and L = 3. Separation of variables (or the formula10

(6.4)) gives11

v(x, t) =
∞
∑

n=1

(

bn cos
2nπ

3
t+ Bn sin

2nπ

3
t

)

sin
nπ

3
x ,

with12

bn =
2

3

∫ 3

0

(

1

24
x3 − 17

24
x− 1

)

sin
nπ

3
x dx = − 2

nπ
+

27 + 8n2π2

2n3π3
(−1)n ,

13

Bn =
1

nπ

∫ 3

0
sin

nπ

3
x dx =

3 − 3(−1)n

n2π2
.

Answer:14

u(x, t) = − 1

24
x3 +

17

24
x + 1
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1

+
∞
∑

n=1

[(

− 2

nπ
+

27 + 8n2π2

2n3π3
(−1)n

)

cos
2nπ

3
t+

3− 3(−1)n

n2π2
sin

2nπ

3
t

]

sin
nπ

3
x .

2

In the non-homogeneous wave equation3

utt − c2uxx = F (x, t) ,(6.5)

the term F (x, t) represents the acceleration of an external force applied to4

the string. Indeed, the ma = f equation for an element of a string, in the5

presence of an external force, takes the form6

ρ∆x utt = T [ux(x+ ∆x, t)− ux(x, t)] + ρ∆xF (x, t) .

Dividing by ρ∆x, and letting ∆x→ 0 (as before), we obtain (6.5). It follows7

that the ρ∆xF (x, t) term is an extra force, and F (x, t) is its acceleration.8

Non-homogeneous problems for the heat equation are solved similarly.9

Example Let us solve the problem10

ut − 2uxx = 1 for 0 < x < 1, and t > 0

u(x, 0) = x for 0 < x < 1

u(0, t) = 0 for t > 0

u(1, t) = 3 for t > 0 .

Again, look for solution in the form11

u(x, t) = U(x) + v(x, t) ,

with U(x) satisfying12

−2U ′′ = 1

U(0) = 0, U(1) = 3 .

Integrating, we calculate13

U(x) = −1

4
x2 +

13

4
x .

The function v(x, t) = u(x, t)− U(x) satisfies14

vt − 2vxx = 0 for 0 < x < 1, and t > 0

v(x, 0) = x− U(x) = 1
4x

2 − 9
4x for 0 < x < 1

v(0, t) = v(1, t) = 0 for t > 0 .
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To solve the last problem, we begin by expanding the initial temperature1

v(x, 0) in its Fourier sine series2

1

4
x2 − 9

4
x =

∞
∑

n=1

bn sinnπx ,

with3

bn = 2

∫ 1

0

(

1

4
x2 − 9

4
x

)

sinnπx dx =
−1 +

(

1 + 4n2π2
)

(−1)n

n3π3
.

Then, using (4.8),4

v(x, t) =
∞
∑

n=1

−1 +
(

1 + 4n2π2
)

(−1)n

n3π3
e−2n2π2t sinnπx .

Answer:5

u(x, t) = −1

4
x2 +

13

4
x+

∞
∑

n=1

−1 +
(

1 + 4n2π2
)

(−1)n

n3π3
e−2n2π2t sinnπx .

7.6.2 Problems6

I. Solve the following problems, and explain their physical significance.7

1.8 ut = 2uxx for 0 < x < π, and t > 0

u(x, 0) = sinx− 3 sinx cosx for 0 < x < π

u(0, t) = u(π, t) = 0 for t > 0 .

Answer. u(x, t) = e−2t sinx− 3

2
e−8t sin 2x.9

2.10 ut = 2uxx for 0 < x < 2π, and t > 0

u(x, 0) = sinx− 3 sinx cosx for 0 < x < 2π

u(0, t) = u(2π, t) = 0 for t > 0 .

Answer. u(x, t) = e−2t sinx− 3

2
e−8t sin 2x.11

3.12 ut = 5uxx for 0 < x < 2, and t > 0

u(x, 0) = x for 0 < x < 2

u(0, t) = u(2, t) = 0 for t > 0 .
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Answer. u(x, t) =
∞
∑

n=1

4(−1)n+1

nπ
e−

5n2π2

4
t sin

nπ

2
x.1

4.2 ut = 3uxx for 0 < x < π, and t > 0

u(x, 0) =

{

x for 0 < x < π
2

π − x for π
2 < x < π

for 0 < x < π

u(0, t) = u(π, t) = 0 for t > 0 .

Answer. u(x, t) =
∞
∑

n=1

4

πn2
e−3n2t sin

nπ

2
sinnx.3

5.4 ut = uxx for 0 < x < 3, and t > 0

u(x, 0) = x+ 2 for 0 < x < 3

u(0, t) = u(3, t) = 0 for t > 0 .

Answer. u(x, t) =
∞
∑

n=1

4 − 10(−1)n

nπ
e−

n2π2

9
t sin

nπ

3
x.5

6.6 ut = uxx for 0 < x < 3, and t > 0

u(x, 0) = x+ 2 for 0 < x < 3

ux(0, t) = ux(3, t) = 0 for t > 0 .

Answer. u(x, t) =
7

2
+

∞
∑

n=1

6(−1 + (−1)n)

n2π2
e−

n2π2

9
t cos

nπ

3
x.7

7.8 ut = 2uxx for 0 < x < π, and t > 0

u(x, 0) = cos4 x for 0 < x < π

ux(0, t) = ux(π, t) = 0 for t > 0 .

Answer. u(x, t) =
3

8
+

1

2
e−8t cos 2x+

1

8
e−32t cos 4x.9

8.10 ut = 3uxx + u for 0 < x < 2, and t > 0

u(x, 0) = 1− x for 0 < x < 2

ux(0, t) = ux(2, t) = 0 for t > 0 .

Answer. u(x, t) =
∞
∑

k=1

8

π2(2k − 1)2
e

(

− 3(2k−1)2π2

4
+1

)

t
cos

(2k − 1)π

2
x.11
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9. Show that the following functions are harmonic: u(x, y) = a, v(x, y) =1

sinmx sinhmy, w(x, y, z) = 1√
x2+y2+z2

(a and m are constants).2

10. If u(x, y) is a harmonic function, show that v(x, y) = u

(

x√
x2+y2

, y√
x2+y2

)

3

is also harmonic. (The map (x, y) →
(

x√
x2+y2

, y√
x2+y2

)

is called the Kelvin4

transform with respect to the unit circle.)5

11.6 uxx + uyy = 0 for 0 < x < 2, and 0 < y < 3

u(x, 0) = u(x, 3) = 5 for 0 < x < 2

u(0, y) = u(2, y) = 5 for 0 < y < 3 .

Hint: Look for a simple solution.7

12.8 uxx + uyy = 0 for 0 < x < 2, and 0 < y < 3

u(x, 0) = 5 for 0 < x < 2

u(x, 3) = 0 for 0 < x < 2

u(0, y) = u(2, y) = 0 for 0 < y < 3 .

13.9 uxx + uyy = 0 for 0 < x < 2, and 0 < y < 1

u(x, 0) = u(x, 1) = 0 for 0 < x < 2

u(0, y) = y for 0 < y < 1

u(2, y) = 0 for 0 < y < 1 .

14.10 uxx + uyy = 0 for 0 < x < π, and 0 < y < 1

u(x, 0) = 0 for 0 < x < π

u(x, 1) = 3 sin 2x for 0 < x < π

u(0, y) = u(π, y) = 0 for 0 < y < 1 .

Answer. u(x, y) =
3

sinh 2
sin 2x sinh2y.11

15.12 uxx + uyy = 0 for 0 < x < 2π, and 0 < y < 2

u(x, 0) = sinx for 0 < x < 2π

u(x, 2) = 0 for 0 < x < 2π

u(0, y) = 0 for 0 < y < 2

u(2π, y) = y for 0 < y < 2 .

Answer. u(x, y) = − 1

sinh 2
sinh(y−2) sinx+

∞
∑

n=1

4(−1)n+1

nπ sinhnπ2
sinh

nπ

2
x sin

nπ

2
y.13

14

16.15
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utt − 4uxx = 0 for 0 < x < π, and t > 0

u(x, 0) = sin 2x for 0 < x < π

ut(x, 0) = −4 sin 2x for 0 < x < π

u(0, t) = u(π, t) = 0 for t > 0 .

Answer. u(x, t) = cos 4t sin 2x− sin 4t sin 2x.1

17.2 utt − 4uxx = 0 for 0 < x < 1, and t > 0

u(x, 0) = 0 for 0 < x < 1

ut(x, 0) = x for 0 < x < 1

u(0, t) = u(1, t) = 0 for t > 0 .

Answer. u(x, t) =
∞
∑

n=1

(−1)n+1

n2π2
sin 2nπt sinnπx.3

18.4 utt − 4uxx = 0 for 0 < x < 1, and t > 0

u(x, 0) = −3 for 0 < x < 1

ut(x, 0) = x for 0 < x < 1

u(0, t) = u(1, t) = 0 for t > 0 .

Answer. u(x, t) =
∑∞

n=1

[

6
nπ ((−1)n − 1) cos 2nπt+ (−1)n+1

n2π2 sin 2nπt
]

sinnπx.5

6

19. Use separation of variables to obtain the solution of7

utt − c2uxx = 0 for 0 < x < L, and t > 0

u(x, 0) = f(x) for 0 < x < L

ut(x, 0) = g(x) for 0 < x < L

ux(0, t) = ux(L, t) = 0 for t > 0

in the form u(x, t) = a0 + A0t +
∑∞

n=1

(

an cos nπc
L t+ An sin nπc

L t
)

cos nπ
L x,8

and express the coefficients as integrals.9

20. Solve10

utt − 9uxx = 0 for 0 < x < π, and t > 0

u(x, 0) = 4 for 0 < x < π

ut(x, 0) = cos2 x for 0 < x < π

ux(0, t) = ux(π, t) = 0 for t > 0 .
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Answer. u(x, t) = 4 + 1
2 t+

1
12 sin 6t cos 2x.1

II. Solve the following non-homogeneous problems. You may leave the com-2

plicated integrals unevaluated.3

1.4
ut = 5uxx, for 0 < x < 1, and t > 0

u(0, t) = 0 for t > 0

u(1, t) = 1 for t > 0

u(x, 0) = 0 for 0 < x < 1 .

Answer. u(x, t) = x+
∞
∑

n=1

2(−1)n

nπ
e−5n2π2t sinnπx.5

2.6
ut = 2uxx for 0 < x < π, and t > 0

u(x, 0) = x
π for 0 < x < π

u(0, t) = 0 for t > 0

u(π, t) = 1 for t > 0 .

Hint: U(x) =
x

π
.7

3.8
ut = 2uxx + 4x for 0 < x < 1, and t > 0

u(x, 0) = 0 for 0 < x < 1

u(0, t) = 0 for t > 0

u(1, t) = 0 for t > 0 .

Hint: U(x) = 1
3(x− x3).9

4.10
utt = 4uxx + x for 0 < x < 4, and t > 0

u(x, 0) = x for 0 < x < 4

ut(x, 0) = 0 for 0 < x < 4

u(0, t) = 1 for t > 0

u(4, t) = 3 for t > 0 .

Hint: U(x) = 1 + 7
6x− 1

24x
3.11

5.12
ut = kuxx + f(x, t) for 0 < x < π, and t > 0

u(x, 0) = 0 for 0 < x < π

u(0, t) = 0 for t > 0

u(π, t) = 0 for t > 0 .

Here f(x, t) is a given function, k > 0 is a given number.13
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Hint: Expand f(x, t) =
∑∞

n=1 fn(t) sinnx, with fn(t) = 2
π

∫ π
0 f(x, t) sinnx dx.1

Writing u(x, t) =
∑∞

n=1 un(t) sinnx, one has2

u′n + kn2un = fn(t), un(0) = 0 .

6. Solve3

ut = uxx + t sin 3x for 0 < x < π, and t > 0

u(x, 0) = 0 for 0 < x < π

u(0, t) = 0 for t > 0

u(π, t) = 0 for t > 0 .

Answer. u(x, t) =
(

t
9 − 1

81 + 1
81e

−9t
)

sin 3x.4

7.7 Calculating Earth’s Temperature and Queen5

Dido’s Problem6

7.7.1 The Complex Form of the Fourier Series7

Recall that a real valued function f(x), defined on (−L, L), can be repre-8

sented by the Fourier series9

f(x) = a0 +
∞
∑

n=1

(

an cos
nπ

L
x+ bn sin

nπ

L
x

)

,(7.1)

with10

a0 =
1

2L

∫ L

−L
f(x) dx, an =

1

L

∫ L

−L
f(x) cos

nπ

L
x dx ,

11

bn =
1

L

∫ L

−L
f(x) sin

nπ

L
x dx .

Using Euler’s formulas: cos θ = eiθ+e−iθ

2 , and sin θ = eiθ−e−iθ

2i , write (7.1) as12

f(x) = a0 +
∞
∑

n=1

(

an
ei

nπ
L

x + e−i nπ
L

x

2
+ bn

ei
nπ
L

x − e−i nπ
L

x

2i

)

.

Combining the similar terms, we rewrite this as13

f(x) =
∞
∑

n=−∞
cne

i nπ
L

x ,(7.2)
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where c0 = a0, and1

cn =







an
2 − bni

2 for n > 0

a−n

2 + b−n i
2 for n < 0

.

We see that c̄m = c−m, for any integerm, where the bar denotes the complex2

conjugate. (The same fact also follows by taking the complex conjugate of3

(7.2).)4

Using the formulas for an and bn, and Euler’s formula, we have for n > 05

cn =
1

L

∫ L

−L
f(x)

cos nπ
L x− i sin nπ

L x

2
dx =

1

2L

∫ L

−L
f(x)e−i nπ

L
x dx .

In case n ≤ 0, the formula for cn is exactly the same.6

The series (7.2), with the coefficients7

cn =
1

2L

∫ L

−L
f(x)e−i nπ

L
x dx, n = 0,±1,±2, . . .(7.3)

is called the complex form of the Fourier series.8

Recall that for any real a9

∫

eiax dx =
eiax

a
+ c ,(7.4)

as follows by Euler’s formula.10

Example Find the complex form of the Fourier series of the function11

12

f(x) =

{

−1 for −2 < x < 0
1 for 0 < x < 2

, defined on (−2, 2).13

Here L = 2. Calculate c0 =
1

4

∫ 2

−2
f(x) dx = 0. Using (7.3), (7.4) and Euler’s14

formula, calculate for n 6= 015

cn =
1

4

(∫ 0

−2
(−1)e−i nπ

2
x dx+

∫ 2

0
1e−i nπ

2
x dx

)

=
i

nπ
[−1 + (−1)n] ,

so that (with the sum taken over n 6= 0)16

f(x) =
∞
∑

n=−∞

i

nπ
[−1 + (−1)n] ei

nπ
2

x .
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7.7.2 The Temperatures Inside the Earth and Wine Cellars1

Suppose that the average daily temperature in some area, for the t-th day2

of the year, is given by the function f(t), 0 ≤ t ≤ 365. (So that t = 343

corresponds to February 3.) We assume f(t) to be periodic, with the period4

T = 365. What is the temperature x cm inside the Earth, for any t?5

-

?

t

x

The sideways heat equation

ut = kuxx
6

Assume that x is not too large, so that we may ignore the geothermal7

effects. Direct the x-axis downward, inside the Earth, with x = 0 corre-8

sponding to Earth’s surface. Direct the t-axis horizontally, and solve the9

heat equation for u = u(x, t)10

ut = kuxx, u(0, t) = f(t) for x > 0, and −∞ < t <∞ .(7.5)

Geologists tell us that k = 2 · 10−3 cm2

sec (see [30]).11

Observe that the “initial condition” is now prescribed along the t-axis,12

and the “evolution” happens along the x-axis. This is sometimes referred to13

as the sideways heat equation. We represent f(t) by its complex Fourier se-14

ries (L = T
2 , for T -periodic functions, corresponding to the interval (−T

2 ,
T
2 ))15

f(t) =
∞
∑

n=−∞
cne

i 2nπ
T

t .

Similarly, we expand the solution u = u(x, t)16

u(x, t) =
∞
∑

n=−∞
un(x)ei

2nπ
T

t .

The coefficients un(x) are complex valued functions of x. Using this series17

in (7.5), gives for n 6= 018

u′′n = p2
nun, un(0) = cn, with p2

n =
2inπ

kT
.(7.6)
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Depending on whether n is positive or negative, we can write1

2in = (1± i)2|n| ,

and then2

pn = (1± i)qn, with qn =
√

|n|π
kT .

(It is plus in case n > 0, and minus for n < 0.) Solving the equation in3

(7.6), gives4

un(x) = ane
(1±i)qnx + bne

−(1±i)qnx .

We must set here an = 0, to avoid solutions with complex modulus becoming5

infinite as x→ ∞. Then, using the initial condition in (7.6), for n 6= 06

un(x) = cne
−(1±i)qnx .

In case n = 0, the bounded solution of (7.6) is7

u0(x) = c0 .

Obtain8

u(x, t) =
∞
∑

n=−∞
cne

−qnxei[
2nπ
T

t−(±)qnx] .(7.7)

Write cn in its polar form, for n > 0,9

cn = |cn|eiγn ,

with some real numbers γn, and transform (7.7) as follows:10

u(x, t) = c0 +
∑∞

n=1 e
−qnx

[

cne
i( 2nπ

T
t−qnx) + c−ne

−i( 2nπ
T

t−qnx)
]

= c0 +
∑∞

n=1 e
−qnx

[

cne
i( 2nπ

T
t−qnx) + cne

i( 2nπ
T

t−qnx)
]

= c0 +
∑∞

n=1 2|cn|e−qnx cos
(

2nπ
T t+ γn − qnx

)

,

using that c̄n = c−n, and that z + z̄ = 2Re(z).11

We see that the amplitude 2|cn|e−qnx of the n-th term is damped expo-12

nentially in x, and this damping is increasing with n, so that the first term13

is dominant, giving14

u(x, t) ≈ c0 + 2|c1|e−q1x cos

(

2π

T
t+ γ1 − q1x

)

.
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When x changes, the cosine term is a shift of the function cos 2π
T t, giving1

us a wave along the x-axis. If we select x so that γ1 − q1x = 0, we have a2

complete phase shift, so that the warmest temperatures at this depth occur3

in winter (when t ≈ 0), and the coolest temperatures in summer (when4

t ≈ T/2 = 182.5). This value of x is a good depth for a wine cellar. Not5

only the seasonal variations are very small, but they will also counteract any6

influence of air flow into the cellar.7

The material of this section is based on the book of A. Sommerfeld [30],8

see p. 68. I became aware of this application through the wonderful lectures9

of Henry P. McKean at Courant Institute, NYU, in the late seventies.10

7.7.3 The Isoperimetric Inequality11

Complex Fourier series can be used to prove the following Wirtinger’s inequality :12

any continuously differentiable function x(s), which is periodic of period 2π,13

and has average zero, so that

∫ 2π

0
x(s) ds = 0, satisfies14

∫ 2π

0
x2(s) ds ≤

∫ 2π

0
x′2(s) ds .

Indeed, we represent x(s) by its complex Fourier series x(s) =
∞
∑

n=−∞
xne

ins
15

with the coefficients satisfying x−n = x̄n for n 6= 0, and16

x0 =
1

2π

∫ 2π

0
x(s) ds = 0 .

Calculate:17

∫ 2π

0
x2(s) ds =

∫ 2π

0

∞
∑

n=−∞
xne

ins
∞
∑

m=−∞
xme

ims ds

18

=
∞
∑

n,m=−∞
xnxm

∫ 2π

0
ei(n+m)s ds = 2π

∞
∑

n=−∞
xnx−n = 2π

∞
∑

n=−∞
|xn|2 ,

because the integral

∫ 2π

0
eiks ds is zero for any integer k 6= 0, and is equal19

to 2π for k = 0. (So that
∫ 2π
0 ei(n+m)s ds is equal to 2π if m = −n, and to20

zero for all other m.)21
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Since x′(s) =
∞
∑

n=−∞
inxne

ins, a similar computation gives1

∫ 2π

0
x′2(s) ds = 2π

∞
∑

n=−∞
n2|xn|2 ,

and Wirtinger’s inequality follows. (The term corresponding to n = 0 is2

zero in both series.)3

According to Virgil, the queen Dido of Carthage (circa 800 B.C.) had4

a long rope to enclose land, which would become hers. Dido used the rope5

to form a circle, which became the city of Carthage. We shall show that6

she made the optimal choice: among all closed curves of length L, circle7

encloses the largest area. If a circle has length L, then its radius is r =
L

2π
,8

and its area is πr2 =
L2

4π
. We wish to show that the area A of any region9

enclosed by a rope of length L satisfies10

A ≤ L2

4π
.

This fact is known as the isoperimetric inequality.11

We may assume that L = 2π, corresponding to r = 1, by declaring12

r =
L

2π
to be the new unit of length. Then we need to show that the area13

A of any region enclosed by a closed curve of length L = 2π satisfies14

A ≤ π .

If we use the arc-length parameterization for any such curve (x(s), y(s)),15

then x(s) and y(s) are periodic functions of the period 2π (after traveling16

the distance 2π, we come back to the original point on the curve). Recall17

that for the arc-length parameterization, the tangent vector
(

x′(s), y′(s)
)

is18

of unit length, so that x′2(s) + y′2(s) = 1 for all s. Then19

2π = L =

∫ 2π

0

√

x′2(s) + y′2(s) ds =

∫ 2π

0

[

x′2(s) + y′2(s)
]

ds .(7.8)

We may assume that γ =

∫ 2π

0
x(s) ds = 0. (If not, consider the shifted20

curve (x(s)− γ

2π
, y(s)), for which this condition holds.)21
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According to Green’s formula, the area A enclosed by a closed curve1

(x(s), y(s)) is given by the line integral

∫

x dy over this curve, which eval-2

uates to

∫ 2π

0
x(s)y′(s) ds. Using the numerical inequality ab ≤ 1

2a
2 + 1

2b
2,3

Wirtinger’s inequality and (7.8), we conclude4

A =

∫ 2π

0
x(s)y′(s) ds ≤ 1

2

∫ 2π

0

[

x2(s) + y′
2
(s)
]

ds

5

≤ 1

2

∫ 2π

0

[

x′
2
(s) + y′

2
(s)
]

ds = π ,

justifying the isoperimetric inequality.6

7.8 Laplace’s Equation on Circular Domains7

Polar coordinates (r, θ) will be appropriate for circular domains, and it turns8

out that the Laplacian in the polar coordinates is9

∆u = uxx + uyy = urr +
1

r
ur +

1

r2
uθθ .(8.1)

To justify (8.1), we begin by writing10

u(x, y) = u(r(x, y), θ(x, y)) ,

with11

r = r(x, y) =
√

x2 + y2, θ = θ(x, y) = arctan
y

x
.(8.2)

By the chain rule12

ux = urrx + uθθx ,
13

uxx = urrr
2
x + 2urθrxθx + uθθθ

2
x + urrxx + uθθxx .

Similarly14

uyy = urrr
2
y + 2urθryθy + uθθθ

2
y + urryy + uθθyy ,

and so15

uxx + uyy = urr

(

r2x + r2y

)

+ 2urθ (rxθx + ryθy) + uθθ

(

θ2x + θ2y

)

+ur (rxx + ryy) + uθ (θxx + θyy) .
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Straightforward differentiation, using (8.2), shows that1

r2x + r2y = 1 ,

2

rxθx + ryθy = 0 ,
3

θ2x + θ2y =
1

r2
,

4

rxx + ryy =
1

r
,

5

θxx + θyy = 0 ,

and the formula (8.1) follows.6

We now consider a circular plate: x2 + y2 < R2, or r < R in polar7

coordinates (R > 0 is its radius). The boundary of the plate consists of the8

points (R, θ), with 0 ≤ θ < 2π. Assume that the temperatures u(R, θ) at9

the boundary points are prescribed by a given function f(θ), of period 2π.10

What are the steady state temperatures u(r, θ) inside the plate?11

We are searching for the function u(r, θ) of period 2π in θ that solves12

what is known as the Dirichlet boundary value problem (when the value of13

the unknown function is prescribed on the boundary):14

∆u = urr + 1
rur + 1

r2uθθ = 0, for r < R(8.3)

u(R, θ) = f(θ) .

Perform separation of variables, looking for solution in the form u(r, θ) =15

F (r)G(θ). Substituting this u(r, θ) into the equation (8.3), gives16

F ′′(r)G(θ) +
1

r
F ′(r)G(θ) = − 1

r2
F (r)G′′(θ) .

Multiply both sides by r2, and divide by F (r)G(θ):17

r2F ′′(r) + rF ′(r)
F (r)

= −G
′′(θ)
G(θ)

= λ .

This gives18

G′′ + λG = 0, G(θ) is 2π periodic,(8.4)

r2F ′′(r) + rF ′(r)− λF (r) = 0 .



354CHAPTER 7. THE FOURIER SERIES AND BOUNDARY VALUE PROBLEMS

The first problem, of eigenvalue type, was considered in a problem set previ-1

ously. It has non-trivial solutions when λ = λn = n2 (n is a positive integer),2

and when λ = λ0 = 0, and these solutions are3

Gn(θ) = An cosnθ + Bn sinnθ, G0 = A0 ,

with arbitrary constantsA0, An and Bn. The second equation in (8.4), when4

λ = λn = n2, becomes5

r2F ′′(r) + rF ′(r) − n2F (r) = 0 .

This is Euler’s equation! Its general solution is6

F (r) = c1r
n + c2r

−n .(8.5)

We need to select c2 = 0, to avoid infinite temperature at r = 0, so that7

Fn(r) = rn. When λ = λ0 = 0, the second equation in (8.4) is8

r2F ′′(r) + rF ′(r) = 0 ,

for which the general solution is F (r) = c1 ln r+c2. Again, we need to select9

c1 = 0, and then F0(r) = 1. The function10

u(r, θ) = F0(r)G0(θ)+
∞
∑

n=1

Fn(r)Gn(θ) = A0 +
∞
∑

n=1

rn (An cosnθ +Bn sinnθ)

satisfies the Laplace equation for r < R. The boundary condition requires11

u(R, θ) = A0 +
∞
∑

n=1

Rn (An cosnθ + Bn sinnθ) = f(θ) .

