Lectures on Differential Equations

Philip Korman

Cincinnati, Ohio
kormanp@ucmail.uc.edu

Contents

2
Introduction vii

3
1 First Order Equations 1
1.1 Integration by Guess-and-Check 1
1.2 First Order Linear Equations 4
1.2.1 The Integrating Factor 5
1.3 Separable Equations 10
1.3.1 Problems 13
1.4 Some Special Equations 19
1.4.1 Homogeneous Equations 19
1.4.2 The Logistic Population Model 22
1.4.3 Bernoulli's Equations 25
1.4.4* Riccati's Equations 26
1.4.5* Parametric Integration 27
1.4.6 Some Applications 29
1.5 Exact Equations 31
1.6 Existence and Uniqueness of Solution 36
1.7 Numerical Solution by Euler's method 37
1.7.1 Problems 39
1.8* The Existence and Uniqueness Theorem 47
1.8.1 Problems 52
2 Second Order Equations 56
2.1 Special Second Order Equations 56
2.1.1 y is not present in the equation 57
2.1.2 x is not present in the equation 59
2.1.3* The Trajectory of Pursuit 61
2.2 Linear Homogeneous Equations with Constant Coefficients 63
2.2.1 The Characteristic Equation Has Two Distinct Real Roots 64
2.2.2 The Characteristic Equation Has Only One (Repeated) Real Root 66
2.3 The Characteristic Equation Has Two Complex Conjugate Roots 67
2.3.1 Euler's Formula 67
2.3.2 The General Solution 68
2.3.3 Problems 70
2.4 Linear Second Order Equations with Variable Coefficients 73
2.5 Some Applications of the Theory 78
2.5.1 The Hyperbolic Sine and Cosine Functions 78
2.5.2 Different Ways to Write the General Solution 78
2.5.3 Finding the Second Solution 80
2.5.4 Problems 81
2.6 Non-homogeneous Equations 83
2.7 More on Guessing of $Y(t)$ 87
2.8 The Method of Variation of Parameters 89
2.9 The Convolution Integral 92
2.9.1 Differentiation of Integrals 92
2.9.2 Yet Another Way to Compute a Particular Solution 92
2.10 Applications of Second Order Equations 93
2.10.1 Vibrating Spring 94
2.10.2 Problems 96
2.10.3 A Meteor Approaching the Earth 103
2.10.4 Damped Oscillations 105
2.11 Further Applications 106
2.11.1 Forced and Damped Oscillations 107
2.11.2 An Example of a Discontinuous Forcing Term 108
2.11.3 Oscillations of a Pendulum 109
2.11.4 Sympathetic Oscillations 110
2.12 Oscillations of a Spring Subject to a Periodic Force 112
2.12.1 The Fourier Series 113
2.12.2 Vibrations of a Spring Subject to a Periodic Force 117
2.13 Euler's Equation 118
2.14 Linear Equations of Order Higher Than Two 122
2.14.1 The Polar Form of Complex Numbers 122
2.14.2 Linear Homogeneous Equations 123
2.14.3 Non-Homogeneous Equations 126
2.14.4 Problems 127
2.15 Oscillation and Comparison Theorems 135
3 Using Infinite Series to Solve Differential Equations 143
3.1 Series Solution Near a Regular Point 143
3.1.1 Maclauren and Taylor Series 143
3.1.2 A Toy Problem 146
3.1.3 Using Series When Other Methods Fail 147
3.2 Solution Near a Mildly Singular Point 153
3.2.1* Derivation of $J_{0}(x)$ by Differentiation of the Equation 159
3.3 Moderately Singular Equations 160
3.3.1 Problems 166
4 The Laplace Transform 173
4.1 The Laplace Transform And Its Inverse 173
4.1.1 Review of Improper Integrals 173
4.1.2 The Laplace Transform 174
4.1.3 The Inverse Laplace Transform 176
4.2 Solving The Initial Value Problems 178
4.2.1 Step Functions 181
4.3 The Delta Function and Impulse Forces 185
4.4 Convolution and the Tautochrone Curve 188
4.5 Distributions 193
4.5.1 Problems 195
5 Linear Systems of Differential Equations 205
5.1 The Case of Distinct Eigenvalues 205
5.1.1 Review of Vectors and Matrices 205
5.1.2 Linear First Order Systems with Constant Coefficients 207
5.2 A Pair of Complex Conjugate Eigenvalues 212
5.2.1 Complex Valued and Real Valued Solutions 212
5.2.2 The General Solution 213
5.2.3 Non-Homogeneous Systems 215
5.3 The Exponential of a Matrix 216
5.3.1 Problems 221
5.4 Floquet Theory and Massera's Theorem 230
5.5 Solutions of Planar Systems Near the Origin 239
5.5.1 Linearization and the Hartman-Grobman Theorem 242
5.5.2 Phase Plane and the Prüfer Transformation 244
5.5.3 Problems 246
5.6 Controllability and Observability 251
5.6.1 The Cayley-Hamilton Theorem 251
5.6.2 Controllability of Linear Systems 252
5.6.3 Observability 255
6 Non-Linear Systems 259
6.1 The Predator-Prey Interaction 259
6.2 Competing Species 264
6.3 An Application to Epidemiology 270
6.4 Lyapunov's Stability 273
6.4.1 Stable Systems 278
6.5 Limit Cycles 280
6.6 Periodic Population Models 286
6.6.1 Problems 295
7 The Fourier Series and Boundary Value Problems 305
7.1 The Fourier Series for Functions of an Arbitrary Period 305
7.1.1 Even and Odd Functions 308
7.1.2 Further Examples and the Convergence Theorem 310
7.2 The Fourier Cosine and the Fourier Sine Series 313
7.3 Two Point Boundary Value Problems 316
7.3.1 Problems 318
7.4 The Heat Equation and the Method of Separation of Variables 322
7.5 Laplace's Equation 330
7.6 The Wave Equation 335
7.6.1 Non-Homogeneous Problems 338
7.6.2 Problems 341
7.7 Calculating Earth's Temperature and Queen Dido's Problem 346
7.7.1 The Complex Form of the Fourier Series 346
7.7.2 The Temperatures Inside the Earth and Wine Cellars 348
7.7.3 The Isoperimetric Inequality 350
7.8 Laplace's Equation on Circular Domains 352
7.9 Sturm-Liouville Problems 357
7.9.1 The Fourier-Bessel Series 361
7.9.2 Cooling of a Cylindrical Tank 363
7.9.3 Cooling of a Rectangular Bar 364
7.10 Green's Function 366
7.10.1 Problems 370
7.11 The Fourier Transform 376
7.12 Problems on Infinite Domains 378
7.12.1 Evaluation of Some Integrals 378
7.12.2 The Heat Equation for $-\infty<x<\infty$ 379
7.12.3 Steady State Temperatures for the Upper Half Plane 381
7.12.4 Using the Laplace Transform for a Semi-Infinite String 382
7.12.5 Problems 383
8 Elementary Theory of PDE 385
8.1 Wave Equation: Vibrations of an Infinite String 385
8.2 Semi-Infinite String: Reflection of Waves 392
8.3 Bounded String: Multiple Reflections 396
8.4 Neumann Boundary Conditions 399
8.5 Non-Homogeneous Wave Equation 402
8.5.1 Problems 406
8.6 First Order Linear Equations 410
8.6.1 Problems 416
8.7 Laplace's Equation: Poisson's Integral Formula 418
8.8 Some Properties of Harmonic Functions 420
8.9 The Maximum Principle 423
8.10 The Maximum Principle for the Heat Equation 426
8.10.1 Uniqueness on an Infinite Interval 428
8.11 Dirichlet's Principle 431
8.12 Classification Theory for Two Variables 434
8.12.1 Problems 440
9 Numerical Computations 447
9.1 The Capabilities of Software Systems, Like Mathematica 447
9.2 Solving Boundary Value Problems 451
9.3 Solving Nonlinear Boundary Value Problems 452
9.4 Direction Fields 455
References 456
Appendix 461
. 1 The Chain Rule and Its Descendants 461
. 2 Partial Fractions 462
. 3 Eigenvalues and Eigenvectors 464
. 4 Matrix Functions and the Norm 467

Introduction

This book is based on several courses that I taught at the University of Cincinnati. Chapters 1-4 are based on the course "Differential Equations" for sophomores in science and engineering. Only some basic concepts of multivariable calculus are used (functions of two variables and partial derivatives), and they are reviewed in the text. Chapters 7 and 8 are based on the course "Fourier Series and PDE", and they should provide a wide choice of material for the instructors. Chapters 5 and 6 were used in graduate ODE courses, providing most of the needed material. Some of the sections of this book are outside of the scope of usual courses, but I hope they will be of interest to students and instructors alike. The book has a wide range of problems.

I attempted to share my enthusiasm for the subject, and write a textbook that students will like to read. While some theoretical material is either quoted, or just mentioned without proof, my goal was to show all of the details when doing problems. I tried to use plain language and not to be too wordy. I think that an extra word of explanation has often as much potential to confuse a student, as to be helpful. I also tried not to overwhelm students with new information. I forgot who said it first: "one should teach the truth, nothing but the truth, but not the whole truth".

I hope that experts will find this book useful as well. It presents several important topics that are hard to find in the literature: Massera's theorem, Lyapunov's inequality, Picone's form of Sturm's comparison theorem, "sideways" heat equation, periodic population models, "hands on" numerical solution of nonlinear boundary value problems, the isoperimetric inequality, etc. The book also contains new exposition of some standard topics. We have completely revamped the presentation of the Frobenius method for series solution of differential equations, so that the "regular singular points" are now hopefully in the past. In the proof of the existence and uniqueness theorem, we replaced the standard Picard iterations with monotone itera-
tions, which should be easier for students to absorb. There are many other fresh touches throughout the book. The book contains a number of interesting non-standard problems, including some original ones, published by the author over the years in the Problem Sections of SIAM Review, EJDE, and other journals. All of the challenging problems are provided with hints, making them easy to solve for instructors. We use asterisk (or star) to identify non-standard problems.

How important are differential equations? Here is what Isaac Newton said: "It is useful to solve differential equations". And what he knew was just the beginning. Today differential equations are used widely in science and engineering. This book presents many applications as well. Some of these applications are very old, like the tautochrone problem considered by Christian Huygens in 1659. Some applications, like when a drone is targeting a car, are modern. Differential Equations is also a beautiful subject, which lets students see Calculus "in action".

I attempted to start each topic with simple examples, to keep the presentation focused, and to show all of the details. I think this book is suitable for self-study. However, instructor can help in many ways. He (she) will present the subject with the enthusiasm it deserves, draw more pictures, talk about the history, and his jokes will supplement the lame ones in the book.

I am very grateful to the MAA Book Board, including Steve Kennedy, Stan Seltzer and the whole group of anonymous reviewers, for providing me with detailed lists of corrections and suggested changes. Their help was crucial in making considerable improvements of the manuscript.

It is a pleasure to thank Ken Meyer and Dieter Schmidt for constant encouragement while I was writing this book. I also wish to thank Ken for reading the entire book, and making a number of useful suggestions, like doing Fourier series early, with applications to periodic vibrations and radio tuning. I wish to thank Roger Chalkley, Tomasz Adamowicz, Dieter Schmidt, and Ning Zhong for a number of useful comments. Many useful comments came from students in my classes. They liked the book, and that provided me with the biggest encouragement.

Chapter 1

First Order Equations

First order equations occur naturally in many applications, making them an important object to study. They are also used throughout this book, and are of great theoretical importance. Linear first order equations, the first class of the equations we study, turns out to be of particular importance. Separable, exact and homogeneous equations are also used throughout the book. Applications are made to population modeling, and to various physical and geometrical problems. If a solution cannot be found by a formula, we prove that solution still exists, and indicate how it can be computed numerically.

1.1 Integration by Guess-and-Check

Many problems in differential equations end with a computation of an integral. One even uses the term "integration of a differential equation" instead of "solution". We need to be able to compute integrals quickly, which can be done by using the approach of this section. For example, one can write down

$$
\int x^{3} e^{x} d x=x^{3} e^{x}-3 x^{2} e^{x}+6 x e^{x}-6 e^{x}+c
$$

very quickly, avoiding three integrations by parts.
Recall the product rule

$$
(f g)^{\prime}=f g^{\prime}+f^{\prime} g .
$$

Example $1 \int x e^{x} d x$. We need to find the function, with the derivative equal to $x e^{x}$. If we try a guess: $x e^{x}$, then its derivative

$$
\left(x e^{x}\right)^{\prime}=x e^{x}+e^{x}
$$

1 has an extra term e^{x}. To remove this extra term, we subtract e^{x} from the 2 initial guess, so that

$$
\int x e^{x} d x=x e^{x}-6 e^{x}+c
$$

3 By differentiation, we verify that this is correct. Of course, integration by 4 parts may also be used.
${ }_{5}$ Example $2 \int x \cos 3 x d x$. Starting with the initial guess $\frac{1}{3} x \sin 3 x$, with 6 the derivative equal to $x \cos 3 x+\frac{1}{3} \sin 3 x$, we compute

$$
\int x \cos 3 x d x=\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x+c .
$$

7. Example $3 \int_{0}^{\pi} x \cos 3 x d x=\left.\left[\frac{1}{3} x \sin 3 x+\frac{1}{9} \cos 3 x\right]\right|_{0} ^{\pi}=-\frac{2}{9}$.

8
9

10
11

12
13
3
Example $5 \int x^{2} \sin 3 x d x$. The initial guess is $-\frac{1}{3} x^{2} \cos 3 x$. Its derivative

$$
\left(-\frac{1}{3} x^{2} \cos 3 x\right)^{\prime}=x^{2} \sin 3 x-\frac{2}{3} x \cos 3 x
$$

has an extra term $-\frac{2}{3} x \cos 3 x$. To remove this term, we modify our guess: 5 $-\frac{1}{3} x^{2} \cos 3 x+\frac{2}{9} x \sin 3 x$. Its derivative

$$
\left(-\frac{1}{3} x^{2} \cos 3 x+\frac{2}{9} x \sin 3 x\right)^{\prime}=x^{2} \sin 3 x+\frac{2}{9} \sin 3 x
$$

6 still has an extra term $\frac{2}{9} \sin 3 x$. So we make the final adjustment

$$
\int x^{2} \sin 3 x d x=-\frac{1}{3} x^{2} \cos 3 x+\frac{2}{9} x \sin 3 x+\frac{2}{27} \cos 3 x+c .
$$

1 This is easier than integrating by parts twice.
Example $6 \int x \sqrt{x^{2}+4} d x$. We begin by rewriting the integral as $\int x\left(x^{2}+4\right)^{1 / 2} d x$.
One usually computes this integral by a substitution $u=x^{2}+4$, with $d u=2 x d x$. Forgetting a constant multiple for now, the integral becomes $\int u^{1 / 2} d u$. Ignoring a constant multiple again, this evaluates to $u^{3 / 2}$. Returning to the original variable, we have our initial guess $\left(x^{2}+4\right)^{3 / 2}$. Differentiation

$$
\frac{d}{d x}\left(x^{2}+4\right)^{3 / 2}=3 x\left(x^{2}+4\right)^{1 / 2}
$$

8 gives us the integrand with an extra factor of 3 . To fix that, we multiply the initial guess by $\frac{1}{3}$:

$$
\int x \sqrt{x^{2}+4} d x=\frac{1}{3}\left(x^{2}+4\right)^{3 / 2}+c .
$$ us try to split the integrand as

$$
\frac{1}{x^{2}+1}-\frac{1}{x^{2}+4} .
$$

This is off by a factor of 3 . The correct formula is

$$
\frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)}=\frac{1}{3}\left(\frac{1}{x^{2}+1}-\frac{1}{x^{2}+4}\right) .
$$

Then

$$
\int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+4\right)} d x=\frac{1}{3} \tan ^{-1} x-\frac{1}{6} \tan ^{-1} \frac{x}{2}+c .
$$

Sometimes one can guess the splitting twice, as in the following case.
Example $8 \int \frac{1}{x^{2}\left(1-x^{2}\right)} d x$.

$$
\frac{1}{x^{2}\left(1-x^{2}\right)}=\frac{1}{x^{2}}+\frac{1}{1-x^{2}}=\frac{1}{x^{2}}+\frac{1}{(1-x)(1+x)}=\frac{1}{x^{2}}+\frac{1}{2} \frac{1}{1-x}+\frac{1}{2} \frac{1}{1+x} .
$$

18 Then (for $|x|<1$)

$$
\int \frac{1}{x^{2}\left(1-x^{2}\right)} d x=-\frac{1}{x}-\frac{1}{2} \ln (1-x)+\frac{1}{2} \ln (1+x)+c .
$$

$$
\begin{equation*}
y(x)=\frac{x^{2}}{2}+c \tag{2.1}
\end{equation*}
$$

where c is an arbitrary constant. We see that differential equations have infinitely many solutions. The formula (2.1) gives us the general solution. Then we can select the solution that satisfies an extra initial condition. For example, for the problem

$$
\begin{align*}
y^{\prime}(x) & =x \tag{2.2}\\
y(0) & =5
\end{align*}
$$

1 we begin with the general solution given in formula (2.1), and then evaluate it at $x=0$

$$
y(0)=c=5 .
$$

So that $c=5$, and solution of the problem (14.10) is

$$
y(x)=\frac{x^{2}}{2}+5 .
$$

The problem (14.10) is an example of an initial value problem. If the variable x represents time, then the value of $y(x)$ at the initial time $x=0$ is prescribed to be 5 . The initial condition may be prescribed at other values of x, as in the following example:

$$
\begin{gathered}
y^{\prime}=y \\
y(1)=2 e .
\end{gathered}
$$

Here the initial condition is prescribed at $x=1, e$ denotes the Euler number $e \approx 2.718$. Observe that while y and y^{\prime} are both functions of x, we do not spell this out. This problem can also be solved using calculus. Indeed, we are looking for a function $y(x)$, with the derivative equal to $y(x)$. This is a

1.2 First Order Linear Equations

Background

Suppose we need to find a function $y(x)$ so that

$$
y^{\prime}(x)=x \text {. }
$$

We have a differential equation, because it involves a derivative of the unknown function. This is a first order equation, as it only involves the first derivative. Solution is, of course,
property of the function e^{x}, and its constant multiples. The general solution is

$$
y(x)=c e^{x},
$$

and the initial condition gives

$$
y(1)=c e=2 e,
$$

4 so that $c=2$. The solution is then

$$
y(x)=2 e^{x} .
$$

We see that the main effort is in finding the general solution. Selecting c, to satisfy the initial condition, is usually easy.

Recall from calculus that

$$
\frac{d}{d x} e^{g(x)}=e^{g(x)} g^{\prime}(x) .
$$

$$
\begin{equation*}
\frac{d}{d x} e^{\int p(x) d x}=p(x) e^{\int p(x) d x} \tag{2.3}
\end{equation*}
$$

- because the derivative of the integral $\int p(x) d x$ is $p(x)$.

$$
\begin{equation*}
y^{\prime}+p(x) y=g(x), \tag{2.4}
\end{equation*}
$$

where $p(x)$ and $g(x)$ are given functions. This is a linear equation, because $y^{\prime}+p(x) y$ is a linear combination of the unknown functions y and y^{\prime}, for each fixed x.

Calculate the function

$$
\mu(x)=e^{\int p(x) d x}
$$

and its derivative

$$
\begin{equation*}
\mu^{\prime}(x)=p(x) e^{\int p(x) d x}=p(x) \mu . \tag{2.5}
\end{equation*}
$$

${ }_{17}$ We now multiply the equation (2.4) by $\mu(x)$, giving

$$
\begin{equation*}
\mu y^{\prime}+p(x) \mu y=\mu g(x) . \tag{2.6}
\end{equation*}
$$

1
Let us use the product rule and the formula (2.5) to calculate the derivative

$$
\frac{d}{d x}[\mu y]=\mu y^{\prime}+\mu^{\prime} y=\mu y^{\prime}+p(x) \mu y .
$$

$$
\begin{equation*}
\frac{d}{d x}[\mu y]=\mu g(x) . \tag{2.7}
\end{equation*}
$$

3
4
5

Here $p(x)=2 x$, and $g(x)=x$. Compute

$$
\mu(x)=e^{\int 2 x d x}=e^{x^{2}} .
$$

13 The equation (2.7) takes the form

$$
\frac{d}{d x}\left[e^{x^{2}} y\right]=x e^{x^{2}}
$$

14 Integrate both sides, and then perform integration by a substitution $u=x^{2}$
15 (or use guess-and-check)

$$
e^{x^{2}} y=\int x e^{x^{2}} d x=\frac{1}{2} e^{x^{2}}+c
$$

16
Solving for y, gives

$$
y(x)=\frac{1}{2}+c e^{-x^{2}}
$$

${ }_{17}$ From the initial condition

$$
y(0)=\frac{1}{2}+c=2
$$

so that $c=\frac{3}{2}$. Answer: $y(x)=\frac{1}{2}+\frac{3}{2} e^{-x^{2}}$.

5 and then by (2.7)

$$
\frac{d}{d t}[t y]=t \cos 2 t
$$

6
Integrate both sides, and perform integration by parts

$$
t y=\int t \cos 2 t d t=\frac{1}{2} t \sin 2 t+\frac{1}{4} \cos 2 t+c .
$$

7 Divide by t

$$
y(t)=\frac{1}{2} \sin 2 t+\frac{1}{4} \frac{\cos 2 t}{t}+\frac{c}{t} .
$$

The initial condition gives

$$
y(\pi / 2)=-\frac{1}{4} \frac{1}{\pi / 2}+\frac{c}{\pi / 2}=1
$$

$$
\begin{equation*}
y(t)=\frac{1}{2} \sin 2 t+\frac{1}{4} \frac{\cos 2 t}{t}+\frac{\pi / 2+\frac{1}{4}}{t} . \tag{2.8}
\end{equation*}
$$

The solution $y(t)$ defines a curve, called the integral curve, for this intialvalue problem. The initial condition tells us that $y=1$ when $t=\pi / 2$, so that the point $(\pi / 2,1)$ lies on the integral curve. What is the maximal interval on which the solution (2.8) is valid? I.e., starting with the initial point $t=\pi / 2$, how far can we continue the solution to the left and to the right of the initial point? We see from (2.8) that the maximal interval is
${ }^{1}(0, \infty)$. As t tends to 0 from the right, $y(t)$ tends to $+\infty$. At $t=0$, the solution $y(t)$ is undefined.
Example 3 Solve

$$
x \frac{d y}{d x}+2 y=\sin x, \quad y(-\pi)=-2 .
$$

4 Here the equation is not in the form (2.4), for which the theory applies. We 5 divide the equation by x

$$
\frac{d y}{d x}+\frac{2}{x} y=\frac{\sin x}{x} .
$$

${ }_{6}$ Now the equation is in the right form, with $p(x)=\frac{2}{x}$ and $g(x)=\frac{\sin x}{x}$.
7 Using the properties of logarithms, compute

$$
\mu(x)=e^{\int \frac{2}{x} d x}=e^{2 \ln |x|}=e^{\ln x^{2}}=x^{2} .
$$

And then

$$
\frac{d}{d x}\left[x^{2} y\right]=x^{2} \frac{\sin x}{x}=x \sin x .
$$

Integrate both sides, and perform integration by parts

$$
x^{2} y=\int x \sin x d x=-x \cos x+\sin x+c,
$$

10
giving us the general solution

$$
y(x)=-\frac{\cos x}{x}+\frac{\sin x}{x^{2}}+\frac{c}{x^{2}} .
$$

Solve for c :

$$
c=-2 \pi^{2}+\pi .
$$

${ }_{14}$ Answer: $y(x)=-\frac{\cos x}{x}+\frac{\sin x}{x^{2}}+\frac{-2 \pi^{2}+\pi}{x^{2}}$. This solution is valid on the 15 interval $(-\infty, 0)$ (that is how far it can be continued to the left and to the 16 right, starting from the initial point $x=-\pi$).