Expand f(θ) in its Fourier series12

f(θ) = a0 +
∞
∑

n=1

(an cosnθ + bn sinnθ) ,(8.6)

with the coefficients13

a0 =
1

2π

∫ 2π

0
f(θ) dθ , an =

1

π

∫ 2π

0
f(θ) cosnθ dθ ,(8.7)

14

bn =
1

π

∫ 2π

0
f(θ) sinnθ dθ (n ≥ 1) .
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(For 2π-periodic functions, integrals over (−π, π) are equal to the corre-1

sponding integrals over (0, 2π).) Then we need to select A0 = a0, AnR
n = an2

and BnR
n = bn, so that An =

1

Rn
an and Bn =

1

Rn
bn. Conclusion: the so-3

lution of (8.3) is given by4

u(r, θ) = a0 +
∞
∑

n=1

(

r

R

)n

(an cosnθ + bn sinnθ) ,(8.8)

with the coefficients calculated by (8.7).5

We see that the solution of (8.3) can be obtained from the Fourier series6

of f(θ), by just putting in the additional factors,
(

r
R

)n
. Observe also that7

f(θ) needs to be defined only on (0, 2π), according to (8.7), so that the8

requirement that f(θ) is 2π-periodic can now be removed.9

Example 1 Solve10

∆u = 0 for x2 + y2 < 4

u = x2 − 3y on x2 + y2 = 4 .

Using that x = 2 cos θ, and y = 2 sin θ on the boundary, write11

f(θ) = x2 − 3y = 4 cos2 θ − 6 sin θ = 2 + 2 cos2θ − 6 sin θ .

The last function is its own Fourier series, with a0 = 2, a2 = 2, b1 = −6,12

and all other coefficients are zero. The formula (8.8) gives the solution (here13

R = 2):14

u(r, θ) = 2 + 2

(

r

2

)2

cos 2θ − 6
r

2
sin θ = 2 +

1

2
r2 cos 2θ − 3r sin θ .

In Cartesian coordinates this solution is (using that cos 2θ = cos2 θ− sin2 θ)15

u(x, y) = 2 +
1

2
(x2 − y2) − 3y .

Consider next the exterior problem16

∆u = urr + 1
rur + 1

r2uθθ = 0 , for r > R(8.9)

u(R, θ) = f(θ) .

Physically, we have a plate with the disc r < R removed. Outside of this17

disc, the plate is so large, that we can think that it extends to infinity.18
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Temperatures are prescribed by f(θ) on the boundary of the plate, and the1

solution of (8.9) will give the steady state temperatures.2

Perform separation of variables, following the same steps as above, and3

in (8.5) this time select c1 = 0, to avoid infinite temperatures as r → ∞.4

Conclusion: the solution of the exterior problem (8.9) is given by5

u(r, θ) = a0 +
∞
∑

n=1

(

R

r

)n

(an cosnθ + bn sinnθ) ,

with the coefficients taken from the Fourier series of f(θ), as given in (8.7).6

Again, going from the Fourier series of f(θ) to the solution of (8.9), involves7

just putting in the additional factors
(

R
r

)n
.8

Example 2 Solve the exterior problem (R = 3)9

∆u = 0, for x2 + y2 > 9

u = x2 on x2 + y2 = 9 .

Writing f(θ) = x2 = (3 cosθ)2 = 9 cos2 θ = 9
2 + 9

2 cos 2θ, obtain10

u =
9

2
+

9

2

(

3

r

)2

cos 2θ =
9

2
+

81

2

r2
(

cos2 θ − sin2 θ
)

r4
=

9

2
+

81

2

x2 − y2

(x2 + y2)2
.

11

Consider next the Neumann boundary value problem12

∆u = urr + 1
rur + 1

r2uθθ = 0, for r < R(8.10)

ur(R, θ) = f(θ) .

It describes the steady state temperatures inside the disc r < R, with the13

heat flux f(θ) prescribed on the boundary of the disc. By separation of14

variables, obtain as above15

u(r, θ) = A0 +
∞
∑

n=1

rn (An cosnθ + Bn sinnθ) .(8.11)

The boundary condition requires16

ur(R, θ) =
∞
∑

n=1

nRn−1 (An cosnθ + Bn sinnθ) = f(θ) .(8.12)
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This is impossible to arrange, unless the constant term is zero in the Fourier1

series of f(θ), which implies that2

∫ 2π

0
f(θ) dθ = 0 .(8.13)

(Observe that the constant term is zero in the series on the left in (8.12). The3

same must be true for f(θ) on the right.) The condition (8.13) is a necessary4

condition for the Neumann problem to have solutions. If the condition (8.13)5

holds, we choose An and Bn to satisfy nRn−1An = 1
π

∫ 2π
0 f(θ) cosnθ dθ, and6

nRn−1Bn = 1
π

∫ 2π
0 f(θ) sinnθ dθ, while A0 is arbitrary.7

To recapitulate, the Neumann problem (8.10) is solvable only if the con-8

dition (8.13) holds, otherwise it has no solutions. If the condition (8.13)9

holds, the formula (8.11) gives infinitely many solutions (“feast-or-famine”).10

7.9 Sturm-Liouville Problems11

Let us recall the eigenvalue problem12

y′′ + λy = 0, 0 < x < L

y(0) = y(L) = 0 ,

on some interval (0, L). Its eigenfunctions, sin nπ
L x, n = 1, 2, . . ., are the13

building blocks of the Fourier sine series on (0, L). These eigenfunctions are14

orthogonal on (0, L), which means that
∫ L
0 sin nπ

L x sin mπ
L x dx = 0 for any15

m 6= n. Similarly, the eigenfunctions of16

y′′ + λy = 0, 0 < x < L

y′(0) = y′(L) = 0 ,

which are: 1, cos nπ
L x, n = 1, 2, . . ., give rise to the Fourier cosine series on17

(0, L). It turns out that under some conditions, solutions of other eigenvalue18

problems lead to their own types of Fourier series on (0, L).19

Recall that given a general linear second order equation20

P (x)y′′ +Q(x)y′ + R(x)y = 0 ,

with P (x) > 0, one can divide this equation by P (x), and then multiply by21

the integrating factor p(x) = e
∫

Q(x)
P(x)

dx
, to put it into the self-adjoint form22

(

p(x)y′
)′

+ r(x)y = 0 ,
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with r(x) = p(x)R(x)
P (x) .1

On an arbitrary interval (a, b), we consider an eigenvalue problem for2

equations in the self-adjoint form3

(

p(x)y′
)′

+ λr(x)y = 0 , for a < x < b ,(9.1)

together with the homogeneous boundary conditions4

αy(a) + βy′(a) = 0, γy(b) + δy′(b) = 0 .(9.2)

The differentiable function p(x) and the continuous function r(x) are given,5

and both are assumed to be positive on [a, b]. The boundary conditions in6

(9.2) are called separated boundary conditions, with the first one involving7

the values of the solution and its derivative only at x = a, and the other8

one uses the values only at the right end-point x = b. The constants α, β,9

γ and δ are given, however to prevent the possibility that both constants10

in the same boundary condition are zero, we assume that α2 + β2 6= 0, and11

γ2 + δ2 6= 0. By the eigenfunctions we mean non-trivial (non-zero) solutions12

of (9.1), satisfying the boundary conditions in (9.2), and the corresponding13

values of λ are called the eigenvalues.14

Theorem 7.9.1 Assume that y(x) is an eigenfunction of the problem (9.1),15

(9.2), corresponding to an eigenvalue λ, while z(x) is an eigenfunction corre-16

sponding to an eigenvalue µ, and λ 6= µ. Then y(x) and z(x) are orthogonal17

on (a, b) with weight r(x), which means that18

∫ b

a
y(x)z(x) r(x) dx= 0 .

Proof: The eigenfunction z(x) satisfies19

(p(x)z′)′ + µr(x)z = 0(9.3)

αz(a) + βz′(a) = 0, γz(b) + δz′(b) = 0 .

Multiply the equation (9.1) by z(x), and subtract from that the equation20

(9.3) multiplied by y(x). Obtain21

(

p(x)y′
)′
z(x)− (p(x)z′)′ y(x) + (λ− µ)r(x)y(x)z(x) = 0 .

Rewrite this as22

[

p(y′z − yz′)
]′

+ (λ− µ)r(x)y(x)z(x) = 0 .
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Integrating over [a, b], gives1

[

p(y′z − yz′)
]

|b
a

+(λ− µ)

∫ b

a
y(x)z(x) r(x) dx= 0 .(9.4)

We shall show that2

p(b)
(

y′(b)z(b)− y(b)z′(b)
)

= 0 ,(9.5)

and3

p(a)
(

y′(a)z(a)− y(a)z′(a)
)

= 0 .(9.6)

Then the first term in (9.4) is zero. It follows that the second term in (9.4)4

is also zero, and therefore
∫ b
a y(x)z(x) r(x) dx= 0, because λ− µ 6= 0.5

We shall justify (9.5), while the proof of (9.6) is similar. Consider first6

the case when δ = 0. Then the corresponding boundary conditions simplify7

to read y(b) = 0, z(b) = 0, and (9.5) follows. In the other case, when δ 6= 0,8

we express y′(b) = −γ
δ
y(b), z′(b) = −γ

δ
z(b), and then9

y′(b)z(b)− y(b)z′(b) = −γ
δ
y(b)z(b) +

γ

δ
y(b)z(b) = 0 ,

and (9.5) follows, which concludes the proof. ♦10

Theorem 7.9.2 The eigenvalues of the problem (9.1), (9.2) are real num-11

bers.12

Proof: Assume, on the contrary, that an eigenvalue λ is not real, so that13

λ̄ 6= λ, and the corresponding eigenfunction y(x) is complex valued. Taking14

the complex conjugates of (9.1) and (9.2), gives15

(

p(x)ȳ′
)′

+ λ̄r(x)ȳ = 0

16

αȳ(a) + βȳ′(a) = 0, γȳ(b) + δȳ′(b) = 0 .

It follows that λ̄ is also an eigenvalue, and ȳ is the corresponding eigenfunc-17

tion. By the preceding Theorem 7.9.118

∫ b

a
y(x)ȳ(x) r(x) dx=

∫ b

a
|y(x)|2 r(x) dx = 0 .

The second integral involves a non-negative function, and it can be zero only19

if y(x) = 0, for all x. But an eigenfunction cannot be zero function. We20
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have a contradiction, which was caused by the assumption that λ is not real.1

It follows that only real eigenvalues are possible. ♦2

Example On the interval (0, π), we consider the eigenvalue problem3

y′′ + λy = 0, 0 < x < π(9.7)

y(0) = 0, y′(π)− y(π) = 0 ,

and calculate its eigenvalues and the corresponding eigenvectors.4

The general solution depends on the sign of λ.5

Case 1. λ < 0. We may write λ = −k2, with k > 0. The general solution6

is then y = c1e
−kx + c2e

kx. Using the boundary conditions, compute c1 =7

c2 = 0, so that y = 0, and there are no negative eigenvalues.8

Case 2. λ = 0. The general solution is y = c1x + c2. Again, calculate9

c1 = c2 = 0, and λ = 0 is not an eigenvalue.10

Case 3. λ > 0. We may write λ = k2, with k > 0. The general solution is11

then y = c1 cos kx + c2 sin kx, and c1 = 0 by the first boundary condition.12

The second boundary condition implies that13

c2 (k cos kπ − sinkπ) = 0 .

We need c2 6= 0, to get a non-trivial solution, therefore the quantity in the14

bracket must be zero, which implies that15

tan kπ = k .(9.8)

This equation has infinitely many solutions, 0 < k1 < k2 < k3 < . . ., as can16

be seen by drawing the graphs of y = k and y = tan kπ in the ky-plane.17

We obtain infinitely many eigenvalues λi = k2
i , and the corresponding eigen-18

functions yi = sinkix, i = 1, 2, 3, . . . . (Observe that −ki’s are also solutions19

of (9.8), but they lead to the same eigenvalues and eigenfunctions.) Using20

that tan kiπ = ki, or sinkiπ = ki cos kiπ, and recalling two trigonometric21

identities, we verify that for all i 6= j22

∫ π

0
sinkix sinkjx dx =

1

2

∫ π

0
[cos(ki − kj)x− cos(ki + kj)x] dx

23

=
sin(ki − kj)π

2(ki − kj)
− sin(ki + kj)π

2(ki + kj)
24

=
1

k2
i − k2

j

(kj cos kjπ sin kiπ − ki cos kiπ sin kjπ) = 0 ,
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proving directly that the eigenfunctions are orthogonal, which serves to il-1

lustrate the Theorem 7.9.1 above.2

It is known that the problem (9.1), (9.2) has infinitely many eigenvalues,3

and the corresponding eigenfunctions yj(x) allow us to do Fourier series.4

This means that we can represent on the interval (a, b) any f(x), for which5

∫ b
a f

2(x)r(x) dx is finite, as6

f(x) =
∞
∑

j=1

cjyj(x) , for a < x < b .(9.9)

One says that the eigenfunctions yj(x) form a complete set. To find the7

coefficients, multiply both sides by yi(x)r(x), and integrate over (a, b)8

∫ b

a
f(x)yi(x)r(x) dx=

∞
∑

j=1

cj

∫ b

a
yj(x)yi(x)r(x) dx .

By the Theorem 7.9.1, for all j 6= i, the integrals on the right are zero. So9

that the sum on the right is equal to ci
∫ b
a y

2
i (x)r(x) dx. Therefore10

ci =

∫ b
a f(x)yi(x)r(x) dx
∫ b
a y

2
i (x)r(x) dx

.(9.10)

For the example (9.7) considered above, the corresponding Fourier series11

takes the form12

f(x) =
∞
∑

j=1

ci sinkix , for 0 < x < π ,

for any f(x) satisfying
∫ π
0 f

2(x) dx <∞, with the coefficients13

ci =

∫ π
0 f(x) sinkix dx
∫ π
0 sin2 kix dx

.

Using a symbolic software, like Mathematica, it is easy to compute approx-14

imately ki’s, and the integrals for ci’s. The book of H. Weinberger [36] has15

more information on the validity of the expansion (9.9).16

7.9.1 The Fourier-Bessel Series17

Consider the following eigenvalue problem: on the interval (0, R) determine18

non-trivial solutions F = F (r) of19

F ′′ + 1
rF

′ + λF = 0(9.11)

F ′(0) = 0, F (R) = 0 .
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Rewrite this equation in the self-adjoint form (9.1) as1

(

rF ′)′ + λrF = 0 .

Then, by the Theorem 7.9.1, any two eigenfunctions of (9.11), corresponding2

to different eigenvalues, are orthogonal on (0, R) with weight r.3

We shall reduce the equation in (9.11) to Bessel’s equation of order zero.4

To this end, make a change of variables r → x, by letting r = 1√
λ
x. By the5

chain rule6

Fr = Fx

√
λ, Frr = Fxxλ .

Then the problem (9.11) becomes7

λFxx + 1
1√
λ

x

√
λFx + λF = 0

Fx(0) = 0, F (
√
λR) = 0 .

Divide by λ, and use primes again to denote the derivatives in x8

F ′′ + 1
xFx + F = 0

F ′(0) = 0, F (
√
λR) = 0 .

This equation is Bessel’s equation of order zero. The Bessel function J0(x),9

which was considered in Chapter 3, satisfies this equation, as well as the10

condition F ′(0) = 0. Recall that the function J0(x) has infinitely many11

positive roots r1 < r2 < r3 < · · ·. In order to satisfy the second boundary12

condition, we need13 √
λR = ri , i = 1, 2, 3, . . . ,

so that λ = λi =
r2
i

R2 . Returning to the original variable r (observe that14

F (x) = F (
√
λr)), gives us the eigenvalues and the corresponding eigenfunc-15

tions of the problem (9.11):16

λi =
r2i
R2

, Fi(r) = J0

(

ri
R
r

)

, i = 1, 2, 3, . . . .

The Fourier-Bessel series is then the following expansion, using the eigen-17

functions J0

( ri
R r
)

,18

f(r) =
∞
∑

j=1

ciJ0

(

ri
R
r

)

, for 0 < r < R ,(9.12)
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and the coefficients ci are given by (in view of (9.10))1

ci =

∫R
0 f(r)J0(

ri
R r)r dr

∫ R
0 J2

0 ( ri
R r)r dr

.(9.13)

This expansion is valid for any f(r), with
∫ R
0 f2(r)r dr finite. Using Mathe-2

matica, it is easy to compute ci’s numerically, and to work with the expansion3

(9.12).4

7.9.2 Cooling of a Cylindrical Tank5

It is known that the heat equation in three spacial dimensions is (see e.g.,6

the book of H. Weinberger [36])7

ut = k (uxx + uyy + uzz) , k > 0 is a constant .

Suppose that we have a cylindrical tank x2 + y2 ≤ R2, 0 ≤ z ≤ H , and the8

temperatures inside it are independent of z, so that u = u(x, y, t). The heat9

equation then becomes10

ut = k (uxx + uyy) .

Assume also that the boundary of the cylinder is kept at zero temperature,11

while the initial temperatures, u(x, y, 0), are prescribed to be f(r), where r12

is the polar radius. Because the initial temperatures do not depend on the13

polar angle θ, it is natural to expect that u = u(x, y, t) is independent of θ14

too, so that u = u(r, t). Then the Laplacian becomes15

uxx + uyy = urr +
1

r
ur +

1

r2
uθθ = urr +

1

r
ur .

Under these assumptions, we need to solve the following problem16

ut = k
(

urr + 1
rur

)

for 0 < r < R, and t > 0(9.14)

ur(0, t) = 0, u(R, t) = 0 for t > 0

u(r, 0) = f(r) ,

with a given function f(r). The condition ur(0, t) = 0 was added, because17

we expect the temperatures to have a critical point in the middle of the18

tank, for all time t.19

Use separation variables, writing u(r, t) = F (r)G(t). Substitute this20

product into our equation, then divide both sides by kF (r)G(t):21

F (r)G′(t) = k

(

F ′′(r)) +
1

r
F ′(r)

)

G(t) ,
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1

G′(t)
kG(t)

=
F ′′(r)) + 1

rF
′(r)

F (r)
= −λ ,

which gives2

F ′′ + 1
rF

′ + λF = 0(9.15)

F ′(0) = 0, F (R) = 0 ,

and3

G′(t)
kG(t)

= −λ .(9.16)

The eigenvalue problem (9.15) for F (r) was solved in the preceding section,4

giving the eigenvalues λi =
r2i
R2

and the corresponding eigenfunctions Fi(r) =5

J0(
ri
R
r). Using λ = λi =

r2i
R2

in (9.16), compute6

Gi(t) = cie
−k

r2i
R2 t

.

The function7

u(r, t) =
∞
∑

i=1

cie
−k

r2
i

R2 t
J0(

ri
R
r)(9.17)

satisfies our equation, and the boundary conditions. The initial condition8

u(r, 0) =
∞
∑

i=1

ciJ0(
ri
R
r) = f(r)

will hold, if we choose ci’s to be the coefficients of the Fourier-Bessel series,9

given by (9.13). Conclusion: the series in (9.17), with ci’s computed by10

(9.13), gives the solution to our problem.11

7.9.3 Cooling of a Rectangular Bar12

Consider a function of two variables f(x, y) defined on a rectangle 0 < x < L,13

0 < y < M . Regarding x as a primary variable, we may represent f(x, y)14

by the Fourier sine series on (0, L)15

f(x, y) =
∞
∑

n=1

fn sin
nπ

L
x ,(9.18)
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where1

fn =
2

L

∫ L

0
f(x, y) sin

nπ

L
x dx .

Clearly each fn is a function of y, fn = fn(y). We now represent fn(y) by2

Fourier sine series on (0,M)3

fn(y) =
∞
∑

m=1

bnm sin
mπ

M
y ,(9.19)

with the constants4

bnm =
2

M

∫ M

0
fn(y) sin

mπ

M
y dy .

Using (9.19) in (9.18) we obtain the double Fourier sine series5

f(x, y) =
∞
∑

n=1

∞
∑

m=1

bnm sin
nπ

L
x sin

mπ

M
y ,

where6

bnm =
4

LM

∫ M

0

∫ L

0
f(x, y) sin

nπ

L
x sin

mπ

M
y dx dy .(9.20)

Similarly one could develop the double cosine series, or mixed ”sine-7

cosine” series.8

Next, we solve the problem (for u = u(x, y, t))9

ut = k (uxx + uyy) , 0 < x < L , 0 < y < M

u(x, 0, t) = u(x,M, t) = 0, 0 < x < L

u(0, y, t) = u(L, y, t) = 0, 0 < y < M

u(x, y, 0) = f(x, y) ,

describing cooling of a rectangular plate, with all four sides kept on ice10

(temperature zero), and with the initial temperatures prescribed by a given11

function f(x, y).12

Use separation of variables, setting u(x, y, t) = F (x)G(y)H(t) in our13

equation, and then divide by kF (x)G(y)H(t):14

H ′(t)
kH(t)

=
F ′′(x)
F (x)

+
G′′(y)
G(y)

= −λ .(9.21)
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The first of these relations gives1

H ′(t)
kH(t)

= −λ .(9.22)

In the second one, F ′′(x)
F (x)

+ G′′(y)
G(y)

= −λ, we separate the variables further2

F ′′(x)
F (x)

= −λ− G′′(y)
G(y)

= −µ ,

which gives the familiar eigenvalue problems3

F ′′ + µF = 0 , 0 < x < L, F (0) = F (L) = 0 ,
4

G′′ + (λ− µ)G = 0 , 0 < y < M, G(0) = G(M) = 0 .

It follows that µn = n2π2

L2 , Fn(x) = sin nπ
L x, and then λnm = n2π2

L2 + m2π2

M2 ,5

Gnm(y) = sin mπ
M y. From (9.22), Hnm(t) = e

−k

(

n2π2

L2 +m2π2

M2

)

t
. The sum6

u(x, y, t) =
∞
∑

n=1

∞
∑

m=1

bnme
−k

(

n2π2

L2 +m2π2

M2

)

t
sin

nπ

L
x sin

mπ

M
y ,

with the coefficients bnm computed by (9.20), gives the solution of our prob-7

lem.8

7.10 Green’s Function9

We wish to solve the non-homogeneous boundary value problem10

(p(x)y′)′ + r(x)y = f(x), a < x < b(10.1)

y(a) = 0, y(b) = 0 ,

where the equation is written in self-adjoint form. Here p(x), r(x) and f(x)11

are given differentiable functions, and we assume that p(x) > 0, and r(x) > 012

on [a, b]. We shall also consider the corresponding homogeneous equation13

(

p(x)y′
)′

+ r(x)y = 0 ,(10.2)

and the corresponding homogeneous boundary value problem14

(p(x)y′)′ + r(x)y = 0(10.3)

y(a) = 0, y(b) = 0 .
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Recall the concept of the Wronskian determinant of two functions y1(x) and1

y2(x), or the Wronskian, for short:2

W (x) =

∣

∣

∣

∣

∣

y1(x) y2(x)

y′1(x) y′2(x)

∣

∣

∣

∣

∣

= y1(x)y
′
2(x)− y′1(x)y2(x) .

Lemma 7.10.1 Let y1(x) and y2(x) be any two solutions of the homoge-3

neous equation (10.2). Then p(x)W (x) is a constant.4

Proof: We need to show that (p(x)W (x))′ = 0. Compute5

(p(x)W (x))′ = y′1p(x)y
′
2 + y1 (p(x)y′2)

′ − p(x)y′1y
′
2 − (p(x)y′1)

′ y2
= y1 (p(x)y′2)

′ − (p(x)y′1)
′ y2 = −r(x)y1y2 + r(x)y1y2 = 0 .

On the last step we expressed (p(x)y′1)
′ = −r(x)y1, and (p(x)y′2)

′ = −r(x)y2,6

by using the equation (10.2), which both y1 and y2 satisfy. ♦7

We make the following fundamental assumption: the homogeneous bound-8

ary value problem (10.3) has only the trivial solution y = 0. Define y1(x) to9

be a non-trivial solution of the homogeneous equation (10.2), together with10

the condition y(a) = 0 (which can be computed e.g., by adding a second11

initial condition y′(a) = 1). By our fundamental assumption, y1(b) 6= 0.12

Similarly, we define y2(x) to be a non-trivial solution of the homogeneous13

equation (10.2) together with the condition y(b) = 0. By the fundamental14

assumption, y2(a) 6= 0. The functions y1(x) and y2(x) form a fundamental15

set of the homogeneous equation (10.2) (they are not constant multiples of16

one another). To find a solution of the non-homogeneous equation (10.1),17

we use the variation of parameters method, and look for solution in the form18

y(x) = u1(x)y1(x) + u2(x)y2(x) ,(10.4)

with the functions u1(x) and u2(x) satisfying the formulas (10.6) and (10.7)19

below. We shall additionally require that these functions satisfy20

u1(b) = 0, u2(a) = 0 .(10.5)

Then y(x) in (10.4) satisfies our boundary conditions y(a) = y(b) = 0, and21

gives the desired solution of the problem (10.1).22

We put the equation (10.1) into the form considered in Chapter 223

y′′ +
p′(x)
p(x)

y′ +
r(x)

p(x)
y =

f(x)

p(x)
.
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Then by the formulas (8.5) in Chapter 2, we have1

u′1(x) = −y2(x)f(x)

p(x)W (x)
= −y2(x)f(x)

K
,(10.6)

2

u′2(x) =
y1(x)f(x)

p(x)W (x)
=
y1(x)f(x)

K
,(10.7)

where W is the Wronskian of y1(x) and y2(x), and by K we denote the3

constant that p(x)W (x) is equal to, by Lemma 7.10.1.4

Integrating (10.7), and using the condition u2(a) = 0, we get5

u2(x) =

∫ x

a

y1(ξ)f(ξ)

K
dξ .

Similarly, integrating (10.6), and using the condition u1(b) = 0, gives6

u1(x) =

∫ b

x

y2(ξ)f(ξ)

K
dξ .

Using these functions in (10.4), we get the solution of our problem (10.1)7

y(x) = y1(x)

∫ b

x

y2(ξ)f(ξ)

K
dξ + y2(x)

∫ x

a

y1(ξ)f(ξ)

K
dξ .(10.8)

It is customary to define Green’s function8

G(x, ξ) =







y1(x)y2(ξ)
K for a ≤ x ≤ ξ

y2(x)y1(ξ)
K for ξ ≤ x ≤ b ,

(10.9)

so that the solution (10.8) can be written as9

y(x) =

∫ b

a
G(x, ξ)f(ξ)dξ .(10.10)

(Break this integral as
∫ b
a =

∫ x
a +

∫ b
x . In the first integral, ξ ≤ x, so that10

G(x, ξ) is given by the second formula in (10.9).)11

Example 1 Find Green’s function, and the solution of the problem12

y′′ + y = f(x) , for 0 < x < 1

y(0) = 0, y(1) = 0 .
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The function sin(x − a) solves the corresponding homogeneous equation1

y′′ + y = 0, for any constant a. Therefore, we may take y1(x) = sinx, and2

y2(x) = sin(x− 1) (giving y1(0) = y2(1) = 0). Compute3

W = y1(x)y
′
2(x) − y′1(x)y2(x) = sinx cos(x− 1)− cosx sin(x− 1) = sin 1 ,

which follows by using that cos(x− 1) = cosx cos 1 + sinx sin 1, and sin(x−4

1) = sinx cos 1 − cosx sin 1. Then5

G(x, ξ) =







sinx sin(ξ−1)
sin 1 for 0 ≤ x ≤ ξ

sin(x−1) sin ξ
sin 1 for ξ ≤ x ≤ 1 ,

and the solution is6

y(x) =

∫ 1

0
G(x, ξ)f(ξ)dξ .

Example 2 Find Green’s function, and the solution of the problem7

x2y′′ − 2xy′ + 2y = f(x) , for 1 < x < 2

y(1) = 0, y(2) = 0 .

The corresponding homogeneous equation8

x2y′′ − 2xy′ + 2y = 0

is Euler’s equation, with the general solution y(x) = c1x + c2x
2. We then9

find y1(x) = x− x2, and y2(x) = 2x− x2 (y1(1) = y2(2) = 0). Compute10

W = y1(x)y
′
2(x)− y′1(x)y2(x) = (x− x2)(2− 2x) − (1 − 2x)(2x− x2) = x2 .

Turning to the construction of G(x, ξ), we observe that our equation is not11

in the self-adjoint form. To put it into the right form, divide the equation12

by x2
13

y′′ − 2

x
y′ +

2

x2
y =

f(x)

x2
,

and then multiply the new equation by the integrating factor, µ = e
∫

(− 2
x
)dx =14

e−2 lnx =
1

x2
, obtaining15

(

1

x2
y′
)′

+
2

x4
y =

f(x)

x4
.
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Here p(x) =
1

x2
, and K = p(x)W (x) = 1. Then1

G(x, ξ) =

{

(x− x2)(2ξ − ξ2) for 1 ≤ x ≤ ξ

(2x− x2)(ξ − ξ2) for ξ ≤ x ≤ 2 ,

and the solution is2

y(x) =

∫ 2

1
G(x, ξ)

f(ξ)

ξ4
dξ .

Finally, we observe that the same construction works for general sepa-3

rated boundary conditions (9.2). If y1(x) and y2(x) are the solutions of the4

corresponding homogeneous equation, satisfying the boundary conditions5

at x = a and at x = b respectively, then the formula (10.9) gives Green’s6

function.7

7.10.1 Problems8

I. Find the complex form of the Fourier series for the following functions on9

the given interval.10

1. f(x) = x on (−2, 2).11

Answer. x =
∑∞

n=−∞
2i(−1)n

nπ ei
nπ
2

x.12

2. f(x) = ex on (−1, 1).13

Answer. ex =
∞
∑

n=−∞
(−1)n (1 + inπ)(e− 1

e )

2(1 + n2π2)
einπx.14

3. f(x) = sin2 x on (−π, π).15

Answer. −1
4e

−i2x + 1
2 − 1

4e
i2x.16

4. f(x) = sin 2x cos 2x on (−π/2, π/2).17

Answer. i
4e

−i4x − i
4e

i4x.18

5. Suppose a real valued function f(x) is represented by its complex Fourier19

series on (−L, L)20

f(x) =
∞
∑

n=−∞
cn e

i nπ
L

x .

(i) By taking the complex conjugates of both sides, show that c̄n = c−n for21

all n.22
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(ii) Multiply both sides by e−i mπ
L

x, and integrate over (−L, L), to conclude1

that2

cn =
1

2L

∫ L

−L
f(x)e−i nπ

L
x dx, n = 0,±1,±2, . . . .

6. Let u(t) be a differentiable function of period T , satisfying

∫ T

0
u(t) dt = 0.3

Prove the following Poincare’s inequality4

|u(t)| ≤
√
T

2
√

3

(

∫ T

0
u′2(t) dt

)1
2

for all t .

Hint: Represent u(t) by its complex Fourier series: u(t) =
∑

n6=0

cne
i 2π

T
nt

5

(with c0 = 0 by our condition). Then u′(t) =
∑

n6=0

i
2π

T
ncn e

i 2π
T

nt, and6

∫ T

0
u′2(t) dt =

4π2

T

∑

n6=0

n2|cn|2. We have (using that
∑∞

n=1
1
n2 = π2

6 )7

|u(t)| ≤
∑

n6=0

|cn| ≤




∑

n6=0

1

n2





1
2




∑

n6=0

n2|cn|2




1
2

=
π√
3

√
T

2π

(

∫ T

0
u′2(t) dt

) 1
2

.

8

II. Solve the following problems on circular domains, and describe their9

physical significance.10

1.11 ∆u = 0, r < 3

u(3, θ) = 4 cos2 θ .

Answer. u = 2 +
2

9
r2 cos 2θ = 2 +

2

9
(x2 − y2).12

2.13 ∆u = 0, r > 3

u(3, θ) = 4 cos2 θ .

Answer. u = 2 +
18

r2
cos 2θ = 2 + 18

x2 − y2

(x2 + y2)2
.14

3.15 ∆u = 0, r < 2

u(2, θ) = y2 .

Answer. u = 2 − 1

2
(x2 − y2).16
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4.1 ∆u = 0, r > 2

u(2, θ) = y2 .

Answer. u = 2 − 8
x2 − y2

(x2 + y2)2
.2

5.3 ∆u = 0, r < 1

u(1, θ) = cos4 θ .

Hint: cos4 θ =
(

1+cos 2θ
2

)2
.4

6.5 ∆u = 0, r < 1

u(1, θ) = θ .

Hint: Extend f(θ) = θ as a 2π periodic function, equal to θ on [0, 2π]. Then6

an =
1

π

∫ π

−π
f(θ) cosnθdθ =

1

π

∫ 2π

0
f(θ) cosnθdθ =

1

π

∫ 2π

0
θ cosnθdθ ,

and compute similarly a0, and bn’s.7

Answer. u = π −
∞
∑

n=1

2

n
rn sinnθ.8

7. Solve the exterior problem9

∆u = 0, r > 3

u(3, θ) = θ + 2 .

Answer. u = π + 2 − 2
∞
∑

n=1

3n

n
r−n sinnθ.10

8. Solve the problem, and write the answer in the Cartesian coordinates11

uxx + uyy = 0 inside r < 2,

u = x2 − y on r = 2 .

Answer. u(x, y) = 1 + 1
4

(

x2 − y2
)

+ y.12

9. Find the steady state temperatures inside the disc x2 + y2 < 9, if the13

temperatures on its boundary are prescribed by the function y2 − x.14

Answer. u(x, y) =
9

2
− x− 1

2
(x2 − y2).15
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10. Determine if the following Neumann problem is solvable, and if it is,1

find its solutions2

∆u = 0, r < 3

ur(3, θ) = sin θ cos θ − 2 sin 3θ .

Answer. u =
1

12
r2 sin 2θ − 2

27
r3 sin 3θ + c.3

11. Determine if the following Neumann problem is solvable, and if it is,4

find its solutions5

∆u = 0, r < 1

ur(1, θ) = sin2 θ − 2 sin 3θ .

III. 1. Find the eigenvalues and the eigenfunctions of6

y′′ + λy = 0, y(0) + y′(0) = 0, y(π) + y′(π) = 0 .

Answer. λn = n2, yn = sinnx − n cosnx, and also λ = −1 with y = e−x.7

2. Identify graphically the eigenvalues, and find the eigenfunctions of8

y′′ + λy = 0, y(0) + y′(0) = 0, y(π) = 0 .

3. (i) Find the eigenvalues and the eigenfunctions of (a is a constant)9

y′′ + ay′ + λy = 0, y(0) = y(L) = 0 .

Answer. λn = a2

4 + n2π2

L2 , yn(x) = e−
a
2
x sin nπ

L x.10

(ii) Use separation of variables to solve11

ut = uxx + aux, 0 < x < L

u(0, t) = u(L, t) = 0

u(x, 0) = f(x) .

Answer. u(x, t) =
∑∞

n=1 bne
−
(

a2

4
+n2π2

L2

)

t
e−

a
2
x sin nπ

L x, bn =

∫ L

0
f(x)yn(x)dx
∫ L

0
y2

n(x)dx
.12

4. (i) Find the eigenvalues and the eigenfunctions of13

x2y′′ + 3xy′ + λy = 0, y(1) = y(e) = 0 .
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Answer. λn = 1 + n2π2, yn(x) = x−1 sin (nπ lnx).1

(ii) Put this equation into the self-adjoint form (p(x)y′)′ + λr(x)y = 0, and2

verify that the eigenfunctions are orthogonal with weight r(x).3

Hint: Divide the equation by x2, and verify that x3 is the integrating factor,4

so that p(x) = x3 and r(x) = x.5

(iii) Use separation of variables to solve6

ut = x2uxx + 3xux , 1 < x < e

u(1, t) = u(e, t) = 0

u(x, 0) = f(x) .

Answer. u(x, t) =
∑∞

n=1 bne
−λntyn(x), bn =

∫ e

1
f(x)yn(x)x dx
∫ e

1
y2

n(x)x dx
.7

5. Show that the eigenfunctions of8

y′′′′ + λy = 0, y(0) = y′(0) = y(L) = y′(L) = 0

corresponding to different eigenvalues, are orthogonal on (0, L).9

Hint:10

y′′′′z − yz′′′′ =
d

dx

(

y′′′z − y′′z′ + y′z′′ − yz′′′
)

.

6. Consider an eigenvalue problem11

(p(x)y′)′ + λr(x)y = 0, αy(0) + βy′(0) = 0, γy(π) + δy′(π) = 0 .

Assume that the given functions p(x) and r(x) are positive, while α and β12

are non-zero constants of different sign, and γ and δ are non-zero constants13

of the same sign. Show that all eigenvalues are positive.14

Hint: Multiply the equation by y(x) and integrate over (0, π). Perform an15

integration by parts.16

7. Find the eigenvalues and the eigenfunctions of (u = u(r))17

u′′(r) +
2

r
u′(r) + λu(r) = 0 , 0 < r < π , u′(0) = u(π) = 0 .

Hint: Write the equation in the form (ru)′′ + λ (ru) = 0.18

Answer. λm = m2, ym = sinmr
r , m = 1, 2, 3, . . ..19
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8. Find the eigenvalues and the eigenfunctions of1

u′′(r) +
n− 1

r
u′(r) + λu(r) = 0 , 0 < r < 1 , u′(0) = u(1) = 0 ,

where n is a positive integer.2

Hint: The change of variables u(r) = r
2−n

2 v(r) transforms this equation into3

Bessel’s equation of order n−2
2 , with solution v(r) = Jn−2

2

(√
λ r
)

.4

Answer. um(r) = r
2−n

2 Jn−2
2

(

λn−2
2

, m r
)

, λm = λ2
n−2

2
,m

, m = 1, 2, 3, . . .,5

where λn−2
2

,m denotes the m-th root of Jn−2
2

(r).6

9. Find the eigenvalues and the eigenfunctions of (F = F (t), α is a constant)7

F ′′ +
1

t
F ′ + λt2αF = 0 , 0 < t < 1 , F ′(0) = F (1) = 0 .

Hint: Show that the change of variables r = tα+1

α+1 transforms this problem8

into (9.11), with R = 1
α+1 .9

Answer. λi = (α+ 1)2ri, Fi = J0
(

rit
α+1

)

, where ri are the roots of J0.10

10. Solve11

ut = 3 (uxx + uyy) , 0 < x < π , 0 < y < π

u(x, 0, t) = u(x, π, t) = 0, 0 < x < π

u(0, y, t) = u(π, y, t) = 0, 0 < y < π

u(x, y, 0) = sinx cosx sin y .

Answer. u(x, y, t) = 1
2e

−15t sin 2x sin y.12

11. (i) Solve13

ut = uxx + uyy , 0 < x < 3 , 0 < y < 2

u(x, 0, t) = u(x, 2, t) = 0, 0 < x < 3

u(0, y, t) = u(3, y, t) = 0, 0 < y < 2

u(x, y, 0) = xy − y .

Answer.14

u(x, y, t) =
∞
∑

n,m=1

8(−1)m + 16(−1)n+m

nmπ2
e
−
(

n2π2

9
+m2π2

4

)

t
sin

nπ

3
x sin

mπ

2
y .

(ii) Find the eigenvalues and the corresponding eigenfunctions of the Lapla-15

cian on the rectangle (0, 3)× (0, 2)16
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uxx + uyy + λu = 0, 0 < x < 3 , 0 < y < 2

u(x, 0, t) = u(x, 2, t) = 0, 0 < x < 3

u(0, y, t) = u(3, y, t) = 0, 0 < y < 2 .

1

Answer. λmn = n2π2

9 + m2π2

4 , unm(x, y) = sin nπ
3 x sin mπ

2 y (m, n = 1, 2, . . .).2

3

IV. Find Green’s function and the solution of the following problems.4

1.5 y′′ + y = f(x) a < x < b

y(a) = 0, y(b) = 0 .

Answer. G(x, ξ) =







sin(x−a) sin(ξ−b)
sin(b−a) for a ≤ x ≤ ξ

sin(x−b) sin(ξ−a)
sin(b−a) for ξ ≤ x ≤ b .

6

2.7 y′′ + y = f(x) 0 < x < 2

y(0) = 0, y′(2) + y(2) = 0 .

Hint: y1(x) = sinx, y2(x) = − sin(x− 2) + cos(x− 2).8

3.9 x2y′′ + 4xy + 2y = f(x) 1 < x < 2

y(1) = 0, y(2) = 0 .

Answer. G(x, ξ) =

{

(x−1 − x−2)(ξ−1 − 2ξ−2) for 1 ≤ x ≤ ξ

(ξ−1 − ξ−2)(x−1 − 2x−2) for ξ ≤ x ≤ 2 ,
10

y(x) =
∫ 2
1 G(x, ξ)ξ2f(ξ) dξ.11

7.11 The Fourier Transform12

This section develops the concept of the Fourier Transform, a very impor-13

tant tool for both theoretical and applied PDE. Applications are made to14

physically significant problems on infinite domains.15

Recall the complex form of the Fourier series. A function f(x), defined16

on (−L, L), can be represented by the series17

f(x) =
∞
∑

n=−∞
cne

i nπ
L

x ,(11.1)
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with the coefficients1

cn =
1

2L

∫ L

−L
f(ξ)e−i nπ

L
ξ dξ, n = 0,±1,±2, . . . .(11.2)

We substitute (11.2) into (11.1):2

f(x) =
∞
∑

n=−∞

1

2L

∫ L

−L
f(ξ)ei

nπ
L

(x−ξ) dξ .(11.3)

Now assume that the interval (−∞,∞) along some axis, which we call the3

s-axis, is subdivided into pieces, using the subdivision points sn = nπ
L . The4

length of each interval is ∆s = π
L . We rewrite (11.3) as5

f(x) =
1

2π

∞
∑

n=−∞

∫ L

−L
f(ξ)eisn(x−ξ) dξ∆s .(11.4)

so that we can regard f(x) as a Riemann sum of a certain function of s, over6

the interval (−∞,∞). Let now L → ∞. Then ∆s → 0, and the Riemann7

sum in (11.4) converges to8

f(x) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
f(ξ)eis(x−ξ) dξds .

This formula is known as the Fourier integral. Our derivation of it is made9

rigorous in more advanced books. Rewrite this integral as10

f(x) =
1√
2π

∫ ∞

−∞
eisx

(

1√
2π

∫ ∞

−∞
f(ξ)e−isξ dξ

)

ds .(11.5)

We define the Fourier transform by11

F (s) =
1√
2π

∫ ∞

−∞
f(ξ)e−isξ dξ .

The inverse Fourier transform is then12

f(x) =
1√
2π

∫ ∞

−∞
eisxF (s) ds .

As with the Laplace transform, we use capital letters to denote the Fourier13

transforms. We shall also use the operator notation F (f(x)) = F (s).14

Example Let f(x) =

{

1 for |x| ≤ a

0 for |x| > a .
15



378CHAPTER 7. THE FOURIER SERIES AND BOUNDARY VALUE PROBLEMS

Using Euler’s formula, we compute the Fourier transform:1

F (s) =
1√
2π

∫ a

−a
e−isξ dξ =

2√
2π

eias − e−ias

2is
=

√

2

π

sinas

s
.

2

Assume that f(x) → 0, as x→ ±∞. Integrating by parts3

F (f ′(x)) =
1√
2π

∫ ∞

−∞
f ′(ξ)e−isξ dξ =

is√
2π

∫ ∞

−∞
f(ξ)e−isξ dξ = isF (s) .

(The boundary term
1√
2π
f(ξ)e−isξ |∞

−∞
is zero, because |e−isξ | = 1.) It4

follows that5

F (f ′′(x)) = isF (f ′(x)) = −s2F (s) .(11.6)

These formulas for F (f ′(x)) and F (f ′′(x)) are similar to the corresponding6

formulas for the Laplace transform.7

7.12 Problems on Infinite Domains8

7.12.1 Evaluation of Some Integrals9

The following integral occurs often10

I =

∫ ∞

−∞
e−x2

dx =
√
π .(12.1)

We justify this formula as follows:11

I2 =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy =

∫ ∞

−∞

∫ ∞

−∞
e−x2−y2

dxdy

12

=

∫ 2π

0

∫ ∞

0
e−r2

r drdθ = π ,

and (12.1) follows. We used polar coordinates to evaluate the double inte-13

gral.14

We shall show that for any x15

y(x) ≡
∫ ∞

0
e−z2

cos xz dz =

√
π

2
e−

x2

4 .(12.2)

Using integration by parts, compute (d denotes the differential)16

y′(x) =

∫ ∞

0
e−z2

(−z sinxz) dz =
1

2

∫ ∞

0
sinxz d

(

e−z2
)
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1

= −x
2

∫ ∞

0
e−z2

cosxz dz ,

which implies that2

y′(x) = −x
2
y(x) .(12.3)

By (12.1)3

y(0) =

√
π

2
.(12.4)

Solving the differential equation (12.3), together with the initial condition4

(12.4), justifies the formula (12.2).5

The last integral we need, is just a Laplace transform (a is a constant)6

∫ ∞

0
e−sy cos as ds =

y

y2 + a2
.(12.5)

7.12.2 The Heat Equation for −∞ < x <∞7

We shall solve the initial value problem8

ut = kuxx −∞ < x <∞, t > 0(12.6)

u(x, 0) = f(x) −∞ < x <∞ .

Here u(x, t) gives the temperature at a point x, and time t, for an infinite9

bar. (The bar is very long, so that we assume it to be infinite.) The initial10

temperatures are prescribed by the given function f(x), and k > 0 is a given11

constant.12

The Fourier transform of the solution13

F (u(x, t)) =
1√
2π

∫ ∞

−∞
u(x, t)e−isx dx = U(s, t)(12.7)

depends on s and also on t, which we may regard as a parameter, at the14

moment. Observe that F (ut(x, t)) = Ut(s, t), as follows by differentiating15

(12.7) in t. Applying the Fourier transform to the problem (12.6), and using16

(11.6), obtain17

Ut = −ks2U
U(s, 0) = F (u(x, 0)) = F (f(x)) = F (s) ,
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where F (s) is the Fourier transform of f(x). Integrating this initial value1

problem for U as a function of t (we now regard s as a parameter)2

U(s, t) = F (s)e−ks2t .

To obtain the solution of (12.6), we apply the inverse Fourier transform, and3

get4

u(x, t) = 1√
2π

∫∞
−∞ eisxF (s)e−ks2t ds = 1

2π

∫∞
−∞

∫∞
−∞ eis(x−ξ)−ks2tf(ξ) dξds

= 1
2π

∫∞
−∞

(

∫∞
−∞ eis(x−ξ)−ks2t ds

)

f(ξ) dξ ,

after switching the order of integration. We denote by K the integral in the5

brackets, K =
∫∞
−∞ eis(x−ξ)−ks2t ds. To evaluate K, we use Euler’s formula6

K =

∫ ∞

−∞
[cos s(x− ξ) + i sins(x− ξ)] e−ks2t ds = 2

∫ ∞

0
cos s(x−ξ)e−ks2t ds ,

because cos s(x − ξ) is an even function of s, and sin s(x − ξ) is an odd7

function of s. To evaluate the last integral, we make a change of variables8

s→ z, by setting9 √
kt s = z ,

and then use the integral in (12.2):10

K =
2√
kt

∫ ∞

0
e−z2

cos

(

x− ξ√
kt

z

)

dz =

√
π√
kt
e−

(x−ξ)2

4kt .

With K evaluated, we get the solution of (12.6):11

u(x, t) =
1

2
√
πkt

∫ ∞

−∞
e−

(x−ξ)2

4kt f(ξ) dξ .(12.8)

This formula is important for both PDE’s and Probability Theory. The12

function K(x, t) = 1
2
√

πkt
e−

x2

4kt is known as the heat kernel. (Recall from13

Chapter 4 that one may write u(x, t) = K(x, t)∗f(x), with limt→0 K(x, t) =14

δ(x), and limt→0 u(x, t) = f(x), where ∗ denotes the convolution.)15

Assume now that the function f(x), giving the initial temperatures, is16

positive on some small interval (−ε, ε), and is zero outside of this interval.17

Then u(x, t) > 0 for all x ∈ (−∞,∞) and t > 0. Not only the temperatures18

become positive far from the heat source, this happens practically instan-19

taneously! This is known as the infinite propagation speed, which points20

to an imperfection of our model. Observe, however, that for this f(x), the21

temperatures given by (12.8) are negligible for large |x|.22



7.12. PROBLEMS ON INFINITE DOMAINS 381

7.12.3 Steady State Temperatures for the Upper Half Plane1

We shall solve the boundary value problem2

uxx + uyy = 0 −∞ < x <∞, y > 0(12.9)

u(x, 0) = f(x) −∞ < x <∞ .

Here u(x, y) will provide the steady state temperature, at a point (x, y)3

of an infinite plate, occupying the upper half of the xy-plane. The given4

function f(x) prescribes the temperatures at the boundary y = 0 of the5

plate. We looking for the solution that is bounded, as y → ∞. (Without6

this assumption the solution is not unique: if u(x, y) is a solution of (12.9),7

then so is u(x, y) + cy, for any constant c.)8

Applying the Fourier transform in x, U(s, y) = 1√
2π

∫∞
−∞ u(ξ, y)e−isξ dξ,9

gives (observe that F (uyy(x, t)) = Uyy(s, t))10

Uyy − s2U = 0(12.10)

U(s, 0) = F (s) .

The general solution of the equation in (12.10) is11

U(s, y) = c1e
−sy + c2e

sy .

When s > 0, we select c2 = 0, so that U (and therefore u) is bounded as12

y → ∞. Then c1 = F (s), from the initial condition in (12.10), giving us13

U(s, y) = F (s)e−sy , when s > 0 .

When s < 0, we select c1 = 0, to get a bounded solution. Then c2 = F (s),14

giving us15

U(s, y) = F (s)esy, when s < 0 .

Combining both cases, we conclude that the bounded solution of (12.10) is16

U(s, y) = F (s)e−|s|y .

It remains to compute the inverse Fourier transform17

u(x, y) =
1√
2π

∫ ∞

−∞
eisx−|s|yF (s) ds =

1

2π

∫ ∞

−∞
f(ξ)

(∫ ∞

−∞
eis(x−ξ)−|s|y ds

)

dξ ,

after switching the order of integration. We evaluate the integral in the18

brackets by using Euler’s formula, the fact that cos s(x−ξ) is even in s, and19

sin s(x− ξ) is odd in s, and (on the last step) the formula (12.5):20

∫ ∞

−∞
eis(x−ξ)−|s|y ds = 2

∫ ∞

0
e−sy cos s(x− ξ) ds =

2y

(x− ξ)2 + y2
.
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The solution of (12.9), known as Poisson’s formula, is then1

u(x, y) =
y

π

∫ ∞

−∞

f(ξ) dξ

(x− ξ)2 + y2
.

This integral converges, provided that f(ξ) does not grow too fast as2

ξ → ±∞.3

7.12.4 Using the Laplace Transform for a Semi-Infinite String4

Imagine a string extending for 0 < x < ∞, which is initially at rest. Its5

left end-point, x = 0, undergoes periodic vibrations, with the displacements6

given by A sinωt, where A and ω are constants. We wish to find the dis-7

placements u(x, t) at any point x > 0 and time t > 0, assuming that the8

displacements are bounded.9

We need to solve the following initial-boundary value problem for the10

wave equation, with a given c > 0,11

utt = c2uxx , x > 0

u(x, 0) = ut(x, 0) = 0 , x > 0

u(0, t) = A sinωt , t > 0 .

Take the Laplace transform of the equation in the variable t, denoting12

U(x, s) = L (u(x, t)). Using the initial and boundary conditions, we get13

s2U = c2Uxx(12.11)
14

U(0, s) =
Aω

s2 + ω2
.

The general solution of the equation in (12.11) is15

U(x, s) = c1e
s
c
x + c2e

− s
c
x .

To get a solution bounded as x → +∞, we select c1 = 0. Then c2 = Aω
s2+ω216

by the initial condition in (12.11), giving17

U(x, s) = e−
x
c
s Aω

s2 + ω2
.

Taking the inverse Laplace transform, and using the formula (2.5) from18

Chapter 4, gives the solution19

u(x, t) = Aux/c(t) sin ω(t− x/c) ,
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where ux/c(t) is the Heaviside step function. This formula shows that at any1

point x > 0, the solution is zero for 0 < t < x/c (the time it takes for the2

signal to travel from 0 to x). For t > x/c, the motion of the string at x is3

identical with the motion at x = 0, but is delayed in time, by the value of4

x/c.5

7.12.5 Problems6

1. Find the Fourier transform of the function f(x) =

{

1 − |x| for |x| ≤ 1
0 for |x| > 1

.7

8

Answer. F (s) =

√

2

π

1

s2
(1− cos s).9

2. Find the Fourier transform of f(x) = e−|x|.10

Answer. F (s) =

√

2

π

1

s2 + 1
.11

3. Find the Fourier transform of f(x) = e−
x2

2 .12

Answer. F (s) = e−
s2

2 . (Hint: Use the formula (12.2).)13

4. Find the Fourier transform of f(x) = e−ax2
, where a > 0 is a constant.14

Answer. F (s) =
1√
2a
e−

s2

4a .15

5. Solve the heat conduction problem16

ut − uxx = 0 −∞ < x <∞, t > 0

u(x, 0) = e−x2 −∞ < x <∞ .