7 or

$$
\frac{d x}{d y}+x=y
$$

8 Let us now think of y as independent variable, and x as a function of y, $x=x(y)$. Then the last equation is linear, with $p(y)=1$ and $g(y)=y$. We

Example 4 Solve

$$
\frac{d y}{d x}=\frac{1}{y-x}, \quad y(1)=0
$$

We have a problem: not only this equation is not in the right form, this is a nonlinear equation, because $\frac{1}{y-x}$ is not a linear function of y (it is not of the form $a y+b$, for any fixed x). We need a little trick. Let us pretend that $d y$ and $d x$ are numbers, and take the reciprocals of both sides of the equation, getting

$$
\frac{d x}{d y}=y-x
$$ proceed as usual: $\mu(y)=e^{\int 1 d y}=e^{y}$, and

$$
\frac{d}{d y}\left[e^{y} x\right]=y e^{y}
$$

Integration gives

$$
e^{y} x=\int y e^{y} d y=y e^{y}-e^{y}+c
$$

and solving for x we obtain

$$
x(y)=y-1+c e^{-y} .
$$

To find c, we need an initial condition. The original initial condition tells us that $y=0$ for $x=1$. For the inverse function $x(y)$ this translates to $x(0)=1$. So that $c=2$.

Answer: $x(y)=y-1+2 e^{-y}$ (see the Figure 1.1).
Rigorous justification of this method is based on the formula for the derivative of the inverse function, that we recall next. Let $y=y(x)$ be some function, and $y_{0}=y\left(x_{0}\right)$. Let $x=x(y)$ be its inverse function. Then $x_{0}=x\left(y_{0}\right)$, and we have

$$
\frac{d x}{d y}\left(y_{0}\right)=\frac{1}{\frac{d y}{d x}\left(x_{0}\right)} .
$$

Figure 1.1: The integral curve $x=y-1+2 e^{-y}$, with the initial point $(1,0)$ marked

11.3 Separable Equations

2 Background

Suppose we have a function $F(y)$, and y in turn depends on $x, y=y(x)$. So
4 that, in effect, F depends on x. To differentiate F with respect to x, we use ${ }_{5}$ the chain rule from calculus:

$$
\frac{d}{d x} F(y(x))=F^{\prime}(y(x)) \frac{d y}{d x} .
$$

6 The Method
7 Given two functions $F(y)$ and $G(x)$, let us use the corresponding lower case
8 letters to denote their derivatives, so that $F^{\prime}(y)=f(y)$ and $G^{\prime}(x)=g(x)$,
, and correspondingly $\int f(y) d y=F(y)+c, \int g(x) d x=G(x)+c$. Our goal is to solve the following equation

$$
\begin{equation*}
f(y) \frac{d y}{d x}=g(x) \text {. } \tag{3.1}
\end{equation*}
$$

11 This is a nonlinear equation.

$$
\begin{equation*}
F(y)=G(x)+c . \tag{3.2}
\end{equation*}
$$

5 This gives the desired general solution! If one is lucky, it may be possible to solve this relation for y as a function of x. If not, maybe one can solve for x as a function of y. If both attempts fail, one can use a computer implicit plotting routine to draw the integral curves, given by (3.2).

We now describe a simple procedure, which leads from the equation (3.1) to its solution (3.2). Let us pretend that $\frac{d y}{d x}$ is not a notation for the derivative, but a ratio of two numbers $d y$ and $d x$. Clearing the denominator in (3.1)

$$
\begin{equation*}
f(y) d y=g(x) d x \tag{3.1}
\end{equation*}
$$

We have separated the variables, everything involving y is now on the left, while x appears only on the right. Integrate both sides:

$$
\int f(y) d y=\int g(x) d x
$$

which gives us immediately the solution (3.2).
Using the upper case functions, this equation becomes

$$
F^{\prime}(y) \frac{d y}{d x}=G^{\prime}(x) .
$$

By the chain rule, we rewrite this as

$$
\frac{d}{d x} F(y)=\frac{d}{d x} G(x) .
$$

If derivatives of two functions are the same, these functions differ by a constant, so that

Example 1 Solve

$$
\frac{d y}{d x}=x\left(y^{2}+9\right) .
$$

To separate the variables, we multiply by $d x$, and divide by $y^{2}+9$

$$
\int \frac{d y}{y^{2}+9} d y=\int x d x
$$

So that the general solution is

$$
\frac{1}{3} \arctan \frac{y}{3}=\frac{1}{2} x^{2}+c,
$$

1 which can be solved for y

$$
y=3 \tan \left(\frac{3}{2} x^{2}+3 c\right)=3 \tan \left(\frac{3}{2} x^{2}+c\right) .
$$

2
Example 2 Solve

$$
\left(x y^{2}+x\right) d x+e^{x} d y=0
$$

4
${ }_{5}$ viding through by $d x$, we can put it into a familiar form $x y^{2}+x+e^{x} \frac{d y}{d x}=0$, 6 although there is no need to do that.)

7 By factoring, we are able to separate the variables:

$$
e^{x} d y=-x\left(y^{2}+1\right) d x
$$

$$
\begin{gathered}
\int \frac{d y}{y^{2}+1}=-\int x e^{-x} d x \\
\tan ^{-1} y=x e^{-x}+e^{-x}+c
\end{gathered}
$$

Answer: $y(x)=\tan \left(x e^{-x}+e^{-x}+c\right)$.
Example 3 Find all solutions of

$$
\frac{d y}{d x}=y^{2}
$$

We separate the variables, and obtain

$$
\int \frac{d y}{y^{2}}=\int d x, \quad-\frac{1}{y}=x+c, \quad y=-\frac{1}{x+c}
$$

However, division by y^{2} is possible only if $y^{2} \neq 0$. The case when $y^{2}=0$ leads to another solution: $y=0$. Answer: $y=-\frac{1}{x+c}$, and $y=0$.

When performing a division by a non-constant expression, one needs to check if any solutions are lost, when this expression is zero. (If you divide the quadratic equation $x(x-1)=0$ by x, the root $x=0$ is lost. If you divide by $x-1$, the root $x=1$ is lost.)

Recall the fundamental theorem of calculus:

$$
\frac{d}{d x} \int_{a}^{x} f(t) d t=f(x)
$$

for any constant a. The integral $\int_{a}^{x} f(t) d t$ gives us an antiderivative of $f(x)$, so that we may write

$$
\begin{equation*}
\int f(x) d x=\int_{a}^{x} f(t) d t+c . \tag{3.3}
\end{equation*}
$$

3 Here we can let c be an arbitrary constant, and a fixed, or the other way around.

5 Example 4 Solve

$$
\frac{d y}{d x}=e^{x^{2}} y^{2}, \quad y(1)=-2 .
$$

6
Separation of variables

$$
\int \frac{d y}{y^{2}}=\int e^{x^{2}} d x
$$

7 gives on the right an integral that cannot be evaluated in elementary functions. We shall change it to a definite integral, as in (3.3). It is convenient to choose $a=1$, because the initial condition is given at $x=1$:

$$
\int \frac{d y}{y^{2}}=\int_{1}^{x} e^{t^{2}} d t+c
$$

$$
-\frac{1}{y}=\int_{1}^{x} e^{t^{2}} d t+c
$$

When $x=1$, we have $y=-2$, which gives $c=\frac{1}{2}$ (using that $\int_{1}^{1} e^{t^{2}} d t=0$). Answer: $y(x)=-\frac{1}{\int_{1}^{x} e^{t^{2}} d t+\frac{1}{2}}$. For any x, the integral $\int_{1}^{x} e^{t^{2}} d t$ can be quickly computed by a numerical integration method, for example, by using the trapezoidal rule.

1.3.1 Problems

I. Integrate by Guess-and-Check.

1. $\int x e^{5 x} d x$.
Answer. $x \frac{e^{5 x}}{5}-\frac{e^{5 x}}{25}+c$.
2. $\int x \cos 2 x d x$.

Answer. $x \frac{\sin 2 x}{2}+\frac{\cos 2 x}{4}+c$.
3. $\int(2 x+1) \sin 3 x d x$.

Answer. $-(2 x+1) \frac{\cos 3 x}{3}+\frac{2}{9} \sin 3 x+c$.
4. $\int x e^{-\frac{1}{2} x} d x$. Answer. $e^{-x / 2}(-4-2 x)+c$.
5. $\int x^{2} e^{-x} d x$.

Answer. $-x^{2} e^{-x}-2 x e^{-x}-2 e^{-x}+c$.
6. $\int x^{2} \cos 2 x d x$.

Answer. $\frac{1}{2} x \cos 2 x+\left(\frac{1}{2} x^{2}-\frac{1}{4}\right) \sin 2 x+c$.
4 7. $\int \frac{x}{\sqrt{x^{2}+1}} d x$.
Answer. $\sqrt{x^{2}+1}+c$.
8. $\int_{0}^{1} \frac{x}{\sqrt{x^{2}+1}} d x$.

Answer. $\sqrt{2}-1$.
6 9. $\int \frac{1}{\left(x^{2}+1\right)\left(x^{2}+9\right)} d x$.
Answer. $\frac{1}{8} \tan ^{-1} x-\frac{1}{24} \tan ^{-1} \frac{x}{3}+c$.
10. $\int \frac{x}{\left(x^{2}+1\right)\left(x^{2}+2\right)} d x$.

Answer. $\frac{1}{2} \ln \left(x^{2}+1\right)-\frac{1}{2} \ln \left(x^{2}+2\right)+c$.
9 11. $\int \frac{d x}{x^{3}+4 x}$. Answer. $\frac{1}{4} \ln x-\frac{1}{8} \ln \left(x^{2}+4\right)+c$.
12. $\int \frac{(\ln x)^{5}}{x} d x$.
Answer. $\frac{1}{6}(\ln x)^{6}+c$.
13. $\int x^{2} e^{x^{3}} d x$

Answer. $\frac{1}{3} e^{x^{3}}+c$.
14. $\int_{0}^{\pi} x \sin n x d x$, where n is a positive integer.

Answer. $-\frac{\pi}{n} \cos n \pi=\frac{\pi}{n}(-1)^{n+1}$.
15. $\int e^{2 x} \sin 3 x d x$ Answer. $e^{2 x}\left(\frac{2}{13} \sin 3 x-\frac{3}{13} \cos 3 x\right)+c$.

Hint: Look for the antiderivative in the form $A e^{2 x} \sin 3 x+B e^{2 x} \cos 3 x$, and determine the constants A and B by differentiation.
16. $\int_{2}^{\infty} \frac{d x}{x(\ln x)^{2}}$. Answer. $\frac{1}{\ln 2}$.

18
17. $\int x^{3} e^{-x} d x$ Answer. $-x^{3} e^{-x}-3 x^{2} e^{-x}-6 x e^{-x}-6 e^{-x}+c$.
II. Find the general solution of the linear problems.

20
${ }^{1}$

1. $y^{\prime}-y \sin x=\sin x$.
2. $y^{\prime}+\frac{1}{x} y=\cos x$.

Answer. $y=-1+c e^{-\cos x}$.
.
2. $y+\frac{1}{x} y=\cos x$.

Answer. $y=\frac{c}{x}+\sin x+\frac{\cos x}{x}$.

1

2

3
3. $x y^{\prime}+2 y=e^{-x}$. \quad Answer. $y=\frac{c}{x^{2}}-\frac{(x+1) e^{-x}}{x^{2}}$.
4. $x^{4} y^{\prime}+3 x^{3} y=x^{2} e^{x}$.
5. $\frac{d y}{d x}=2 x\left(x^{2}+y\right)$.
6. $x y^{\prime}-2 y=x e^{1 / x}$.
7. $y^{\prime}+2 y=\sin 3 x$.
8. $x\left(y y^{\prime}-1\right)=y^{2}$.

Hint: Set $v=y^{2}$. Then $v^{\prime}=2 y y^{\prime}$, and one obtains a linear equation for $v=v(x) . \quad$ Answer. $y^{2}=-2 x+c x^{2}$.
III. Find the solution of the initial value problem, and state the maximum interval on which this solution is valid.

1. $y^{\prime}-2 y=e^{x}, y(0)=2 . \quad$ Answer. $y=3 e^{2 x}-e^{x} ;(-\infty, \infty)$.
2. $y^{\prime}+\frac{1}{x} y=\cos x, y\left(\frac{\pi}{2}\right)=1 . \quad$ Answer. $y=\frac{\cos x+x \sin x}{x} ;(0, \infty)$.
3. $x y^{\prime}+2 y=\frac{\sin x}{x}, y\left(\frac{\pi}{2}\right)=-1 . \quad$ Answer. $y=-\frac{\pi^{2}+4 \cos x}{4 x^{2}} ;(0, \infty)$.
4. $x y^{\prime}+(2+x) y=1, y(-2)=0$.

Answer. $y=\frac{1}{x}+\frac{3 e^{-x-2}}{x^{2}}-\frac{1}{x^{2}} ;(-\infty, 0)$.
5. $x\left(y^{\prime}-y\right)=e^{x}, y(-1)=\frac{1}{e} . \quad \quad$ Answer. $y=e^{x} \ln |x|+e^{x} ;(-\infty, 0)$.
6. $(t+2) \frac{d y}{d t}+y=5, y(1)=1 . \quad$ Answer. $y=\frac{5 t-2}{t+2} ;(-2, \infty)$.
7. $t y^{\prime}-2 y=t^{4} \cos t, y(\pi / 2)=0$.

Answer. $y=t^{3} \sin t+t^{2} \cos t-\frac{\pi}{2} t^{2} ;(-\infty, \infty)$. Solution is valid for all t.
8. $t \ln t \frac{d r}{d t}+r=5 t e^{t}, r(2)=0 . \quad$ Answer. $r=\frac{5 e^{t}-5 e^{2}}{\ln t} ;(1, \infty)$.
9. $x y^{\prime}+2 y=y^{\prime}+\frac{1}{(x-1)^{2}}, y(-2)=0$.

Answer. $y=\frac{\ln |x-1|-\ln 3}{(x-1)^{2}}=\frac{\ln (1-x)-\ln 3}{(x-1)^{2}} ;(-\infty, 1)$.
10. $\frac{d y}{d x}=\frac{1}{y^{2}+x}, y(2)=0$.

Hint: Consider $\frac{d x}{d y}$, and obtain a linear equation for $x(y)$.
Answer. $x=-2+4 e^{y}-2 y-y^{2}$.
11*. Find a solution $(y=y(t))$ of $y^{\prime}+y=\sin 2 t$, which is a periodic function.

Hint: Look for a solution in the form $y(t)=A \sin 2 t+B \cos 2 t$, substitute this expression into the equation, and determine the constants A and B.
Answer. $y=\frac{1}{5} \sin 2 t-\frac{2}{5} \cos 2 t$.
12^{*}. Show that the equation $y^{\prime}+y=\sin 2 t$ has no other periodic solutions.
Hint: Consider the equation that the difference of any two solutions satisfies.
13^{*}. For the equation

$$
y^{\prime}+a(x) y=f(x)
$$

assume that $a(x) \geq a_{0}>0$, where a_{0} is a constant, and $f(x) \rightarrow 0$ as $x \rightarrow \infty$. Show that any solution tends to zero as $x \rightarrow \infty$.

Hint: Write the integrating factor as $\mu(x)=e^{\int_{0}^{x} a(t) d t} \geq e^{a_{0} x}$, so that $\mu(x) \rightarrow$ ∞ as $x \rightarrow \infty$. Then express

$$
y=\frac{\int_{0}^{x} \mu(t) f(t) d t+c}{\mu(x)},
$$

and use L'Hospital's rule.
14^{*}. Assume that in the equation (for $y=y(t)$)

$$
y^{\prime}+a y=f(t)
$$

the continuous function $f(t)$ satisfies $|f(t)| \leq M$ for all $-\infty<t<\infty$, where M and a are positive constants. Show that there is only one solution, call it $y_{0}(t)$, which is bounded for all $-\infty<t<\infty$. Show that $\lim _{t \rightarrow \infty} y_{0}(t)=$ 0 , provided that $\lim _{t \rightarrow \infty} f(t)=0$, and $\lim _{t \rightarrow-\infty} y_{0}(t)=0$, provided that
${ }^{1} \lim _{t \rightarrow-\infty} f(t)=0$. Show also that $y_{0}(t)$ is a periodic function, provided that $f(t)$ is a periodic function.

Hint: Using the integrating factor $e^{a t}$, express

$$
e^{a t} y(t)=\int_{\alpha}^{t} e^{a s} f(s) d s+c
$$

4 Select $c=0$, and $\alpha=-\infty$. Then $y_{0}(t)=e^{-a t} \int_{-\infty}^{t} e^{a s} f(s) d s$, and $\left|y_{0}(t)\right| \leq$ $5 e^{-a t} \int_{-\infty}^{t} e^{a s}|f(s)| d s \leq \frac{M}{a}$. In case $\lim _{t \rightarrow-\infty} f(t)=0$, a similar argument shows that $\left|y_{0}(t)\right| \leq \frac{\epsilon}{a}$, for $-t$ large enough. In case $\lim _{t \rightarrow \infty} f(t)=0$, use L'Hospital's rule.
IV. Solve by separating the variables.

9
2. $e^{x} d x-y d y=0, y(0)=-1 . \quad$ Answer. $y=-\sqrt{2 e^{x}-1}$.
3. $\left(x^{2} y^{2}+y^{2}\right) d x-y x d y=0$.

Answer. $y=e^{\frac{x^{2}}{2}+\ln |x|+c}=c|x| e^{\frac{x^{2}}{2}}\left(\right.$ writing $\left.e^{c}=c\right)$.
4. $y^{\prime}=x^{2} \sqrt{4-y^{2}} . \quad$ Answer. $y=2 \sin \left(\frac{x^{3}}{3}+c\right)$, and $y= \pm 2$.
5. $y^{\prime}(t)=t y^{2}\left(1+t^{2}\right)^{-1 / 2}, y(0)=2 . \quad$ Answer. $y=-\frac{2}{2 \sqrt{t^{2}+1}-3}$.
6. $(y-x y+x-1) d x+x^{2} d y=0, y(1)=0$. \quad Answer. $y=\frac{e-e^{\frac{1}{x}} x}{e}$.
7. $x^{2} y^{2} y^{\prime}=y-1 . \quad$ Answer. $\frac{y^{2}}{2}+y+\ln |y-1|=-\frac{1}{x}+c$, and $y=1$.
8. $y^{\prime}=e^{x^{2}} y, y(2)=1$ Answer. $y=e^{\int_{2}^{x} e^{t^{2}} d t}$.
9. $y^{\prime}=x y^{2}+x y, y(0)=2$.

Answer. $y=\frac{2 e^{\frac{x^{2}}{2}}}{3-2 e^{\frac{x^{2}}{2}}}$.
10. $y^{\prime}-2 x y^{2}=8 x, y(0)=-2$.

Hint: There are infinitely many choices for c, but they all lead to the same solution.
Answer. $y=2 \tan \left(2 x^{2}-\frac{\pi}{4}\right)$.
11. $y^{\prime}(t)=y-y^{2}-\frac{1}{4}$.

Hint: Write the right hand side as $-\frac{1}{4}(2 y-1)^{2}$.
Answer. $y=\frac{1}{2}+\frac{1}{t+c}$, and $y=\frac{1}{2}$.
12. $\frac{d y}{d x}=\frac{y^{2}-y}{x}$.

Answer. $\left|\frac{y-1}{y}\right|=e^{c}|x|$, and also $y=0$ and $y=1$.
13. $\frac{d y}{d x}=\frac{y^{2}-y}{x}, y(1)=2 . \quad$ Answer. $y=\frac{2}{2-x}$.
14. $y^{\prime}=(x+y)^{2}, y(0)=1$.
to a separable equation. Here a and b are constants, $f=f(z)$ is an arbitrary function.

Hint: Set $a x+b y=z$, where $z=z(x)$ is a new unknown function.
16. A particle is moving on a polar curve $r=f(\theta)$. Find the function $f(\theta)$ so that the speed of the particle is 1 , for all θ.

Hint: $x=f(\theta) \cos \theta, y=f(\theta) \sin \theta$, and then

$$
\operatorname{speed}^{2}=\left(\frac{d x}{d \theta}\right)^{2}+\left(\frac{d y}{d \theta}\right)^{2}=f^{\prime 2}(\theta)+f^{2}(\theta)=1
$$

or $f^{\prime}= \pm \sqrt{1-f^{2}}$.
Answer. $f(\theta)= \pm 1$, or $f(\theta)= \pm \sin (\theta+c) .(r=\sin (\theta+c)$ is a circle of radius $\frac{1}{2}$ with center on the ray $\theta=\frac{\pi}{2}-c$, and passing through the origin.)
$1 \quad 17^{*}$. Find the differentiable function $f(x)$ satisfying the following functional 2 equation (for all x and y)

$$
f(x+y)=\frac{f(x)+f(y)}{1-f(x) f(y)} .
$$

3 Hint: By setting $x=y=0$, conclude that $f(0)=0$. Then $f^{\prime}(x)=$
$4 \lim _{y \rightarrow 0} \frac{f(x+y)-f(x)}{y}=c\left(1+f^{2}(x)\right)$, where $c=f^{\prime}(0)$.
Answer. $f(x)=\tan c x$.

1.4 Some Special Equations

Differential equations that are not linear are called nonlinear. In this section we encounter several classes of nonlinear equations that can be reduced to linear ones.