Answer. u(x, t) =
1√

1 + 4t
e−

x2

1+4t .17

6. Show that for any constant a18

(i) F (f(x)eiax) = F (s − a).19

(ii) F (f(ax)) =
1

a
F (
s

a
) (a 6= 0).20

7. Find a non-trivial solution of the boundary value problem21

uxx + uyy = 0 −∞ < x <∞, y > 0

u(x, 0) = 0 −∞ < x <∞ .
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Hint: Assume that u depends only on y.1

This example shows that our physical intuition may fail for unbounded do-2

mains.3

8. Use Poisson’s formula to solve4

uxx + uyy = 0 −∞ < x <∞, y > 0

u(x, 0) = f(x) −∞ < x <∞ ,

where f(x) =

{

1 for |x| ≤ 1
0 for |x| > 1

.5

Answer. u(x, y) =
1

π

(

tan−1 x+ 1

y
− tan−1 x− 1

y

)

.6

9. The famous Black-Scholes equation for the price of a stock option is (here7

V = V (S, t))8

Vt + aS2VSS + bSVS − rV = 0 ,

where a, b and r are positive constants. By a change of variables, reduce9

this equation to the heat equation.10

Hint: If the Vt term was not present, we would have Euler’s equation. This11

suggests to set x = ln s. Then let τ = −at. Obtain:12

Vτ = Vxx + 2αVx − r

a
V ,

where we denoted 2α = b/a − 1. Multiply the last equation by eαx, and13

denote w = eαxV . Obtain:14

wτ = wxx −
(

α2 +
r

a

)

w .

Finally, multiply this equation by the integrating factor e(α2+ r
a)τ , and denote15

z = e(α2+ r
a)τw. Conclude:16

zτ = zxx .



Chapter 81

Elementary Theory of PDE2

This chapter continues the study of the three main equations of mathemat-3

ical physics: wave, heat and Laplace’s equations. We now deal with the4

theoretical aspects: propagation and reflection of waves, maximum princi-5

ples, harmonic functions, Poisson’s integral formulas, variational approach.6

Classification theory is presented, and it shows that the three main equa-7

tions are representative of all linear second order equations. First order8

PDE’s are solved by reducing them to ODE’s along the characteristic lines.9

8.1 Wave Equation: Vibrations of an Infinite String10

Waves11

The graph of y = (x − 1)2 is a translation of the parabola y = x2, by one12

unit to the right. The graph of y = (x − t)2 is a translation of the same13

parabola by t units. If we think of t as time, and draw these translations on14

the same screen, we get a wave of speed one, traveling to the right. Similarly,15

y = (x − ct)2 is a wave of speed c. The same reasoning applies for other16

functions. So that y = f(x − ct) is a wave of speed c traveling to the right,17

while y = f(x+ ct) describes a wave of speed c traveling to the left.18

Transverse Vibrations of a Guitar String: d’Alembert’s Formula19

Assume that an elastic string extends along the x-axis, for −∞ < x < ∞,20

and we wish to find its transverse displacements u = u(x, t), as a function21

of the position x and the time t. As in Chapter 7, we need to solve the wave22

equation, together with the initial conditions:23

utt − c2uxx = 0 for −∞ < x <∞, and t > 0(1.1)

385
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u(x, 0) = f(x) for −∞ < x <∞
ut(x, 0) = g(x) for −∞ < x <∞ .

Here f(x) is given initial displacement, g(x) is given initial velocity, and1

c > 0 is a given constant.2

We look for classical solutions, which means that u(x, t) has two contin-3

uous derivatives in x and t (ux, ut, uxx, uxt, and utt are continuous). We4

perform a change of variables (x, t) → (ξ, η), with the new variables (ξ, η)5

given by6

ξ = x− ct

η = x+ ct .

Compute the partial derivatives: ξx = 1, ηx = 1, ξt = −c, and ηt = c. We7

may think of solution as u(x, t) = u(ξ(x, t), η(x, t)). Using the chain rule,8

we express9

ux = uξξx + uηηx = uξ + uη ,
10

uxx = (ux)x = (uξ + uη)ξ+(uξ + uη)η = uξξ+uξη+uηξ+uηη = uξξ+2uξη+uηη

(using that uηξ = uξη). Similarly11

ut = uξξt + uηηt = −cuξ + cuη ,

12

utt = −c (−cuξξ + cuηξ) + c (−cuξη + cuηη) = c2 (uξξ − 2uξη + uηη) .

Substituting these expressions of utt and uxx into the wave equation, and13

simplifying, we get14

uξη = 0 .

Since (uξ)η = 0, integration in η gives15

uξ = F (ξ) ,

where F (ξ) is an arbitrary function. Integrating once more16

u(ξ, η) =

∫

F (ξ)dξ +G(η) = F (ξ) +G(η) .

Here G(η) is an arbitrary function of η. The antiderivative of F (ξ) is an17

arbitrary function, which we again denote by F (ξ). Returning to the original18

variables, we have the general solution19

u(x, t) = F (x− ct) +G(x+ ct) .(1.2)
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Observe that the wave equation has an overwhelmingly large number of so-1

lutions, because its general solution depends on two arbitrary functions.2

Turning to the initial conditions, compute3

ut(x, t) = −cF ′(x− ct) + cG′(x+ ct) .

We have4

u(x, 0) = F (x) +G(x) = f(x)(1.3)

ut(x, 0) = −cF ′(x) + cG′(x) = g(x) .

Integrating the second equation in (1.3) gives5

−cF (x) + cG(x) =

∫ x

γ
g(τ)dτ ,

where γ is any constant. Adding to this formula the first equation in (1.3),6

multiplied by c, produces7

G(x) =
1

2
f(x) +

1

2c

∫ x

γ
g(τ)dτ .

From the first equation in (1.3)8

F (x) =
1

2
f(x)− 1

2c

∫ x

γ
g(τ)dτ .

Using these expressions in (1.2), we get9

u(x, t) =
1

2
f(x− ct) − 1

2

∫ x−ct

γ
g(τ)dτ +

1

2
f(x+ ct) +

1

2c

∫ x+ct

γ
g(τ)dτ .

Writing −
∫ x−ct
γ g(τ)dτ =

∫ γ
x−ct g(τ)dτ , we combine both integrals into one:10

u(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
g(τ)dτ .

We derived the famous d’Alembert formula (published in 1747, see the11

Wikipedia article).12

In case g(x) = 0, this formula gives13

u(x, t) =
f(x− ct) + f(x+ ct)

2
,
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which is a superposition (sum) of a wave traveling to the right and a wave1

traveling to the left, both of speed c. (The same conclusion is true for general2

g(x), just look at the formula (1.2).)3
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Example: Pinched String. We solve5

utt − uxx = 0 for −∞ < x <∞, and t > 0(1.4)

u(x, 0) = f(x) for −∞ < x <∞
ut(x, 0) = 0 for −∞ < x <∞ ,
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where1

f(x) =











x+ 1 if −1 ≤ x ≤ 0
1 − x if 0 ≤ x ≤ 1

0 if |x| > 1 .

The initial displacement f(x) resembles a “pinch” (see the snapshot at t =2

0), while the initial velocity is zero. By d’Alembert’s formula3

u(x, t) =
1

2
f(x− t) +

1

2
f(x+ t) .

This expression implies that the initial “pinch” breaks into two pinches of4

similar shape, but half of the original magnitude, with one of them traveling5

to the right, and the other one to the left, both with speed 1. We present6

the snapshots of u(x, t) at t = 0 (the initial pinch), t = 1
2 , t = 1, and t = 3

2 .7

-

6
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t(x0, t0)

x0 − ct0 x0 + ct0

vv

The domain of dependence (thick) of the point (x0, t0)

x− ct = x0 − ct0
x+ ct = x0 + ct0

8

We now define the important concept of characteristic lines. A family9

of parallel straight lines in the (x, t) plane (with t > 0, and α a constant)10

x− ct = α

are called the left characteristic lines, or the left characteristics for short.11

They all have the slope 1
c > 0, and varying the constant α produces a specific12

line, parallel to all others. Given any point (x0, t0) (with t0 > 0), we can13

select a left characteristic, passing through it, namely14

x− ct = x0 − ct0 .
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Let us follow this line for decreasing t until it intersects the x-axis. This1

happens at x = x0 − ct0. Similarly, a family of parallel straight lines in the2

(x, t) plane, given by x+ ct = α, are called the right characteristics. They3

all have the slope −1
c < 0. The right characteristic passing through (x0, t0)4

is5

x+ ct = x0 + ct0 .

It intersects the x-axis at x = x0 + ct0. The string’s displacement at any6

point (x0, t0) is (according to d’Alembert’s formula)7

u(x0, t0) =
f(x0 − ct0) + f(x0 + ct0)

2
+

1

2c

∫ x0+ct0

x0−ct0

g(τ)dτ .

Geometrically, u(x0, t0) is equal to the average of the values of f(x) at the8

points where the characteristics, passing through (x0, y0), intersect the x-9

axis, plus 1
2c times the integral of g(x) between these points. One calls the10

interval [x0 − ct0, x0 + ct0] the domain of dependence of the point (x0, t0).11

Given a point (x0, 0) on the x-axis, the characteristics passing through it12

are x+ ct = x0 and x− ct = x0. The region between these characteristics is13

called the region of influence of the point (x0, 0). If a point (x, t) lies outside14

of this region, the value of the solution u(x, t) is not influenced by the values15

of f(x) and g(x) at (or near) x0.16

We say that a function f(x) has compact support, if f(x) is identically17

zero outside of some bounded interval [a, b]. In such a case, it is customary18

to say that f(x) lives on [a, b].19

Lemma 8.1.1 Assume that the initial data f(x) and g(x) are of compact20

support. Then the solution u(x, t) of the problem (1.1) is of compact support,21

for any fixed t.22

Proof: If f(x) and g(x) live on [a, b], then u(x, t) lives on [a− ct, b+ ct],23

for any fixed t, as follows by d’Alembert’s formula (just draw the regions of24

influence of (a, 0), and of (b, 0)). ♦25
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We define the energy of a string to be1

E(t) =
1

2

∫ ∞

−∞

[

u2
t (x, t) + c2u2

x(x, t)
]

dx .

Theorem 8.1.1 Assume that the initial data f(x) and g(x) are of compact2

support. Then the energy of a string is constant, for any solution u(x, t) of3

the wave equation in (1.1).4

Proof: We shall show that E ′(t) = 0 for all t. Indeed,5

E ′(t) =

∫ ∞

−∞

[

ututt + c2uxuxt

]

dx =

∫ ∞

−∞

[

ututt − c2uxxut

]

dx

6

=

∫ ∞

−∞
ut(utt − c2uxx) dx = 0 .

On the second step we performed integration by parts, with the boundary7

terms vanishing by the Lemma 8.1.1. On the last step we used that u(x, t)8

satisfies the wave equation. ♦9

This theorem implies that for all t10

E(t) = E(0) =
1

2

∫ ∞

−∞

[

u2
t (x, 0) + c2u2

x(x, 0)
]

(1.5)

11

=
1

2

∫ ∞

−∞

[

g2(x) + c2f ′2(x)
]

dx .

Theorem 8.1.2 The problem (1.1) has a unique solution.12

Proof: Assume that v(x, t) is another solution of (1.1), in addition to13

the solution u(x, t) given by d’Alembert’s formula. Call w(x, t) = u(x, t)−14

v(x, t). Then w(x, t) satisfies the wave equation (1.1) with zero initial data15

(w(x, 0) = wt(x, 0) = 0). By (1.5)16

E(t) =

∫ ∞

−∞

[

w2
t (x, t) + c2w2

x(x, t)
]

dx = E(0) = 0 ,

for all t. It follows that wt(x, t) = 0, and wx(x, t) = 0 for all x and t, so17

that w(x, t) = constant. Setting t = 0, we see that this constant is zero.18

We conclude that w(x, t) = 0 for all x and t, which means that v(x, t) is19

identical to u(x, t). ♦20
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8.2 Semi-Infinite String: Reflection of Waves1

Suppose that a string extends along the positive x-axis, for 0 < x < ∞,2

and we assume that its left end-point is kept in a fixed position, so that its3

displacement is zero at x = 0, for all t, u(0, t) = 0 (the Dirichlet boundary4

condition). To find the displacements u(x, t), we need to solve the wave5

equation, together with initial and boundary conditions:6

utt − c2uxx = 0 for 0 < x <∞, and t > 0(2.1)

u(x, 0) = f(x) for 0 < x <∞
ut(x, 0) = g(x) for 0 < x <∞

u(0, t) = 0 for t > 0 ,

with given initial displacement f(x), and initial velocity g(x).7

Recall the concept of the odd extension. If f(x) is defined on (0,∞),8

then its odd extension9

fo(x) =

{

f(x) for x > 0
−f(−x) for x < 0

is defined for all x 6= 0. Geometrically, this amounts to reflecting the graph10

of f(x) with respect to the origin. (fo(x) is left undefined at x = 0.) The11

resulting function fo(x) is odd, satisfying fo(−x) = −fo(x) for all x 6= 0.12

If fo(x) and go(x) are the odd extensions of the functions f(x) and g(x)13

respectively, then we claim that the solution of the problem (2.1) is14

u(x, t) =
fo(x− ct) + fo(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
go(τ)dτ .(2.2)

Indeed, we already know that this formula gives a solution of the wave15

equation, and that u(x, 0) = fo(x) = f(x), and ut(x, 0) = go(x) = g(x), for16

x > 0. As for the boundary condition, we have17

u(0, t) =
fo(−ct) + fo(ct)

2
+

1

2c

∫ ct

−ct
go(τ)dτ = 0 .

Example 1 Solve18

utt − uxx = 0 for 0 < x <∞, and t > 0

u(x, 0) = x for 0 < x <∞
ut(x, 0) = x2 for 0 < x <∞

u(0, t) = 0 for t > 0 .
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We have (here c = 1)1

u(x, t) =
fo(x− t) + fo(x+ t)

2
+

1

2

∫ x+t

x−t
go(τ)dτ ,(2.3)

with fo(x) = x, and go(x) =

{

x2 for x ≥ 0
−x2 for x < 0

.2

Case 1. t ≤ x. Then x− t ≥ 0, and3

u(x, t) =
x− t+ x+ t

2
+

1

2

∫ x+t

x−t
τ2dτ = x+ x2t+

1

3
t3 .

4

Case 2. t > x. Then x − t < 0, and the integral term in (2.3) needs to be5

split into two pieces:6

u(x, t) =
x− t+ x + t

2
− 1

2

∫ 0

x−t
τ2dτ +

1

2

∫ x+t

0
τ2dτ = x+ xt2 +

1

3
x3 .

Answer. u(x, t) =











x+ x2t+ 1
3 t

3 for t ≤ x

x+ xt2 + 1
3x

3 for t > x
.7

We now return to the formula (2.2). If x − ct ≥ 0, then we can replace8

fo(x) and go(x) by f(x) and g(x) respectively. In case x− ct < 0, we claim9

that the formula (2.2) gives10

u(x, t) =
−f(−x+ ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

−x+ct
g(τ)dτ .(2.4)

Indeed, observe that −x + ct = − (x− ct) > 0, and
∫ −x+ct
x−ct go(τ)dτ = 0.11

Then12

∫ x+ct

x−ct
go(τ)dτ =

∫ −x+ct

x−ct
go(τ)dτ +

∫ x+ct

−x+ct
go(τ)dτ =

∫ x+ct

−x+ct
g(τ)dτ .

In case g(x) = 0, it follows from (2.4) that13

u(x0, t0) =
−f(−x0 + ct0) + f(x0 + ct0)

2
,(2.5)

so that instead of computing f(x) at x0− ct0, we compute f(x) at the point14

symmetric with respect to x = 0. We say that the left characteristic got15
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reflected when it hit the t-axis, and the opposite sign is the way to account1

(or the “price to pay”) for a reflected wave.2
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Reflection at the boundary point x = 0

3

Example 2 Pinched string. We solve4

utt − uxx = 0 for 0 < x <∞, and t > 0

u(x, 0) = f(x) for 0 < x <∞
ut(x, 0) = 0 for 0 < x <∞

u(0, t) = 0 for t > 0 ,

where5

f(x) =











x− 1 if 1 ≤ x ≤ 2

−x+ 3 if 2 ≤ x ≤ 3
0 for all other x

.(2.6)

(This is the pinch considered earlier, shifted two units to the right, and6

centered at x = 2.) Using the odd extension fo(x), we write the solution of7

this problem on (−∞,∞):8

u(x, t) =
fo(x− t) + fo(x+ t)

2
.(2.7)

On the interval (−∞,∞), the graph of fo(x) includes the original positive9

pinch on the interval (1, 3), and a negative pinch of the same shape over10

(−3,−1) (fo(x) is zero for other x). By (2.7), each pinch breaks into two11
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half-pinches, and the four half-pinches set in motion, as above. We then1

translate our results to the original (physical) interval (0,∞).2

Conclusion: the original “pinch” f(x) breaks into two pinches of similar3

shape, but half of the magnitude, with one of them traveling to the right,4

and the other one moving to the left, both with speed 1. At the time t = 1,5

the left half-pinch reaches the x = 0 end-point. By the time t = 3, it6

completely reflects and becomes negative, of the same triangle shape. Then7

both half-pinches (one of them is positive, and the other one negative) travel8

to the right, for all t > 3.9

6
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Snapshots of a semi-infinite pinched string
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8.3 Bounded String: Multiple Reflections1

Assume that the string is finite, extending over some interval 0 < x < L,2

and at both end-points the displacement is zero for all time. We need to3

solve4

utt − c2uxx = 0 for 0 < x < L, and t > 0(3.1)

u(x, 0) = f(x) for 0 < x < L

ut(x, 0) = g(x) for 0 < x < L

u(0, t) = u(L, t) = 0 for t > 0 ,

with given initial displacement f(x), and the initial velocity g(x).5

Let fo(x) be the odd extension of f(x) from (0, L) to (−L, L), and then6

we extend fo(x) to (−∞,∞) as a function of period 2L. We call this new7

extended function f̄(x). Similarly, we define the extension ḡ(x) of g(x).8

On the original interval (0, L) these extensions agree with f(x) and g(x)9

respectively. Clearly, f̄ (x) and ḡ(x) are odd on (−∞,∞). In addition, both10

of these functions are odd with respect to L, which means that11

f̄(L+ x) = −f̄(L− x), and ḡ(L+ x) = −ḡ(L− x), for all x .

It turns out that the solution of (3.1) is12

u(x, t) =
f̄ (x− ct) + f̄(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
ḡ(τ)dτ .(3.2)

Indeed, comparing with d’Alemberts’s formula, we see that this function sat-13

isfies the wave equation, and the initial conditions. Turning to the boundary14

conditions, we have15

u(0, t) =
f̄(−ct) + f̄(ct)

2
+

1

2c

∫ ct

−ct
ḡ(τ)dτ = 0 ,

because f̄(x) and ḡ(x) are odd. At the other end point16

u(L, t) =
f̄(L− ct) + f̄(L+ ct)

2
+

1

2c

∫ L+ct

L−ct
ḡ(τ)dτ = 0 ,

because f̄(x) and ḡ(x) are odd with respect to L.17

Consider now the case g(x) = 0. Then18

u(x, t) =
f̄(x− ct) + f̄(x+ ct)

2
.(3.3)
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Similarly to the above, we reflect the characteristics when they reach either1

the t-axis, or the line x = L. This time, when we continue the characteristics2

backward in time, multiple reflections are possible, from both the t-axis (the3

line x = 0), and from the line x = L, before the x-axis is reached. By4

examining the graph of f̄(x), one can see that the formula (3.3) implies that5

the result (or the “price”) of each reflection is change of sign. So, if after6

3 reflections the left characteristic arrives at a point A inside (0, L), then7

its contribution is f̄(x− ct) = −f(A). If it took 10 reflections for the right8

characteristic to arrive at a point B ∈ (0, L), then we have f̄ (x+ct) = f(B).9

10

Example 1 Find u(1/4, 1), u(1/4, 2) and u(1/4, 3) for the problem11

utt − uxx = 0 for 0 < x < 2, and t > 0

u(x, 0) = f(x) = x2 for 0 < x < 2

ut(x, 0) = 0 for 0 < x < 2

u(0, t) = u(2, t) = 0 for t > 0 .

Here c = 1, so that the left characteristics have slope 1, and the right ones12

have slope −1. When finding the solution at (1/4, 1), the left characteristic is13

reflected once, coming down at x = 3/4, while the right one is not reflected,14

coming down at x = 5/4, giving15

u(1/4, 1) = −1

2
f(3/4) +

1

2
f(5/4) =

1

2
.

To find the solution at (1/4, 2), both characteristics are reflected once, and16

both are coming down at the same point x = 7/4, giving17

u(1/4, 2) = −1

2
f(7/4)− 1

2
f(7/4) = −49

16
.

When computing u(1/4, 3), the left characteristic is reflected twice, coming18

down at x = 5/4. The right characteristic is reflected once, coming down at19

x = 3/4, giving20

u(1/4, 3) =
1

2
f(5/4)− 1

2
f(3/4) =

1

2
.

Example 2 Pinched string. We solve21

utt − uxx = 0 for 0 < x < 8, and t > 0

u(x, 0) = f(x) for 0 < x < 8

ut(x, 0) = 0 for 0 < x < 8

u(0, t) = u(8, t) = 0 for t > 0 ,
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with the initial displacement1

f(x) =











x− 3 if 3 ≤ x ≤ 4

−x + 5 if 4 ≤ x ≤ 5
0 for all other x ∈ [0, 8]

.
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Snapshots of a bounded pinched string

2

The same pinch we considered above is now centered at x = 4 (see the3

snapshot at t = 0). Reasoning as in the case of semi-infinite string, the4

formula (3.3) implies that the initial “pinch” breaks into two pinches of5

similar shape, but half of the magnitude, with one of them traveling to the6

right, and the other one to the left, both with speed 1. When the left half-7

pinch reaches the x = 0 end-point, at the time t = 3, it gradually reflects and8

at t = 5 becomes negative, of the same shape. When the right half-pinch9
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reaches the x = 8 end-point, at the same time t = 3, it also reflects and1

becomes negative, of the same shape. Then both half-pinches travel toward2

each other, turning at t = 8 into the exact negative of the original pinch.3

Then the negative pinch splits up into two halves, traveling to the left and4

to the right, and becoming positive after the next round of reflections. Then5

both half-pinches travel toward each other, turning at t = 16 into exactly the6

original pinch. Then everything is repeated. The result is periodic in time7

motion (of the period 16), consistent with the formulas obtained previously8

by separation of variables.9

8.4 Neumann Boundary Conditions10

We consider again a semi-infinite string, 0 < x < ∞. Assume that at the11

x = 0 end-point, the string is allowed to slide freely up and down, but it12

is attached to a clamp, which makes its slope zero. So that the condition13

ux(0, t) = 0 is prescribed at the boundary point x = 0, which is referred to14

as the Neumann boundary condition. We are led to solve the problem15

utt − c2uxx = 0 for 0 < x <∞, and t > 0(4.1)

u(x, 0) = f(x) for 0 < x <∞
ut(x, 0) = g(x) for 0 < x <∞

ux(0, t) = 0 for t > 0 ,

with given initial displacement f(x), and the initial velocity g(x).16

Define fe(x), the even extension of f(x), by17

fe(x) =

{

f(x) for x > 0

f(−x) for x < 0
.

The function fe(x) is even, defined for all x 6= 0. The graph of fe(x) can be18

obtained by reflecting the graph of f(x) with respect to the y-axis. (fe(x)19

is left undefined at x = 0.) Similarly, define ge(x) to be the even extension20

of g(x). We claim that the solution of (4.1) is given by21

u(x, t) =
fe(x− ct) + fe(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
ge(τ)dτ .

Indeed, we know (comparing with d’Alembert’s solution) that this formula22

gives a solution of the wave equation, and that u(x, 0) = fe(x) = f(x), and23
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ut(x, 0) = ge(x) = g(x), for x > 0. Turning to the boundary condition,1

compute2

ux(x, t) =
f ′e(x− ct) + f ′e(x+ ct)

2
+

1

2c
[ge(x+ ct) − ge(x− ct)] ,

and therefore3

ux(0, t) =
f ′e(−ct) + f ′e(ct)

2
+

1

2c
[ge(ct)− ge(−ct)] = 0 ,

using that the derivative of an even function is an odd function.4

Example 1 Solve5

utt − 4uxx = 0 for 0 < x <∞, and t > 0

u(x, 0) = x2 for 0 < x <∞
ut(x, 0) = x for 0 < x <∞
ux(0, t) = 0 for t > 0 .

We have (x2)e = x2 and (x)e = |x|. The solution is6

u(x, t) =
(x− 2t)2 + (x+ 2t)2

2
+

1

4

∫ x+2t

x−2t
|τ | dτ .

Considering two cases, depending on the sign of x− 2t, we calculate7

u(x, t) =

{

x2 + 4t2 + xt for x− 2t ≥ 0
5
4x

2 + 5t2 for x− 2t < 0 .

In case g(x) = 0, the solution of (4.1) is8

u(x, t) =











f(x−ct)+f(x+ct)
2 for x ≥ ct

f(−x+ct)+f(x+ct)
2 for x < ct .

If a wave is reflected, we evaluate f(x) at the point where the reflected wave9

comes down on the x-axis (and do not change the sign).10

Only a small adjustment is required for bounded strings:11

utt − c2uxx = 0 for 0 < x < L, and t > 0(4.2)

u(x, 0) = f(x) for 0 < x < L

ut(x, 0) = g(x) for 0 < x < L

ux(0, t) = ux(L, t) = 0 for t > 0 .
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Let fe(x) be the even extension of f(x) from (0, L) to (−L, L), and then1

we extend fe(x) to (−∞,∞) as a function of period 2L. We call this new2

extended function f̂(x). Similarly, we define the extension ĝ(x) of g(x).3

On the original interval (0, L) these extensions agree with f(x) and g(x)4

respectively. Clearly, f̂(x) and ĝ(x) are even functions on (−∞,∞). In5

addition, both of these functions are even with respect to L, which means6

that7

f̂(L+ x) = f̂(L− x), and ĝ(L+ x) = ĝ(L− x), for all x .

6
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Semi-infinite pinched string with the Neumann condition

8

It is straightforward to verify that the solution of (4.2) is given by9

u(x, t) =
f̂(x− ct) + f̂ (x+ ct)

2
+

1

2c

∫ x+ct

x−ct
ĝ(τ)dτ .(4.3)
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It is now a simple exercise to draw pictures for a pinched string, for both1

semi-infinite and bounded strings (at end-points, the reflected half-pinch2

keeps the same sign).3

Example 2 Pinched string. We solve4

utt − uxx = 0 for 0 < x <∞, and t > 0

u(x, 0) = f(x) for 0 < x <∞
ut(x, 0) = 0 for 0 < x <∞
ux(0, t) = 0 for t > 0 ,

where f(x) is the familiar pinch, centered at x = 2:5

f(x) =











x− 1 if 1 ≤ x ≤ 2

−x+ 3 if 2 ≤ x ≤ 3
0 for all other x

.

Using the formula (4.3) (here ĝ(x) = 0) we conclude that the original “pinch”6

f(x) breaks into two pinches of similar shape, but half of the magnitude,7

with one of them traveling to the right, and the other one moving to the8

left, both with speed 1. At the time t = 1, the left half-pinch reaches the9

x = 0 end-point. By the time t = 3, it completely bounces off the left end-10

point and stays positive, of the same triangle shape. Then both positive11

half-pinches travel to the right, for all t > 3.12

8.5 Non-Homogeneous Wave Equation13

Let us recall Green’s formula from calculus. If a closed curve C encloses14

a region D in the xt-plane, then for continuously differentiable functions15

P (x, t) and Q(x, t) we have16

∫

C
P (x, t) dx+Q(x, t) dt =

∫∫

D
[Qx(x, t)− Pt(x, t)] dxdt .

We now consider non-homogeneous equations17

utt − c2uxx = F (x, t) for −∞ < x <∞, and t > 0(5.1)

u(x, 0) = f(x) for −∞ < x <∞
ut(x, 0) = g(x) for −∞ < x <∞ .

Here F (x, t) is given acceleration of the external force acting on the string,18

as was explained in Chapter 7. The initial displacement f(x), and the initial19

velocity g(x) are also given.20
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For any point (x0, t0), we denote by ∆ the characteristic triangle, formed1

by the characteristic lines passing through (x0, t0), and the x-axis, with the2

vertices at (x0 − ct0, 0), (x0 + ct0, 0) and (x0, t0). By Γ we denote the3

boundary curve of ∆. Using Green’s formula, and our equation4

∫

Γ
ut dx+ c2ux dt = −

∫∫

D

(

utt − c2uxx

)

dxdt = −
∫∫

∆
F (x, t) dxdt .(5.2)

-
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5

We now calculate the line integral on the left, by breaking the boundary6

Γ into three pieces Γ1, Γ2 and Γ3, which are the line segments joining the7

vertices of ∆. The integral over Γ is the sum of the integrals over Γ1, Γ28

and Γ3. Along Γ1, we have t = 0 and dt = 0. Then9

∫

Γ1

ut dx+ c2ux dt =

∫

Γ1

ut(x, 0) dx=

∫ x0+ct0

x−ct0

g(τ)dτ .

The equation of Γ2 is x + ct = x0 + ct0, and so dx + cdt = 0. We replace10

dx = −cdt, and dt = −1
cdx, obtaining11

∫

Γ2
ut dx+ c2ux dt = −c ∫Γ2

ux dx+ ut dt = −c ∫Γ2
du

= −c [u(x0, t0)− u(x0 + ct0, 0)] = −c [u(x0, t0) − f(x0 + ct0)] .

The equation of Γ3 is x − ct = x0 − ct0, and so dx − cdt = 0. We replace12

dx = cdt, and dt = 1
cdx, obtaining13

∫

Γ3

ut dx+c
2ux dt = c

∫

Γ3

ux dx+ut dt = c

∫

Γ3

du = c [f(x0 − ct0) − u(x0, t0)] .
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Using these three integrals in (5.2), we express1

u(x0, t0) =
f(x0 − ct0) + f(x0 + ct0)

2
+

1

2c

∫ x0+ct0

x0−ct0

g(τ)dτ+
1

2c

∫∫

∆
F (x, t) dxdt .

Finally, we replace (x0, t0) → (x, t), and in the double integral rename the2

dummy variables (x, t) → (ξ, η), obtaining the solution3

u(x, t) =
f(x− ct) + f(x+ ct)

2
+

1

2c

∫ x+ct

x−ct
g(τ)dτ(5.3)

4

+
1

2c

∫∫

∆
F (ξ, η) dξdη .

This formula reduces to d’Alembert’s formula in case F (x, t) = 0. Ob-5

serve also that the characteristic triangle ∆ depends on x and t.6

Example Solve7

utt − 9uxx = x for −∞ < x <∞, and t > 0

u(x, 0) = 0 for −∞ < x <∞
ut(x, 0) = x2 for −∞ < x <∞ .

By (5.3):8

u(x0, t0) =
1

6

∫ x0+3t0

x0−3t0
τ2dτ +

1

6

∫∫

∆
x dxdt .

The first integral is equal to 1
18

[

(x0 + 3t0)
3 − (x0 − 3t0)

3
]

= x2
0t0 +3t30. The9

double integral is evaluated as follows:10

∫∫

∆
x dxdt =

∫ t0

0

(∫ −3t+x0+3t0

3t+x0−3t0

x dx

)

dt

11

=
1

2

∫ t0

0

[

(−3t+ x0 + 3t0)
2 − (3t+ x0 − 3t0)

2
]

dt

12

= − 1

18
(−3t+ x0 + 3t0)

3 |t0
0
− 1

18
(3t+ x0 − 3t0)

3 |t0
0

= 3x0t
2
0 .

So that u(x0, t0) = x2
0t0 + 3t30 + 1

2x0t
2
0. Replacing (x0, t0) → (x, t), we13

conclude14

u(x, t) = x2t+ 3t3 +
1

2
xt2 .
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Duhamel’s Principle1

Consider the problem2

utt − c2uxx = F (x, t) for −∞ < x <∞, and t > 0(5.4)

u(x, 0) = 0 for −∞ < x <∞
ut(x, 0) = 0 for −∞ < x <∞ ,

with homogeneous (zero) initial conditions. Its solution at a point (x0, t0),3

written as a repeated integral, is4

u(x0, t0) =
1

2c

∫∫

∆
F (x, t) dxdt =

1

2c

∫ t0

0

(∫ −ct+x0+ct0

ct+x0−ct0
F (x, t) dx

)

dt

5

=

∫ t0

0

(

1

2c

∫ −cη+x0+ct0

cη+x0−ct0

F (x, η) dx

)

dη .

On the last step we changed the “dummy” variable t to η. We now consider6

a family of problems, depending on a parameter η: find U(x, t) solving7

Utt − c2Uxx = 0 for −∞ < x <∞, and t > η(5.5)

U(x, η) = 0 for −∞ < x <∞
Ut(x, η) = F (x, η) for −∞ < x <∞ .

Here the initial conditions are prescribed at the time moment t = η, and the8

force term F (x, t) now acts as the initial velocity. The solution U depends9

also on the parameter η, so that U = U(x, t, η). By adjusting d’Alembert’s10

formula (the initial time is now t = η), the solution of (5.5) at a point (x0, t0)11

is12

U(x0, t0, η) =
1

2c

∫ −cη+x0+ct0

cη+x0−ct0

F (x, η) dx .

(The left and the right characteristics are continued backward from the point13

(x0, t0) until they intersect the line t = η.) The solution of the original14

problem (5.4) is then15

u(x0, t0) =

∫ t0

0
U(x0, t0, η) dη .

We see that the force term F (x, t) is being distributed as the initial velocities16

at times η (0 < η < t0), and at the time t0 we integrate (sum up) the effects17

of these initial velocities.18

Similar approach works for many other evolution equations, which are19

equations involving the “time” variable.20
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8.5.1 Problems1

1. Solve the initial value problem, and describe its physical significance.2

Here u = u(x, t). Simplify your answer.3

utt − 4uxx = 0 −∞ < x <∞, t ≥ 0

u(x, 0) = x −∞ < x <∞,

ut(x, 0) = cosx −∞ < x <∞.

Answer. u(x, t) = x+ 1
2 cosx sin 2t.4

2. Find the values of the solution u(3, 1) and u(1, 3) for the following problem5

utt − uxx = 0 0 < x <∞, t ≥ 0

u(x, 0) = x2 0 < x <∞,

ut(x, 0) = x 0 < x <∞,

u(0, t) = 0 t ≥ 0 .

Answer. u(3, 1) = 13, u(1, 3) = 9.6

3. Solve the initial-boundary value problem, and describe its physical sig-7

nificance8

utt − 4uxx = 0 0 < x <∞, t ≥ 0

u(x, 0) = x 0 < x <∞,

ut(x, 0) = cosx 0 < x <∞,

ux(0, t) = 0 t ≥ 0 .

Answer. u(x, t) =
|x−2t|+|x+2t|

2 + 1
2 cosx sin 2t.9

4. Solve the non-homogeneous boundary value problem, and describe its10

physical significance. Simplify your answer.11

utt − 4uxx = x −∞ < x <∞, t ≥ 0

u(x, 0) = 0 −∞ < x <∞,

ut(x, 0) = 0 −∞ < x <∞.

Answer. u(x, t) = 1
2xt

2.12

5. Solve the non-homogeneous boundary value problem13

utt − 4uxx = x+ 3t −∞ < x <∞, t ≥ 0

u(x, 0) = 0 −∞ < x <∞,

ut(x, 0) = cosx −∞ < x <∞.
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Answer. u(x, t) = 1
2

(

xt2 + t3 + cos x sin 2t
)

.1

6. Solve the initial-boundary value problem, and describe its physical sig-2

nificance3

utt − 4uxx = 0 0 < x <∞, t ≥ 0

u(x, 0) = x 0 < x <∞,

ut(x, 0) = sinx 0 < x <∞,

u(0, t) = 0 t ≥ 0 .

Answer. u(x, t) = x+ 1
2 sinx sin 2t.4

7. Solve the following initial-boundary value problem, and describe its phys-5

ical significance6

utt − 4uxx = 0 0 < x <∞, t ≥ 0

u(x, 0) = x2 0 < x <∞,

ut(x, 0) = cos x 0 < x <∞,

u(0, t) = 0 t ≥ 0 .

8. Find u(3, 1) and u(1, 3) for the solution of the following problem7

utt − 4uxx = 0 0 < x <∞, t ≥ 0

u(x, 0) = x+ 1 0 < x <∞,

ut(x, 0) = 0 0 < x <∞
u(0, t) = 0 .

Answer. u(3, 1) = 4, and u(1, 3) = 1.8

9. Solve9

utt = uxx, 0 < x <∞, t > 0

u(x, 0) = x2,

ut(x, 0) = x,

u(0, t) = 0 .

Answer. u(x, t) =











x2 + xt+ t2 for t ≤ x

3xt for t > x
.10
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10. Find u(3, 1) and u(1, 3) for the solution of the following problem1

utt − 4uxx = 0 0 < x <∞, t ≥ 0

u(x, 0) = x+ 1 0 < x <∞,

ut(x, 0) = 0 0 < x <∞
ux(0, t) = 0 .

Answer. u(3, 1) = 4, and u(1, 3) = 7.2

11. Find u(1/2, 2) and u(1/3, 3) for the following problem3

utt − uxx = 0 0 < x < 2, t ≥ 0

u(x, 0) = x 0 < x < 2,

ut(x, 0) = 0 0 < x < 2,

u(0, t) = u(2, t) = 0 t ≥ 0 .

Answer. u(1/2, 2) = −3
2 , u(1/3, 3) = 1

3 .4

12. Find u(1/2, 2) and u(1/3, 3) for the following problem5

utt − uxx = 0 0 < x < 2, t ≥ 0

u(x, 0) = x 0 < x < 2,

ut(x, 0) = 0 0 < x < 2,

ux(0, t) = ux(2, t) = 0 t ≥ 0 .

Answer. u(1/2, 2) = 3
2 , u(1/3, 3) = 1.6

13. Consider a wave equation with a lower order term (a > 0 is a constant)7

utt − 4uxx + aut = 0 −∞ < x <∞, t ≥ 0 .

Assume that the solution u(x, t) is of compact support. Show that the8

energy E(t) = 1
2

∫∞
−∞

(

u2
t + 4u2

x

)

dx is a decreasing function.9

14. (Equipartition of energy). For the initial value problem10

utt − c2uxx = 0 for −∞ < x <∞, and t > 0

u(x, 0) = f(x), ut(x, 0) = g(x), for −∞ < x <∞

assume that f(x) and g(x) are of compact support. Define the kinetic energy11

k(t) = 1
2

∫∞
−∞ u2

t (x, t) dx, and the potential energy p(t) = 1
2

∫∞
−∞ c2u2

x(x, t) dx12

(so that E(t) = k(t)+p(t) is the total energy, considered before). Show that13

k(t) = p(t) , for large enough time t .
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Hint: From d’Alembert’s formula1

ux =
f ′(x− ct) + f ′(x+ ct)

2
+
g(x+ ct)− g(x− ct)

2c
,

2

ut =
−cf ′(x− ct) + cf ′(x+ ct)

2
+
g(x+ ct) + g(x− ct)

2
.

Then3

u2
t − c2u2

x = (ut − cux) (ut + cux)

= (g(x− ct)− cf ′(x− ct)) (cf ′(x+ ct) + g(x+ ct)) = 0 ,

for large t, because both x− ct and x+ ct will leave the intervals on which4

f(x) and g(x) live.5

14. Let u(x, t) be a solution of the heat equation6

ut = 5uxx 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0 .

Show that E(t) =
∫ 1
0 u

2(x, t) dx is a decreasing function.7

15. Show that u(x, t) = 0 is the only solution of the nonlinear equation8

ut = 5uxx − u3 + uux 0 < x < 1, t > 0

u(0, t) = u(1, t) = 0 t > 0

u(x, 0) = 0 0 < x < 1 .

Hint: Show that E(t) =
∫ 1
0 u

2(x, t) dx is a decreasing function.9

16. Think of some function. Then write down two solutions of the wave10

equation11

utt − 9uxx = 0 ,

connected to that function.12

Hint: I thought of f(z) =
z

sin 5z
, and obtained two solutions13

u1(x, t) =
x− 3t

sin 5(x− 3t)
, and u2(x, t) =

x+ 3t

sin 5(x+ 3t)
.14

17. Let v(x, t) be a complex-valued solution of a nonlinear Schroedinger’s15

equation (i =
√
−1)16

ivt + vxx + 2v|v|2 = 0 ,
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where |v| denotes the complex modulus of v(x, t). Find the standing wave1

solution in the form v(x, t) = eimtu(x), with a real valued u(x), and a2

constant m > 0.3

Hint: Recall that u(x) =
√

m
cosh

√
m(x−c)

are homoclinic solutions of4

u′′ −mu+ 2u3 = 0 .

Answer. v(x, t) = eimt
√

m
cosh

√
m(x−c)

, with arbitrary constant c. (Other solu-5

tions of Schroedinger’s equation are also possible.)6

8.6 First Order Linear Equations7

Recall that curves in the xy-plane can be described by parametric equations8

x = x(s) and y = y(s), where s is a parameter, a ≤ s ≤ b. Along such a9

curve, any function u = u(x, y) becomes a function of s, u = u(x(s), y(s)),10

and by the chain rule11

d

ds
u(x(s), y(s)) = ux(x(s), y(s)) x′(s) + uy(x(s), y(s)) y

′(s) .

We wish to find u = u(x, y), solving the first order equation12

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y) ,(6.1)

where continuously differentiable functions a(x, y) and b(x, y), and continu-13

ous functions c(x, y) and f(x, y) are given.14

Consider a system of two ODE’s15

dx

ds
= a(x, y)(6.2)

16

dy

ds
= b(x, y) ,

depending on some parameter s, with the initial conditions17

x(0) = x0, y(0) = y0 .(6.3)

By the existence and uniqueness Theorem 6.1.1, there exists a unique solu-18

tion (at least locally near the initial point (x0, y0)) x = x(s) and y = y(s),19

which defines a curve, called the characteristic curve or the characteristic,20
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for short. So that we can find a characteristic, passing through any point1

(x0, y0). Along the characteristic curve, our equation (6.1) becomes2

du

ds
+ c(x(s), y(s))u= f(x(s), y(s)) .

The original PDE becomes an ODE along the characteristic curve!3

One often chooses either x or y as the parameter on characteristics.4

Observe that from (6.2)5

dy

dx
=
dy/ds

dx/ds
=
b(x, y)

a(x, y)
.(6.4)

If x is chosen as the parameter on the characteristics, then y = y(x), and6

d

dx
u(x, y) = ux + uy

dy

dx
= ux + uy

b(x, y)

a(x, y)
.

Dividing (6.1) by a(x, y), we rewrite it as (we assume that a(x, y) 6= 0)7

du

dx
+
c(x, y)

a(x, y)
u =

f(x, y)

a(x, y)
.

Then we solve this ODE along the characteristics, beginning at a point where8

u(x, y) is prescribed. (Here y = y(x), and we solve for u = u(x).)9

If y is chosen as the parameter, then x = x(y), and by (6.4)10

d

dy
u(x, y) = ux

dx

dy
+ uy = ux

a(x, y)

b(x, y)
+ uy .

Dividing (6.1) by b(x, y), we rewrite it as (assuming that b(x, y) 6= 0)11

du

dy
+
c(x, y)

b(x, y)
u =

f(x, y)

b(x, y)
,

giving an ODE for u = u(y).12

Example 1 Find u = u(x, y), solving13

ux + uy = 1(6.5)

u(x, 0) = ex .

Here the solution (or the “data”) is prescribed along the x-axis. By (6.4),14

the equation to find the characteristics is15

dy

dx
= 1 .
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The characteristics are the straight lines y = x+c. The one passing through1

a point (x0, y0) is2

y = x+ y0 − x0 .

-

6

x

y

s
�

�
�

�
�

�
�

(x0, y0)

x0 − y0

s��
�

��

Integrating along the characteristic line

3

It intersects the x axis at x = x0 − y0. Choosing x as the parameter, the4

equation in (6.5) becomes5

du

dx
= 1 .

We integrate this equation along the characteristic line, between the points6

(x0 − y0, 0) and (x0, y0), or between the parameter values of x = x0 − y07

(where y = 0) and x = x0 (where y = y0)8

∫ x0

x0−y0

du

dx
dx =

∫ x0

x0−y0

dx ,

9

u(x0, y0) − u(x0 − y0, 0) = y0 ,
10

u(x0, y0) = u(x0 − y0, 0) + y0 = ex0−y0 + y0 .

(The data in the second line of (6.5) was used on the last step.) Finally,11

replace the arbitrary point (x0, y0) by (x, y). Answer: u(x, y) = ex−y + y.12

Example 2 Find u = u(x, y), solving13

ux + cosx uy = sinx(6.6)

u(0, y) = sin y .
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x

y

�
x0 � y0 �y0 - � � � x0

Figure 8.1: A characteristic line for the equation (6.6)

This time the data is given along the y-axis. The characteristics are solutions1

of2

dy

dx
= cos x ,

which are y = sinx + c. The one passing through the point (x0, y0) is (see3

Figure 8.1)4

y = sinx+ y0 − sinx0 .

It intersects the y-axis at y = y0 − sinx0. Choosing x as the parameter, the5

original equation becomes (along the characteristics)6

du

dx
= sinx .

We integrate along the characteristic curve, between the point (0, y0−sinx0)7

on the y-axis, where the data is given, and the target point (x0, y0)8

∫ x0

0

du

dx
dx =

∫ x0

0
sinx dx ,

9

u(x0, y0) − u(0, y0 − sinx0) = − cosx0 + 1 ,
10

u(x0, y0) = u(0, y0 − sinx0) − cos x0 + 1 = sin (y0 − sinx0) − cos x0 + 1 .

Answer: u(x, y) = sin (y − sinx) − cos x+ 1.11

Example 3 Find u = u(x, y), solving (here f(x) is a given function)12

sin y ux + uy = ey(6.7)

u(x, 0) = f(x) .
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x

y �
x0 � y0  

-1! x0 ! " # $ y0

Figure 8.2: A characteristic line for the equation (6.7)

The data f(x) is given along the x-axis. The characteristics are solutions of1

dx

dy
= sin y ,

which are x = − cos y + c. The one passing through the point (x0, y0) is2

x = − cos y + x0 + cos y0 .(6.8)

It intersects the x-axis at x = −1 + x0 + cos y0. We shall use y as the3

parameter. (One cannot use x as the parameter, because solving (6.8) for4

y = y(x) produces multiple answers.) The original equation becomes (along5

the characteristics)6

du

dy
= ey .

We integrate along the characteristic curve, between the points (−1 + x0 +7

cos y0, 0) and (x0, y0), or between the parameter values of y = 0 (where8

x = −1 + x0 + cos y0) and y = y0 (where x = x0)9

∫ y0

0

du

dy
dy =

∫ y0

0
ey dy ,
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1

u(x0, y0) − u(−1 + x0 + cos y0, 0) = ey0 − 1 ,
2

u(x0, y0) = u(−1 + x0 + cos y0, 0) + ey0 − 1 = f(−1 + x0 + cos y0) + ey0 − 1 .

Answer: u(x, y) = f(−1 + x+ cos y) + ey − 1. (This expression may also be3

seen as the general solution of our equation, considering the function f(x)4

to be arbitrary.)5

Example 4 Find u = u(x, y), solving6

xux − yuy + u = x(6.9)

u = 1 on y = x .

The data is given along the line y = x. The characteristics are the solutions7

of8

dy

dx
= −y

x
,

which are the hyperbolas y =
c

x
. The one passing through the point (x0, y0)9

is10

y =
x0y0
x

.(6.10)

Let us begin by assuming that the point (x0, y0) lies in the first quadrant of11

the xy-plane, so that x0 > 0 and y0 > 0. The characteristic (6.10) intersects12

the line y = x at the point
(√
x0y0,

√
x0y0

)

. Taking x as the parameter, our13

PDE becomes (after dividing by x)14

du

dx
+

1

x
u = 1 ,

or15

d

dx
(xu) = x .

We integrate along the characteristic curve, between the points
(√
x0y0,

√
x0y0

)

16

and (x0, y0), or between x =
√
x0y0 (where y =

√
x0y0) and x = x0 (where17

y = y0), obtaining18

∫ x0

√
x0y0

d

dx
(xu) dx =

∫ x0

√
x0y0

x dx ,

19

x0u(x0, y0) −
√
x0y0u(

√
x0y0,

√
x0y0) =

1

2
x2

0 −
1

2
x0y0 .
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(It does not matter which of the limits of integration is larger,
√
x0y0 or x0.)1

By the initial condition, u(
√
x0y0,

√
x0y0) = 1, and then2

u(x0, y0) =

√

y0
x0

+
1

2
x0 −

1

2
y0 .

In case the point (x0, y0) lies in the third quadrant, we obtain the same result.3

In case the point (x0, y0) lies in either the second or the fourth quadrants,4

our method does not apply, because the characteristic hyperbolas do not5

intersect the line y = x.6

Answer: u(x, y) =

√

y

x
+

1

2
x− 1

2
y, in case the point (x, y) lies in either the7

first or the third quadrants, and no solution exists if the point (x, y) lies in8

either the second or the fourth quadrants.9

-

6

�
�

�
�

�
�

��

x

y

y = x

sr
s
r (x0, y0)

x0
√
x0y0

-

Integrating along the characteristic hyperbola

10

We conclude by observing that the curve, on which the data is prescribed,11

cannot be a characteristic (or have a part, which is a characteristic). Indeed,12

if solution is known at some point on a characteristic, it can be computed13

at all other points along the same characteristic line, and therefore solution14

cannot be arbitrary prescribed on this characteristic line.15

8.6.1 Problems16

1. Solve the problem17

ux + uy = 1

u(x, 0) = ex ,

by using y as a parameter.18
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2. Solve the problem1

xux − yuy + u = x

u = 1 on y = x ,

in case the point (x, y) lies in the third quadrant of the xy-plane.2

Answer. u(x, y) =

√

y

x
+

1

2
x− 1

2
y.3

3. Solve for u = u(x, y)4

xux + yuy + u = x,

u = 1 on the line x+ y = 1 .

Answer. u(x, y) =
1

x+ y
+
x

2
− x

2(x+ y)2
.5

4. Find u = u(x, y), solving6

sin y ux + uy = x

u(x, 0) = x2 .

Hint: Use y as a parameter. Express x as a function of y, when integrating7

along the characteristic curve.8

Answer. u(x, y) = (x+ cos y − 1)2 − sin y + y cos y + xy.9

5. Find the general solution of10

2ux + uy = x .

Hint: Denote by f(x) the values of u(x, y) on the x-axis.11

Answer. u(x, y) = f(x− 2y) + xy − y2, where f is an arbitrary function.12

6. Show that the following problem has no solution13

2ux + uy = x

u(x, 1
2x) = x2 .

Hint: Compare the data line and the characteristics.14

7. (i) Find the general solution of15

xux − yuy + u = x ,
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which is valid in the second quadrant of the xy-plane.1

Hint: Let u = f(x) on y = −x, where f(x) is an arbitrary function.2

Answer. u(x, y) =
√

− y
x f(−√−xy) + 1

2x+ 1
2y.3

(ii) Show that the problem (6.9) above has no solution in the second quad-4

rant.5

8. Solve the problem (here f(y) is an arbitrary function)6

xux + 2yuy + y
xu = 0

u = f(y) on the line x = 1 .

Answer. u(x, y) = e
(

y

x2 −
y
x

)

f

(

y

x2

)

.7

8.7 Laplace’s Equation: Poisson’s Integral Formula8

A Trigonometric Sum9

Let ρ and α be two real numbers, with 0 < ρ < 1. We claim that10

1

2
+

∞
∑

n=1

ρn cosnα =
1− ρ2

2 (1 − 2ρ cosα+ ρ2)
.(7.1)

We begin the proof by recalling the geometric series: for any complex number11

z, with the modulus |z| < 1, one has12

∞
∑

n=0

zn =
1

1 − z
.

Consider a complex number z = ρeiα. Then |z| = ρ < 1, and by Euler’s13

formula14

zn = ρneinα = ρn (cosnα + i sinnα) .

It follows that15

Re zn = ρn cosnα ,

where Re denotes the real part of a complex number. Then16

1

2
+

∞
∑

n=1

ρn cosnα = Re

[

1

2
+

∞
∑

n=1

zn

]

= Re

[

1

2
+

1

1 − z
− 1

]

= Re

[

1 + z

2(1− z)

]

17

=
1

2
Re

[

1 + ρeiα

1 − ρeiα

]

=
1

2
Re

[

1 + ρ cosα+ iρ sinα

1 − ρ cosα− iρ sinα

]

=
1 − ρ2

2 (1− 2ρ cosα+ ρ2)
.