1.4.1 Homogeneous Equations

Let $f(t)$ be a given function. Setting here $t=\frac{y}{x}$, we obtain a function $f\left(\frac{y}{x}\right)$, which is a function of two variables x and y, but it depends on them in a special way. One calls functions of the form $f\left(\frac{y}{x}\right)$ homogeneous. For example, $\frac{y-4 x}{x-y}$ is a homogeneous function, because we can put it into the form (dividing both the numerator and the denominator by x)

$$
\frac{y-4 x}{x-y}=\frac{\frac{y}{x}-4}{1-\frac{y}{x}},
$$

so that here $f(t)=\frac{t-4}{1-t}$.
Our goal is to solve homogeneous equations

$$
\begin{equation*}
\frac{d y}{d x}=f\left(\frac{y}{x}\right) . \tag{4.1}
\end{equation*}
$$

Set $v=\frac{y}{x}$. Since y is a function of x, the same is true of $v=v(x)$. Solving for $y, y=x v$, we express by the product rule

$$
\frac{d y}{d x}=v+x \frac{d v}{d x} .
$$

1

$$
\begin{equation*}
v+x \frac{d v}{d x}=f(v) \tag{4.2}
\end{equation*}
$$

2
3 separate the variables

$$
\int \frac{d v}{f(v)-v} d v=\int \frac{d x}{x}
$$

4 After solving this equation for $v(x)$, we can express the original unknown $y=x v(x)$.

In practice, one should try to remember the formula (4.2).
Example 1 Solve

8

9 To see that this equation is homogeneous, we rewrite it as (dividing both the numerator and the denominator by x^{2})

$$
\frac{d y}{d x}=\frac{1+3\left(\frac{y}{x}\right)^{2}}{2 \frac{y}{x}} .
$$

11
Set $v=\frac{y}{x}$, or $y=x v$. Using that $\frac{d y}{d x}=v+x \frac{d v}{d x}$, obtain

$$
v+x \frac{d v}{d x}=\frac{1+3 v^{2}}{2 v}
$$

12
Simplify:

$$
x \frac{d v}{d x}=\frac{1+3 v^{2}}{2 v}-v=\frac{1+v^{2}}{2 v} .
$$

Separating the variables gives

$$
\int \frac{2 v}{1+v^{2}} d v=\int \frac{d x}{x}
$$

14 We now obtain the solution, by performing the following steps (observe that 15 $\ln c$ is another way to write an arbitrary constant):

$$
\ln \left(1+v^{2}\right)=\ln x+\ln c=\ln c x
$$

1

2

4 From the initial condition

$$
y(1)= \pm \sqrt{c-1}=-2
$$

5 It follows that we need to select "minus", and $c=5$.
6 Answer: $y(x)=-x \sqrt{5 x-1}$.
There is an alternative (equivalent) definition: a function $f(x, y)$ is called homogeneous if

$$
f(t x, t y)=f(x, y), \quad \text { for all constants } t .
$$

9 If this condition holds, then setting $t=\frac{1}{x}$, we see that

$$
f(x, y)=f(t x, t y)=f\left(1, \frac{y}{x}\right)
$$

so that $f(x, y)$ is a function of $\frac{y}{x}$, and the old definition applies. It is easy to check that $f(x, y)=\frac{x^{2}+3 y^{2}}{2 x y}$ from the Example 1 satisfies the new definition.

Example 2 Solve

$$
\frac{d y}{d x}=\frac{y}{x+\sqrt{x y}}, \text { with } x>0, y \geq 0
$$

14 It is more straightforward to use the new definition to verify that the function $f(x, y)=\frac{y}{x+\sqrt{x y}}$ is homogeneous. For all $t>0$, we have

$$
f(t x, t y)=\frac{(t y)}{(t x)+\sqrt{(t x)(t y)}}=\frac{y}{x+\sqrt{x y}}=f(x, y) .
$$

16
Letting $y / x=v$, or $y=x v$, we rewrite this equation as

$$
v+x v^{\prime}=\frac{x v}{x+\sqrt{x x v}}=\frac{v}{1+\sqrt{v}}
$$

We proceed to separate the variables:

$$
x \frac{d v}{d x}=\frac{v}{1+\sqrt{v}}-v=-\frac{v^{3 / 2}}{1+\sqrt{v}},
$$

$$
\begin{aligned}
\int \frac{1+\sqrt{v}}{v^{3 / 2}} d v & =-\int \frac{d x}{x} \\
-2 v^{-1 / 2}+\ln v & =-\ln x+c .
\end{aligned}
$$

The integral on the left was evaluated by performing division, and splitting it into two pieces. Finally, we replace v by y / x, and simplify:

$$
-2 \sqrt{\frac{x}{y}}+\ln \frac{y}{x}=-\ln x+c
$$

$$
-2 \sqrt{\frac{x}{y}}+\ln y=c
$$

We obtained an implicit representation of a family of solutions. One can solve for $x, x=\frac{1}{4} y(c-\ln y)^{2}$.

When separating the variables, we had to assume that $v \neq 0$ (in order to divide by $v^{3 / 2}$). In case $v=0$, we obtain another solution: $y=0$.

1.4.2 The Logistic Population Model

Let $y(t)$ denote the number of rabbits on a tropical island at time t. The simplest model of population growth is

$$
\begin{gathered}
y^{\prime}=a y \\
y(0)=y_{0}
\end{gathered}
$$

Here $a>0$ is a given constant, called the growth rate. This model assumes that initially the number of rabbits was equal to some number $y_{0}>0$, while the rate of change of population, given by $y^{\prime}(t)$, is proportional to the number of rabbits. The population of rabbits grows, which results in a faster and faster rate of growth. One expects an explosive growth. Indeed, solving the equation, we get

$$
y(t)=c e^{a t} .
$$

From the initial condition $y(0)=c=y_{0}$, which gives us $y(t)=y_{0} e^{a t}$, an exponential growth. This is the notorious Malthusian model of population
growth. Is it realistic? Yes, sometimes, for a limited time. If the initial number of rabbits y_{0} is small, then for a while their number may grow exponentially.

A more realistic model, which can be used for a long time, is the logistic model:

$$
\begin{gather*}
y^{\prime}=a y-b y^{2} \tag{4.3}\\
y(0)=y_{0} .
\end{gather*}
$$

6 Here a, b and y_{0} are given positive constants, and $y=y(t)$. Writing this equation in the form

$$
y^{\prime}=b y\left(\frac{a}{b}-y\right),
$$

we see that when $0<y<\frac{a}{b}$, we have $y^{\prime}(t)>0$ and $y(t)$ is increasing, while in the case $y>\frac{a}{b}$ we have $y^{\prime}(t)<0$ and $y(t)$ is decreasing.

If y_{0} is small, then for small $t, y(t)$ is small, so that the $b y^{2}$ term is negligible, and we have exponential growth. As $y(t)$ increases, the $b y^{2}$ term is not negligible anymore, and we can expect the rate of growth of $y(t)$ to get smaller and smaller, and $y(t)$ to tend to a finite limit. (Writing the equation as $y^{\prime}=(a-b y) y$, we can regard the $a-b y$ term as the rate of growth.) In case the initial number y_{0} is large (when $y_{0}>a / b$), the quadratic on the right in (4.3) is negative, so that $y^{\prime}(t)<0$, and the population decreases. If $y_{0}=a / b$, then $y^{\prime}(0)=0$, and we expect that $y(t)=a / b$ for all t. We now solve the equation (4.3) to confirm our guesses.

This equation can be solved by separating the variables. Instead, we use another technique that will be useful in the next section. Divide both sides of the equation by y^{2} :

$$
y^{-2} y^{\prime}=a y^{-1}-b .
$$

Introduce a new unknown function $v(t)=y^{-1}(t)=\frac{1}{y(t)}$. By the generalized power rule, $v^{\prime}=-y^{-2} y^{\prime}$, so that we can rewrite the last equation as

$$
-v^{\prime}=a v-b,
$$

or

$$
v^{\prime}+a v=b .
$$

5 This is a linear equation for $v(t)$! To solve it, we follow the familiar steps, and then we return to the original unknown function $y(t)$:

$$
\mu(t)=e^{\int a d t}=e^{a t},
$$

Figure 1.2: The solution of $y^{\prime}=5 y-2 y^{2}, y(0)=0.2$

1

$$
\frac{d}{d t}\left[e^{a t} v\right]=b e^{a t}
$$

2

$$
e^{a t} v=b \int e^{a t} d t=\frac{b}{a} e^{a t}+c,
$$

$$
v=\frac{b}{a}+c e^{-a t}
$$

$$
y(t)=\frac{1}{v}=\frac{1}{\frac{b}{a}+c e^{-a t}} .
$$

5 To find the constant c, we use the initial condition

$$
y(0)=\frac{1}{\frac{b}{a}+c}=y_{0},
$$

$$
c=\frac{1}{y_{0}}-\frac{b}{a} .
$$

7 We conclude:

$$
y(t)=\frac{1}{\frac{b}{a}+\left(\frac{1}{y_{0}}-\frac{b}{a}\right) e^{-a t}} .
$$

8 Observe that $\lim _{t \rightarrow+\infty} y(t)=a / b$, no matter what initial value y_{0} we take. 9 The number a / b is called the carrying capacity. It tells us the number of rabbits, in the long run, that our island will support. A typical solution curve, called the logistic curve is given in Figure 1.2.

7

20 Returning to the original variable y, gives the answer: $y=\left(-t-\frac{2}{3}+c e^{\frac{3}{2} t}\right)^{2 / 3}$.

1.4.4* Riccati's Equations

Let us try to solve the equation

$$
y^{\prime}(t)+a(t) y(t)+b(t) y^{2}(t)=c(t) .
$$

Here $a(t), b(t)$ and $c(t)$ are given functions. In case $c(t)=0$, this is Bernoulli's equation, which we can solve. For general $c(t)$, one needs some luck to solve this equation. Namely, one needs to guess some solution $p(t)$, which we refer to as a particular solution. Then a substitution $y(t)=$ $p(t)+z(t)$ produces Bernoulli's equation for $z(t)$

$$
z^{\prime}+(a+2 b p) z+b z^{2}=0,
$$

which can be solved.
There is no general way to find a particular solution, which means that one cannot always solve Riccati's equation. Occasionally one can get lucky.

Example 1 Solve

$$
y^{\prime}+y^{2}=t^{2}-2 t .
$$

We see a quadratic polynomial on the right, which suggests to look for a particular solution in the form $y=a t+b$. Substitution into the equation produces a quadratic polynomial on the left too. Equating the coefficients in t^{2}, t and constant terms, gives three equations to find a and b. In general, three equations with two unknowns will have no solutions, but this is a lucky case, with the solution $a=-1, b=1$, so that $p(t)=-t+1$ is a particular solution. Substituting $y(t)=-t+1+v(t)$ into the equation, and simplifying, we get

$$
v^{\prime}+2(1-t) v=-v^{2}
$$

This is Bernoulli's equation. Divide through by v^{2}, and then set $z=\frac{1}{v}$, $z^{\prime}=-\frac{v^{\prime}}{v^{2}}$, to get a linear equation:

$$
v^{-2} v^{\prime}+2(1-t) v^{-1}=-1, \quad z^{\prime}-2(1-t) z=1,
$$

$$
\mu=e^{-\int 2(1-t) d t}=e^{t^{2}-2 t}, \quad \frac{d}{d t}\left[e^{t^{2}-2 t} z\right]=e^{t^{2}-2 t},
$$

$$
e^{t^{2}-2 t} z=\int e^{t^{2}-2 t} d t
$$

The last integral cannot be evaluated through elementary functions (Mathematica can evaluate it through a special function, called Erfi). So we leave this integral unevaluated. One gets z from the last formula, after which one expresses v, and finally y. The result is a family of solutions: $y(t)=-t+1+\frac{e^{t^{2}-2 t}}{\int e^{t^{2}-2 t} d t}$. (The usual arbitrary constant c is now "inside" of the integral. Replacing $\int e^{t^{2}-2 t} d t$ by $\int_{a}^{t} e^{s^{2}-2 s} d s$ will give a formula for $y(t)$ that can be used for computations and graphing.) Another solution: $y=-t+1$ (corresponding to $v=0$).
Example 2 Solve

$$
\begin{equation*}
y^{\prime}+2 y^{2}=\frac{6}{t^{2}} . \tag{4.4}
\end{equation*}
$$

We look for a particular solution in the form $y(t)=a / t$, and calculate $a=2$, so that $p(t)=2 / t$ is a particular solution ($a=-3 / 2$ is also a possibility). The substitution $y(t)=2 / t+v(t)$ produces Bernoulli's equation

$$
v^{\prime}+\frac{8}{t} v+2 v^{2}=0
$$

Solving it, gives $v(t)=\frac{7}{c t^{8}-2 t}$, and $v=0$. The solutions of (4.4) are $y(t)=\frac{2}{t}+\frac{7}{c t^{8}-2 t}$, and also $y=\frac{2}{t}$.

Let us outline an alternative approach to the last problem. Setting $y=1 / z$ in (4.4), then clearing the denominators, gives

$$
\begin{gathered}
-\frac{z^{\prime}}{z^{2}}+2 \frac{1}{z^{2}}=\frac{6}{t^{2}} \\
-z^{\prime}+2=\frac{6 z^{2}}{t^{2}} .
\end{gathered}
$$

This is a homogeneous equation, which we can solve.
There are some important ideas that we learned in this subsection. Knowledge of one particular solution may help to "crack open" the equation, and get other solutions. Also, the form of this particular solution depends on the equation.

1.4.5* Parametric Integration

Let us solve the initial value problem (here $y=y(x)$)

$$
\begin{gather*}
y=\sqrt{1-y^{\prime 2}} \tag{4.5}\\
y(0)=1 .
\end{gather*}
$$

1 This equation is not solved for the derivative $y^{\prime}(x)$. Solving for $y^{\prime}(x)$, and then separating the variables, one can indeed find the solution. Instead, let us assume that

$$
y^{\prime}(x)=\sin t,
$$

where t is a parameter (upon which both x and y will depend). From the equation (4.5):

$$
y=\sqrt{1-\sin ^{2} t}=\sqrt{\cos ^{2} t}=\cos t
$$

7 so that $\frac{d x}{d t}=-1$, which gives

$$
x=-t+c .
$$

8 We obtained a family of solutions in parametric form (valid if $\cos t \geq 0$)

$$
\begin{gathered}
x=-t+c \\
y=\cos t
\end{gathered}
$$

Solving for $t, t=-x+c$, gives $y=\cos (-x+c)$. From the initial condition, calculate that $c=0$, giving us the solution $y=\cos x$. This solution is valid on infinitely many disjoint intervals where $\cos x \geq 0$ (because we see from the equation (4.5) that $y \geq 0$). This problem admits another solution: $y=1$.

For the equation

$$
y^{\prime 5}+y^{\prime}=x
$$

we do not have an option of solving for $y^{\prime}(x)$. Parametric integration appears to be the only way to solve it. We let $y^{\prime}(x)=t$, so that from the equation, $x=t^{5}+t$, and $d x=\frac{d x}{d t} d t=\left(5 t^{4}+1\right) d t$. Then

$$
d y=y^{\prime}(x) d x=t\left(5 t^{4}+1\right) d t
$$

so that $\frac{d y}{d t}=t\left(5 t^{4}+1\right)$, which gives $y=\frac{5}{6} t^{6}+\frac{1}{2} t^{2}+c$. We obtained a family of solutions in parametric form:

$$
\begin{gathered}
x=t^{5}+t \\
y=\frac{5}{6} t^{6}+\frac{1}{2} t^{2}+c .
\end{gathered}
$$

If an initial condition is given, one can determine the value of c, and then plot the solution.

1.4.6 Some Applications

Differential equations arise naturally in geometric and physical problems.
Example 1 Find all positive decreasing functions $y=f(x)$, with the following property: the area of the triangle formed by the vertical line going down from the curve, the x-axis and the tangent line to this curve is constant, equal to $a>0$.

The triangle formed by the tangent line, the line $x=x_{0}$, and the x-axis

Let $\left(x_{0}, f\left(x_{0}\right)\right)$ be an arbitrary point on the graph of $y=f(x)$. Draw the triangle in question, formed by the vertical line $x=x_{0}$, the x-axis, and the tangent line to this curve. The tangent line intersects the x-axis at some point x_{1}, lying to the right of x_{0}, because $f(x)$ is decreasing. The slope of the tangent line is $f^{\prime}\left(x_{0}\right)$, so that the point-slope equation of the tangent line is

$$
y=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

At x_{1}, we have $y=0$, so that

$$
0=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x_{1}-x_{0}\right) .
$$

Solve this for $x_{1}, x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$. It follows that the horizontal side of our triangle is $-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}$, while the vertical side is $f\left(x_{0}\right)$. The area of this right
triangle is then

$$
-\frac{1}{2} \frac{f^{2}\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}=a
$$

(Observe that $f^{\prime}\left(x_{0}\right)<0$, so that the area is positive.) The point x_{0} was arbitrary, so that we replace it by x, and then we replace $f(x)$ by y, and $f^{\prime}(x)$ by y^{\prime} :

$$
-\frac{1}{2} \frac{y^{2}}{y^{\prime}}=a, \quad \text { or } \quad-\frac{y^{\prime}}{y^{2}}=\frac{1}{2 a}
$$

5 We solve this differential equation by taking the antiderivatives of both sides:

$$
\frac{1}{y}=\frac{1}{2 a} x+c .
$$

Answer: $y(x)=\frac{2 a}{x+2 a c}$. This is a family of hyperbolas. One of them is $y=\frac{2 a}{x}$.
Example 2 A tank holding 10L (liters) originally is completely filled with water. A salt-water mixture is pumped into the tank at a rate of 2 L per minute. This mixture contains 0.3 kg of salt per liter. The excess fluid is flowing out of the tank at the same rate (2L per minute). How much salt does the tank contain after 4 minutes?

Salt-water mixture pumped into a full tank
Let t be the time (in minutes) since the mixture started flowing, and let $y(t)$ denote the amount of salt in the tank at time t. The derivative, $y^{\prime}(t)$, approximates the rate of change of salt per minute, and it is equal to the difference between the rate at which salt flows in, and the rate it flows out. The salt is pumped in at a rate of 0.6 kg per minute. The density of salt at time t is $\frac{y(t)}{10}$ (so that each liter of the solution in the tank contains $\frac{y(t)}{10} \mathrm{~kg}$
of salt). Then, the salt flows out at the rate $2 \frac{y(t)}{10}=0.2 y(t) \mathrm{kg} / \mathrm{min}$. The 2 difference of these two rates gives $y^{\prime}(t)$, so that

$$
y^{\prime}=0.6-0.2 y .
$$

This is a linear differential equation. Initially, there was no salt in the tank, so that $y(0)=0$ is our initial condition. Solving this equation together with the initial condition, we have $y(t)=3-3 e^{-0.2 t}$. After 4 minutes, we have $y(4)=3-3 e^{-0.8} \approx 1.65 \mathrm{~kg}$ of salt in the tank.

Now suppose a patient has alcohol poisoning, and doctors are pumping in water to flush his stomach out. One can compute similarly the weight of poison left in the stomach at time t. (An example is included in the Problems.)

1.5 Exact Equations

This section covers exact equations. While this class of equations is rather special, it often occurs in applications.

Let us begin by recalling partial derivatives. If a function $f(x)=x^{2}+a$ depends on a parameter a, then $f^{\prime}(x)=2 x$. If $g(x)=x^{2}+y^{3}$, with a parameter y, we have $\frac{d g}{d x}=2 x$. Another way to denote this derivative is $g_{x}=2 x$. We can also regard g as a function of two variables, $g=$ $g(x, y)=x^{2}+y^{3}$. Then the partial derivative with respect to x is computed by regarding y to be a parameter, $g_{x}=2 x$. Alternative notation: $\frac{\partial g}{\partial x}=2 x$. Similarly, a partial derivative with respect to y is $g_{y}=\frac{\partial g}{\partial y}=3 y^{2}$. The derivative g_{y} gives us the rate of change in y, when x is kept fixed.

The equation (here $y=y(x)$)

$$
y^{2}+2 x y y^{\prime}=0
$$

can be easily solved, if we rewrite it in the equivalent form

$$
\frac{d}{d x}\left(x y^{2}\right)=0
$$

Then $x y^{2}=c$, and the solution is

$$
y(x)= \pm \frac{c}{\sqrt{x}} .
$$

1 We wish to play the same game for general equations of the form

$$
\begin{equation*}
M(x, y)+N(x, y) y^{\prime}(x)=0 \tag{5.1}
\end{equation*}
$$

Here the functions $M(x, y)$ and $N(x, y)$ are given. In the above example, $M=y^{2}$ and $N=2 x y$.
4 Definition The equation (5.1) is called exact if there is a function $\psi(x, y)$, 5 with continuous derivatives up to second order, so that we can rewrite (5.1) 6 in the form

$$
\begin{equation*}
\frac{d}{d x} \psi(x, y)=0 \tag{5.2}
\end{equation*}
$$

${ }_{7} \quad$ The solution of the exact equation is (c is an arbitrary constant)

$$
\begin{equation*}
\psi(x, y)=c \tag{5.3}
\end{equation*}
$$

8 There are two natural questions: what conditions on $M(x, y)$ and $N(x, y)$ 9 will force the equation (5.1) to be exact, and if the equation (5.1) is exact, 10 how does one find $\psi(x, y)$?
${ }_{11}$ Theorem 1.5.1 Assume that the functions $M(x, y), N(x, y), M_{y}(x, y)$ and ${ }_{12} N_{x}(x, y)$ are continuous in some disc $D:\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}<r^{2}$, around 13 some point $\left(x_{0}, y_{0}\right)$. Then the equation (5.1) is exact in D if and only if the
14 following partial derivatives are equal

$$
\begin{equation*}
M_{y}(x, y)=N_{x}(x, y), \quad \text { for all points }(x, y) \text { in } D . \tag{5.4}
\end{equation*}
$$

15 This theorem makes two claims: if the equation is exact, then the partials ${ }_{16}$ are equal, and conversely, if the partials are equal, then the equation is 17 exact.
${ }_{18}$ Proof: 1. Assume that the equation (5.1) is exact, so that it can be 19 written in the form (5.2). Performing the differentiation in (5.2), using the 20 chain rule, gives

$$
\psi_{x}+\psi_{y} y^{\prime}=0
$$

21 But this equation is the same as (5.1), so that

$$
\begin{aligned}
\psi_{x} & =M \\
\psi_{y} & =N .
\end{aligned}
$$

Taking the second partials

$$
\begin{aligned}
& \psi_{x y}=M_{y} \\
& \psi_{y x}=N_{x} .
\end{aligned}
$$

1 We know from calculus that $\psi_{x y}=\psi_{y x}$, therefore $M_{y}=N_{x}$.
2. Assume that $M_{y}=N_{x}$. We will show that the equation (5.1) is then exact by producing $\psi(x, y)$. We have just seen that $\psi(x, y)$ must satisfy

$$
\begin{align*}
& \psi_{x}=M(x, y) \tag{5.5}\\
& \psi_{y}=N(x, y) .
\end{align*}
$$

4 Take the antiderivative in x of the first equation

$$
\begin{equation*}
\psi(x, y)=\int_{x_{0}}^{x} M(t, y) d t+h(y), \tag{5.6}
\end{equation*}
$$

5 where $h(y)$ is an arbitrary function of y, and x_{0} is an arbitrary number. To determine $h(y)$, substitute the last formula into the second line of (5.5)

$$
\psi_{y}(x, y)=\int_{x_{0}}^{x} M_{y}(t, y) d t+h^{\prime}(y)=N(x, y)
$$

or

$$
\begin{equation*}
h^{\prime}(y)=N(x, y)-\int_{x_{0}}^{x} M_{y}(t, y) d t \equiv p(x, y) . \tag{5.7}
\end{equation*}
$$

B Observe that we denoted by $p(x, y)$ the right side of the last equation. It turns out that $p(x, y)$ does not really depend on $x!$ Indeed, taking the partial derivative in x,

$$
\frac{\partial}{\partial x} p(x, y)=N_{x}(x, y)-M_{y}(x, y)=0
$$

because it was given to us that $M_{y}(x, y)=N_{x}(x, y)$. So that $p(x, y)$ is a function of y only, or $p(y)$. The equation (5.7) takes the form

$$
h^{\prime}(y)=p(y) .
$$

We determine $h(y)$ by integration, and use it in (5.6) to get $\psi(x, y)$.
Recall that the equation in differentials

$$
M(x, y) d x+N(x, y) d y=0
$$

is an alternative form of (5.1), so that it is exact if and only if $M_{y}=N_{x}$, for all x and y.
Example 1 Consider

$$
e^{x} \sin y+y^{3}-\left(3 x-e^{x} \cos y\right) \frac{d y}{d x}=0
$$

1
Here $M(x, y)=e^{x} \sin y+y^{3}, N(x, y)=-3 x+e^{x} \cos y$. Compute

$$
\begin{gathered}
M_{y}=e^{x} \cos y+3 y^{2} \\
N_{x}=e^{x} \cos y-3 .
\end{gathered}
$$

2 The partials are not the same, this equation is not exact, and our theory 3 does not apply.

4 Example 2 Solve (for $x>0$)

$$
\left(\frac{y}{x}+6 x\right) d x+(\ln x-2) d y=0 .
$$

5 Here $M(x, y)=\frac{y}{x}+6 x$ and $N(x, y)=\ln x-2$. Compute

$$
M_{y}=\frac{1}{x}=N_{x},
$$

and so the equation is exact. To find $\psi(x, y)$, we observe that the equations (5.5) take the form

8

9 Take the antiderivative in x of the first equation

$$
\psi(x, y)=y \ln x+3 x^{2}+h(y),
$$

We can solve this relation for $y, y(x)=\frac{c-3 x^{2}}{\ln x-2}$. Observe that when solving
16
17 step we set $\psi(x, y)$ equal to c, an arbitrary constant.