On the last step we multiplied both the numerator and the denominator by18

1 − ρ cosα+ iρ sinα (the complex conjugate of the denominator).19
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Laplace’s Equation on a Disc1

Recall from Chapter 7 that in order to solve the following boundary value2

problem in polar coordinates (on a disc r < R)3

∆u = urr + 1
rur + 1

r2uθθ = 0, for r < R, 0 ≤ θ < 2π(7.2)

u(R, θ) = f(θ), for 0 ≤ θ < 2π ,

we begin by expanding the given piecewise smooth function f(θ) into its4

Fourier series5

f(θ) = a0 +
∞
∑

n=1

an cosnθ + bn sinnθ ,

with the coefficients given by6

a0 =
1

2π

∫ 2π

0
f(φ) dφ ,

7

an =
1

π

∫ 2π

0
f(φ) cosnφ dφ ,

8

bn =
1

π

∫ 2π

0
f(φ) sinnφ dφ .

The solution of the problem (7.2) is then9

u(r, θ) = a0 +
∞
∑

n=1

(

r

R

)n

(an cosnθ + bn sinnθ) .(7.3)

Recall that this solution represents the steady state temperatures inside the10

disc x2 + y2 < R2, provided that the temperatures on the boundary circle11

x2 + y2 = R2 are prescribed by the function f(θ).12

We now substitute the integral formulas for an’s and bn’s into (7.3), and13

denote ρ = r
R , obtaining14

u(r, θ) =
1

π

∫ 2π

0

[

1

2
+

∞
∑

n=1

ρn (cosnφ cosnθ + sinnφ sinnθ)

]

f(φ) dφ .

Observing that cosnφ cosnθ + sinnφ sinnθ = cosn(θ − φ), and using the15

formula (7.1), the sum in the square bracket becomes16

1

2
+

∞
∑

n=1

ρn cosn(θ−φ) =
1 − ρ2

2 (1 − 2ρ cos(θ − φ) + ρ2)
=

R2 − r2

2 (R2 − 2Rr cos(θ − φ) + r2)
.
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We conclude Poisson’s integral formula1

u(r, θ) =
1

2π

∫ 2π

0

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
f(φ) dφ ,(7.4)

which gives the solution of the boundary value problem (7.2). The function2

R2 − r2

R2 − 2Rr cos θ + r2
is called Poisson’s kernel.3

Recall that solutions of the Laplace equation4

∆u = uxx + uyy = 0

are called harmonic functions. Poisson’s integral formula implies that one5

can find a harmonic function inside of any disc x2+y2 < R2, with arbitrarily6

prescribed values on the boundary of the disc. Poisson’s integral formula is7

suitable for numerical computations.8

Throughout this chapter we consider only the classical solutions, which9

means that u(x, y) has all derivatives in x and y of first and second order,10

which are continuous functions.11

8.8 Some Properties of Harmonic Functions12

Setting r = 0 in Poisson’s formula gives the solution at the origin:13

u(0, 0) =
1

2π

∫ 2π

0
f(φ) dφ =

1

2π

∫ 2π

0
u(R, φ) dφ .

So that u(0, 0) is equal to the average of the values of u on the circle of any14

radius R around (0, 0). Any point in the xy-plane may be declared to be15

the origin. We therefore conclude the mean value property : the value of a16

harmonic function at any point (x0, y0) is equal to the average of the values17

of u(x, y) on a circle of any radius R around the point (x0, y0).18

If a closed curve C encloses a bounded domain D, then we denote19

D̄ = D ∪ C. D̄ is called the closure of D. One often writes ∂D to20

denote the boundary curve C. It is known from calculus that a contin-21

uous on D̄ function u(x, y) takes on its maximum and minimum values.22

This means that at some point (x1, y1) ∈ D̄, u(x1, y1) = max
D̄

u(x, y), and23

u(x2, y2) = min
D̄

u(x, y), at a point (x2, y2) ∈ D̄.24



8.8. SOME PROPERTIES OF HARMONIC FUNCTIONS 421

Theorem 8.8.1 (Strong maximum principle) A function u(x, y) which is1

harmonic in a domain D cannot take on its maximum value at points inside2

D, unless u(x, y) is a constant.3

Proof: Denote M = maxD̄ u(x, y), and assume that u(x0, y0) = M at4

some point (x0, y0) ∈ D. We shall show that u(x, y) = M for all points5

(x, y) ∈ D. Let the number R > 0 be so small that the circle of radius R6

around the point (x0, y0) lies inside D. The values of u(x, y) on that circle7

are ≤ M , and in fact they have to be equal to M , because otherwise their8

average would be less than M , but that average is equal to u(x0, y0) = M .9

We conclude that u(x, y) = M , at all points inside of any circle around10

(x0, y0), which lies inside D. Let now (x1, y1) be any other point in D. Join11

(x0, y0) to (x1, y1) by any path, and cover that path by small overlapping12

circles, each lying inside D. Repeating the same argument for all circles, we13

conclude that u(x1, y1) = M . ♦14

kk��
��"!
# &%
'$&%
'$&%
'$

s

s

(x0, y0)

(x1, y1)

D

Overlapping circles joining (x0, y0) to (x1, y1) inside D

15

The strong maximum principle has the following physical interpretation:16

for steady state temperatures (which harmonic functions represent), one17

cannot have a point in D which is hotter than all of its neighbors.18

Similarly, one has the strong minimum principle: a function u(x, y),19

which is harmonic in a domain D, cannot take on its minimum value inside20
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D, unless u(x, y) is a constant. So where do harmonic functions assume1

their maximum and minimum values? On the boundary ∂D. A function2

harmonic in the entire plane, like u(x, y) = x2 − y2, has no points of local3

maximum and of local minimum in the entire plane, but if you restrict this4

function to, say, a unit disc x2 + y2 ≤ 1, then it takes on its maximum and5

minimum values on the boundary x2 + y2 = 1.6

We shall need the following estimate of the Poisson kernel:7

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
≤ R2 − r2

R2 − 2Rr+ r2
=

(R− r)(R+ r)

(R− r)2
=
R+ r

R− r
,

which is obtained by estimating − cos(θ − φ) ≥ −1, then simplifying. Simi-8

larly,9

R2 − r2

R2 − 2Rr cos(θ − φ) + r2
≥ R2 − r2

R2 + 2Rr+ r2
=
R− r

R+ r
,

which is obtained by estimating − cos(θ−φ) ≤ 1, and simplifying. Combin-10

ing11

R− r

R+ r
≤ R2 − r2

R2 − 2Rr cos(θ − φ) + r2
≤ R+ r

R− r
.

Consider again the boundary value problem (7.2), and assume that f(φ) ≥ 0,12

for all φ. Using Poisson’s integral formula (7.4), we have13

R− r

R+ r

1

2π

∫ 2π

0
f(φ) dφ ≤ u(r, θ) ≤ R+ r

R− r

1

2π

∫ 2π

0
f(φ) dφ .

By the mean value property, we conclude that for any non-negative function14

u(r, θ), which is harmonic inside x2 + y2 < R2, the following Harnack’s15

inequalities hold16

R− r

R+ r
u(0, 0) ≤ u(r, θ) ≤ R+ r

R− r
u(0, 0) .(8.1)

(The assumption that u(r, θ) ≥ 0 was needed to assure that f(φ) = u(R, φ) ≥17

0.)18

Theorem 8.8.2 (Liouville’s Theorem) If a function u(x, y) ≥ 0 is har-19

monic in the entire plane, then u(x, y) = constant.20

Proof: The estimates (8.1) hold for allR. (Observe that f(φ) = u(R, φ) ≥21

0.) Keeping (r, θ) fixed, we let R→ ∞ in (8.1). Then22

u(r, θ) = u(0, 0) = constant, for any (r, θ) ,
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as claimed. ♦1

Suppose now that a function u(x, y) is harmonic and non-negative, de-2

fined on the disc BR : x2 + y2 ≤ R2. We also consider the disc r ≤ R/2 (or3

x2 + y2 ≤ R2/4), which we denote by BR/2. Using (8.1), we estimate4

max
BR/2

u(x, y) ≤ R+ 1
2R

R− 1
2R

u(0, 0) = 3u(0, 0) .

Similarly,5

min
BR/2

u(x, y) ≥ R− 1
2R

R+ 1
2R

u(0, 0) =
1

3
u(0, 0) .

We conclude that6

maxBR/2
u(x, y)

minBR/2
u(x, y)

≤ 9 ,

for any non-negative harmonic function, defined on the disc x2 + y2 ≤ R2.7

This fact reflects the strong averaging property of harmonic functions. (More8

generally, for each bounded domain there is a bound on the ratio of the9

maximum value over the minimum value for any non-negative harmonic10

function defined on some larger domain.)11

8.9 The Maximum Principle12

In this section we consider two important classes of functions that include13

harmonic functions. Not all of these functions satisfy the strong maximum14

principle. We now describe a substitute property. Recall that D denotes a15

bounded domain, with the boundary C, and D̄ = D ∪ C.16

Theorem 8.9.1 (Maximum principle) Assume that17

∆u(x, y) ≥ 0 for all (x, y) ∈ D .(9.1)

Then u(x, y) takes on its maximum value on the boundary, so that18

max
D̄

u(x, y) = max
C

u(x, y) .(9.2)

Functions satisfying the inequality (9.1) are called subharmonic in D.19

This theorem asserts that subharmonic functions take on their maximum20

values at the boundary of the domain. (The possibility that the maximum21

value is also taken on at points inside D, is not excluded here.)22
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Proof: Consider, first, an easy case when the inequality in (9.1) is strict1

∆u(x, y) > 0 for all (x, y) ∈ D .(9.3)

We claim that u(x, y) cannot have points of local maximum inside D. In-2

deed, if (x0, y0) ∈ D was a point of local maximum, then uxx(x0, y0) ≤ 03

and uyy(x0, y0) ≤ 0, and therefore4

∆u(x0, y0) = uxx(x0, y0) + uyy(x0, y0) ≤ 0 ,

contradicting (9.3). It follows that the maximum of u(x, y) on D̄ is achieved5

on the boundary curve C, so that (9.2) holds, and moreover6

u(x, y) < max
C

u(x, y) for all (x, y) ∈ D .

Turning to the general case, consider the function v(x, y) = u(x, y) +7

ε(x2 + y2), with some ε > 0. Then8

∆v(x, y) = ∆u(x, y) + 4ε > 0 ,

and by the easy case, considered above,9

u(x, y) < v(x, y) < max
C

v(x, y) ≤ max
C

u(x, y) + εK for all (x, y) ∈ D ,

where K is any constant exceeding x2 + y2 on the bounded closed curve C.10

Letting ε→ 0, we conclude that11

u(x, y) ≤ max
C

u(x, y) for all (x, y) ∈ D ,

which implies (9.2). ♦12

The following minimum principle holds for the superharmonic functions,13

defined as the functions satisfying ∆u(x, y) ≤ 0 on D.14

Theorem 8.9.2 Assume that15

∆u(x, y) ≤ 0 for all (x, y) ∈ D .

Then u(x, y) takes on its minimum on the boundary, so that16

min
D̄

u(x, y) = min
C
u(x, y) .
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Harmonic functions are both subharmonic and superharmonic, and so1

they assume their minimum and maximum values on the boundary C. If2

a harmonic function is zero on C, it has to be zero on D. (This fact also3

follows from the strong maximum principle.) It follows that the Dirichlet4

problem for Poisson’s equation5

∆u = f(x, y) for (x, y) ∈ D

u = g(x, y) for (x, y) ∈ C

has at most one solution, for any given functions f(x, y) and g(x, y). Indeed,6

if u(x, y) and v(x, y) are two solutions, then their difference u(x, y)−v(x, y) is7

harmonic inD function, which is zero on C. It follows that u(x, y)−v(x, y) =8

0, so that u(x, y) = v(x, y) for all (x, y) ∈ D.9

Occasionally one can use the maximum principle to find the maximum10

value of a function on a bounded domain.11

Example Find the maximum value of u(x, y) = 2x4−3xy2+y6+x2+x−2y12

on the closed square [0, 1]× [0, 1], where 0 ≤ x, y ≤ 1.13

Setting the partials ux and uy to zero, would lead to an intractable 2×214

nonlinear system. Instead, we calculate15

∆u(x, y) = 24x2 + 2 − 6x+ 30y4 ≥ 24x2 − 6x+ 2 > 0, for all (x, y) .

By the maximum principle, the maximum value of u(x, y) occurs at the16

boundary of the square. The boundary of the square consists of four line17

segments, and on each segment u(x, y) is a simple function of one variable.18

Examining these line segments in turn, one sees that the maximum value of19

u(x, y) is equal to 4, and it occurs at the point x = 1, y = 0.20

The reasoning behind the maximum principle may be used to analyze21

some nonlinear equations. Consider, for example, the Dirichlet problem22

∆u = u3 for (x, y) ∈ D

u = 0 for (x, y) ∈ C .

This problem has the trivial solution u(x, y) = 0. It turns out that there are23

no other solutions. Indeed, if a solution u(x, y) was positive at some points in24

D, it would have a point of global maximum (x0, y0) ∈ D, with u(x0, y0) > 0.25

At that point, ∆u(x0, y0) ≤ 0, while u3(x0, y0) > 0. We have a contradiction26

with our equation, at the point (x0, y0), which implies that u(x, y) cannot27

take on positive values. Similarly, one shows that u(x, y) cannot take on28

negative values. It follows that u(x, y) = 0 is the only solution.29
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Maximum and minimum principles also hold in the presence of lower1

order terms (derivatives of the first order).2

Theorem 8.9.3 Assume that for all (x, y) ∈ D we have3

∆u(x, y) + a(x, y)ux(x, y) + b(x, y)uy(x, y) ≥ 0 ,(9.4)

where a(x, y) and b(x, y) are given continuous functions. Then u(x, y) takes4

on its maximum value on the boundary C, so that5

max
D̄

u(x, y) = max
C

u(x, y) .

Proof: Assume, first, that the inequality in (9.4) is strict. If there was a6

point of maximum (x0, y0) inside D, then ux(x0, y0) = uy(x0, y0) = 0, and7

uxx(x0, y0) ≤ 0, uyy(x0, y0) ≤ 0. Evaluating the strict inequality (9.4) at8

(x0, y0), we would have a contradiction, proving the theorem in this case.9

The proof of the general case is similar to that for the Theorem 8.9.1. ♦10

8.10 The Maximum Principle for the Heat Equa-11

tion12

Recall from Chapter 7 that in case of a bounded interval (0, L), a typical13

problem involving the heat equation is14

ut − kuxx = F (x, t) 0 < x < L, 0 < t ≤ T(10.1)

u(x, 0) = f(x) 0 < x < L

u(0, t) = a(t) 0 < t ≤ T

u(L, t) = b(t) 0 < t ≤ T ,

with given continuous functions (called the data) F (x, t), a(t), b(t) and f(x),15

and a given constant k > 0. We assume that the final time T <∞. The data16

is prescribed on the parabolic boundary Γ, which is defined to be consisting17

of the lines x = 0, x = L (for 0 < t ≤ T ), and the segment 0 ≤ x ≤ L18

of the x-axis. The solution must be determined in the parabolic domain19

D = (0, L) × (0, T ], where 0 < x < L and 0 < t ≤ T . We shall denote20

D̄ = D ∪ Γ.21

Recall from calculus that if a differentiable function v(t), defined on some22

interval [0, T ], has a local maximum at some t0 ∈ (0, T ) then v′(t0) = 0, while23

if a local maximum (relative to [0, T ]) occurs at T , then v′(T ) ≥ 0.24
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Theorem 8.10.1 (The maximum principle) Assume that F (x, t) ≤ 0 for1

all (x, t) ∈ D, or2

ut − kuxx ≤ 0 , for all (x, t) ∈ D .(10.2)

Then u(x, t) takes on its maximum value on the parabolic boundary, so that3

max
D̄

u(x, t) = max
Γ

u(x, t) .(10.3)

(In particular, if u(x, t) ≤ 0 on Γ, then u(x, t) ≤ 0 on D.)4

Proof: Again, we consider first the case of strict inequality5

ut − kuxx < 0 , for all (x, t) ∈ D .(10.4)

We claim that u(x, t) cannot assume its maximum value at a point (x0, t0)6

in D. Assume, on the contrary, that (x0, t0) ∈ D is a point of maximum of7

u(x, t). If t0 < T , then ut(x0, t0) = 0 and −uxx(x0, t0) ≥ 0, contradicting the8

inequality (10.4), evaluated at (x0, t0). In case t0 = T , we have uxx(x0, t0) ≤9

0, and from (10.4) we get ut(x0, t0) < 0. But then u(x0, t) is larger than10

u(x0, t0) at times t a little before t0, in contradiction with (x0, t0) being a11

point of maximum. So that the point of maximum (of u(x, t) on D̄) occurs12

on the parabolic boundary Γ, and13

u(x, t) < max
Γ

u(x, t) , for all (x, t) ∈ D ,(10.5)

which implies (10.3).14

Turning to the general case, we denoteM = max
Γ

u(x, t), and let v(x, t) =15

u(x, t) + εx2, with a constant ε > 0. Then16

vt − kvxx = ut − kuxx − 2kε < 0 ,

so that strict inequality holds for v(x, t), and then by (10.5)17

u(x, t) < v(x, t) < max
Γ

v(x, t) ≤M + εL2 for all (x, t) ∈ D .

Letting ε→ 0, we conclude that18

u(x, t) ≤M , for all (x, t) ∈ D ,

which implies (10.3). ♦19

Similarly, one establishes the following minimum principle.20
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Theorem 8.10.2 Assume that F (x, t) ≥ 0 for all (x, t) ∈ D, or in other1

words,2

ut − kuxx ≥ 0 for all (x, t) ∈ D .

Then u(x, t) takes on its minimum value on the parabolic boundary, and3

min
D̄

u(x, t) = min
Γ
u(x, t) .

(In particular, if u(x, t) ≥ 0 on Γ, then u(x, t) ≥ 0 on D.)4

For the homogeneous heat equation, where F (x, t) = 0, both minimum5

and maximum principles apply. As a consequence, the problem (10.1) has6

at most one solution (one shows that the difference of any two solutions is7

zero).8

We have the following comparison theorem.9

Theorem 8.10.3 Assume we have two functions u(x, t) and v(x, t), such10

that11

ut − kuxx ≥ vt − kvxx in D, and u ≥ v on Γ .

Then u(x, t) ≥ v(x, t) in D.12

Proof: The function w(x, t) = u(x, t) − v(x, t) satisfies wt − kwxx ≥ 0 in13

D, and w ≥ 0 on Γ. By the minimum principle w ≥ 0 in D. ♦14

More information on maximum principles may be found in a nice book15

of M.H. Protter and H.F. Weinberger [24].16

8.10.1 Uniqueness on an Infinite Interval17

We begin with discussion of a remarkable function18

g(t) =

{

e−
1
t2 for t 6= 0

0 for t = 0
.

This function is positive for t 6= 0, however g(0) = 0, and g′(0) = g′′(0) =19

g′′′(0) = · · · = 0, so that all derivatives at t = 0 are zero. Indeed,20

g′(0) = lim
t→0

g(t)− g(0)

t
= lim

t→0

e−
1
t2

t
.
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Letting
1

t
= u, we evaluate this limit by using L’Hospital’s rule:1

lim
t→0

e
− 1

t2

t
= lim

u→∞
ue−u2

= lim
u→∞

u

eu2 = lim
u→∞

1

2ueu2 = 0 .

It follows that2

g′(t) =

{

2
t3 e

− 1
t2 for t 6= 0

0 for t = 0
.

The derivatives g′′(0), g′′′(0), and so on, are evaluated similarly.3

The initial value problem on the entire x-axis4

ut − uxx = 0 for −∞ < x <∞, t > 0(10.6)

u(x, 0) = 0 for −∞ < x <∞

has the trivial solution u(x, t) = 0. Surprisingly, this problem also has non-5

trivial solutions! Here is one of them:6

u(x, t) =
∞
∑

k=0

g(k)(t)

(2k)!
x2k ,(10.7)

where g(t) is the function just defined. (It is not hard to show that this series7

converges for all x, and all t > 0.) Clearly u(x, 0) = 0, because g(k)(0) = 08

for any derivative k. Compute9

uxx =
∞
∑

k=1

g(k)(t)

(2k− 2)!
x2k−2 =

∞
∑

i=0

g(i+1)(t)

(2i)!
x2i = ut ,

where we shifted the index of summation, k → i, by letting k − 1 = i.10

It follows that the problem11

ut − uxx = F (x, t) for −∞ < x <∞, t > 0(10.8)

u(x, 0) = g(x) for −∞ < x <∞

has infinitely many solutions, provided that it has one solution. Indeed, to12

any solution one may add a constant multiple of the function in (10.7), to13

get other solutions.14

The function g(t) appears in other counterexamples, or the examples that15

challenge our intuition. For example, the Maclauren series for g(t) is a sum16

of zeroes, and it converges to zero, not to g(t).17
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We shall show that the problem (10.8) has at most one bounded solution,1

which means that |u(x, t)| < M for some constant M > 0, and all −∞ <2

x < ∞, and t > 0. This fact will follow immediately from the following3

theorem.4

Theorem 8.10.4 Assume that we have a solution u(x, t) of the problem5

ut − kuxx = 0 for −∞ < x <∞, t > 0(10.9)

u(x, 0) = 0 for −∞ < x <∞ ,

which is a bounded (for all x and t) function. Then u(x, t) = 0, for all x6

and t.7

Proof: We are given that |u(x, t)| ≤ M for some M > 0, and all x and t8

(or −M ≤ u(x, t) ≤ M). In the region D : −L < x < L, 0 < t ≤ T , with9

some positive constants L and T , we consider the comparison function10

v(x, t) =
2M

L2

(

1

2
x2 + kt

)

.

One calculates11

vt − kvxx = 0 .

On the parabolic boundary of the region D we have12

v(x, 0) =
M

L2
x2 ≥ 0 = u(x, 0) ,

13

v(±L, t) = M +
2Mk

L2
t ≥M ≥ u(±L, t) .

By the comparison Theorem 8.10.314

u(x, t) ≤ v(x, t) in D .

The function −v(x, t) satisfies15

(−v)t − k(−v)xx = 0 ,

16

−v(x, 0) = −M
L2
x2 ≤ 0 = u(x, 0) ,

17

−v(±L, t) = −M − 2Mk

L2
t ≤ −M ≤ u(±L, t) .
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Using the comparison Theorem 8.10.3 again, we conclude that1

−v(x, t) ≤ u(x, t) ≤ v(x, t) in D ,

which gives2

|u(x, t)| ≤ v(x, t) =
2M

L2

(

1

2
x2 + kt

)

.

Letting here L→ ∞, we conclude that u(x, t) = 0 for any fixed x and t. ♦3

4

As a consequence, we have the following uniqueness theorem.5

Theorem 8.10.5 For any given functions F (x, t) and f(x), the problem6

ut − kuxx = F (x, t) for −∞ < x <∞, t > 0

u(x, 0) = f(x) for −∞ < x <∞

has at most one bounded solution.7

Proof: The difference of any two bounded solutions would be a bounded8

solution of the problem (10.9), which is zero by the preceding theorem. ♦9

8.11 Dirichlet’s Principle10

Recall the concept of divergence a vector field F = (P (x, y, z), Q(x, y, z), R(x, y, z))11

divF = ∇ · F = Px(x, y, z) +Qy(x, y, z) +Rz(x, y, z) .

An example of a vector field is given by the gradient of any functionw(x, y, z),12

namely ∇w = (wx(x, y, z), wy(x, y, z), wz(x, y, z)). One calculates13

div (∇w) = wxx +wyy + wzz = ∆w .(11.10)

Suppose that a bounded domain D in (x, y, z) space, is bounded by a14

closed and smooth surface S. The divergence theorem reads:15

∫

D
divF dV =

∫

S
F · n dS .

Here
∫

D denotes the triple integral overD,
∫

S is the surface (double) integral16

over S, n is the unit normal vector pointing outside ofD (n is changing from17

point to point on S), F · n denotes the scalar product of two vectors, and18
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dV = dx dy dz is the volume element. Applying the divergence theorem to1

(11.10) gives2
∫

D
∆w dV =

∫

S
∇w · n dS =

∫

S

∂w

∂n
dS ,

where ∂w
∂n denotes the directional derivative in the direction of n.3

Given two functions u(x, y, z) and v(x, y, z), one calculates4

div (v∇u) = ∆u v + ∇u · ∇v .

By the divergence theorem5

∫

D
(∆u v + ∇u · ∇v) dV =

∫

D
div (v∇u) dV =

∫

S
v∇u · n dS ,

or6
∫

D
∆u v dV = −

∫

D
∇u · ∇v dV +

∫

S

∂u

∂n
v dS .(11.11)

This formula is called Green’s identity; it extends the integration by parts7

formula to higher dimensions.8

We now apply Green’s identity to give another proof of the uniqueness9

of solution of the Dirichlet problem for Poisson’s equation.10

Theorem 8.11.1 Given any f(x, y, z) and g(x, y, z), there exists at most11

one solution of the boundary value problem12

∆u = f(x, y, z) in D(11.12)

u = g(x, y, z) on S .

Proof: Assume that there are two solutions u(x, y, z) and v(x, y, z). Their13

difference w = u− v satisfies14

∆w = 0 in D , w = 0 on S .

We multiply the last equation by w, and integrate overD. In view of (11.11)15

0 =

∫

D
w∆w dV = −

∫

D
∇w · ∇w dV +

∫

S
w
∂w

∂n
dS = −

∫

D
|∇w|2 dV .

(We used that
∫

S w
∂w
∂n dS = 0, because w = 0 on S; |∇w| denotes the16

length of the gradient vector.) It follows that ∇w = 0, so that w(x, y, z) is17

a constant. This constant is zero, because of the boundary condition. So18

that w = u− v ≡ 0, and then u ≡ v in D. ♦19
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Dirichlet’s principle says that the solution of the boundary value problem1

(11.12) minimizes the following energy functional2

J(u) =

∫

D

[

1

2
|∇u|2 + uf

]

dV .

among all functions satisfying the boundary condition in (11.12). (Here |∇u|3

denotes the length of the gradient vector, |∇u|2 = ∇u · ∇u.)4

Theorem 8.11.2 Assume that u(x, y, z) is a solution of (11.12). Then5

J(u) = min
w
J(w) , where w = g(x, y, z) on S .(11.13)

Conversely, if u(x, y, z) satisfies (11.13), then it is a solution of the boundary6

value problem (11.12).7

Proof: Part 1. If u is a solution of (11.12), then u−w = 0 on S. Multiply8

the equation in (11.12) by u−w, integrate over D, and use Green’s identity9

0 =

∫

D
[∆u (u− w)− f(u−w)] dV =

∫

D
[−∇u · ∇(u− w)− f(u−w)] dV .

(Observe that
∫

S
∂u
∂n (u−w) dS = 0.) It follows that10

∫

D

[

|∇u|2 + uf
]

dV =

∫

D
[∇u · ∇w +wf ] dV(11.14)

11

≤ 1

2

∫

D
|∇u|2 dV +

∫

D

[

1

2
|∇w|2 + wf

]

dV .

On the last step we used the Cauchy-Schwarz inequality for vectors ∇u ·12

∇w ≤ |∇u| |∇w|, followed by the numerical inequality ab ≤ 1
2a

2 + 1
2b

2.13

Rearranging the terms in (11.14), we conclude that J(u) ≤ J(w) for any w,14

satisfying w = g on S.15

Part 2. Conversely, assume that u minimizes J(u) among the functions w,16

satisfying w = g on S. Fix any v(x, y, z), satisfying v = 0 on S. Then17

for any number ε the function u + εv is equal to g on S, and therefore18

J(u) ≤ J(u + εv). It follows that the function j(ε) = J(u + εv) has a19

minimum at ε = 0, and therefore j ′(0) = 0. Calculate20

j(ε) = J(u+ εv) =

∫

D

[

1

2
(∇u+ ε∇v) · (∇u+ ε∇v) + (u+ εv) f

]

dV

21

=
ε2

2

∫

D
|∇v|2 dV + ε

∫

D
(∇u · ∇v + vf) dV +

∫

D

(

1

2
|∇u|2 + uf

)

dV .
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It follows that1

0 = j ′(0) =

∫

D
(∇u · ∇v + vf) dV =

∫

D
(−∆u+ f) v dV ,

using Green’s formula on the last step. Since the function v is arbitrary2

(except for the condition v = 0 on S), we conclude that ∆u = f in D. ♦3

One often refers to the functions w satisfyingw = g on S as the competing4

functions. Among the competing functions one searches for the minimizer5

of J(u), which provides the solution of the boundary value problem (11.12).6

This approach is suitable for numerical computations.7

8.12 Classification Theory for Two Variables8

The equation9

ϕ(x, y) = c ,(12.15)

where ϕ(x, y) is a differentiable function of two variables, and c is a constant,10

defines implicitly a function y = y(x). Differentiating (12.15) using the chain11

rule gives12

ϕx(x, y) + ϕy(x, y)y
′(x) = 0 ,

and then13

y′(x) = −ϕx

ϕy
,(12.16)

assuming that ϕy(x, y) 6= 0.14

We wish a solution z = z(x, y) of the following nonlinear first order PDE15

a(x, y)z2
x + b(x, y)zxzy + c(x, y)z2

y = 0 ,(12.17)

with given continuous functions a(x, y), b(x, y) and c(x, y). Similarly to16

linear first order equations, one needs to solve an ODE.17

Lemma 8.12.1 Assume that the function y(x), which is implicitly defined18

by ϕ(x, y) = c, solves the equation19

a(x, y)y′2 − b(x, y)y′ + c(x, y) = 0 ,(12.18)

and ϕy(x, y) 6= 0 for all x and y. Then z = ϕ(x, y) is a solution of (12.17).20
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Proof: Substituting y′(x) = −ϕx

ϕy
into (12.18), and then clearing the1

denominators gives2

a(x, y)ϕ2
x + b(x, y)ϕxϕy + c(x, y)ϕ2

y = 0 ,

so that ϕ(x, y) is a solution of (12.17). ♦3

The equation (12.18) is just a quadratic equation for y′(x). Its solutions4

are5

y′(x) =
b±

√
b2 − 4ac

2a
.(12.19)

One finds y(x) by integration, in case b2 − 4ac ≥ 0.6

Example 1 Find two solutions of7

xz2
x + (x+ y)zxzy + yz2

y = 0 .(12.20)

The equation (12.18) takes the form8

x

(

dy

dx

)2

− (x+ y)
dy

dx
+ y = 0 .

Solving this quadratic equation gives9

dy

dx
=
x+ y ±

√

(x+ y)2 − 4xy

2x
=
x+ y ± (x− y)

2x
.

When we take “plus”, we obtain dy
dx = 1 or y = x+ c. We put this function10

into an implicit form y − x = c, which gives us the first solution z1(x, y) =11

y − x. In case of “minus”, we get12

dy

dx
=
y

x
.

The solution of this equation is y = cx, or y
x = c in implicit form. The13

second solution is z2(x, y) = y
x . There are other solutions of the equation14

(12.20), for example z3(x, y) = c, or the negatives of z1(x, y) and z2(x, y).15

Recall that the wave equation was solved by introducing new variables16

ξ and η, which reduced it to a simpler form. We consider now more general17

equations18

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy = 0 ,(12.21)

with given continuous coefficient functions a(x, y), b(x, y), c(x, y), d(x, y)19

and e(x, y), and the unknown function u = u(x, y). We make a change of20
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variables ξ = ξ(x, y) and η = η(x, y), and look for the twice differentiable1

functions ξ(x, y) and η(x, y), which will make this equation simpler. We2

assume that the change of variables is non-singular, meaning that one can3

solve for x and y as functions of ξ and η, so that we can go back to the original4

variables after solving the equation in the new variables ξ and η. This is5

known to be the case, provided that the Jacobian (or Jacobian determinant)6

J = ξxηy − ξyηx 6= 0 ,(12.22)

a condition we shall assume to hold.7

Writing8

u(x, y) = u(ξ(x, y), η(x, y)) ,

we use the chain rule to calculate the derivatives:9

ux = uξξx + uηηx ,

10

uxx = uξξξ
2
x + 2uξηξxηx + uηηη

2
x + uξξxx + uηηxx .

Similarly11

uxy = uξξξxξy + uξη (ξxηy + ηxξy) + uηηηxηy + uξξxy + uηηxy ,

12

uyy = uξξξ
2
y + 2uξηξyηy + uηηη

2
y + uξξyy + uηηyy .

We use these expressions in (12.21) to obtain13

Auξξ +Buξη +Cuηη + · · · = 0 ,(12.23)

with the new coefficient functions14

A = aξ2x + bξxξy + cξ2y ,(12.24)

15

B = 2aξxηx + b (ξxηy + ξyηx) + 2cξyηy ,
16

C = aη2
x + bηxηy + cη2

y ,

and where the terms not shown in (12.23) involve the first derivatives uξ17

and uη, the lower order terms.18

The equation (12.23) will be simpler if one chooses ξ(x, y) and η(x, y)19

to be the solutions of (12.17), called the characteristic functions (or char-20

acteristics, for short). The number of real valued characteristic functions21

depends on the sign of b2(x, y)− 4a(x, y)c(x, y) (see (12.19)). The equation22

(12.21) is called23
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hyperbolic at a point (x0, y0), if b2(x0, y0) − 4a(x0, y0)c(x0, y0) > 0,1

parabolic at a point (x0, y0), if b2(x0, y0) − 4a(x0, y0)c(x0, y0) = 0,2

elliptic at a point (x0, y0), if b2(x0, y0)− 4a(x0, y0)c(x0, y0) < 0.3

In the the hyperbolic case, the change of variables ξ = ξ(x, y) and η =4

η(x, y) makes A = C = 0, and dividing the equation (12.23) by B 6= 0, we5

obtain the canonical form6

uξη + · · · = 0 ,

similarly to the wave equation.7

How did we know that B 6= 0? This fact follows by the formula8

B2 − 4AC = (b2 − 4ac)J2 .

which is verified by using the above expressions for A, B and C. The same9

formula also shows that the type of an equation is preserved by a non-singular10

change of variables (J 6= 0).11

In the the parabolic case, when12

b2 − 4ac = 0 ,(12.25)

there is only one characteristic function ξ(x, y). Choosing ξ = ξ(x, y), we13

make A = 0, eliminating one term in (12.23). We choose η = η̄(x, y), where14

the function η̄(x, y) is almost arbitrary, with the only requirement being15

that the Jacobian J (defined in (12.22)) is non-zero. Comparing (12.19)16

with (12.16), and using (12.25)17

b

2a
= −ξx

ξy
,

or18

2aξx + bξy = 0 .

Then19

B = ηx (2aξx + bξy) + ηy (2cξy + bξx) = ηyξy

(

2c+ b
ξx
ξy

)

20

= ηyξy

(

2c− b2

2a

)

=
ηyξy(4ac− b2)

2a
= 0 .

The result is the canonical form of parabolic equations21

uηη + · · · = 0 ,
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which is consistent with the heat equation.1

In the elliptic case there are no real characteristic functions, however2

there are two complex conjugate ones ξ(x, y) and ξ̄(x, y). Making the change3

of variables ξ = ξ(x, y) and η = ξ̄(x, y), we obtain similarly to the hyperbolic4

case5

uξη + · · · = 0 .(12.26)

(The coefficients of the lower order terms are complex valued, in general.)6

We now make a further change of variables (ξ, η) → (α, β):7

α =
ξ − η

2i
, β =

ξ + η

2
,

which takes (12.26) into the canonical form for elliptic equations8

uαα + uββ + · · · = 0 .(12.27)

The resulting change of variables (x, y) → (α, β) is real valued, and so the9

lower terms in (12.27) have real valued coefficients.10

Example 2 Let us find the canonical form of the equation11

x2uxx − y2uyy − 2yuy = 0 .(12.28)

Here b2 − 4ac = 4x2y2, so that the equation is hyperbolic at all points of12

the xy-plane, except for the coordinate axes. The equation (12.19) takes the13

form14

y′ =
±
√

4x2y2

2x2
= ±y

x
,

assuming that xy > 0. The solution of y′ = y
x is y = cx or y

x = c. So that15

ξ = y
x . The solution of y′ = − y

x is y = c
x or xy = c. So that η = xy. The16

change of variables17

ξ =
y

x
, η = xy

produces the canonical form of our equation18

uξη +
1

2ξ
uη = 0 .

One can now solve the original equation (12.28). Setting v = uη, we obtain19

an ODE20

vξ = − 1

2ξ
v
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with the solution v = ξ−
1
2F (η), where F (η) is an arbitrary function. So1

that uη = ξ−
1
2F (η). Another integration in η gives u = ξ−

1
2F (η) + G(ξ),2

where G(ξ) is an arbitrary function. Returning to the original variables, one3

concludes that u(x, y) =
√

x
yF (xy)+G( y

x) is the general solution of (12.28).4

5

Example 3 The equation6

x2uxx − 2xyuxy + y2uyy + xux + yuy = 0 .

is of parabolic type for all x and y. The equation (12.19) becomes7

y′ = −y
x
,

with the general solution y = c
x . This leads to ξ = xy, and we choose8

arbitrarily η = y. (The Jacobian J = ξxηy − ξyηx = y 6= 0, under the9

assumption that y 6= 0.) This change of variables produces the canonical10

form11

ηuηη + uη = 0 .

Writing the last equation in the form (ηuη)η = 0, and integrating twice in12

η, we obtain its general solution13

u = F (ξ) log |η|+G(ξ) ,

with arbitrary functions F (ξ) and G(ξ). The general solution of the original14

equation is then15

u(x, y) = F (xy) log |y| +G(xy) , for y 6= 0 .

Example 4 Tricomi’s equation16

uxx + xuyy = 0

changes type: it is elliptic for x > 0, parabolic for x = 0, and hyperbolic for17

x < 0. Let us find its canonical form in the elliptic case x > 0. The equation18

(12.19) gives19

y′ = ±i
√
x ,

or y = ±2
3 ix

3
2 + c. The complex-valued characteristics are ξ = y+ 2

3 ix
3
2 and20

ξ̄ = y− 2
3 ix

3
2 . Then α = ξ−η

2i = 2
3x

3
2 , and β = ξ+η

2 = y. We have ux = uααx,21

uxx = uααα
2
x + uααxx = uααx + uα

1
2x

− 1
2 , and uyy = uββ. The equation22

transforms as23

x (uαα + uββ) +
1

2
x−

1
2uα = 0 ,
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which leads to the canonical form1

uαα + uββ +
1

3α
uα = 0 .

The wave equation is the main example of hyperbolic equations, the heat2

equation is the best known parabolic equation, and Laplace’s equation is an3

example, as well as the canonical form, for elliptic equations. Our study4

of these three main equations suggests what to expect of other equations5

of the same type: sharp signals and finite propagation speed for hyperbolic6

equations, diffusion and infinite propagation speed for parabolic equations,7

maximum principles and smooth solutions for elliptic equations. These facts8

are justified in more advanced PDE books, see e.g., L. Evans [9].9

8.12.1 Problems10

I. 1. Assume that the function u(x, y) is harmonic in the entire plane, and11

u(x, y) > −12 for all (x, y). Show that u(x, y) is a constant.12

Hint: Consider v(x, y) = u(x, y) + 12.13

2. Assume that the function u(x, y) is harmonic in the entire plane, and14

u(x, y) < 0 for all (x, y). Show that u(x, y) is a constant.15

Hint: Consider v(x, y) = −u(x, y).16

3. Prove that a harmonic in the entire plane function cannot be bounded17

from below, or from above, unless it is a constant.18

4. Assume that the function u(x, y) is harmonic in D, and u(x, y) = 5 on19

∂D. Show that u(x, y) = 5 in D.20

5. Calculate the integral
∫ 2π
0

R2−r2

R2−2Rr cos(θ−φ)+r2 dφ, where R, r and θ are21

parameters.22

Hint: Identify this integral with the solution of a certain Dirichlet problem,23

given by Poisson’s integral formula.24

6. Let D be the square: −1 < x < 1, −1 < y < 1. Assume that u(x, y)25

satisfies26

∆u = −1 in D , u = 0 on ∂D .

Show that
1

4
≤ u(0, 0) ≤ 1

2
.27

Hint: Consider v(x, y) = u(x, y) + 1
4

(

x2 + y2
)

, and ∆v.28
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7. Show that any solution of the nonlinear problem1

∆u+ u2(1− u) = 0 in D, u = 0 on ∂D

satisfies 0 ≤ u ≤ 1.2

Hint: Show that u(x, y) cannot take on a maximum value, which is greater3

than 1, and a negative minimum value.4

8. Let a(x, y) > 0 be a given positive function. Show that the problem5

∆u− a(x)u = 0 in D

u = 0 on ∂D

has only the trivial solution u(x) = 0.6

9. Find the absolute maximum of u(x, y) = y4 +2x2y2 +x4 −x2 +y2 on the7

disc x2 + y2 ≤ 4.8

10. Show that the nonlinear problem9

∆u(x, y) + yux(x, y)− 2xuy(x, y)− u5(x, y) = 0 in D, u = 0 on ∂D

has no non-trivial solutions.10

11. Show that the solution of11

ut − 5uxx = x2 + t2 − t+ 1 0 < x < 4, t > 0

u(x, 0) = 0 0 < x < 4

u(0, t) = 1 t > 0

u(4, t) = sin t t > 0

is positive for 0 < x < 4, 0 < t < π.12

12. Assume that the function u(x, y) is harmonic, satisfying u(0, 0) = 0 and13

u(1, 0) = 3. Show that u(x, y) cannot be non-negative for all (x, y) satisfying14

x2 + y2 ≤ 4.15

Hint: Use the mean value property.16

13. Assume that the function u(x, y) is harmonic, satisfying u(0, 0) = 117

and u(0, 1) = 10. Show that u(x, y) cannot be non-negative for all (x, y)18

satisfying x2 + y2 ≤ 4.19

Hint: Use Harnack’s inequality, or (8.1).20
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14. Assume that u(x, t) satisfies1

ut − uxx + c(x, t)u ≥ 0 for 0 < x < L, 0 < t < T ,
2

u(x, 0) ≥ 0, u(0, t) ≥ 0, u(L, t) ≥ 0 for 0 < x < L, 0 < t < T ,

where c(x, t) is any function satisfying |c(x, t)| ≤ M for all 0 < x < L,3

0 < t < T , and some constant M > 0. Show that4

u(x, t) ≥ 0 for 0 < x < L, 0 < t < T .

Hint: Assume first that c(x, t) > 0, and get a contradiction at any point,5

where u(x, t) assumes a negative minimum. If u(x, t) = eαtv(x, t), then6

v(x, t) satisfies7

vt − vxx + (α+ c(x, t))v ≥ 0 ,

and α + c(x, t) > 0, if the constant α is chosen large enough.8

15. Show that there is at most one solution of the nonlinear problem9

ut − uxx + u2 = 0 for (x, t) ∈ D = (0, L)× (0, T ] ,

if the values of u(x, t) are prescribed on the parabolic boundary Γ.10

16. (i) Let f(v) be a convex function for all v ∈ R. Assume that ϕ(x) > 011

on (a, b), and
∫ b
a ϕ(x) dx = 1. Prove Jensen’s inequality12

f

(

∫ b

a
u(x)ϕ(x) dx

)

≤
∫ b

a
f (u(x))ϕ(x) dx ,

for any function u(x) defined on (a, b).13

Hint: A convex function lies above any of its tangent lines, so that for any14

p and q15

f(q) ≥ f(p) + f ′(p)(q − p) .

Set here q = u(x) and p =
∫ b
a u(x)ϕ(x) dx16

f(u(x)) ≥ f

(

∫ b

a
u(x)ϕ(x) dx

)

+ f ′(p)

[

u(x) −
∫ b

a
u(x)ϕ(x) dx

]

.

Multiply both sides by ϕ(x), and integrate over (a, b).17

(ii) Consider a nonlinear heat equation18

ut = uxx + f(u) , 0 < x < π , t > 0

u(0, t) = u(π, t) = 0

u(x, 0) = u0(x) .
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Assume that f(u) is a convex function for all u ∈ R. Assume there is an ū,1

so that f(u) − u > 0 for u > ū, and
∫∞
ū

du
f(u)−u < ∞. Assume finally that2

1
2

∫ π
0 u0(x) sinx dx > ū. Show that the solution blows up in finite time.3

Hint: Multiply the equation by ϕ(x) = 1
2 sinx and integrate over (0, π).4

Denote v(t) = 1
2

∫ π
0 u(x, t) sinx dx. Integrating by parts twice, we express5

1
2

∫ π
0 uxx(x, t) sinx dx = −1

2

∫ π
0 u(x, t) sinx dx = −v(t). Applying Jensen’s6

inequality gives7

dv

dt
≥ −v + f(v) ,

or dv
−v+f(v) ≥ dt. It follows that v(t) becomes infinite by the time t =8

∫∞
ū

dv
f(v)−v <∞.9

(iii) Let f(u) = u2, u0(x) = 4 sinx. Show that the solution becomes un-10

bounded by the time t = ln π
π−1 .11

Hint: Here dv
dt ≥ −v + v2 and v(0) = π.12

II. 1. Find two solutions of13

z2
x − yz2

y = 0 .

Answer. z = 2
√
y − x, and z = 2

√
y + x. (Also, z = −2

√
y + x, and14

z = −2
√
y − x.)15

2. Show that the change of variables ξ = ξ(x, y), η = η(x, y) takes the16

equation17

a(x, y)uxx + b(x, y)uxy + c(x, y)uyy + d(x, y)ux + e(x, y)uy = 0

into18

Auξξ + Buξη + Cuηη +Duξ +Euη = 0 ,

with A, B and C given by (12.24), and19

D = aξxx + bξxy + cξyy + dξx + fξy ,
20

E = aηxx + bηxy + cηyy + dηx + fηy .

3. Find the canonical form for the equation21

uxx − yuyy − 1

2
uy = 0

in the upper half plane y > 0, and then find the general solution.22
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Answer. ξ = 2
√
y − x, and η = 2

√
y + x leads to uξη = 0, and then1

u(x, y) = F (2
√
y − x) +G(2

√
y + x).2

4. Show that Tricomi’s equation3

uxx + xuyy = 0

is of a different type for x < 0, x = 0, and x > 0. For each type find the4

corresponding canonical form.5

Answer. In case x < 0, this equation is of hyperbolic type, and its canonical6

form is7

uξη +
1

6(ξ − η)
(uξ − uη) = 0 .

5. Find the canonical form for the equation8

x2uxx + 2xyuxy + y2uyy + xux + yuy = 0 .

Hint: The equation is of parabolic type, for all x and y. Calculate ξ = x y,9

and choose η = x (arbitrarily).10

6. (i) Let us re-visit the first order equation11

a(x, y)ux + b(x, y)uy + c(x, y)u = f(x, y) .(12.29)

Assume that the function y(x), which is implicitly defined by ϕ(x, y) = c,12

satisfies the equation13

dy

dx
=
b(x, y)

a(x, y)
.

Show that the change of variables (x, y) → (ξ, η), given by ξ = ϕ(x, y) and14

η = y (chosen arbitrarily) transforms the equation (12.29) into15

buη + cu = d .

(ii) Find the general solution of16

aux + buy = 0 , a and b are non-zero constants .

Answer. u(x, y) = f(bx− ay), where f is an arbitrary function.17

(iii) Find the general solution of18

−xux + yuy + u = x .
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Answer. u(x, y) = y
2 + f(xy)

y , where f is an arbitrary function.1

III. 1. Show that the Neumann problem2

∆u = f(x, y, z) in D ,
∂u

∂n
= 0 on S

has no solution if
∫

D f(x, y, z) dV 6= 0. (Here and in the problems that3

follow, we denote S = ∂D.)4

2. Show that the difference of any two solutions of the Neumann problem5

∆u = f(x, y, z) in D ,
∂u

∂n
= g(x, y, z) on S

is a constant.6

3. Let D be a domain in (x, y, z) space, bounded by a closed and smooth7

surface S, and let n = (n1, n2, n3) denote the unit normal vector on S8

pointing outside ofD (n as well as its components n1, n2 and n3 are functions9

of (x, y, z)). Consider a vector field F = (u(x, y, z), 0, 0), with a continuously10

differentiable function u(x, y, z).11

(i) Use the divergence theorem to show that12

∫

D
ux dV =

∫

S
un1 dS .

Derive similar formulas for
∫

D uy dV , and for
∫

D uz dV .13

(ii) Show that the nonlinear Dirichlet problem14

∆u+ uux = 0 in D , u = 0 on S

has only the trivial solution u = 0.15

Hint: Multiply the equation by u, and write u2ux = 1
3

∂
∂xu

3. Then integrate16

over D.17

(iii) Let v(x, y, z) be another continuously differentiable function. Derive18

the integration by parts formula19

∫

D
uxv dV = −

∫

D
uxv dV +

∫

S
uv n1 dS .

Derive similar formulas for
∫

D uyv dV , and for
∫

D uzv dV .20
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(iv) Show that the nonlinear Dirichlet problem1

∆u+ xu2ux = 0 in D , u = 0 on S

has only the trivial solution u = 0.2

Hint: Multiply the equation by u, and write u3ux = 1
4

∂
∂xu

4. Then integrate3

over D.4

4. Consider a nonlinear boundary value problem5

∆u = f(u) in D

u = g(x, y, z) on S ,

with an increasing function f(u). Show that there is at most one solution.6

Hint: Let v be another solution. Then7

∆(u− v) = f(u)− f(v) in D , u− v = 0 on S.

Multiply by u− v, and integrate over D8

∫

D
|∇(u− v)|2 dV = −

∫

D
[f(u) − f(v)] (u− v) dV ≤ 0 .

5. (i) Let D be a three-dimensional domain, bounded by a closed and smooth9

surface S. Derive the second Green’s identity10

∫

D
(∆u v − ∆v u) dV =

∫

S

(

∂u

∂n
v − ∂v

∂n
u

)

dS .

Hint: Interchange u and v in (11.11), then subtract the formulas.11

(ii) Consider the nonlinear Dirichlet problem12

∆u = f(u) in D , u = 0 on S .

Assume that
f(u)

u is increasing for all u > 0. Show that it is impossible to13

have two solutions of this problem satisfying u(x) > v(x) > 0 for all x ∈ D.14

15

Hint: Integrate the identity: ∆u v − ∆v u = uv
(

f(u)
u − f(v)

v

)

.16

6. Assume that the functions u(x) = u (x1, x2, . . . , xn) andw(x) = w (x1, x2, . . . , xn)17

are twice continuously differentiable, with u(x) > 0. Let ξ(t) be a continu-18

ously differentiable function. Derive the following Picone’s identity19

div

[

ξ

(

w

u

)

(u∇w− w∇u)
]

= ξ

(

w

u

)

(u∆w−w∆u)+ξ′
(

w

u

)

u2

∣

∣

∣

∣

∇
(

w

u

)∣

∣

∣

∣

2

.



Chapter 91

Numerical Computations2

Easy to use software packages, like Mathematica, provide an effective tool for3

solving differential equations. In this chapter some computational methods4

are described in general, and not too much tied to Mathematica, as there5

are other excellent software choices. (However, the author is a Mathematica6

enthusiast, and hopefully the readers will share in the excitement.) Initial7

value problems (including the case of systems), and boundary value prob-8

lems, both linear and nonlinear, are discussed. The chapter concludes with9

the topic of direction fields.10

9.1 The Capabilities of Software Systems, Like Math-11

ematica12

Mathematica uses the command DSolve to solve differential equations ana-13

lytically (by a formula). This is not always possible, but Mathematica does14

seem to know the solution methods that we studied in Chapters 1 and 2.15

For example, to solve the equation16

y′ = 2y − sin2 x, y(0) = 0.3 ,(1.1)

we enter the commands17

sol = DSolve@8y'@xD � 2 y@xD - Sin@xD^2, y@0D � .3<, y@xD, xD
z@x_D = y@xD �. sol@@1DD
Plot@z@xD, 8x, 0, 1<D

Mathematica returns the solution, y(x) = −0.125 cos2x+0.175e2x+0.125 sin2x+18

0.25, and plots its graph, which is given in Figure 9.1.19

447
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0.2 0.4 0.6 0.8 1.0
x

0.5
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Figure 9.1: The solution of the equation (1.1)

If you are new to Mathematica, do not worry about its syntax now. Try1

to solve other equations by making the obvious modifications to the above2

commands.3

If one needs the general solution of this equation, the command is4

DSolve[y′[x] ==2y[x]-Sin[x]ˆ2, y[x],x]5

Mathematica returns:6

y(x) → e2xc[1] +
1

8
(−Cos[2x] + Sin[2x] + 2) .