Example 3 Find the constant b, for which the equation

$$
\left(2 x^{3} e^{2 x y}+x^{4} y e^{2 x y}+x\right) d x+b x^{5} e^{2 x y} d y=0
$$

is exact, and then solve the equation with that b.
Here $M(x, y)=2 x^{3} e^{2 x y}+x^{4} y e^{2 x y}+x$, and $N(x, y)=b x^{5} e^{2 x y}$. Setting equal the partials M_{y} and N_{x}, we have

$$
5 x^{4} e^{2 x y}+2 x^{5} y e^{2 x y}=5 b x^{4} e^{2 x y}+2 b x^{5} y e^{2 x y} .
$$

One needs $b=1$ for this equation to be exact. When $b=1$, the equation becomes

$$
\left(2 x^{3} e^{2 x y}+x^{4} y e^{2 x y}+x\right) d x+x^{5} e^{2 x y} d y=0
$$

and we already know that it is exact. We look for $\psi(x, y)$ by using (5.5), as in Example 2

$$
\begin{gathered}
\psi_{x}=2 x^{3} e^{2 x y}+x^{4} y e^{2 x y}+x \\
\psi_{y}=x^{5} e^{2 x y}
\end{gathered}
$$

It is easier to begin this time with the second equation. Taking the antiderivative in y, in the second equation,

$$
\psi(x, y)=\frac{1}{2} x^{4} e^{2 x y}+h(x),
$$

where $h(x)$ is an arbitrary function of x. Substituting $\psi(x, y)$ into the first equation gives

$$
\psi_{x}=2 x^{3} e^{2 x y}+x^{4} y e^{2 x y}+h^{\prime}(x)=2 x^{3} e^{2 x y}+x^{4} y e^{2 x y}+x
$$

This tells us that $h^{\prime}(x)=x, h(x)=\frac{1}{2} x^{2}$, and then $\psi(x, y)=\frac{1}{2} x^{4} e^{2 x y}+\frac{1}{2} x^{2}$. Answer: $\frac{1}{2} x^{4} e^{2 x y}+\frac{1}{2} x^{2}=c$, or $y=\frac{1}{2 x} \ln \left(\frac{2 c-x^{2}}{x^{4}}\right)$.

Exact equations are connected with conservative vector fields. Recall that a vector field $\mathbf{F}(\mathbf{x}, \mathbf{y})=<M(x, y), N(x, y)>$ is called conservative if there is a function $\psi(x, y)$, called the potential, such that $\mathbf{F}(\mathbf{x}, \mathbf{y})=\nabla \psi(x, y)$. Recalling that the gradient $\nabla \psi(x, y)=<\psi_{x}, \psi_{y}>$, we have $\psi_{x}=M$, and $\psi_{y}=N$, the same relations that we had for exact equations.

1.6 Existence and Uniqueness of Solution

We consider a general initial value problem

$$
\begin{aligned}
& y^{\prime}=f(x, y) \\
& y\left(x_{0}\right)=y_{0}
\end{aligned}
$$

with a given function $f(x, y)$, and given numbers x_{0} and y_{0}. Let us ask two basic questions: is there a solution of this problem, and if there is, is the solution unique?

Theorem 1.6.1 Assume that the functions $f(x, y)$ and $f_{y}(x, y)$ are continuous in some neighborhood of the initial point $\left(x_{0}, y_{0}\right)$. Then there exists a solution, and there is only one solution. The solution $y=y(x)$ is defined on some interval $\left(x_{1}, x_{2}\right)$ that includes x_{0}.

One sees that the conditions of this theorem are not too restrictive, so that the theorem tends to apply, providing us with the existence and uniqueness of solution. But not always!

Example 1 Solve

$$
\begin{gathered}
y^{\prime}=\sqrt{y} \\
y(0)=0
\end{gathered}
$$

The function $f(x, y)=\sqrt{y}$ is continuous (for $y \geq 0$), but its partial derivative in $y, f_{y}(x, y)=\frac{1}{2 \sqrt{y}}$, is not even defined at the initial point $(0,0)$. The theorem does not apply. One checks that the function $y=\frac{x^{2}}{4}$ solves our initial value problem (for $x \geq 0$). But here is another solution: $y(x)=0$. (Having two different solutions of the same initial value problem is like having two primadonnas in the same theater.)

Observe that the theorem guarantees existence of solution only on some interval (it is not "happily ever after").
Example 2 Solve for $y=y(t)$

$$
\begin{gathered}
y^{\prime}=y^{2} \\
y(0)=1
\end{gathered}
$$

Here $f(t, y)=y^{2}$, and $f_{y}(t, y)=2 y$ are continuous functions. The theorem applies. By separation of variables, we determine the solution $y(t)=\frac{1}{1-t}$. As time t approaches 1 , this solution disappears, by going to infinity. This phenomenon is sometimes called the blow up in finite time.

1.7 Numerical Solution by Euler's method

We have learned a number of techniques for solving differential equations, however the sad truth is that most equations cannot be solved (by a formula).
Even a simple looking equation like

$$
\begin{equation*}
y^{\prime}=x+y^{3} \tag{7.1}
\end{equation*}
$$

$$
\begin{equation*}
y(0)=1 \tag{7.2}
\end{equation*}
$$

it can be easily approximated using the method developed in this section (by the Theorem 1.6.1, such solution exists, and it is unique, because $f(x, y)=$ $x+y^{3}$ and $f_{y}(x, y)=3 y^{2}$ are continuous functions).

In general, we shall deal with the problem

$$
\begin{aligned}
& y^{\prime}=f(x, y) \\
& y\left(x_{0}\right)=y_{0} .
\end{aligned}
$$

11 Here the function $f(x, y)$ is given (in the example above we had $f(x, y)=$ $x+y^{3}$), and the initial condition prescribes that solution is equal to a given number y_{0} at a given point x_{0}. Fix a step size h, and let $x_{1}=x_{0}+h$, $x_{2}=x_{0}+2 h, \ldots, x_{n}=x_{0}+n h$. We will approximate $y\left(x_{n}\right)$, the value of the solution at x_{n}. We call this approximation y_{n}. To go from the point $\left(x_{n}, y_{n}\right)$ to the point $\left(x_{n+1}, y_{n+1}\right)$ on the graph of solution $y(x)$, we use the tangent line approximation:

$$
y_{n+1} \approx y_{n}+y^{\prime}\left(x_{n}\right)\left(x_{n+1}-x_{n}\right)=y_{n}+y^{\prime}\left(x_{n}\right) h=y_{n}+f\left(x_{n}, y_{n}\right) h .
$$

(We expressed $y^{\prime}\left(x_{n}\right)=f\left(x_{n}, y_{n}\right)$ from the differential equation. Because of the approximation errors, the point $\left(x_{n}, y_{n}\right)$ is not exactly lying on the solution curve $y=y(x)$, but we pretend that it does.) The resulting formula is easy to implement, it is just one computational loop, starting with the initial point $\left(x_{0}, y_{0}\right)$.

One continues the computations until the points x_{n} go as far as needed. Decreasing the step size h, will improve the accuracy. Smaller h 's will require more steps, but with the power of modern computers, that is not a problem, particularly for simple examples, like the problem (7.1), (7.2), which is

Figure 1.3: The numerical solution of $y^{\prime}=x+y^{3}, y(0)=1$

1 discussed next. In that example $x_{0}=0, y_{0}=1$. If we choose $h=0.05$, then $x_{1}=0.05$, and

$$
y_{1}=y_{0}+f\left(x_{0}, y_{0}\right) h=1+\left(0+1^{3}\right) 0.05=1.05 .
$$

${ }_{3}$ Continuing, we have $x_{2}=0.1$, and

$$
y_{2}=y_{1}+f\left(x_{1}, y_{1}\right) h=1.05+\left(0.05+1.05^{3}\right) 0.05 \approx 1.11 .
$$

Next, $x_{3}=0.15$, and

$$
y_{3}=y_{2}+f\left(x_{2}, y_{2}\right) h=1.11+\left(0.1+1.11^{3}\right) 0.05 \approx 1.18 .
$$

These computations imply that $y(0.05) \approx 1.05, y(0.1) \approx 1.11$, and $y(1.15) \approx$
6 1.18. If you need to approximate the solution on the interval $(0,0.4)$, you 7 have to make five more steps. Of course, it is better to program a computer. A computer computation reveals that this solution tends to infinity (blows up) at $x \approx 0.47$. The Figure 1.3 presents the solution curve, computed by Mathematica, as well as the three points we computed by Euler's method.

Euler's method is using the tangent line approximation, or the first two terms of the Taylor series approximation. One can use more terms of the Taylor series, and develop more sophisticated methods (which is done in books on numerical methods, and implemented in software packages, like Mathematica). But here is a question: if it is so easy to compute numerical
approximation of solutions, why bother learning analytical solutions? The reason is that we seek not just to solve a differential equation, but to understand it. What happens if the initial condition changes? The equation may include some parameters, what happens if they change? What happens to solutions in the long term?

1.7.1 Problems

7 I. Determine if the equation is homogeneous, and if it is, solve it.

8

9

1. $\frac{d y}{d x}=\frac{y+2 x}{x}$, with $x>0$.

Answer. $y=x(2 \ln x+c)$.
2. $(x+y) d x-x d y=0 . \quad$ Answer. $y=x(\ln |x|+c)$.
3. $\frac{d y}{d x}=\frac{x^{2}-x y+y^{2}}{x^{2}} . \quad$ Answer. $y=x\left(1-\frac{1}{\ln |x|+c}\right)$, and $y=x$.
4. $\frac{d y}{d x}=\frac{y^{2}+2 x}{y}$.
5. $y^{\prime}=\frac{y^{2}}{x^{2}}+\frac{y}{x}, y(1)=1 . \quad$ Answer. $y=\frac{x}{1-\ln x}$.
6. $y^{\prime}=\frac{y^{2}}{x^{2}}+\frac{y}{x}, y(-1)=1 . \quad$ Answer. $y=-\frac{x}{1+\ln |x|}$.
7. $\frac{d y}{d x}=\frac{y^{2}+2 x y}{x^{2}}, y(1)=2$.

Answer. $y=\frac{2 x^{2}}{3-2 x}$.
8. $x y^{\prime}-y=x \tan \frac{y}{x} . \quad$ Answer. $\sin \frac{y}{x}=c x$.
9. $x y^{\prime}=\frac{x^{2}}{x+y}+y . \quad$ Answer. $y=-x \pm x \sqrt{2 \ln |x|+c}$.
10. $y^{\prime}=\frac{x^{2}+y^{2}}{x y}, y(1)=-2 . \quad$ Answer. $y=-x \sqrt{2 \ln x+4}$.
11. $y^{\prime}=\frac{y+x^{-1 / 2} y^{3 / 2}}{\sqrt{x y}}$, with $x>0, y>0$. Answer. $2 \sqrt{\frac{y}{x}}=\ln x+c$.
12. $x^{3} y^{\prime}=y^{2}\left(y-x y^{\prime}\right)$. Answer. $\ln |y|+\frac{1}{2}\left(\frac{y}{x}\right)^{2}=c$, and $y=0$.

13*. A function $f(x, y)$ is called quasi-homogeneous if for any constant α

$$
f\left(\alpha x, \alpha^{p} y\right)=\alpha^{p-1} f(x, y),
$$

1

2
2 (i) Letting $\alpha=\frac{1}{x}$, and $v=\frac{y}{x^{p}}$, verify that

$$
f(x, y)=x^{p-1} g(v)
$$

3 where $g(v)$ is some function of one variable.
4 (ii) Consider a quasi-homogeneous equation

$$
y^{\prime}=f(x, y)
$$

5 where $f(x, y)$ is a quasi-homogeneous function. Show that a change of vari6 ables $v=\frac{y}{x^{p}}$ produces a separable equation.

7 (iii) Solve

$$
y^{\prime}=x+\frac{y^{2}}{x^{3}}
$$

8 Hint: Denoting $f(x, y)=x+\frac{y^{2}}{x^{3}}$, we have $f\left(\alpha x, \alpha^{2} y\right)=\alpha f(x, y)$, so that ${ }^{9} \quad p=2$. Letting $v=\frac{y}{x^{2}}$, or $y=x^{2} v$, we get

$$
x v^{\prime}=1-2 v+v^{2}
$$

II. Solve the following Bernoulli's equations.

1. $y^{\prime}(t)=3 y-y^{2}$.
Answer. $y=\frac{3}{1+c e^{-3 t}}$, and $y=0$.
2. $y^{\prime}-\frac{1}{x} y=y^{2}, y(2)=-2$.

Answer. $y=\frac{2 x}{2-x^{2}}$.
3. $x y^{\prime}+y+x y^{2}=0, y(1)=2$.

$$
\text { Answer. } y=\frac{2}{x(1+2 \ln x)}
$$

4. $y^{\prime}+y=x y^{3}, y(0)=-1$.

Answer. $y=-\frac{\sqrt{2}}{\sqrt{2 x+e^{2 x}+1}}$.
5. $\frac{d y}{d x}=\frac{y^{2}+2 x}{y}$. \quad Answer. $y= \pm \sqrt{-1-2 x+c e^{2 x}}$.
6. $y^{\prime}+x \sqrt[3]{y}=3 y$. Answer. $y= \pm\left(\frac{x}{3}+\frac{1}{6}+c e^{2 x}\right)^{\frac{3}{2}}$, and $y=0$.

Hint: When dividing the equation by $\sqrt[3]{y}$, one needs to check if $y=0$ is a solution, and indeed it is.

1
7. $y^{\prime}+y=-x y^{2}$. Answer. $y=\frac{1}{c e^{x}-x-1}$, and $y=0$.
8. $y^{\prime}+x y=y^{3}, y(1)=-\frac{1}{e}$. Answer. $y=-\frac{1}{\sqrt{-2 e^{x^{2}} \int_{1}^{x} e^{-t^{2}} d t+e^{\left(x^{2}+1\right)}}}$.
9. The equation

$$
\frac{d y}{d x}=\frac{y^{2}+2 x}{y}
$$

III. 1. Use parametric integration to solve

$$
y^{\prime 3}+y^{\prime}=x .
$$

19
${ }_{9}$ Answer. $x=t^{3}+t, y=\frac{3}{4} t^{4}+\frac{1}{2} t^{2}+c$.

26 8. Temperature in a room is maintained at 70°. If an object at 100° is 27 placed in this room, it cools down to 80° in 5 minutes. A bowl of soup at
190° is placed in this room. The soup is ready to eat at 130°. How many minutes one should wait?

Hint: If $y(t)$ is the temperature after t minutes, it is natural to assume that the speed of cooling is proportional to the difference of temperatures, so that

$$
y^{\prime}=-k(y-70)
$$

for some constant $k>0$. We are given that $y(5)=80$, provided that $y(0)=100$. This allows us to calculate $k=\frac{\ln 3}{5}$. Then assuming that $y(0)=190$, one calculates t such that $y(t)=130$.
Answer. $t=5 \frac{\ln 2}{\ln 3} \approx 3.15$ minutes.
9. Find all curves $y=f(x)$ with the following property: if you draw a tangent line at any point $\left(x_{0}, f\left(x_{0}\right)\right)$ on this curve, and continue the tangent line until it intersects the x-axis, then the point of intersection is $x_{0} / 2$.
Answer. $y=c x^{2}$. (A family of parabolas.)
10. Find all positive decreasing functions $y=f(x)$, with the following property: in the triangle formed by the vertical line going down from the curve, the x-axis and the tangent line to this curve, the sum of two sides adjacent to the right angle is a constant, equal to $b>0$.
Answer. $y-b \ln y=x+c$.
11. Find all positive decreasing functions $y=f(x)$, with the following property: for the tangent line at $\left(x_{0}, f\left(x_{0}\right)\right)$, the length of the segment between the point $\left(x_{0}, f\left(x_{0}\right)\right)$ and the y-axis is equal to 1 , for all $0<x_{0} \leq 1$.

Answer. $y=-\sqrt{1-x^{2}}-\ln x+\ln \left[1+\sqrt{1-x^{2}}\right]+c$. This historic curve (first studied by Huygens in 1692) is called the tractrix.
12. Find all curves $y=f(x)$ such that the point of intersection of the tangent line at $\left(x_{0}, f\left(x_{0}\right)\right)$ with the x-axis is equidistant from the origin and the point $\left(x_{0}, f\left(x_{0}\right)\right)$, at any x_{0}.
Answer. $x^{2}+y^{2}=c y$, a family of circles. (Hint: The differential equation $y^{\prime}=\frac{2 x y}{x^{2}-y^{2}}$ is homogeneous.)
13. Solve Riccati's equation

$$
y^{\prime}+2 e^{x} y-y^{2}=e^{x}+e^{2 x} .
$$

${ }_{1}$ Answer. $y=e^{x}$, and $y=e^{x}-\frac{1}{x+c}$.
2 14. Solve Riccati's equation

$$
y^{\prime}+\left(2 e^{x}+2\right) y-e^{x} y^{2}=e^{x}+2 .
$$

3 Answer. $y=1$, and $y=1+\frac{1}{e^{x}+c e^{2 x}}$.
4 15*. (From the Putnam competition, 2009) Show that any solution of

$$
y^{\prime}=\frac{x^{2}-y^{2}}{x^{2}\left(y^{2}+1\right)}
$$

5 satisfies $\lim _{x \rightarrow \infty} y(x)=\infty$.
6 Hint: Using "partial fractions", rewrite this equation as

$$
y^{\prime}=\frac{1+1 / x^{2}}{y^{2}+1}-\frac{1}{x^{2}} .
$$

7 Then $y^{\prime}(x)>-\frac{1}{x^{2}}$, which precludes $y(x)$ from going to $-\infty$. So, either $y(x)$ is bounded, or it goes to $+\infty$, as $x \rightarrow \infty$ (possibly along some sequence). If $y(x)$ is bounded when x is large, then $y^{\prime}(x)$ exceeds a positive constant for all large x, and therefore $y(x)$ tends to infinity, a contradiction (observe that $1 / x^{2}$ becomes negligible for large x). Finally, if $y(x)$ failed to tend to infinity as $x \rightarrow \infty$ (while going to infinity over a subsequence), it would have infinitely many points of local minimum, at which $y=x$, a contradiction.
16. Solve the integral equation

$$
y(x)=\int_{1}^{x} y(t) d t+x+1 .
$$

2. $(x+\sin y) d x+(x \cos y-2 y) d y=0$.

Answer. $\frac{1}{2} x^{2}+x \sin y-y^{2}=c$.
3. $\frac{x}{x^{2}+y^{4}} d x+\frac{2 y^{3}}{x^{2}+y^{4}} d y=0 . \quad$ Answer. $x^{2}+y^{4}=c$.
4. Find a simpler solution for the preceding problem.
5. $(6 x y-\cos y) d x+\left(3 x^{2}+x \sin y+1\right) d y=0$. Answer. $3 x^{2} y-x \cos y+y=c$.
6. $(2 x-y) d x+(2 y-x) d y=0, y(1)=2 . \quad$ Answer. $x^{2}+y^{2}-x y=3$.
7. $2 x\left(1+\sqrt{x^{2}-y}\right) d x-\sqrt{x^{2}-y} d y=0$. Answer. $x^{2}+\frac{2}{3}\left(x^{2}-y\right)^{\frac{3}{2}}=c$.
8. $\left(y e^{x y} \sin 2 x+2 e^{x y} \cos 2 x+2 x\right) d x+\left(x e^{x y} \sin 2 x-2\right) d y=0, \quad y(0)=-2$.