Observe that c[1] is Mathematica’s way to write an arbitrary constant c, and7

that the answer is returned as a “replacement rule” (and that was the reason8

for an extra command in the preceding example). Equations of second (and9

higher) order are solved similarly. To solve the following resonant problem10

y′′ + 4y = 8 sin 2t, y(0) = 0, y′(0) = −2 ,

we enter11

DSolve[{y′′[t]+4y[t] == 8 Sin[2t], y[0]==0, y′[0]==-2 }, y[t], t]12

// Simplify13

and Mathematica returns the solution y(t) = −2t cos 2t, which involves un-14

bounded oscillations.15

When we try to use the DSolve command to solve the nonlinear equation16

y′ = 2y3 − sin2 x ,
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Mathematica thinks for a while, and then it throws this equation back at1

us. It cannot solve it, and most likely, nobody can. However, we can use2

Euler’s method to compute a numerical approximation of the solution if an3

initial condition is provided; for example, we can find a numerical solution4

of5

y′ = 2y3 − sin2 x , y(0) = 0.3 .(1.2)

Mathematica can also compute the numerical approximation of this solution.6

Instead of Euler’s method it uses a much more sophisticated method. The7

command is NDSolve. We enter the following commands:8

sol = NDSolve@8y'@xD � 2 y@xD^3 - Sin@xD^2, y@0D � .3<, y, 8x, 0, 3<D
z@x_D = y@xD �. sol@@1DD
Plot@z@xD, 8x, 0, 1<, AxesLabel ® 8"x", "y"<D

Mathematica produced the graph of the solution, which is given in Figure9

9.2. Mathematica returns the solution as an interpolation function, which10

means that after computing the values of the solution at a sequence of points,11

it joins the points on the graph by a smooth curve. The solution function12

(it is z(x) in our implementation), and its derivatives, can be evaluated at13

any point. The computed solution is practically indistinguishable from the14

exact solution. When one uses the NDSolve command to solve the problem15

(1.1), and then plots the solution, the resulting graph is practically identical16

to the graph of the exact solution given in Figure 9.1.17

0.2 0.4 0.6 0.8 1.0
x

0.05

0.10

0.15

0.20

0.25

0.30

y

Figure 9.2: The solution curve of the equation (1.2)

The NDSolve command can also be used for systems of differential equa-18
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In[21]:= Clear@"`*"D
sol =

NDSolve@88x'@tD � -y@tD + y@tD^2, y'@tD � x@tD<, 8x@0D � 0.2, y@0D � 0.3<<, 8x, y<, 8t, 0, 20<D
Out[22]= 88x ® InterpolatingFunction@880., 20.<<, <>D, y ® InterpolatingFunction@880., 20.<<, <>D<<

In[24]:= ParametricPlot@8x@tD �. sol@@1, 1DD, y@tD �. sol@@1, 2DD<, 8t, 0, 20<D

Out[24]=

-0.3 -0.2 -0.1 0.1 0.2 0.3

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

Figure 9.3: The solution of the system (1.3)

tions. For example, let x = x(t) and y = y(t) be solutions of1

x′ = −y + y2, x(0) = 0.2(1.3)

y′ = x, y(0) = 0.3 .

Once the solution is computed, the solution components x = x(t), y = y(t),2

define a parametric curve in the xy-plane, which we draw. The commands,3

and the output, are given in Figure 9.3. (The first command tells Mathemat-4

ica: “forget everything.” This is a good practice with heavy usage.) If you5

play with other initial conditions, in which |x(0)| and |y(0)| are small, you6

will discover that the rest point (0, 0) is a center, meaning that the solutions7

near (0, 0) are closed loops.8
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9.2 Solving Boundary Value Problems1

Given the functions a(x) and f(x), we wish to find the solution y = y(x) of2

the following boundary value problem, on some interval [a, b],3

y′′ + a(x)y = f(x), a < x < b(2.1)

y(a) = y(b) = 0 .

The general solution of the equation in (2.1) is, of course,4

y(x) = Y (x) + c1y1(x) + c2y2(x) ,(2.2)

where Y (x) is any particular solution, and y1(x), y2(x) are two solutions of5

the corresponding homogeneous equation6

y′′ + a(x)y = 0 ,(2.3)

which are not constant multiples of one another. To compute y1(x), we use7

the NDSolve command to solve the homogeneous equation (2.3), with the8

initial conditions9

y1(a) = 0, y′1(a) = 1 .(2.4)

To compute y2(x), we solve (2.3), with the initial conditions10

y2(b) = 0, y′2(b) = −1 .(2.5)

(Mathematica has no problem solving differential equations “backward” on11

(a, b).) Observe that the values of y′1(a) and y′2(b) could have been replaced12

by any other non-zero numbers. To find a particular solution Y (x), we13

may solve the equation in (2.1), with any initial conditions, say Y (a) = 0,14

Y ′(a) = 1. We have computed the general solution (2.2). It remains to pick15

the constants c1 and c2 to satisfy the boundary conditions. Using (2.4),16

y(a) = Y (a) + c1y1(a) + c2y2(a) = Y (a) + c2y2(a) = 0 ,

so that c2 = −Y (a)

y2(a)
. We assume here that y2(a) 6= 0, otherwise our problem17

(2.1) is not solvable for general f(x). Similarly, using (2.5),18

y(b) = Y (b) + c1y1(b) + c2y2(b) = Y (b) + c1y1(b) = 0 ,

giving c1 = − Y (b)

y1(b)
, assuming that y1(b) 6= 0. The solution of our problem19

(2.1) is then20

y(x) = Y (x) − Y (b)

y1(b)
y1(x)−

Y (a)

y2(a)
y2(x) .
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Clear@"`*"D
lin :=

ModuleB8s1, s2, s3, y1, y2, Y<,
s1 = NDSolve@8 y''@xD + a@xD y@xD � 0, y@0D � 0, y¢@0D � 1<, y, 8x, 0, 1<D;
s2 = NDSolve@8 y''@xD + a@xD y@xD � 0, y@1D � 0, y¢@1D � -1<, y, 8x, 0, 1<D;
s3 = NDSolve@8 y''@xD + a@xD y@xD � f@xD, y@0D � 0, y¢@0D � 1<, y, 8x, 0, 1<D;

y1@x_D = y@xD �. s1@@1DD;
y2@x_D = y@xD �. s2@@1DD;
Y@x_D = y@xD �. s3@@1DD;

z@x_D := Y@xD -
Y@1D
y1@1D

y1@xD -
Y@0D
y2@0D

y2@xD ;

F

Figure 9.4: The solution module for the problem (2.1)

a@x_D = ã^x;

f@x_D = -3 x + 1;

lin

Plot@z@xD, 8x, 0, 1<, AxesLabel ® 8"x", "z"<D

Figure 9.5: Solving the problem (2.6)

Mathematica’s subroutine, or module, to produce this solution, called lin, is1

given in Figure 9.4. We took a = 0, and b = 1.2

For example, entering the commands in Figure 9.5, produces the graph3

of the solution for the boundary value problem4

y′′ + exy = −3x+ 1, 0 < x < 1, y(0) = y(1) = 0 ,(2.6)

which is given in Figure 9.6.5

9.3 Solving Nonlinear Boundary Value Problems6

Review of Newton’s Method7

Suppose that we wish to solve the equation8

f(x) = 0 ,(3.1)
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Figure 9.6: Solution of the problem (2.6)

with a given function f(x). For example, in case f(x) = e2x − x − 2, the1

equation2

e2x − x− 2 = 0

has a solution on the interval (0,1) (because f(0) = −1 < 0, and f(1) =3

e2 − 1 > 0), but this solution cannot be expressed by a formula. Newton’s4

method produces a sequence of iterates {xn} to approximate a solution of5

(3.1). If the iterate xn is already computed, we use the linear approximation6

f(x) ≈ f(xn) + f ′(xn)(x− xn), for x close to xn .

Then we replace the equation (3.1) by7

f(xn) + f ′(xn)(x− xn) = 0 ,

solve this linear equation for x, and declare its solution x to be our next8

approximation, so that9

xn+1 = xn − f(xn)

f ′(xn)
, n = 1, 2, . . . , beginning with some x0 .

Newton’s method does not always converge, but when it does, the conver-10

gence is usually super fast. To explain that, let us denote by x∗ the (true)11

solution of (3.1). Then |xn −x∗| gives the error of the approximation on the12

n-th step. Under some mild conditions on f(x), it can be shown that13

|xn+1 − x∗| < c|xn − x∗|2 ,
with some constant c > 0. Let us suppose that c = 1 and |x0 − x∗| = 0.1.14

Then the errors of approximation are estimated as follows: |x1 − x∗| <15

|x0 −x∗|2 = 0.12 = 0.01, |x2−x∗| < |x1−x∗|2 < 0.012 = 0.0001, |x3 −x∗| <16

|x2 − x∗|2 < 0.00012 = 0.00000001. We see that x3 is practically the exact17

solution!18
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A Class of Nonlinear Boundary Value Problems1

We wish to solve the nonlinear boundary value problem2

y′′ + g(y) = e(x), a < x < b(3.2)

y(a) = y(b) = 0 ,

with given functions g(y) and e(x).3

We shall use Newton’s method to produce a sequence of iterates {yn(x)}4

to approximate one of the solutions of (3.2). (The problem (3.2) may have5

multiple solutions.) We begin with some initial guess y0(x). If the iterate6

yn(x) is already computed, we use the linear approximation7

g(y) ≈ g(yn) + g′(yn)(y − yn) ,

and replace (3.2) with the linear problem8

y′′ + g(yn(x)) + g′(yn(x))(y − yn(x)) = e(x), a < x < b(3.3)

y(a) = y(b) = 0 .

The solution of this problem we declare to be our next approximation,9

yn+1(x). We rewrite (3.3) as10

y′′ + a(x)y = f(x), a < x < b

y(a) = y(b) = 0 ,

with the known functions11

a(x) = g′(yn(x)) ,
12

f(x) = −g(yn(x)) + g′(yn(x))yn(x) + e(x) ,

and call on the procedure lin from the preceding section to solve (3.3), and13

produce yn+1(x). If the initial guess y0(x) is chosen not too far from one14

of the actual solutions, then four or five iterations of Newton’s method will15

usually produce an excellent approximation!16

Example We solved the nonlinear boundary value problem17

y′′ + y3 = 2 sin 4πx− x, 0 < x < 1(3.4)

y(0) = y(1) = 0 .

The commands are given in Figure 9.7. (The procedure lin has been ex-18

ecuted before these commands.) We started with y0(x) = 1 (yold[x]= 119
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in Mathematica’s code). We did five iterations of Newton’s method. The1

solution (the function z[x]) is plotted in Figure 9.8.2

The resulting solution is very accurate, and we verified it by the following3

independent calculation. We used Mathematica to calculate the slope of4

this solution at zero, z′[0] ≈ 0.00756827, and then we solved the equation5

in (3.4), together with the initial conditions y(0) = 0, y′(0) = 0.007568276

(using the NDSolve command). The graph of this solution y(x) is identical7

to the one in Figure 9.8.8

e@x_D = 2 Sin@4 Π xD - x;

yold@x_D = 1;

g@y_D = y^3;

st = 5;

For@i = 1, i £ st, i++,

a@x_D = g'@yold@xDD;
f@x_D = e@xD - g@yold@xDD + g'@yold@xDD yold@xD ;
lin;

yold@x_D = z@xD;
D

Figure 9.7: Solving the problem (3.4)

9.4 Direction Fields9

The equation (here y = y(x))10

y′ = cos 2y + 2 sin2x(4.1)

cannot be solved analytically (like most equations). If we add an initial11

condition, we can find the corresponding solution, by using the NDSolve12

command. But this is just one solution. Can we visualize a bigger picture?13

The right hand side of the equation (4.1) gives us the slope of the solution14

passing through the point (x, y) (for example, if cos 2y + 2 sin 2x > 0, then15

the solution y(x) is increasing at (x, y)). The vector < 1, cos 2y + 2 sin 2x >16

is called the direction vector. If the solution is increasing at (x, y), this vector17

points up, and the faster is the rate of increase, the larger is the amplitude18

of the direction vector. If we plot the direction vectors at many points, the19
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Figure 9.8: Solution of the nonlinear problem (3.4)

result is called the direction field, which can tell us at a glance how various1

solutions are behaving. In Figure 9.9, the direction field for the equation2

(4.1) is plotted using Mathematica’s command3

VectorPlot[{1,Cos[2y]+2Sin[2x] },{x,0,6.5},{y,0,5 }].

The reader should also try Mathematica’s command4

StreamPlot[{1,Cos[2y]+2Sin[2x] },{x,0,6.5},{y,0,5 }] ,

which draws a number of solution curves of (4.1).5

How will the solution of (4.1), with the initial condition y(0) = 1, behave?6

Imagine a particle placed at the initial point (0, 1) (see Figure 9.9). The7

direction field, or the “wind,” will take it a little down, but soon the direction8

of motion will be up. After a while, a strong downdraft will take the particle9

much lower, but eventually it will be going up again. In Figure 9.10, we give10

the actual solution of11

y′ = cos 2y + 2 sin2x, y(0) = 1 ,(4.2)

produced using the NDSolve command. It confirms the behavior suggested12

by the direction field.13
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Figure 9.9: The direction field for the equation (4.1)

Figure 9.10: The solution of the initial value problem (4.2)
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.1 The Chain Rule and Its Descendants1

The chain rule2

d

dx
f(g(x)) = f ′(g(x))g′(x)

allows us to differentiate the composition of two functions f(x) and g(x).3

In particular, if f(x) = xr with a constant r, then f ′(x) = rxr−1, and we4

conclude5

d

dx
[g(x)]r = r [g(x)]r−1 g′(x) ,(1.3)

the generalized power rule. In case f(x) = ex, we have6

d

dx
eg(x) = eg(x)g′(x) .(1.4)

In case f(x) = lnx, we get7

d

dx
ln g(x) =

g′(x)
g(x)

.(1.5)

These are children of the chain rule. These formulas should be memorized8

separately, even though they can derived from the chain rule. If g(x) = ax,9

with a constant a, then by (1.4)10

d

dx
eax = aeax .

This grandchild of the chain rule should be also memorized separately. For11

example, d
dxe

−x = −e−x.12

The chain rule also lets us justify the following integration formulas (a13

and b are constants):14

∫

dx

x2 + a2
=

1

a
tan−1 x

a
+ c ,

15
∫

dx

ax+ b
=

1

a
ln |ax+ b|+ c ,

16
∫

g′(x)
g(x)

dx = ln |g(x)|+ c .

The situation is similar for functions of two or more variables. If u =17

u(x, y), while x = x(t) and y = y(t), then u is really a function of t and18

du

dt
= ux

dx

dt
+ uy

dy

dt
,(1.6)
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where ux and uy are the partial derivatives. If y = y(x), it follows that1

du

dx
= ux + uy

dy

dx
.

The equation (c is a constant)2

u(x, y) = c

defines implicitly a function y = y(x). Differentiating this equation, we have3

ux + uy
dy

dx
= 0 ,

which gives the formula for implicit differentiation:4

dy

dx
= −ux(x, y)

uy(x, y)
.

If u = u(ξ, η), while ξ = ξ(x, y) and η = η(x, y), then (1.6) is adjusted5

to give6

∂u

∂x
= uξ

∂ξ

∂x
+ uη

∂η

∂x
,
∂u

∂y
= uξ

∂ξ

∂y
+ uη

∂η

∂y
.

If u = u(x), and x = x(t, s), then7

∂u

∂t
= u′

∂x

∂t
,
∂u

∂s
= u′

∂x

∂s
.

For example, if u(t, s) = f(t−2s), where f is some function of one variable,8

then ut = f ′(t− 2s), utt = f ′′(t− 2s). us = −2f ′(t− 2s), uss = 4f ′′(t− 2s),9

so that u(t, s) satisfies the following wave equation10

utt − 4uss = 0 .

.2 Partial Fractions11

This method is needed for both computing integrals, and inverse Laplace12

transforms. We have13

x+ 1

x2 + x − 2
=

x+ 1

(x− 1)(x+ 2)
=

A

x− 1
+

B

x+ 2
.

The first step is to factor the denominator. We now look for the constants A14

and B so that the original fraction is equal to the sum of two simpler ones.15

Adding the fractions on the right, we need16

x+ 1

(x− 1)(x+ 2)
=
A(x+ 2) + B(x− 1)

(x− 1)(x+ 2)
.
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Both fractions have the same denominator. We need to arrange for the1

numerators to be the same:2

A(x+ 2) +B(x − 1) = x + 1 ;
3

(A+B)x + 2A−B = x+ 1 .

Equating the coefficients of the two linear polynomials, gives4

A+B = 1
5

2A− B = 1 .

We calculate A = 2
3 , B = 1

3 . Conclusion:6

x+ 1

x2 + x− 2
=

2/3

x − 1
+

1/3

x+ 2
.

7

Our next example8

s2 − 1

s3 + s2 + s
=

s2 − 1

s(s2 + s+ 1)
=
A

s
+

Bs + C

s2 + s + 1

involves a quadratic factor in the denominator that cannot be factored (an9

irreducible quadratic). Adding the fractions on the right, we need10

A(s2 + s + 1) + s(Bs + C) = s2 − 1 .

Equating the coefficients of the two quadratic polynomials, we get11

A+B = 1
12

A+ C = 0
13

A = −1 ,

so that A = −1, B = 2, C = 1. Conclusion:14

s2 − 1

s3 + s2 + s
= −1

s
+

2s+ 1

s2 + s + 1
.

The denominator of the next example,
s− 1

(s+ 3)2 (s2 + 3)
involves a prod-15

uct of a square of a linear factor and an irreducible quadratic. The way to16

proceed is:17

s− 1

(s+ 3)2 (s2 + 3)
=

A

s+ 3
+

B

(s+ 3)2
+
Cs +D

s2 + 3
.

As before, we calculate A = − 1
12 , B = −1

3 , C = D = 1
12 . Conclusion:18

s − 1

(s+ 3)2 (s2 + 3)
= − 1

12(s+ 3)
− 1

3(s+ 3)2
+

s+ 1

12 (s2 + 3)
.
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.3 Eigenvalues and Eigenvectors1

The vector z =

[

1
−1

]

is very special for the matrix B =

[

3 1
1 3

]

. We2

have3

B z =

[

3 1

1 3

][

1

−1

]

=

[

2

−2

]

= 2

[

1

−1

]

= 2z ,

so that Bz = 2z. We say that z is an eigenvector of B, corresponding to an4

eigenvalue 2. In general, we say that a vector x 6= 0 is an eigenvector of a5

square matrix A, corresponding to an eigenvalue λ if6

Ax = λx .(3.7)

If A is 2× 2, then in components an eigenvector must satisfy x =

[

x1

x2

]

6=7

[

0
0

]

. In case A is 3× 3, then we need x =







x1

x2

x3






6=







0
0

0






.8

If c 6= 0 is any constant, then9

A (cx) = cAx = cλx = λ (cx) ,

which implies that cx is also an eigenvector of the matrix A, corresponding10

to the eigenvalue λ. In particular, c

[

1
−1

]

gives us the eigenvectors of the11

matrix B above, corresponding to the eigenvalue λ = 2.12

We now rewrite (3.7) in the form13

(A− λI)x = 0 ,(3.8)

where I is the identity matrix. This is a homogeneous system of linear14

equations. To have non-zero solutions, its determinant must be zero:15

|A− λI | = 0 .(3.9)

This is a polynomial equation for λ, called the characteristic equation. If the16

matrix A is 2× 2, this is a quadratic equation, and it has two roots λ1 and17

λ2. In case A is 3× 3, this is a cubic equation, and it has three roots λ1, λ218

and λ3, and so on for larger A. To calculate the eigenvectors corresponding19

to λ1, we solve the system20

(A− λ1I)x = 0 ,
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and proceed similarly for other eigenvalues.1

Example 1 Consider B =

[

3 1

1 3

]

.2

The characteristic equation3

|B − λI | =

∣

∣

∣

∣

∣

3 − λ 1
1 3 − λ

∣

∣

∣

∣

∣

= (3 − λ)2 − 1 = 0

has the roots λ1 = 2 and λ2 = 4. (Because: 3 − λ = ±1, λ = 3 ± 1.) We4

already know that c

[

1
−1

]

are the eigenvectors for λ1 = 2, so let us compute5

the eigenvectors for λ2 = 4. We need to solve the system (A− 4I)x = 0 for6

x =

[

x1

x2

]

, which is7

−x1 + x2 = 0
8

x1 − x2 = 0 .

The second equation is superfluous, and the first one gives x1 = x2. If we9

let x2 = 1, then x1 = 1 so that

[

1
1

]

, and more generally c

[

1
1

]

gives us10

the eigenvectors corresponding to λ2 = 4.11

If an eigenvalue λ has multiplicity two (it is a double root of the char-12

acteristic equation) then it may have either two linearly independent eigen-13

vectors, or only one. In the case there are two, x1 and x2, then Ax1 = λx114

and Ax2 = λx2, and for any constants c1 and c215

A (c1x1 + c2x2) = c1Ax1 + c2Ax2 = c1λx1 + c2λx2 = λ (c1x1 + c2x2) ,

so that c1x1 + c2x2 is an eigenvector corresponding to λ.16

Example 2 A =







2 1 1
1 2 1

1 1 2





.17

The characteristic equation18

∣

∣

∣

∣

∣

∣

∣

2 − λ 1 1
1 2− λ 1

1 1 2 − λ

∣

∣

∣

∣

∣

∣

∣

= −λ3 + 6λ2 − 9λ+ 4 = 0

is a cubic equation, so we need to guess a root. λ1 = 1 is a root. We then19

factor20

λ3 − 6λ2 + 9λ− 4 = (λ− 1)
(

λ2 − 5λ+ 4
)

.
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Setting the second factor to zero, we find the other two roots λ2 = 1 and1

λ3 = 4. Turning to the eigenvectors, let us begin with the simple eigenvalue2

λ3 = 4. We need to solve the system (A − 4I)x = 0 for x =







x1

x2

x3





, or3

−2x1 + x2 + x3 = 0

4

x1 − 2x2 + x3 = 0
5

x1 + x2 − 2x3 = 0 .

The third equation is superfluous, because adding the first two equations6

gives the negative of the third. We are left with7

−2x1 + x2 + x3 = 0

8

x1 − 2x2 + x3 = 0 .

There are more variables to play with, than equations to satisfy. We are free9

to set x3 = 1, and then solve the system for x1 and x2, obtaining x1 = 1 and10

x2 = 1. Conclusion: c







1

1
1






are the eigenvectors corresponding to λ3 = 4.11

To find the eigenvectors of the double eigenvalue λ1 = 1, one needs to12

solve the system (A− I)x = 0, or13

x1 + x2 + x3 = 0

14

x1 + x2 + x3 = 0
15

x1 + x2 + x3 = 0 .

Discarding both the second and the third equations, we are left with16

x1 + x2 + x3 = 0 .

Now both x2 and x3 are free variables. Letting x3 = 1 and x2 = 0, we17

calculate x1 = −1, so that







−1
0

1






is an eigenvector. Letting x3 = 0 and18
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x2 = 1, gives x1 = −1, so that







−1
1

0






is an eigenvector. Conclusion: the1

linear combination, or the span, of these eigenvectors2

c1







−1

0
1






+ c2







−1

1
0






,

with arbitrary constants c1 and c2, gives us all eigenvectors, corresponding3

to λ1 = 1, or the eigenspace of λ1 = 1.4

For the matrix A =

[

1 4
−4 −7

]

, the eigenvalues are equal λ1 = λ2 =5

−3, but there is only one linearly independent eigenvector: c

[

−1

1

]

.6

.4 Matrix Functions and the Norm7

If A(t) is an m×n matrix with the entries aij, i = 1, 2, . . .m, j = 1, 2, . . .n,8

with the entries depending on t, it is customary to write A(t) = [aij(t)].9

The transpose matrix is then AT (t) = [aji]. The derivative matrix A′(t) =10

limh→0
A(t+h)−A(t)

h = [limh→0
aij(t+h)−aij (t)

h ] = [a′ij] is computed by differen-11

tiating all of the entries. Correspondingly,
∫

A(t) dt = [
∫

aij(t) dt]. Clearly12

d

dt
AT (t) =

(

A′(t)
)T

.

If it is admissible to multiply the matrices A(t) and B(t), then using the13

product rule from calculus, one justifies the product rule for matrices14

d

dt
[A(t)B(t)] = A′(t)B(t) +A(t)B′(t) .

Let x =

[

x1

x2

]

be any constant vector. Consider15

y =

[

cos t − sin t
sin t cos t

][

x1

x2

]

.

The vector y is the rotation of the vector x by an angle t, counterclockwise.16

Changing t to −t, one concludes that the vector

[

cos t sin t

− sin t cos t

] [

x1

x2

]

is17

the result of rotation of x =

[

x1

x2

]

by an angle t clockwise.18
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If x = (x1, x2, . . . , xn)T and y = (y1, y2, . . . , yn)T are two n-dimensional1

vectors, then the scalar (inner) product is defined as2

(x, y) = x1y1 + x2y2 + · · ·+ xnyn =
n
∑

i=1

xiyi .

The norm (length) of an n-dimensional vector x is defined by3

||x||2 = (x, x) =
n
∑

i=1

x2
i .

The Cauchy-Schwartz inequality states:4

(x, y) ≤ ||x|| ||y|| .

If A is an n× n matrix, then5

(Ax, y) =
(

x, ATy
)

.

Let A be an n × n matrix, given by its columns A = [C1 C2 . . .Cn]. (C1 is6

the first column of A, etc.) Define the norm ||A|| of A, as follows7

||A||2 =
n
∑

i=1

||Ci||2 =
n
∑

i=1

n
∑

j=1

a2
ij .

Clearly8

|aij| ≤ ||A|| , for all i and j .(4.10)

If x = (x1, x2, . . . , xn)T , we claim that9

||Ax|| ≤ ||A|| ||x|| .(4.11)

Indeed, using the Cauchy-Schwartz inequality10

||Ax||2 =
∑n

i=1

(

∑n
j=1 aijxj

)2
≤∑n

i=1

(

∑n
j=1 a

2
ij

∑n
j=1 x

2
j

)

= ||x||2∑n
i=1

∑n
j=1 a

2
ij = ||A||2 ||x||2 .

Let B be an n× n matrix, given by its columns A = [K1K2 . . .Kn]. Recall11

that AB = [AK1AK2 . . .AKn]. (AK1 is the first column of the product12

AB, etc.) Then, using (4.11),13

||AB||2 =
n
∑

i=1

||AKi||2 ≤ ||A||2
n
∑

i=1

||Ki||2 = ||A||2||B||2 ,
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which implies that1

||AB|| ≤ ||A|| ||B|| .
Similar inequalities hold for arbitrary number of matrices, which are not nec-2

essarily square matrices. For example, if a product ABC of three matrices3

is defined, then4

||ABC|| ≤ ||A|| ||B|| ||C|| .
Similarly one proves the inequalities like5

||A+B + C|| ≤ ||A||+ ||B|| + ||C|| ,(4.12)

for an arbitrary number of matrices of the same type. The inequalities (4.10)6

and (4.12) imply that the exponential of any square matrix A7

eA =
∞
∑

k=0

1

k!
Ak

is convergent (in each component). Since integral of a matrix function B(t)8

is the limit of its Riemann sum, it follows that9

||
∫ t2

t1

B(t) dt|| ≤
∫ t2

t1

||B(t)|| dt .