Answer. $e^{x y} \sin 2 x+x^{2}-2 y=4$.
9. Find the value of b for which the following equation is exact, and then solve the equation, using that value of b

$$
\left(y e^{x y}+2 x\right) d x+b x e^{x y} d y=0 .
$$

Answer. $b=1, y=\frac{1}{x} \ln \left(c-x^{2}\right)$.
10. Verify that the equation

$$
(2 \sin y+3 x) d x+x \cos y d y=0
$$

is not exact, however if one multiplies it by x, the equation becomes exact, and it can be solved. Answer. $x^{2} \sin y+x^{3}=c$.
11. Verify that the equation

$$
(x-3 y) d x+(x+y) d y=0
$$

is not exact, however it can be solved as a homogeneous equation.
Answer. $\ln |y-x|+\frac{2 x}{x-y}=c$.
V. 1. Find three solutions of the initial value problem

$$
y^{\prime}=(y-1)^{1 / 3}, \quad y(1)=1 .
$$

Is it desirable in applications to have three solutions of the same initial value problem? What "went wrong"? (Why the existence and uniqueness Theorem 1.6.1 does not apply here?)

1 Answer. $y(x)=1$, and $y(x)=1 \pm\left(\frac{2}{3} x-\frac{2}{3}\right)^{\frac{3}{2}}$.
2. Find all y_{0}, for which the following problem has a unique solution

$$
y^{\prime}=\frac{x}{y^{2}-2 x}, \quad y(2)=y_{0} .
$$

3
Hint: Apply the existence and uniqueness Theorem 1.6.1.
4 Answer. All y_{0} except ± 2.
5 3. Show that the function $\frac{x|x|}{4}$ solves the problem

$$
\begin{aligned}
& y^{\prime}=\sqrt{|y|} \\
& y(0)=0,
\end{aligned}
$$

6 for all x. Can you find another solution?
7 Hint: Consider separately the cases when $x>0, x<0$, and $x=0$.
8 4. Show that the problem (here $y=y(t)$)

$$
\begin{gathered}
y^{\prime}=y^{2 / 3} \\
y(0)=0
\end{gathered}
$$

9 has infinitely many solutions.
Hint: Consider $y(t)$ that is equal to zero for $t<a$, and to $\frac{(t-a)^{3}}{27}$ for $t \geq a$,
5. (i) Apply Euler's method to

$$
y^{\prime}=x(1+y), \quad y(0)=1 .
$$

${ }_{13}$ Take $h=0.25$, and do four steps, obtaining an approximation for $y(1)$.
14 (ii) Take $h=0.2$, and do five steps of Euler's method, obtaining another
15 approximation for $y(1)$.
16 (iii) Solve the above problem exactly, and determine which one of the two
${ }_{17}$ approximations is better.
18 6. Write a computer program to implement Euler's method for

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0} .
$$

19 It involves a simple loop: $y_{n+1}=y_{n}+h f\left(x_{0}+n h, y_{n}\right), n=0,1,2, \ldots$.

1.8* The Existence and Uniqueness Theorem

$$
\begin{align*}
& y^{\prime}=f(x, y) \tag{8.3}\\
& y\left(x_{0}\right)=y_{0},
\end{align*}
$$

we prove a more general existence and uniqueness theorem than the Theorem 1.6.1 stated above.

Define a rectangular box B around the initial point $\left(x_{0}, y_{0}\right)$ to be the set of points (x, y), satisfying $x_{0}-a \leq x \leq x_{0}+a$ and $y_{0}-b \leq y \leq y_{0}+b$, for some positive a and b. It is known from calculus that in case $f(x, y)$ is continuous on B, it is bounded on B, so that for some constant $M>0$

$$
\begin{equation*}
|f(x, y)| \leq M, \text { for all points }(x, y) \text { in } B . \tag{8.4}
\end{equation*}
$$

Theorem 1.8.1 Assume that the function $f(x, y)$ is continuous on B, and for some constant $L>0$, it satisfies (the Lipschitz condition)

$$
\begin{equation*}
\left|f\left(x, y_{2}\right)-f\left(x, y_{1}\right)\right| \leq L\left|y_{2}-y_{1}\right|, \tag{8.5}
\end{equation*}
$$

for any two points $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ in B. Then the initial value problem (8.3) has a unique solution, which is defined for x on the interval (x_{0} $\left.\frac{b}{M}, x_{0}+\frac{b}{M}\right)$, in case $\frac{b}{M}<a$, and on the interval $\left(x_{0}-a, x_{0}+a\right)$ if $\frac{b}{M} \geq a$.

Proof: Assume, for definiteness, that $\frac{b}{M}<a$, and the other case is similar. We shall prove the existence of solutions first, and let us restrict to the case $x>x_{0}$ (the case when $x<x_{0}$ is similar). Integrating the equation in (8.3) over the interval $\left(x_{0}, x\right)$, we convert the initial value problem (8.3) into an equivalent integral equation

$$
\begin{equation*}
y(x)=y_{0}+\int_{x_{0}}^{x} f(t, y(t)) d t . \tag{8.6}
\end{equation*}
$$

(If $y(x)$ solves (8.6), then $y\left(x_{0}\right)=y_{0}$, and by differentiation $y^{\prime}=f(x, y)$.) By (8.4), obtain

$$
\begin{equation*}
-M \leq f(t, y(t)) \leq M \tag{8.7}
\end{equation*}
$$

and then any solution of (8.6) lies between two straight lines

$$
y_{0}-M\left(x-x_{0}\right) \leq y(x) \leq y_{0}+M\left(x-x_{0}\right) .
$$

1. For $x_{0} \leq x \leq x_{0}+\frac{b}{M}$ these lines stay in the box B, reaching its upper and lower boundaries at $x=x_{0}+\frac{b}{M}$. (In the other case, when $\frac{b}{M} \geq a$, these lines stay in B for all $x_{0} \leq x \leq x_{0}+a$.) We denote $\varphi(x)=y_{0}+M\left(x-x_{0}\right)$, 4 and call this function a supersolution, while $\psi(x)=y_{0}-M\left(x-x_{0}\right)$ is called 5 a subsolution.

The functions $\varphi(x)$ and $\psi(x)$ exiting the box B

1. A special case. Let us make an additional assumption that $f(x, y)$ is 8 increasing in y, so that if $y_{2}>y_{1}$, then $f\left(x, y_{2}\right)>f\left(x, y_{1}\right)$, for any two points $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ in B. We shall construct a solution of (8.3) as the limit of a sequence of iterates $\psi(x), y_{1}(x), y_{2}(x), \ldots, y_{n}(x), \ldots$, defined as follows

$$
y_{1}(x)=y_{0}+\int_{x_{0}}^{x} f(t, \psi(t)) d t
$$

$$
y_{2}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{1}(t)\right) d t, \ldots, y_{n}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{n-1}(t)\right) d t
$$

${ }_{13}$ We claim that for all x on the interval $x_{0}<x \leq x_{0}+\frac{b}{M}$, the following inequalities hold

$$
\begin{equation*}
\psi(x) \leq y_{1}(x) \leq y_{2}(x) \leq \cdots \leq y_{n}(x) \leq \cdots \tag{8.8}
\end{equation*}
$$

15
Indeed, $f(t, \psi(t)) \geq-M$, by (8.7), and then

$$
y_{1}(x)=y_{0}+\int_{x_{0}}^{x} f(t, \psi(t)) d t \geq y_{0}-M\left(x-x_{0}\right)=\psi(x),
$$

$$
\begin{equation*}
\psi(x) \leq y_{1}(x) \leq y_{2}(x) \leq \cdots \leq y_{n}(x) \leq \cdots \leq \varphi(x) \tag{8.9}
\end{equation*}
$$

$$
\begin{equation*}
y_{n}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{n-1}(t)\right) d t \tag{8.10}
\end{equation*}
$$

concluding that $y(x)$ gives the desired solution of the integral equation (8.6).
(If one starts the recurrence relation (8.10) with the supersolution $\phi(x)$, one obtains similarly a decreasing sequence of iterates converging to a solution of (8.6).)
2. The general case. Define $g(x, y)=f(x, y)+A y$. If we choose the constant A large enough, then the new function $g(x, y)$ will be increasing in y, for $(x, y) \in B$. Indeed, using the Lipschitz condition (8.5),

$$
g\left(x, y_{2}\right)-g\left(x, y_{1}\right)=f\left(x, y_{2}\right)-f\left(x, y_{1}\right)+A\left(y_{2}-y_{1}\right)
$$

1
for any two points $\left(x, y_{1}\right)$ and $\left(x, y_{2}\right)$ in B, provided that $A>L$, and $y_{2}>y_{1}$. We now consider an equivalent equation (recall that $g(x, y)=f(x, y)+A y$)

$$
y^{\prime}+A y=f(x, y)+A y=g(x, y) .
$$

4 Multiplying both sides by the integrating factor $e^{A x}$, we put this equation 5 into the form

$$
\frac{d}{d x}\left[e^{A x} y\right]=e^{A x} g(x, y)
$$

Set $z(x)=e^{A x} y(x)$, then $y(x)=e^{-A x} z(x)$, and the new unknown function $z(x)$ satisfies

$$
\begin{gather*}
z^{\prime}=e^{A x} g\left(x, e^{-A x} z\right) \tag{8.11}\\
z\left(x_{0}\right)=e^{A x_{0}} y_{0} .
\end{gather*}
$$

8 The function $e^{A x} g\left(x, e^{-A x} z\right)$ is increasing in z. The special case applies, so that the solution $z(x)$ of (8.11) exists. Then $y(x)=e^{-A x} z(x)$ gives the desired solution of (8.3).

Finally, we prove the uniqueness of solution. Let $u(x)$ be another solution of (8.6) on the interval $\left(x_{0}, x_{0}+\frac{b}{M}\right)$, so that

$$
u(x)=y_{0}+\int_{x_{0}}^{x} f(t, u(t)) d t .
$$

${ }_{3}$ Subtracting this from (8.6), gives

$$
y(x)-u(x)=\int_{x_{0}}^{x}[f(t, y(t))-f(t, u(t))] d t .
$$

${ }^{14}$ Assume first that x is in $\left[x_{0}, x_{0}+\frac{1}{2 L}\right]$. Then using the Lipschitz condition 5 (8.5), we estimate

$$
\left.|y(x)-u(x)| \leq \int_{x_{0}}^{x}|f(t, y(t))-f(t, u(t))| d t \leq L \int_{x_{0}}^{x} \mid y(t)\right)-u(t) \mid d t
$$

$$
\leq L\left(x-x_{0}\right) \max _{\left[x_{0}, x_{0}+\frac{1}{2 L}\right]}|y(x)-u(x)| \leq \frac{1}{2} \max _{\left[x_{0}, x_{0}+\frac{1}{2 L}\right]}|y(x)-u(x)| .
$$

17
It follows that

$$
\max _{\left[x_{0}, x_{0}+\frac{1}{2 L}\right]}|y(x)-u(x)| \leq \frac{1}{2} \max _{\left[x_{0}, x_{0}+\frac{1}{2 L}\right]}|y(x)-u(x)|
$$

$$
\begin{equation*}
u(x) \leq K+\int_{x_{0}}^{x} a(t) u(t) d t, \text { for } x \geq x_{0} \tag{8.12}
\end{equation*}
$$

Then

$$
\begin{equation*}
u(x) \leq K e^{\int_{x_{0}}^{x} a(t) d t}, \text { for } x \geq x_{0} \tag{8.13}
\end{equation*}
$$

3 Proof: Divide the inequality (8.12) by its right hand side (which is positive)

$$
\frac{a(x) u(x)}{K+\int_{x_{0}}^{x} a(t) u(t) d t} \leq a(x)
$$

Integrating both sides over $\left(x_{0}, x\right)$ (the numerator of the fraction on the left is equal to the derivative of its denominator), gives

$$
\ln \left(K+\int_{x_{0}}^{x} a(t) u(t) d t\right)-\ln K \leq \int_{x_{0}}^{x} a(t) d t
$$

which implies that

$$
K+\int_{x_{0}}^{x} a(t) u(t) d t \leq K e^{\int_{x_{0}}^{x} a(t) d t}
$$

Using the inequality (8.12) once more, we get (8.13).
In addition to the initial value problem (8.3), with $f(x, y)$ satisfying the Lipschitz condition (8.5), consider

$$
\begin{align*}
& z^{\prime}=f(x, z) \tag{8.14}\\
& z\left(x_{0}\right)=z_{0}
\end{align*}
$$

1
2

If $z_{0}=y_{0}$, then $z(x)=y(x)$ for all $x \in B$, by the Theorem 1.8.1 (observe that the Lipschitz condition (8.5) implies the continuity of $f(x, y)$ on B). Now suppose that $z_{0} \neq y_{0}$, but $\left|z_{0}-y_{0}\right|$ is small. We claim that $z(x)$ and $y(x)$ will remain close over any bounded interval $\left(x_{0}, x_{0}+p\right)$, provided that both solutions exist on that interval, and $\left|z_{0}-y_{0}\right|$ is small enough. This fact is known as the continuous dependence of solutions, with respect to the initial condition.

We begin the proof of the claim by observing that $z(x)$ satisfies

$$
z(x)=z_{0}+\int_{x_{0}}^{x} f(t, z(t)) d t
$$

From this formula we subtract (8.6), and then estimate

$$
z(x)-y(x)=z_{0}-y_{0}+\int_{x_{0}}^{x}[f(t, z(t))-f(t, y(t))] d t
$$

$$
|z(x)-y(x)| \leq\left|z_{0}-y_{0}\right|+\int_{x_{0}}^{x}|f(t, z(t))-f(t, y(t))| d t
$$

$$
\leq\left|z_{0}-y_{0}\right|+\int_{x_{0}}^{x} L|z(t)-y(t)| d t
$$

(We used the triangle inequality for numbers: $|a+b| \leq|a|+|b|$, the triangle inequality for integrals: $\left|\int_{x_{0}}^{x} g(t) d t\right| \leq \int_{x_{0}}^{x}|g(t)| d t$, and the condition (8.5).) By the Bellman-Gronwall lemma

$$
|z(x)-y(x)| \leq\left|z_{0}-y_{0}\right| e^{L\left(x-x_{0}\right)} \leq\left|z_{0}-y_{0}\right| e^{L p}, \text { for } x \in\left(x_{0}, x_{0}+p\right)
$$

so that $z(x)$ and $y(x)$ remain close over the interval $\left(x_{0}, x_{0}+p\right)$, provided that $\left|z_{0}-y_{0}\right|$ is small enough.

1.8.1 Problems

1. Assume that the function $u(x) \geq 0$ is continuous for $x \geq 1$, and for some number $K>0$, we have

$$
x u(x) \leq K+\int_{1}^{x} u(t) d t, \text { for } x \geq 1
$$

Show that $u(x) \leq K$, for $x \geq 1$.
2. Assume that the functions $a(x) \geq 0$, and $u(x) \geq 0$ are continuous for $x \geq x_{0}$, and we have

$$
u(x) \leq \int_{x_{0}}^{x} a(t) u(t) d t, \text { for } x \geq x_{0}
$$

1 Show that $u(x)=0$, for $x \geq x_{0}$. Then give an alternative proof of the 2 uniqueness part of the Theorem 1.8.1.
Hint: Let $K \rightarrow 0$ in the Bellman-Gronwall lemma.
3. Assume that the functions $a(x) \geq 0$, and $u(x) \geq 0$ are continuous for $x \geq x_{0}$, and we have

$$
u(x) \leq \int_{x_{0}}^{x} a(t) u^{2}(t) d t, \text { for } x \geq x_{0}
$$

6 Show that $u(x)=0$, for $x \geq x_{0}$.
7 Hint: Observe that $u\left(x_{0}\right)=0$. When t is close to $x_{0}, u(t)$ is small. But then $u^{2}(t)<u(t)$. (Alternatively, one may treat the function $a(t) u(t)$ as known, and use the preceding problem.)
4. Show that if a function $x(t)$ satisfies

$$
0 \leq \frac{d x}{d t} \leq x^{2} \text { for all } t, \text { and } x(0)=0
$$

then $x(t)=0$ for all $t \in(-\infty, \infty)$.
Hint: Show that $x(t)=0$ for $t>0$. In case $t<0$, introduce new variables y and s, by setting $x=-y$ and $t=-s$, so that $s>0$.
5. Assume that the functions $a(x) \geq 0$, and $u(x) \geq 0$ are continuous for $x \geq x_{0}$, and we have

$$
\begin{equation*}
u(x) \leq K+\int_{x_{0}}^{x} a(t)[u(t)]^{m} d t, \text { for } x \geq x_{0} \tag{8.15}
\end{equation*}
$$

with some constants $K>0$ and $0<m<1$. Show that

$$
u(x) \leq\left[K^{1-m}+(1-m) \int_{x_{0}}^{x} a(t) d t\right]^{\frac{1}{1-m}}, \text { for } x \geq x_{0}
$$

17 This fact is known as Bihari's inequality. Show also that the same inequality holds in case $m>1$, under an additional assumption that

$$
K^{1-m}+(1-m) \int_{x_{0}}^{x} a(t) d t>0, \quad \text { for all } x \geq x_{0}
$$

1 6. For the initial value problem

$$
y^{\prime}=f(x, y), \quad y\left(x_{0}\right)=y_{0}
$$

2 or the corresponding integral equation

$$
y(x)=y_{0}+\int_{x_{0}}^{x} f(t, y(t)) d t
$$

the Picard iterations are defined by the recurrence relation

$$
y_{n+1}(x)=y_{0}+\int_{x_{0}}^{x} f\left(t, y_{n}(t)\right) d t, \quad n=0,1,2, \ldots,
$$

4

5

6
starting with $y_{0}(x)=y_{0}$. (Picard's iterations are traditionally used to prove the existence and uniqueness Theorem 1.8.1.)
(i) Compute the Picard iterations for

$$
y^{\prime}=y, \quad y(0)=1,
$$

and compare them with the exact solution.
(ii) Compute the Picard iterates $y_{1}(x)$ and $y_{2}(x)$ for

$$
y^{\prime}=2 x y^{2}, \quad y(0)=1,
$$

and compare them with the exact solution, for $|x|$ small.
Hint: The exact solution may be written as a series $y(x)=1+x^{2}+x^{4}+$ $x^{6}+\cdots$.
Answer. $y_{0}(x)=1, y_{1}(x)=1+x^{2}, y_{2}(x)=1+x^{2}+x^{4}+\frac{x^{6}}{3}$. The difference $\left|y(x)-y_{2}(x)\right|$ is very small, for $|x|$ small.
7. Let $y(x)$ be the solution for $x>0$ of the equation

$$
y^{\prime}=f(x, y), y(0)=y_{0} .
$$

Assume that $|f(x, y)| \leq a(x)|y|+b(x)$, with positive functions $a(x)$ and $b(x)$ satisfying $\int_{0}^{\infty} a(x) d x<\infty, \int_{0}^{\infty} b(x) d x<\infty$. Show that $|y(x)|$ is bounded for all $x>0$.

Hint: Apply the Bellman-Gronwall lemma to the corresponding integral equation.

1 8. Assume that for $x \geq x_{0}$ the continuous functions $y(x), f(x)$ and $g(x)$ are 2 non-negative, and

$$
y(x) \leq f(x)+\int_{x_{0}}^{x} g(t) y(t) d t, \quad \text { for } x \geq x_{0}
$$

3 Show that

$$
y(x) \leq f(x)+\int_{x_{0}}^{x} g(t) f(t) e^{\int_{t}^{x} g(u) d u} d t, \quad \text { for } x \geq x_{0}
$$

4 Hint: Denote $I(x)=\int_{x_{0}}^{x} g(t) y(t) d t$. Since $I^{\prime}(x)=g(x) y(x) \leq g(x) I(x)+$ ${ }_{5} g(x) f(x)$, it follows that

$$
\frac{d}{d x}\left[e^{-\int_{x_{0}}^{x} g(u) d u} I(x)\right] \leq e^{-\int_{x_{0}}^{x} g(u) d u} g(x) f(x) .
$$

${ }_{6}$ Integration over $\left[x_{0}, x\right]$ gives $I(x) \leq \int_{x_{0}}^{x} g(t) f(t) e^{\int_{t}^{x} g(u) d u} d t$.

Chapter 2

Second Order Equations

The central topic of this chapter involves linear second order equations with constant coefficients. These equations, while relatively easy to solve, are of great importance, particularly for their role in modeling mechanical and electrical oscillations. Several sections deal with such applications. Some non-standard applications are also included: the motion of a meteor, coupled pendulums, and the path of a military drone. Then we study Euler's equation with variable coefficients, and higher order equations. The chapter concludes with a more advanced topic of oscillation theory.

2.1 Special Second Order Equations

Probably the simplest second order equation is

$$
y^{\prime \prime}(x)=0 .
$$

Taking the antiderivative

$$
y^{\prime}(x)=c_{1} .
$$

We denoted an arbitrary constant by c_{1}, because we expect another arbitrary constant to make an appearance. Indeed, taking another antiderivative, we get the general solution

$$
y(x)=c_{1} x+c_{2} .
$$

This example suggests that general solutions of second order equations depend on two arbitrary constants.

General second order equations for the unknown function $y=y(x)$ can often be written as

$$
y^{\prime \prime}=f\left(x, y, y^{\prime}\right),
$$

where f is a given function of its three variables. One cannot expect all such equations to be solvable, as we could not even solve all first order equations. In this section we study special second order equations, which are reducible to first order equations, greatly increasing their chances to be solved.

2.1.1 y is not present in the equation

Let us solve for $y(t)$ the equation

$$
t y^{\prime \prime}-y^{\prime}=t^{2} .
$$

This is a first order equation for $v(t)$! This equation is linear, so that we solve it as usual. Once $v(t)$ is calculated, the solution $y(t)$ is determined by integration. Details:

$$
v^{\prime}-\frac{1}{t} v=t
$$

$$
\mu(t)=e^{-\int \frac{1}{t} d t}=e^{-\ln t}=e^{\ln \frac{1}{t}}=\frac{1}{t},
$$

$$
\frac{d}{d t}\left[\frac{1}{t} v\right]=1
$$

$$
\frac{1}{t} v=t+c_{1}
$$

$$
y^{\prime}=v=t^{2}+c_{1} t
$$

$$
y(t)=\frac{t^{3}}{3}+c_{1} \frac{t^{2}}{2}+c_{2} .
$$

Here c_{1} and c_{2} are arbitrary constants.
For the general case of equations with y not present

$$
y^{\prime \prime}=f\left(x, y^{\prime}\right),
$$

the change of variables $y^{\prime}=v$ results in the first order equation

$$
v^{\prime}=f(x, v) .
$$

Let us solve the following equation for $y(x)$:

$$
y^{\prime \prime}+2 x y^{\prime 2}=0
$$

Again, y is missing in this equation. Setting $y^{\prime}=v$, with $y^{\prime \prime}=v^{\prime}$, gives a first order equation:

$$
\begin{gathered}
v^{\prime}+2 x v^{2}=0 \\
\frac{d v}{d x}=-2 x v^{2}
\end{gathered}
$$

The last equation has a solution $v=0$, or $y^{\prime}=0$, giving $y=c$, the first family of solutions. Assuming that $v \neq 0$, we separate the variables

$$
\begin{gathered}
\int \frac{d v}{v^{2}} d v=-\int 2 x d x \\
-\frac{1}{v}=-x^{2}-c_{1} \\
y^{\prime}=v=\frac{1}{x^{2}+c_{1}}
\end{gathered}
$$

Let us now assume that $c_{1}>0$. Then

$$
y(x)=\int \frac{1}{x^{2}+c_{1}} d x=\frac{1}{\sqrt{c_{1}}} \arctan \frac{x}{\sqrt{c_{1}}}+c_{2}
$$

the second family of solutions. If $c_{1}=0$ or $c_{1}<0$, we get two more different formulas for solutions! Indeed, in case $c_{1}=0$, or $y^{\prime}=\frac{1}{x^{2}}$, an integration gives $y=-\frac{1}{x}+c_{3}$, the third family of solutions. In case $c_{1}<0$, we can write (replacing c_{1} by $-c_{1}^{2}$, with a new c_{1})

$$
y^{\prime}=\frac{1}{x^{2}-c_{1}^{2}}=\frac{1}{\left(x-c_{1}\right)\left(x+c_{1}\right)}=\frac{1}{2 c_{1}}\left[\frac{1}{x-c_{1}}-\frac{1}{x+c_{1}}\right]
$$

Integration gives the fourth family of solutions

$$
y=\frac{1}{2 c_{1}} \ln \left|x-c_{1}\right|-\frac{1}{2 c_{1}} \ln \left|x+c_{1}\right|+c_{4}
$$

Prescribing two initial conditions is appropriate for second order equations. Let us solve

$$
y^{\prime \prime}+2 x y^{\prime 2}=0, \quad y(0)=0, y^{\prime}(0)=1
$$

We just solved this equation, so that as above

$$
y^{\prime}(x)=\frac{1}{x^{2}+c_{1}} .
$$

From the second initial condition $y^{\prime}(0)=\frac{1}{c_{1}}=1$, giving $c_{1}=1$. It follows that $y^{\prime}(x)=\frac{1}{x^{2}+1}$, and then $y(x)=\arctan x+c_{2}$. From the first initial condition $y(0)=c_{2}=0$. Answer: $y(x)=\arctan x$.

2.1.2 x is not present in the equation

Let us solve for $y(x)$

$$
y^{\prime \prime}+y y^{\prime 3}=0
$$

All three functions appearing in the equation are functions of x, but x itself is not present in the equation. On the curve $y=y(x)$, the slope y^{\prime} is a function of x, but it is also a function of y. We set $y^{\prime}=v(y)$, and $v(y)$ will be the new unknown function. By the chain rule

$$
y^{\prime \prime}(x)=\frac{d}{d x} v(y)=v^{\prime}(y) \frac{d y}{d x}=v^{\prime} v,
$$

and our equation takes the form

$$
v^{\prime} v+y v^{3}=0
$$

This is a first order equation! To solve it, we begin by factoring

$$
v\left(v^{\prime}+y v^{2}\right)=0
$$

If the first factor is zero, $y^{\prime}=v=0$, we obtain a family of solutions $y=c$. Setting the second factor to zero

$$
\frac{d v}{d y}+y v^{2}=0
$$

gives a separable equation. We solve it by separating the variables

$$
-\int \frac{d v}{v^{2}}=\int y d y
$$

$$
\begin{gathered}
\frac{1}{v}=\frac{y^{2}}{2}+c_{1}=\frac{y^{2}+2 c_{1}}{2} \\
\frac{d y}{d x}=v=\frac{2}{y^{2}+2 c_{1}}
\end{gathered}
$$

1 To find $y(x)$ we need to solve another first order equation $\left(\frac{d y}{d x}=\frac{2}{y^{2}+2 c_{1}}\right)$.
2 Separating the variables:

$$
\int\left(y^{2}+2 c_{1}\right) d y=\int 2 d x
$$

3

4 giving a second family of solutions.
5
For the general case of equations with x not present

$$
y^{\prime \prime}=f\left(y, y^{\prime}\right),
$$

6 the change of variables $y^{\prime}=v(y)$ produces a first order equation for $v=v(y)$

$$
v v^{\prime}=f(y, v) .
$$

7
Let us solve for $y(x)$:

$$
y^{\prime \prime}=y y^{\prime}, \quad y(0)=-2, y^{\prime}(0)=2 .
$$

8 In this equation x is missing, and we could solve it as in the preceding 9 example. Instead, write this equation as

$$
\frac{d}{d x} y^{\prime}=\frac{d}{d x}\left(\frac{1}{2} y^{2}\right)
$$

10
and integrate, to get

$$
y^{\prime}(x)=\frac{1}{2} y^{2}(x)+c_{1} .
$$

11
Evaluate the last equation at $x=0$, and use the initial conditions:

$$
2=\frac{1}{2}(-2)^{2}+c_{1},
$$

12 so that $c_{1}=0$. Then

$$
\frac{d y}{d x}=\frac{1}{2} y^{2} .
$$

${ }_{13}$ Solving this separable equation gives $y=-\frac{1}{\frac{1}{2} x+c_{2}}$. Using the first initial
14 condition again, calculate $c_{2}=\frac{1}{2}$. Answer: $y=-\frac{2}{x+1}$.

1 2.1.3* The Trajectory of Pursuit

2 Problem. A car is moving along a highway (the x axis) with a constant speed a. A drone is flying in the skies (at a point (x, y), which depends 4 on time t), with a constant speed v. Find the trajectory for the drone, so 5 that the tangent line always passes through the car. Assume that the drone 6 starts at a point $\left(x_{0}, y_{0}\right)$, and the car starts at x_{0}.

7 Solution. If X gives the position of the car, we can express the slope of the s tangent line as follows $\left(\frac{d y}{d x}=-\tan \theta\right.$, where θ is the angle the tangent line makes with the x-axis)

$$
\begin{equation*}
\frac{d y}{d x}=-\frac{y}{X-x} . \tag{1.1}
\end{equation*}
$$

${ }_{11}$ Since the velocity of the car is constant, $X=x_{0}+a t$. Then (1.1) gives

$$
x_{0}+a t-x=-y \frac{d x}{d y} .
$$

12 Differentiate this formula with respect to y, and simplify (here $x=x(y)$)

$$
\begin{equation*}
\frac{d t}{d y}=-\frac{1}{a} y \frac{d^{2} x}{d y^{2}} . \tag{1.2}
\end{equation*}
$$

${ }_{13}$ On the other hand, $v=\frac{d s}{d t}$, and $d s=\sqrt{d x^{2}+d y^{2}}$, so that

$$
d t=\frac{1}{v} d s=\frac{1}{v} \sqrt{d x^{2}+d y^{2}}=-\frac{1}{v} \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} d y
$$

1 and then

$$
\begin{equation*}
\frac{d t}{d y}=-\frac{1}{v} \sqrt{\left(\frac{d x}{d y}\right)^{2}+1} \tag{1.3}
\end{equation*}
$$

2 (Observe that $\frac{d t}{d y}<0$, so that minus is needed in front of the square root.) 3 Comparing (1.2) with (1.3), and writing $x^{\prime}(y)=\frac{d x}{d y}, x^{\prime \prime}(y)=\frac{d^{2} x}{d y^{2}}$, we arrive 4 at the equation of motion for the drone

$$
y x^{\prime \prime}(y)=\frac{a}{v} \sqrt{x^{\prime 2}(y)+1} .
$$

The unknown function $x(y)$ is not present in this equation. Therefore set $x^{\prime}(y)=p(y)$, with $x^{\prime \prime}(y)=p^{\prime}(y)$, obtaining a first order equation for $p(y)$, which is solved by separating the variables

$$
y \frac{d p}{d y}=\frac{a}{v} \sqrt{p^{2}+1}
$$

$$
\int \frac{d p}{\sqrt{p^{2}+1}}=\frac{a}{v} \int \frac{d y}{y}
$$

9

10

1

$$
\begin{equation*}
\sqrt{p^{2}+1}=c y^{\frac{a}{v}}-p \tag{1.4}
\end{equation*}
$$

12
and square both sides, getting

$$
1=c^{2} y^{\frac{2 a}{v}}-2 c y^{\frac{a}{v}} p
$$

13 Solve this for $p=x^{\prime}(y)$:

$$
x^{\prime}(y)=\frac{1}{2} c y^{\frac{a}{v}}-\frac{1}{2 c} y^{-\frac{a}{v}} .
$$

14 The constant c we determine from (1.4). At $t=0, p=x^{\prime}\left(y_{0}\right)=0$, and so
${ }_{15} c=y_{0}^{-\frac{a}{v}}$. (At $t=0$, the drone is pointed vertically down, because the car is 16 directly under it.) Then

$$
x^{\prime}(y)=\frac{1}{2}\left(\frac{y}{y_{0}}\right)^{\frac{a}{v}}-\frac{1}{2}\left(\frac{y}{y_{0}}\right)^{-\frac{a}{v}} .
$$

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0, \tag{2.1}
\end{equation*}
$$

$$
x(y)=\frac{y_{0}}{2(1+a / v)}\left[\left(\frac{y}{y_{0}}\right)^{1+\frac{a}{v}}-1\right]-\frac{y_{0}}{2(1-a / v)}\left[\left(\frac{y}{y_{0}}\right)^{1-\frac{a}{v}}-1\right]+x_{0} .
$$

2.2 Linear Homogeneous Equations with Constant Coefficients

We wish to find solution $y=y(t)$ of the equation
where a, b and c are given numbers. This is arguably the most important class of differential equations, because it arises when applying Newton's second law of motion (or when modeling electric oscillations). If $y(t)$ denotes displacement of an object at time t, then this equation relates the displacement with velocity $y^{\prime}(t)$ and acceleration $y^{\prime \prime}(t)$. The equation (2.1) is linear, because it involves a linear combination of the unknown function $y(t)$, and its derivatives $y^{\prime}(t)$ and $y^{\prime \prime}(t)$. The term homogeneous refers to the right hand side of this equation being zero. $2 y(t)$ into the equation:

$$
a(2 y)^{\prime \prime}+b(2 y)^{\prime}+c(2 y)=2\left(a y^{\prime \prime}+b y^{\prime}+c y\right)=0 .
$$

The same argument shows that $c_{1} y(t)$ is a solution for any constant c_{1}. If $y_{1}(t)$ and $y_{2}(t)$ are two solutions, a similar argument will show that $y_{1}(t)+$ $y_{2}(t)$ and $y_{1}(t)-y_{2}(t)$ are also solutions. More generally, a linear combination of two solutions, $c_{1} y_{1}(t)+c_{2} y_{2}(t)$, is also a solution, for any constants c_{1} and c_{2}. Indeed,

$$
\begin{gathered}
a\left(c_{1} y_{1}(t)+c_{2} y_{2}(t)\right)^{\prime \prime}+b\left(c_{1} y_{1}(t)+c_{2} y_{2}(t)\right)^{\prime}+c\left(c_{1} y_{1}(t)+c_{2} y_{2}(t)\right) \\
=c_{1}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)+c_{2}\left(a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}\right)=0 .
\end{gathered}
$$

This fact is called the linear superposition property of solutions. where r is a constant to be determined. We have $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$, so that the substitution into the equation (2.1) gives

Integrating, and using that $x\left(y_{0}\right)=x_{0}$, we finally obtain (assuming $v \neq a$)

Observe that if $y(t)$ is a solution, then so is $2 y(t)$. Indeed, substitute

We now try to find a solution of the equation (2.1) in the form $y=e^{r t}$,

$$
a\left(r^{2} e^{r t}\right)+b\left(r e^{r t}\right)+c e^{r t}=e^{r t}\left(a r^{2}+b r+c\right)=0 .
$$

1 Dividing by a positive quantity $e^{r t}$, obtain

$$
a r^{2}+b r+c=0
$$

2 This is a quadratic equation for r, called the characteristic equation. If r is a root (solution) of this equation, then $e^{r t}$ solves our differential equation (2.1). When solving a quadratic equation, it is possible to encounter two real roots, one (repeated) real root, or two complex conjugate roots. We shall look at these cases in turn.

2.2.1 The Characteristic Equation Has Two Distinct Real Roots

Assume that the roots r_{1} and r_{2} are real, and $r_{2} \neq r_{1}$. Then $e^{r_{1} t}$ and $e^{r_{2} t}$ are two solutions, and their linear combination gives us the general solution

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} .
$$

${ }_{11}$ As there are two constants to play with, one can prescribe two additional 12 conditions for the solution to satisfy.

Example 1 Solve

$$
\begin{gathered}
y^{\prime \prime}+4 y^{\prime}+3 y=0 \\
y(0)=2 \\
y^{\prime}(0)=-1 .
\end{gathered}
$$

Assuming that $y(t)$ gives displacement of a particle, we prescribe that at time zero the displacement is 2 , and the velocity is -1 . These two conditions are usually referred to as the initial conditions, and together with the differential equation, they form an initial value problem. The characteristic equation is

$$
r^{2}+4 r+3=0
$$

18 Solving it (say by factoring as $(r+1)(r+3)=0$), gives the roots $r_{1}=-1$, and $r_{2}=-3$. The general solution is then

$$
y(t)=c_{1} e^{-t}+c_{2} e^{-3 t} .
$$

20 Calculate $y(0)=c_{1}+c_{2}$. Compute $y^{\prime}(t)=-c_{1} e^{-t}-3 c_{2} e^{-3 t}$, and therefore ${ }_{21} y^{\prime}(0)=-c_{1}-3 c_{2}$. The initial conditions tell us that

$$
\begin{aligned}
c_{1}+c_{2} & =2 \\
-c_{1}-3 c_{2} & =-1 .
\end{aligned}
$$

${ }_{1}$ We have two equations to find two unknowns c_{1} and c_{2}. Obtain: $c_{1}=5 / 2$, and $c_{2}=-1 / 2$ (say by adding the equations).
Answer: $y(t)=\frac{5}{2} e^{-t}-\frac{1}{2} e^{-3 t}$.
4 Example 2 Solve

$$
y^{\prime \prime}-4 y=0 .
$$

5 The characteristic equation is

$$
r^{2}-4=0 .
$$

8 the general solution is

$$
y(t)=c_{1} e^{-a t}+c_{2} e^{a t} .
$$

This should become automatic, because such equations appear often.
Example 3 Find the constant a, so that the solution of the initial value problem

$$
9 y^{\prime \prime}-y=0, \quad y(0)=2, \quad y^{\prime}(0)=a
$$

$$
y(t)=c_{1} e^{-\frac{1}{3} t}+c_{2} e^{\frac{1}{3} t}
$$

${ }^{4}$ Compute $y^{\prime}(t)=-\frac{1}{3} c_{1} e^{-\frac{1}{3} t}+\frac{1}{3} c_{2} e^{\frac{1}{3} t}$, and then the initial conditions give

$$
\begin{gathered}
y(0)=c_{1}+c_{2}=2 \\
y^{\prime}(0)=-\frac{1}{3} c_{1}+\frac{1}{3} c_{2}=a .
\end{gathered}
$$

Solving this system of two equation for c_{1} and c_{2} (by multiplying the second equation through by 3 , and adding the result to the first equation), gives $c_{2}=1+\frac{3}{2} a$, and $c_{1}=1-\frac{3}{2} a$. The solution is

$$
y(t)=\left(1-\frac{3}{2} a\right) e^{-\frac{1}{3} t}+\left(1+\frac{3}{2} a\right) e^{\frac{1}{3} t}
$$

$$
\begin{equation*}
a r^{2}+b r+c=a\left(r-r_{1}\right)\left(r-r_{2}\right) \tag{2.2}
\end{equation*}
$$

2.2.2 The Characteristic Equation Has Only One (Repeated) Real Root

This is the case when $r_{2}=r_{1}$. We still have one solution $y_{1}(t)=e^{r_{1} t}$. Of course, any constant multiple of this function is also a solution, but to form a general solution we need another truly different solution, as we saw in the preceding case. It turns out that $y_{2}(t)=t e^{r_{1} t}$ is that second solution, and the general solution is then

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}
$$

To justify that $y_{2}(t)=t e^{r_{1} t}$ is a solution, we begin by observing that in this case the formula (2.2) becomes

$$
a r^{2}+b r+c=a\left(r-r_{1}\right)^{2}
$$

Square out the quadratic on the right as $a r^{2}-2 a r_{1} r+a r_{1}^{2}$. Because it is equal to the quadratic on the left, the coefficients of both polynomials in r^{2}, r, and the constant terms are the same. We equate the coefficients in r :

$$
\begin{equation*}
b=-2 a r_{1} \tag{2.3}
\end{equation*}
$$

To substitute $y_{2}(t)$ into the equation, we compute its derivatives $y_{2}^{\prime}(t)=$ $e^{r_{1} t}+r_{1} t e^{r_{1} t}=e^{r_{1} t}\left(1+r_{1} t\right)$, and similarly $y_{2}^{\prime \prime}(t)=e^{r_{1} t}\left(2 r_{1}+r_{1}^{2} t\right)$. Then

$$
a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}=a e^{r_{1} t}\left(2 r_{1}+r_{1}^{2} t\right)+b e^{r_{1} t}\left(1+r_{1} t\right)+c t e^{r_{1} t}
$$

$$
=e^{r_{1} t}\left(2 a r_{1}+b\right)+t e^{r_{1} t}\left(a r_{1}^{2}+b r_{1}+c\right)=0
$$

In the last line, the first bracket is zero because of (2.3), and the second bracket is zero because r_{1} solves the characteristic equation.
Example 1 Solve $9 y^{\prime \prime}+6 y^{\prime}+y=0$.

1

Example 2 Solve

$$
\begin{aligned}
y^{\prime \prime}-4 y^{\prime}+4 y & =0 \\
y(0)=1, \quad y^{\prime}(0) & =-2 .
\end{aligned}
$$

4 The characteristic equation

$$
r^{2}-4 r+4=0
$$

5 has a double root $r=2$. The general solution is then

$$
y(t)=c_{1} e^{2 t}+c_{2} t e^{2 t} .
$$

${ }_{6}$ Here $y^{\prime}(t)=2 c_{1} e^{2 t}+c_{2} e^{2 t}+2 c_{2} t e^{2 t}$, and from the initial conditions

$$
\begin{gathered}
y(0)=c_{1}=1 \\
y^{\prime}(0)=2 c_{1}+c_{2}=-2 .
\end{gathered}
$$

7 From the first equation $c_{1}=1$, and then $c_{2}=-4$. Answer: $y(t)=e^{2 t}-4 t e^{2 t}$.

2.3 The Characteristic Equation Has Two Complex Conjugate Roots

In this section we complete the theory of linear equations with constant coefficients. The following important fact will be needed.

2.3.1 Euler's Formula

Recall Maclauren's formula

$$
e^{z}=1+z+\frac{1}{2!} z^{2}+\frac{1}{3!} z^{3}+\frac{1}{4!} z^{4}+\frac{1}{5!} z^{5}+\cdots .
$$

${ }_{1}$ Let $z=i \theta$, where $i=\sqrt{-1}$ is the imaginary unit, and θ is a real number.
2 Calculating the powers, and separating the real and imaginary parts, gives

$$
\begin{gathered}
e^{i \theta}=1+i \theta+\frac{1}{2!}(i \theta)^{2}+\frac{1}{3!}(i \theta)^{3}+\frac{1}{4!}(i \theta)^{4}+\frac{1}{5!}(i \theta)^{5}+\cdots \\
=1+i \theta-\frac{1}{2!} \theta^{2}-\frac{1}{3!} i \theta^{3}+\frac{1}{4!} \theta^{4}+\frac{1}{5!} i \theta^{5}+\cdots \\
=\left(1-\frac{1}{2!} \theta^{2}+\frac{1}{4!} \theta^{4}+\cdots\right)+i\left(\theta-\frac{1}{3!} \theta^{3}+\frac{1}{5!} \theta^{5}+\cdots\right) \\
=\cos \theta+i \sin \theta .
\end{gathered}
$$

3 We derived Euler's formula:

$$
\begin{equation*}
e^{i \theta}=\cos \theta+i \sin \theta \tag{3.1}
\end{equation*}
$$

4 Replacing θ by $-\theta$, gives

$$
\begin{equation*}
e^{-i \theta}=\cos (-\theta)+i \sin (-\theta)=\cos \theta-i \sin \theta \tag{3.2}
\end{equation*}
$$

5 Adding the last two formulas, we express

$$
\begin{equation*}
\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \tag{3.3}
\end{equation*}
$$

6 Subtracting from (3.1) the formula (3.2), and dividing by $2 i$

$$
\begin{equation*}
\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i} \tag{3.4}
\end{equation*}
$$

2.3.2 The General Solution

- Recall that to solve the equation

$$
\begin{equation*}
a y^{\prime \prime}+b y^{\prime}+c y=0 \tag{3.5}
\end{equation*}
$$

one needs to solve the characteristic equation

$$
a r^{2}+b r+c=0
$$

11
12
13

Assume now that its roots are complex. Complex roots come in conjugate pairs: if $p+i q$ is one root, then $p-i q$ is the other, and we may assume that $q>0$. These roots are, of course, different, so that we have two solutions $z_{1}=e^{(p+i q) t}$, and $z_{2}=e^{(p-i q) t}$. The problem with these solutions is that they are complex-valued. Adding $z_{1}+z_{2}$, gives another solution of (3.5).

1
2 function $y_{1}(t)=\frac{z_{1}+z_{2}}{2}$ is a solution of our equation (3.5), and similarly
the function $y_{2}(t)=\frac{z_{1}-z_{2}}{2 i}$ is another solution. Using the formula (3.3), compute

$$
y_{1}(t)=\frac{e^{(p+i q) t}+e^{(p-i q) t}}{2}=e^{p t} \frac{e^{i q t}+e^{-i q t}}{2}=e^{p t} \cos q t .
$$

This is a real valued solution of our equation! Similarly,

$$
y_{2}(t)=\frac{e^{(p+i q) t}-e^{(p-i q) t}}{2 i}=e^{p t} \frac{e^{i q t}-e^{-i q t}}{2 i}=e^{p t} \sin q t
$$

6
is our second solution. The general solution is then

$$
y(t)=c_{1} e^{p t} \cos q t+c_{2} e^{p t} \sin q t .
$$

7 Example 1 Solve $y^{\prime \prime}+4 y^{\prime}+5 y=0$.
8 The characteristic equation

$$
r^{2}+4 r+5=0
$$

9 can be solved quickly by completing the square:

$$
(r+2)^{2}+1=0, \quad(r+2)^{2}=-1
$$

10

Here $p=-2, q=1$, and the general solution is

$$
y(t)=c_{1} e^{-2 t} \cos t+c_{2} e^{-2 t} \sin t
$$

${ }_{13}$ The characteristic equation

$$
r^{2}+1=0
$$

${ }^{14}$ has roots $\pm i$. Here $p=0$ and $q=1$, and the general solution is $y(t)=$ ${ }_{15} \quad c_{1} \cos t+c_{2} \sin t$.

16
More generally, for the equation

$$
y^{\prime \prime}+a^{2} y=0 \quad(a \text { is a given constant })
$$

1 the general solution is

$$
y(t)=c_{1} \cos a t+c_{2} \sin a t
$$

2 This should become automatic, because such equations appear often.
3 Example 3 Solve

$$
y^{\prime \prime}+4 y=0, \quad y(\pi / 3)=2, \quad y^{\prime}(\pi / 3)=-4 .
$$

4 The general solution is

$$
y(t)=c_{1} \cos 2 t+c_{2} \sin 2 t
$$

5 Compute $y^{\prime}(t)=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t$. From the initial conditions

$$
y(\pi / 3)=c_{1} \cos \frac{2 \pi}{3}+c_{2} \sin \frac{2 \pi}{3}=-\frac{1}{2} c_{1}+\frac{\sqrt{3}}{2} c_{2}=2
$$

6

$$
y^{\prime}(\pi / 3)=-2 c_{1} \sin \frac{2 \pi}{3}+2 c_{2} \cos \frac{2 \pi}{3}=-\sqrt{3} c_{1}-c_{2}=-4
$$

${ }_{7}$ This gives $c_{1}=\sqrt{3}-1, c_{2}=\sqrt{3}+1$. Answer:

$$
y(t)=(\sqrt{3}-1) \cos 2 t+(\sqrt{3}+1) \sin 2 t
$$

2.3.3 Problems

$$
y^{\prime \prime} y-y^{\prime 2}=(2 x-1) y^{\prime 2} ; \quad \frac{y^{\prime \prime} y-y^{\prime 2}}{y^{\prime 2}}=2 x-1 ; \quad-\left(\frac{y}{y^{\prime}}\right)^{\prime}=2 x-1
$$

7 Integrating, and using the initial conditions

$$
-\frac{y}{y^{\prime}}=x^{2}-x+\frac{1}{4}=\frac{(2 x-1)^{2}}{4} .
$$

2. $y y^{\prime \prime}+\left(y^{\prime}\right)^{2}=0$. Answer. $y^{2}=c_{1}+c_{2} x$ (this includes the $y=c$ family).
3. $y^{\prime \prime}=2 y y^{\prime}, y(0)=0, y^{\prime}(0)=1$. Answer. $y=\tan x$.
4. $y^{\prime \prime}=3 y^{2} y^{\prime}+y^{\prime}, y(0)=1, y^{\prime}(0)=2$. Answer. $y=\sqrt{\frac{e^{2 x}}{2-e^{2 x}}}$.
$5^{*} . y^{\prime \prime} y=2 x y^{\prime 2}, y(0)=1, y^{\prime}(0)=-4$.
Hint: Write:

Answer. $y=e^{\frac{4 x}{2 x-1}}$.
III. Solve the linear second order equations, with constant coefficients.

1. $y^{\prime \prime}+4 y^{\prime}+3 y=0 . \quad$ Answer. $y=c_{1} e^{-t}+c_{2} e^{-3 t}$.
2. $y^{\prime \prime}-3 y^{\prime}=0$ Answer. $y=c_{1}+c_{2} e^{3 t}$.
3. $2 y^{\prime \prime}+y^{\prime}-y=0$. Answer. $y=c_{1} e^{-t}+c_{2} e^{\frac{1}{2} t}$.
4. $y^{\prime \prime}-3 y=0$. Answer. $y=c_{1} e^{-\sqrt{3} t}+c_{2} e^{\sqrt{3} t}$.
5. $3 y^{\prime \prime}-5 y^{\prime}-2 y=0 . \quad$ Answer. $y=c_{1} e^{-\frac{1}{3} t}+c_{2} e^{2 t}$.
6. $y^{\prime \prime}-9 y=0, y(0)=3, y^{\prime}(0)=3$. Answer. $y=e^{-3 t}+2 e^{3 t}$.
7. $y^{\prime \prime}+5 y^{\prime}=0, y(0)=-1, y^{\prime}(0)=-10 . \quad$ Answer. $y=-3+2 e^{-5 t}$.
8. $y^{\prime \prime}+y^{\prime}-6 y=0, y(0)=-2, y^{\prime}(0)=3$. Answer. $y=-\frac{7}{5} e^{-3 t}-\frac{3 e^{2 t}}{5}$.
9. $4 y^{\prime \prime}-y=0 . \quad$ Answer. $y=c_{1} e^{-\frac{1}{2} t}+c_{2} e^{\frac{1}{2} t}$.
10. $3 y^{\prime \prime}-2 y^{\prime}-y=0, y(0)=1, y^{\prime}(0)=-3$. Answer. $y=3 e^{-t / 3}-2 e^{t}$.
11. $3 y^{\prime \prime}-2 y^{\prime}-y=0, y(0)=1, y^{\prime}(0)=a$.

Find the value of a for which the solution is bounded, as $t \rightarrow \infty$.
${ }^{1}$ Answer. $y=\frac{1}{4}(3 a+1) e^{t}-\frac{3}{4}(a-1) e^{-t / 3}, a=-\frac{1}{3}$.
IV. Solve the linear second order equations, with constant coefficients.

1. $y^{\prime \prime}+6 y^{\prime}+9 y=0$. Answer. $y=c_{1} e^{-3 t}+c_{2} t e^{-3 t}$.

4 2. $4 y^{\prime \prime}-4 y^{\prime}+y=0 . \quad$ Answer. $y=c_{1} e^{\frac{1}{2} t}+c_{2} t e^{\frac{1}{2} t}$.
5. 3. $y^{\prime \prime}-2 y^{\prime}+y=0, y(0)=0, y^{\prime}(0)=-2$. Answer. $y=-2 t e^{t}$.

6 4. $9 y^{\prime \prime}-6 y^{\prime}+y=0, y(0)=1, y^{\prime}(0)=-2$. Answer. $y=\frac{1}{3} e^{t / 3}(3-7 t)$.
V.

1. Using Euler's formula, compute: (i) $e^{i \pi}$
(ii) $e^{-i \pi / 2}$
(iii) $e^{i \frac{3 \pi}{4}}$
(iv) $e^{2 \pi i}$
(v) $\sqrt{2} e^{i \frac{9 \pi}{4}}$
(vi) $\left(\cos \frac{\pi}{5}+i \sin \frac{\pi}{5}\right)^{5}$.
2. Show that $\sin 2 \theta=2 \sin \theta \cos \theta$, and $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$.

Hint: Begin with $e^{i 2 \theta}=(\cos \theta+i \sin \theta)^{2}$. Apply Euler's formula on the left, and square out on the right. Then equate the real and imaginary parts.
3^{*}. Show that

$$
\sin 3 \theta=3 \cos ^{2} \theta \sin \theta-\sin ^{3} \theta, \text { and } \cos 3 \theta=-3 \sin ^{2} \theta \cos \theta+\cos ^{3} \theta .
$$

Hint: Begin with $e^{i 3 \theta}=(\cos \theta+i \sin \theta)^{3}$. Apply Euler's formula on the left, and "cube out" on the right. Then equate the real and imaginary parts.
VI. Solve the linear second order equations, with constant coefficients.

2
3. $y^{\prime \prime}-4 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=-2$. Answer. $y=e^{2 t} \cos t-4 e^{2 t} \sin t$.
4. $y^{\prime \prime}+4 y=0, y(0)=-2, y^{\prime}(0)=0$. Answer. $y=-2 \cos 2 t$.
5. $9 y^{\prime \prime}+y=0, y(0)=0, y^{\prime}(0)=5 . \quad$ Answer. $y=15 \sin \frac{1}{3} t$.
6. $y^{\prime \prime}-y^{\prime}+y=0$. Answer. $y=e^{\frac{t}{2}}\left(c_{1} \cos \frac{\sqrt{3}}{2} t+c_{2} \sin \frac{\sqrt{3}}{2} t\right)$.
7. $4 y^{\prime \prime}+8 y^{\prime}+5 y=0, y(\pi)=0, y^{\prime}(\pi)=4 . \quad$ Answer. $y=-8 e^{\pi-t} \cos \frac{1}{2} t$.
8. $y^{\prime \prime}+y=0, y(\pi / 4)=0, y^{\prime}(\pi / 4)=-1$. Answer. $y=-\sin (t-\pi / 4)$.
VII.

1. Consider the equation $(y=y(t))$

$$
y^{\prime \prime}+b y^{\prime}+c y=0,
$$

with positive constants b and c. Show that all of its solutions tend to zero, as $t \rightarrow \infty$.
2. Consider the equation

$$
y^{\prime \prime}+b y^{\prime}-c y=0,
$$

with positive constants b and c. Assume that some solution is bounded, as $t \rightarrow \infty$. Show that this solution tends to zero, as $t \rightarrow \infty$.
3. Explain why $y_{1}=t e^{-t}$ and $y_{2}=e^{3 t}$ cannot be both solutions of

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

no matter what the constants a, b and c are.
4. Solve the non-linear equation

$$
t y^{\prime \prime} y+y^{\prime} y-t y^{\prime 2}=0
$$

Hint: Consider the derivative of $\frac{t y^{\prime}}{y}$. Answer. $y=c_{2} t^{c_{1}}$.

2.4 Linear Second Order Equations with Variable Coefficients

In this section we present some theory of second order linear equations with variable coefficients. Several applications will appear in the following section. Also, this theory explains why the general solutions from the preceding sections give all solutions of the corresponding equations.

Linear Systems

Recall that a system of two equations (here the numbers a, b, c, d, g and h are given, while x and y are the unknowns)

$$
\begin{aligned}
& a x+b y=g \\
& c x+d y=h
\end{aligned}
$$ system:

$$
x=\frac{d g-b h}{a d-b c}, \quad y=\frac{a h-c g}{a d-b c}
$$

It is also easy to justify that a determinant is zero, $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=0$, if and only if its columns are proportional, so that $a=\gamma b$ and $c=\gamma d$, for some constant γ.

7 General Theory

8 We consider an initial value problem for linear second order equations

$$
\begin{gather*}
y^{\prime \prime}+p(t) y^{\prime}+g(t) y=f(t) \tag{4.1}\\
y\left(t_{0}\right)=\alpha \\
y^{\prime}\left(t_{0}\right)=\beta
\end{gather*}
$$

The coefficient functions $p(t)$ and $g(t)$, and the function $f(t)$ are assumed to be given. The constants t_{0}, α and β are also given, so that at some initial "time" $t=t_{0}$, the values of the solution and its derivative are prescribed. It is natural to ask the following questions. Is there a solution to this problem? If there is, is the solution unique, and how far can it be continued?

Theorem 2.4.1 Assume that the functions $p(t), g(t)$ and $f(t)$ are continuous on some interval (a, b) that includes t_{0}. Then the problem (4.1) has a solution, and only one solution. This solution can be continued to the left and to the right of the initial point t_{0}, so long as t remains in (a, b).

If the functions $p(t), g(t)$ and $f(t)$ are continuous for all t, then the solution can be continued for all $t,-\infty<t<\infty$. This is a stronger conclusion than what we had for first order equations (where blow up in finite time was possible). Why? Because the equation here is linear. Linearity pays!

Corollary 2.4.1 Let $z(t)$ be a solution of (4.1) with the same initial data as $y(t): z\left(t_{0}\right)=\alpha$ and $z^{\prime}\left(t_{0}\right)=\beta$. Then $z(t)=y(t)$ for all t.

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+g(t) y=0, \tag{4.2}
\end{equation*}
$$

with given coefficient functions $p(t)$ and $g(t)$. Although this equation looks relatively simple, its analytical solution is totally out of reach, in general. (One has to either solve it numerically, or use infinite series.) In this section we study some theoretical aspects. In particular, we shall prove that a linear combination of two solutions, which are not constant multiples of one another, gives the general solution (a fact that we intuitively used for equations with constant coefficients). The equation (4.2) always has a solution $y(t)=0$ for all t, called the trivial solution. We shall study primarily non-trivial solutions.

We shall need a concept of the Wronskian determinant of two functions $y_{1}(t)$ and $y_{2}(t)$, or the Wronskian, for short:

$$
W(t)=\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t) .
$$

(Named in honor of Polish mathematician J.M. Wronski, 1776-1853.) Sometimes the Wronskian is written as $W\left(y_{1}, y_{2}\right)(t)$ to stress its dependence on $y_{1}(t)$ and $y_{2}(t)$. For example,

$$
W(\cos 2 t, \sin 2 t)(t)=\left|\begin{array}{cc}
\cos 2 t & \sin 2 t \\
-2 \sin 2 t & 2 \cos 2 t
\end{array}\right|=2 \cos ^{2} 2 t+2 \sin ^{2} 2 t=2
$$

Given the Wronskian and one of the functions, one can determine the other one.
Example If $f(t)=t$, and $W(f, g)(t)=t^{2} e^{t}$, find $g(t)$.
Solution: Here $f^{\prime}(t)=1$, and so

$$
W(f, g)(t)=\left|\begin{array}{cc}
t & g(t) \\
1 & g^{\prime}(t)
\end{array}\right|=g^{\prime}(t)-g(t)=t^{2} e^{t}
$$

This is a linear first order equation for $g(t)$. We solve it as usual, obtaining

$$
g(t)=t e^{t}+c t
$$

If $g(t)=c f(t)$, with some constant c, we compute that $W(f, g)(t)=0$, for all t. The converse statement is not true. For example, the functions $f(t)=t^{2}$ and

$$
g(t)= \begin{cases}t^{2} & \text { if } t \geq 0 \\ -t^{2} & \text { if } t<0\end{cases}
$$

are not constant multiples of one another, but $W(f, g)(t)=0$. This is seen by computing the Wronskian separately in case $t \geq 0$, and for $t<0$. (Observe that $g(t)$ is a differentiable function, with $g^{\prime}(0)=0$.)

Theorem 2.4.2 Let $y_{1}(t)$ and $y_{2}(t)$ be two solutions of (4.2), and $W(t)$ is their Wronskian. Then

$$
\begin{equation*}
W(t)=c e^{-\int p(t) d t} \tag{4.3}
\end{equation*}
$$

where c is some constant.
This is a remarkable fact! Even though we do not know $y_{1}(t)$ and $y_{2}(t)$, we can compute their Wronskian.
Proof: Differentiate the Wronskian $W(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$:

$$
W^{\prime}=y_{1} y_{2}^{\prime \prime}+y_{1}^{\prime} y_{2}^{\prime}-y_{1}^{\prime} y_{2}^{\prime}-y_{1}^{\prime \prime} y_{2}=y_{1} y_{2}^{\prime \prime}-y_{1}^{\prime \prime} y_{2} .
$$

Because y_{1} is a solution of (4.2), we have $y_{1}^{\prime \prime}+p(t) y_{1}^{\prime}+g(t) y_{1}=0$, or $y_{1}^{\prime \prime}=-p(t) y_{1}^{\prime}-g(t) y_{1}$, and similarly $y_{2}^{\prime \prime}=-p(t) y_{2}^{\prime}-g(t) y_{2}$. With these formulas, we continue

$$
\begin{gathered}
W^{\prime}=y_{1}\left(-p(t) y_{2}^{\prime}-g(t) y_{2}\right)-\left(-p(t) y_{1}^{\prime}-g(t) y_{1}\right) y_{2} \\
=-p(t)\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)=-p(t) W
\end{gathered}
$$

We obtained a linear first order equation for $W(t), W^{\prime}=-p(t) W$. Solving it, gives (4.3).

Corollary 2.4.2 We see from (4.3) that either $W(t)=0$ for all t, when $c=0$, or else $W(t)$ is never zero, in case $c \neq 0$.

Theorem 2.4.3 Let $y_{1}(t)$ and $y_{2}(t)$ be two non-trivial solutions of (4.2), and $W(t)$ is their Wronskian. Then $W(t)=0$ for all t, if and only if $y_{1}(t)$ and $y_{2}(t)$ are constant multiples of each other.

We just saw that if two functions are constant multiples of each other, then their Wronskian is zero, while the converse statement is not true, in general. But if these functions happen to be solutions of (4.2), then the converse statement is true.
Proof: Assume that the Wronskian of two solutions $y_{1}(t)$ and $y_{2}(t)$ is zero. In particular it is zero at any point t_{0}, so that

$$
\left|\begin{array}{ll}
y_{1}\left(t_{0}\right) & y_{2}\left(t_{0}\right) \\
y_{1}^{\prime}\left(t_{0}\right) & y_{2}^{\prime}\left(t_{0}\right)
\end{array}\right|=0 .
$$

$$
1
$$

2

$$
4
$$

$$
\begin{array}{r}
z\left(t_{0}\right)=c_{1} y_{1}\left(t_{0}\right)+c_{2} y_{2}\left(t_{0}\right)=y\left(t_{0}\right) \tag{4.4}\\
z^{\prime}\left(t_{0}\right)=c_{1} y_{1}^{\prime}\left(t_{0}\right)+c_{2} y_{2}^{\prime}\left(t_{0}\right)=y^{\prime}\left(t_{0}\right)
\end{array}
$$

This is a system of two linear equations to find c_{1} and c_{2}. The determinant of this system is just the Wronskian of $y_{1}(t)$ and $y_{2}(t)$, evaluated at t_{0}. This determinant is not zero, because $y_{1}(t)$ and $y_{2}(t)$ are not constant multiples of one another. (This determinant is $W\left(t_{0}\right)$. If $W\left(t_{0}\right)=0$, then $W(t)=0$ for all t, by the Corollary 2.4.2, and then by the Theorem 2.4.3, $y_{1}(t)$ and $y_{2}(t)$ would have to be constant multiples of one another, contrary to our assumption.) It follows that the 2×2 system (4.4) has a unique solution $c_{1}=c_{1}^{0}, c_{2}=c_{2}^{0}$. The function $z(t)=c_{1}^{0} y_{1}(t)+c_{2}^{0} y_{2}(t)$ is then a solution of the same equation (4.2), satisfying the same initial conditions, as does $y(t)$. By the Corollary 2.4.1, $y(t)=z(t)$ for all t. So that any solution $y(t)$ is a particular case of the general solution $c_{1} y_{1}(t)+c_{2} y_{2}(t)$.

Finally, we mention that two functions are called linearly independent, if they are not constant multiples of one another. So that two solutions $y_{1}(t)$ and $y_{2}(t)$ form a fundamental set, if and only if they are linearly independent.

Figure 2.1: The cosine hyperbolic function

2.5 Some Applications of the Theory

2 We shall give some practical applications of the theory from the last section.
${ }_{3}$ But first, we recall the functions $\sinh t$ and $\cosh t$.

4 2.5.1 The Hyperbolic Sine and Cosine Functions

5 One defines

$$
\cosh t=\frac{e^{t}+e^{-t}}{2}, \quad \text { and } \quad \sinh t=\frac{e^{t}-e^{-t}}{2}
$$

${ }_{6}$ In particular, $\cosh 0=1, \sinh 0=0$. Observe that $\cosh t$ is an even function, 7 while $\sinh t$ is odd. Compute:

$$
\frac{d}{d t} \cosh t=\sinh t \quad \text { and } \quad \frac{d}{d t} \sinh t=\cosh t
$$

8 These formulas are similar to those for cosine and sine. By squaring out,
9 one sees that

$$
\cosh ^{2} t-\sinh ^{2} t=1, \quad \text { for all } t
$$

(There are other similar formulas.) We see that the derivatives, and the algebraic properties of the new functions are similar to those for cosine and sine. However, the graphs of $\sinh t$ and $\cosh t$ look totally different: they are not periodic, and they are unbounded, see Figures 2.1 and 2.2.

2.5.2 Different Ways to Write the General Solution

For the equation

$$
\begin{equation*}
y^{\prime \prime}-a^{2} y=0 \tag{5.1}
\end{equation*}
$$

Figure 2.2: The sine hyperbolic function
you remember that the functions $e^{-a t}$ and $e^{a t}$ form a fundamental set, and $y(t)=c_{1} e^{-a t}+c_{2} e^{a t}$ is the general solution. But $y=\sinh a t$ is also a solution, because $y^{\prime}=a \cosh$ at and $y^{\prime \prime}=a^{2} \sinh a t=a^{2} y$. Similarly, $\cosh a t$ is a solution. It is not a constant multiple of $\sinh a t$, so that together they form another fundamental set, and we have another form of the general solution of (5.1)

$$
y=c_{1} \cosh a t+c_{2} \sinh a t .
$$

This is not a "new" general solution, as it can be reduced to the old one, by expressing cosh at and sinh at through the exponentials. However, the new form is useful.

Example 1 Solve: $y^{\prime \prime}-4 y=0, y(0)=0, y^{\prime}(0)=-5$.
Write the general solution as $y(t)=c_{1} \cosh 2 t+c_{2} \sinh 2 t$. Using that $\cosh 0=1$ and $\sinh 0=0$, gives $y(0)=c_{1}=0$. With $c_{1}=0$, we update the solution: $y(t)=c_{2} \sinh 2 t$. Compute $y^{\prime}(t)=2 c_{2} \cosh 2 t$, and $y^{\prime}(0)=2 c_{2}=-5$, giving $c_{2}=-\frac{5}{2}$. Answer: $y(t)=-\frac{5}{2} \sinh 2 t$.

Yet another form of the general solution of (5.1) is

$$
y(t)=c_{1} e^{-a\left(t-t_{0}\right)}+c_{2} e^{a\left(t-t_{0}\right)},
$$

where t_{0} is any number. (Both functions $e^{-a\left(t-t_{0}\right)}$ and $e^{a\left(t-t_{0}\right)}$ are solutions of (5.1).)

Example 2 Solve: $y^{\prime \prime}-9 y=0, y(2)=-1, y^{\prime}(2)=9$.
We select $t_{0}=2$, writing the general solution as

$$
y(t)=c_{1} e^{-3(t-2)}+c_{2} e^{3(t-2)} .
$$

Calculate $c_{1}=-2$, and $c_{2}=1$. Answer: $y(t)=-2 e^{-3(t-2)}+e^{3(t-2)}$.
One can write general solutions, centered at t_{0}, for other simple equations as well. For the equation

$$
y^{\prime \prime}+a^{2} y=0
$$

the functions $\cos a\left(t-t_{0}\right)$ and $\sin a\left(t-t_{0}\right)$ are both solutions, for any value of t_{0}, and they form a fundamental set (because they are not constant multiples of one another). We can then write the general solution as

$$
y=c_{1} \cos a\left(t-t_{0}\right)+c_{2} \sin a\left(t-t_{0}\right) .
$$

8 Example 3 Solve: $y^{\prime \prime}+4 y=0, y\left(\frac{\pi}{5}\right)=2, y^{\prime}\left(\frac{\pi}{5}\right)=-6$.
9

It has a solution $y=t$. (Lucky!) We need to find another solution in the fundamental set. Divide this equation by $1-t^{2}$, to put it into the form (4.2) from the previous section:

$$
y^{\prime \prime}-\frac{2 t}{1-t^{2}} y^{\prime}+\frac{2}{1-t^{2}} y=0
$$

Denote another solution in the fundamental set by $y(t)$. By the Theorem 2.4.2, we can calculate the Wronskian of the two solutions:

$$
W(t, y)=\left|\begin{array}{cc}
t & y(t) \\
1 & y^{\prime}(t)
\end{array}\right|=c e^{\int \frac{2 t}{1-t^{2}} d t}
$$

1 Set here $c=1$, because we need just one solution, which is not a constant 2 multiple of the solution $y=t$. Then

$$
t y^{\prime}-y=e^{\int \frac{2 t}{1-t^{2}} d t}=e^{-\ln \left(1-t^{2}\right)}=\frac{1}{1-t^{2}} .
$$

3 This is a linear equation, which is solved as usual:

$$
y^{\prime}-\frac{1}{t} y=\frac{1}{t\left(1-t^{2}\right)}, \quad \mu(t)=e^{-\int 1 / t d t}=e^{-\ln t}=\frac{1}{t}
$$

$$
\frac{d}{d t}\left[\frac{1}{t} y\right]=\frac{1}{t^{2}\left(1-t^{2}\right)}, \quad \frac{1}{t} y=\int \frac{1}{t^{2}\left(1-t^{2}\right)} d t
$$

5 The last integral was calculated above, by the guess-and-check method, so that

$$
y=t \int \frac{1}{t^{2}\left(1-t^{2}\right)} d t=t\left[-\frac{1}{t}-\frac{1}{2} \ln (1-t)+\frac{1}{2} \ln (1+t)\right]=-1+\frac{1}{2} t \ln \frac{1+t}{1-t} .
$$

${ }_{7}$ Again, we took the constant of integration $c=0$, because we need just one s solution, which is not a constant multiple of the solution $y=t$. Answer:
$y(t)=c_{1} t+c_{2}\left(-1+\frac{1}{2} t \ln \frac{1+t}{1-t}\right)$.

2.5.4 Problems

I. 1. Find the Wronskians of the following functions.
(i) $f(t)=e^{3 t}, g(t)=e^{-\frac{1}{2} t} . \quad$ Answer. $-\frac{7}{2} e^{\frac{5}{2} t}$.
(ii) $f(t)=e^{2 t}, g(t)=t e^{2 t}$. Answer. $e^{4 t}$.
(iii) $f(t)=e^{t} \cos 3 t, g(t)=e^{t} \sin 3 t$. Answer. $3 e^{2 t}$.
(iv) $f(t)=\cosh 4 t, g(t)=\sinh 4 t$. Answer. 4 .
2. If $f(t)=t^{2}$, and the Wronskian $W(f, g)(t)=t^{5} e^{t}$, find $g(t)$.

Answer. $g(t)=t^{3} e^{t}-t^{2} e^{t}+c t^{2}$.
3. If $f(t)=e^{-t}$, and the Wronskian $W(f, g)(t)=t$, find $g(t)$ given that $g(0)=0 . \quad$ Answer. $g(t)=\frac{t e^{t}}{2}+\frac{e^{-t}}{4}-\frac{e^{t}}{4}$.
4. Assume that $f(t)>0, g(t)>0$ and $W(f, g)(t)=0$ for all t. Show that $g(t)=c f(t)$, for some constant c.
${ }^{1}$ Hint: Express $\frac{g^{\prime}}{g}=\frac{f^{\prime}}{f}$, then integrate.
2 5. Let $y_{1}(t)$ and $y_{2}(t)$ be any two solutions of

$$
y^{\prime \prime}-t^{2} y=0 .
$$

3 Show that $W\left(y_{1}(t), y_{2}(t)\right)(t)=$ constant.
4 II. Express the solution, by using the hyperbolic sine and cosine functions.
$5 \quad$ 1. $y^{\prime \prime}-4 y=0, y(0)=0, y^{\prime}(0)=-\frac{1}{3}$. Answer. $y=-\frac{1}{6} \sinh 2 t$.
6 2. $y^{\prime \prime}-9 y=0, y(0)=2, y^{\prime}(0)=0$. Answer. $y=2 \cosh 3 t$.
7
3. $y^{\prime \prime}-y=0, y(0)=-3, y^{\prime}(0)=5$. Answer. $y=-3 \cosh t+5 \sinh t$.
III. Solve the problem, by using the general solution centered at the initial point.

1. $y^{\prime \prime}+y=0, y(\pi / 8)=0, y^{\prime}(\pi / 8)=3$. Answer. $y=3 \sin (t-\pi / 8)$.
2. $y^{\prime \prime}+4 y=0, y(\pi / 4)=0, y^{\prime}(\pi / 4)=4$.

Answer. $y=2 \sin 2(t-\pi / 4)=2 \sin (2 t-\pi / 2)=-2 \cos 2 t$.
3. $y^{\prime \prime}-2 y^{\prime}-3 y=0, y(1)=1, y^{\prime}(1)=7$. Answer. $y=2 e^{3(t-1)}-e^{-(t-1)}$.
4. $y^{\prime \prime}-9 y=0, y(2)=-1, y^{\prime}(2)=15$.

Answer. $y=-\cosh 3(t-2)+5 \sinh 3(t-2)$.
IV. For the following equations one solution is given. Using Wronskians, find the second solution, and the general solution.

1. $y^{\prime \prime}-2 y^{\prime}+y=0, \quad y_{1}(t)=e^{t}$.
2. $t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0, \quad y_{1}(t)=t$.

Answer. $y=c_{1} t+c_{2} t^{2}$.
3. $\left(1+t^{2}\right) y^{\prime \prime}-2 t y^{\prime}+2 y=0, \quad y_{1}(t)=t$.

Answer. $y=c_{1} t+c_{2}\left(t^{2}-1\right)$.
4. $(t-2) y^{\prime \prime}-t y^{\prime}+2 y=0, \quad y_{1}(t)=e^{t}$.

Answer. $y=c_{1} e^{t}+c_{2}\left(-t^{2}+2 t-2\right)$.
5. $t y^{\prime \prime}+2 y^{\prime}+t y=0, \quad y_{1}(t)=\frac{\sin t}{t} . \quad$ Answer. $y=c_{1} \frac{\sin t}{t}+c_{2} \frac{\cos t}{t}$.

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+g(t) y=f(t) \tag{6.1}
\end{equation*}
$$

Here the coefficient functions $p(t)$ and $g(t)$, and the non-zero function $f(t)$ are given. The corresponding homogeneous equation is

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+g(t) y=0 \tag{6.2}
\end{equation*}
$$

Assume that the general solution of the corresponding homogeneous equation is known: $y(t)=c_{1} y_{1}(t)+c_{2} y_{2}(t)$. Our goal is to find the general solution of the non-homogeneous equation. Suppose that we can find somehow a particular solution $Y(t)$ of the non-homogeneous equation, so that

$$
\begin{equation*}
Y^{\prime \prime}+p(t) Y^{\prime}+g(t) Y=f(t) \tag{6.3}
\end{equation*}
$$

In words: the general solution of the non-homogeneous equation is equal to the sum of any particular solution of the non-homogeneous equation, and the general solution of the corresponding homogeneous equation.

Finding a particular solution $Y(t)$ is the subject of this section (and the following two sections). We now study the method of undetermined coefficients.

Example 1 Find the general solution of

$$
y^{\prime \prime}+9 y=-4 \cos 2 t
$$

The general solution of the corresponding homogeneous equation

$$
y^{\prime \prime}+9 y=0
$$

is $y(t)=c_{1} \cos 3 t+c_{2} \sin 3 t$. We look for a particular solution in the form $Y(t)=A \cos 2 t$. Substitute this in, then simplify:

$$
-4 A \cos 2 t+9 A \cos 2 t=-4 \cos 2 t
$$

$$
5 A \cos 2 t=-4 \cos 2 t
$$

giving $A=-\frac{4}{5}$, and $Y(t)=-\frac{4}{5} \cos 2 t$. Answer: $y(t)=-\frac{4}{5} \cos 2 t+c_{1} \cos 3 t+$ $c_{2} \sin 3 t$.

This was an easy example, because the y^{\prime} term was missing. If y^{\prime} term is present, we need to look for $Y(t)$ in the form $Y(t)=A \cos 2 t+B \sin 2 t$.

Prescription 1 If the right side of the equation (6.1) has the form $a \cos \alpha t+$ $b \sin \alpha t$, with constants a, b and α, then look for a particular solution in the form $Y(t)=A \cos \alpha t+B \sin \alpha t$. More generally, if the right side of the equation has the form $(a t+b) \cos \alpha t+(c t+d) \sin \alpha t$, involving linear polynomials, then look for a particular solution in the form $Y(t)=(A t+$ $B) \cos \alpha t+(C t+D) \sin \alpha t$. Even more generally, if the polynomials are of higher power, we make the corresponding adjustments.
Example 2 Solve $y^{\prime \prime}-y^{\prime}-2 y=-4 \cos 2 t+8 \sin 2 t$.
We look for a particular solution $Y(t)$ in the form $y(t)=A \cos 2 t+B \sin 2 t$. Substitute $y(t)$ into the equation, then combine the like terms:

$$
\begin{aligned}
-4 A \cos 2 t-4 B \sin 2 t- & (-2 A \sin 2 t+2 B \cos 2 t)-2(A \cos 2 t+B \sin 2 t) \\
& =-4 \cos 2 t+8 \sin 2 t,
\end{aligned}
$$

$$
(-6 A-2 B) \cos 2 t+(2 A-6 B) \sin 2 t=-4 \cos 2 t+8 \sin 2 t .
$$

Equating the corresponding coefficients

$$
\begin{gathered}
-6 A-2 B=-4 \\
2 A-6 B=8 .
\end{gathered}
$$

3 Solving this system, gives $A=1$ and $B=-1$, so that $Y(t)=\cos 2 t-\sin 2 t$. The general solution of the corresponding homogeneous equation

$$
y^{\prime \prime}-y^{\prime}-2 y=0
$$

is $y=c_{1} e^{-t}+c_{2} e^{2 t}$. Answer: $y(t)=\cos 2 t-\sin 2 t+c_{1} e^{-t}+c_{2} e^{2 t}$.
Example 3 Solve $y^{\prime \prime}+2 y^{\prime}+y=t-1$.
On the right we see a linear polynomial. We look for particular solution in the form $Y(t)=A t+B$. Substituting this in, gives

$$
2 A+A t+B=t-1
$$

Equating the corresponding coefficients, we get $A=1$, and $2 A+B=-1$, so that $B=-3$. Then, $Y(t)=t-3$. The general solution of the corresponding homogeneous equation

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

is $y=c_{1} e^{-t}+c_{2} t e^{-t}$. Answer: $y(t)=t-3+c_{1} e^{-t}+c_{2} t e^{-t}$.

Example 4 Solve $y^{\prime \prime}+y^{\prime}-2 y=t^{2}$.
On the right we have a quadratic polynomial (two of its coefficients happened to be zero). We look for a particular solution as a quadratic $Y(t)=A t^{2}+$ $B t+C$. Substituting this in, gives

$$
2 A+2 A t+B-2\left(A t^{2}+B t+C\right)=t^{2}
$$

Equating the coefficients in t^{2}, t, and the constant terms, gives

$$
\begin{gathered}
-2 A=1 \\
2 A-2 B=0 \\
2 A+B-2 C=0
\end{gathered}
$$

From the first equation, $A=-\frac{1}{2}$, from the second one, $B=-\frac{1}{2}$, and from the third, $C=A+\frac{1}{2} B=-\frac{3}{4}$. So that $Y(t)=-\frac{1}{2} t^{2}-\frac{1}{2} t-\frac{3}{4}$. The general solution of the corresponding homogeneous equation is $y(t)=c_{1} e^{-2 t}+c_{2} e^{t}$. Answer: $y(t)=-\frac{1}{2} t^{2}-\frac{1}{2} t-\frac{3}{4}+c_{1} e^{-2 t}+c_{2} e^{t}$.

The last two examples lead to the following prescription.
Prescription 2 If the right hand side of the equation (6.1) is a polynomial of degree $n: a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n-1} t+a_{n}$, look for a particular solution as a polynomial of degree $n: A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n-1} t+A_{n}$, with the coefficients to be determined.

And on to the final possibility.
Prescription 3 If the right side of the equation (6.1) is a polynomial of degree n, times an exponential : $\left(a_{0} t^{n}+a_{1} t^{n-1}+\cdots+a_{n-1} t+a_{n}\right) e^{\alpha t}$, look for a particular solution as a polynomial of degree n times the same exponential: $\left(A_{0} t^{n}+A_{1} t^{n-1}+\cdots+A_{n-1} t+A_{n}\right) e^{\alpha t}$, with the coefficients to be determined.
Example 5 Solve $y^{\prime \prime}+y=t e^{-2 t}$.
We look for a particular solution in the form $Y(t)=(A t+B) e^{-2 t}$. Compute $Y^{\prime}(t)=A e^{-2 t}-2(A t+B) e^{-2 t}, Y^{\prime \prime}(t)=-4 A e^{-2 t}+4(A t+B) e^{-2 t}$. Substitute $Y(t)$ into the equation:

$$
4 A t e^{-2 t}-4 A e^{-2 t}+4 B e^{-2 t}+A t e^{-2 t}+B e^{-2 t}=t e^{-2 t}
$$

Divide by $e^{-2 t}$, then equate the coefficients in t, and the constant terms

$$
\begin{gathered}
5 A=1 \\
-4 A+5 B=0
\end{gathered}
$$

1. which gives $A=1 / 5$ and $B=4 / 25$, so that $Y(t)=\left(\frac{1}{5} t+\frac{4}{25}\right) e^{-2 t}$. Answer: $y(t)=\left(\frac{1}{5} t+\frac{4}{25}\right) e^{-2 t}+c_{1} \cos t+c_{2} \sin t$.
Example 6 Solve $y^{\prime \prime}-4 y=t^{2}+3 e^{t}, \quad y(0)=0, y^{\prime}(0)=2$.
One can find $Y(t)$ as a sum of two pieces, $Y(t)=Y_{1}(t)+Y_{2}(t)$, where $Y_{1}(t)$ is any particular solution of

$$
y^{\prime \prime}-4 y=t^{2},
$$

and $Y_{2}(t)$ is any particular solution of

$$
y^{\prime \prime}-4 y=3 e^{t} .
$$

(Indeed, adding the identities $Y_{1}^{\prime \prime}-4 Y_{1}=t^{2}$ and $Y_{2}^{\prime \prime}-4 Y_{2}=3 e^{t}$, gives $Y^{\prime \prime}-4 Y=t^{2}+3 e^{t}$.) Using our prescriptions, $Y_{1}(t)=-\frac{1}{4} t^{2}-\frac{1}{8}$, and $Y_{2}(t)=$ $-e^{t}$. The general solution is $y(t)=-\frac{1}{4} t^{2}-\frac{1}{8}-e^{t}+c_{1} \cosh 2 t+c_{2} \sinh 2 t$. Calculate: $c_{1}=9 / 8$, and $c_{2}=3 / 2$.
Answer: $y(t)=-\frac{1}{4} t^{2}-\frac{1}{8}-e^{t}+\frac{9}{8} \cosh 2 t+\frac{3}{2} \sinh 2 t$.

2.7 More on Guessing of $Y(t)$

The prescriptions from the previous section do not always work. In this section we sketch a "fix". A more general method for finding $Y(t)$ will be developed in the next section.
Example 1 Solve $y^{\prime \prime}+y=\sin t$.
We try $Y(t)=A \sin t+B \cos t$, according to the Prescription 1. Substituting $Y(t)$ into the equation gives

$$
0=\sin t
$$

which is impossible. Why did we "strike out"? Because $A \sin t$ and $B \cos t$ are solutions of the corresponding homogeneous equation. Let us multiply the initial guess by t, and try $Y=A t \sin t+B t \cos t$. Calculate $Y^{\prime}=A \sin t+$ $A t \cos t+B \cos t-B t \sin t$, and $Y^{\prime \prime}=2 A \cos t-A t \sin t-2 B \sin t-B t \cos t$. Substitute Y into our equation, and simplify:

$$
\begin{gathered}
2 A \cos t-A t \sin t-2 B \sin t-B t \cos t+A t \sin t+B t \cos t=\sin t, \\
2 A \cos t-2 B \sin t=\sin t
\end{gathered}
$$

We conclude that $A=0$, and $B=-1 / 2$, so that $Y=-\frac{1}{2} t \cos t$.
Answer: $y=-\frac{1}{2} t \cos t+c_{1} \sin t+c_{2} \cos t$.

This example prompts us to change the strategy. We now begin by solving the corresponding homogeneous equation. The Prescriptions from the previous section are now the Initial Guesses for the particular solution. We now describe the complete strategy, which is justified in the book of W.E. Boyce and R.C. DiPrima.
If any of the functions, appearing in the Initial Guess, is a solution of the corresponding homogeneous equation, multiply the entire Initial Guess by t, and look at the new functions. If some of them are still solutions of the corresponding homogeneous equation, multiply the entire Initial Guess by t^{2}. This is guaranteed to work. (Of course, if none of the functions appearing in the Initial Guess is a solution of the corresponding homogeneous equation, then the Initial Guess works.)

In the preceding example, the Initial Guess involved the functions $\sin t$ and $\cos t$, both solutions of the corresponding homogeneous equation. After we multiplied the Initial Guess by t, the new functions $t \sin t$ and $t \cos t$ are not solutions of the corresponding homogeneous equation, and the new guess worked.
Example 2 Solve $y^{\prime \prime}+4 y^{\prime}=2 t-5$.
The fundamental set of the corresponding homogeneous equation

$$
y^{\prime \prime}+4 y^{\prime}=0
$$

consists of the functions $y_{1}(t)=1$, and $y_{2}(t)=e^{-4 t}$. The Initial Guess, according to the Prescription 2, $Y(t)=A t+B$, is a linear combination of the functions t and 1 , and the second of these functions is a solution of the corresponding homogeneous equation. We multiply the Initial Guess by t, obtaining $Y(t)=t(A t+B)=A t^{2}+B t$. This is a linear combination of t^{2} and t, both of which are not solutions of the corresponding homogeneous equation. Substituting $Y(t)$ into the equation, gives

$$
2 A+4(2 A t+B)=2 t-5
$$

Equating the coefficients in t, and the constant terms, we have

$$
\begin{gathered}
8 A=2 \\
2 A+4 B=-5,
\end{gathered}
$$

giving $A=1 / 4$, and $B=-11 / 8$. The particular solution is $Y(t)=\frac{t^{2}}{4}-\frac{11}{8} t$. Answer: $y(t)=\frac{t^{2}}{4}-\frac{11}{8} t+c_{1}+c_{2} e^{-4 t}$.

$$
\begin{equation*}
y^{\prime \prime}+p(t) y^{\prime}+g(t) y=0 . \tag{8.2}
\end{equation*}
$$

9 (So that $c_{1} y_{1}(t)+c_{2} y_{2}(t)$ gives the general solution of (8.2).) We look for a particular solution of (8.1) in the form

$$
\begin{equation*}
Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t) \tag{8.3}
\end{equation*}
$$

with some functions $u_{1}(t)$ and $u_{2}(t)$, that shall be chosen to satisfy the following two equations

$$
\begin{gather*}
u_{1}^{\prime}(t) y_{1}(t)+u_{2}^{\prime}(t) y_{2}(t)=0 \tag{8.4}\\
u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)=f(t)
\end{gather*}
$$

We have a system of two linear equations to find $u_{1}^{\prime}(t)$ and $u_{2}^{\prime}(t)$. Its determinant

$$
W(t)=\left|\begin{array}{cc}
y_{1}(t) & y_{2}(t) \\
y_{1}^{\prime}(t) & y_{2}^{\prime}(t)
\end{array}\right|
$$

is the Wronskian of $y_{1}(t)$ and $y_{2}(t)$. By the Theorem 2.4.3, $W(t) \neq 0$ for all t, because $y_{1}(t)$ and $y_{2}(t)$ form a fundamental solution set. By Cramer's rule (or by elimination), the solution of (8.4) is

$$
\begin{align*}
u_{1}^{\prime}(t) & =-\frac{f(t) y_{2}(t)}{W(t)} \tag{8.5}\\
u_{2}^{\prime}(t) & =\frac{f(t) y_{1}(t)}{W(t)}
\end{align*}
$$

The functions $u_{1}(t)$ and $u_{2}(t)$ are then computed by integration. We shall show that $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$ is a particular solution of the nonhomogeneous equation (8.1). Let us compute the derivatives of $Y(t)$, in order to substitute $Y(t)$ into the equation (8.1). Obtain:

$$
Y^{\prime}(t)=u_{1}^{\prime}(t) y_{1}(t)+u_{2}^{\prime}(t) y_{2}(t)+u_{1}(t) y_{1}^{\prime}(t)+u_{2}(t) y_{2}^{\prime}(t)=u_{1}(t) y_{1}^{\prime}(t)+u_{2}(t) y_{2}^{\prime}(t) .
$$

Here the first two terms have disappeared (they add up to zero), thanks to the first equation in (8.4). Next:

$$
\begin{gathered}
Y^{\prime \prime}(t)=u_{1}^{\prime}(t) y_{1}^{\prime}(t)+u_{2}^{\prime}(t) y_{2}^{\prime}(t)+u_{1}(t) y_{1}^{\prime \prime}(t)+u_{2}(t) y_{2}^{\prime \prime}(t) \\
=f(t)+u_{1}(t) y_{1}^{\prime \prime}(t)+u_{2}(t) y_{2}^{\prime \prime}(t)
\end{gathered}
$$

by using the second equation in (8.4). Then

$$
\begin{gathered}
Y^{\prime \prime}+p Y^{\prime}+g Y=f(t)+u_{1} y_{1}^{\prime \prime}+u_{2} y_{2}^{\prime \prime}+p\left(u_{1} y_{1}^{\prime}+u_{2} y_{2}^{\prime}\right)+g\left(u_{1} y_{1}+u_{2} y_{2}\right) \\
=f(t)+u_{1}\left(y_{1}^{\prime \prime}+p y_{1}^{\prime}+g y_{1}\right)+u_{2}\left(y_{2}^{\prime \prime}+p y_{2}^{\prime}+g y_{2}\right) \\
=f(t),
\end{gathered}
$$

which proves that $Y(t)$ is a particular solution of (8.1). (Both brackets are zero, because $y_{1}(t)$ and $y_{2}(t)$ are solutions of the corresponding homogeneous equation (8.2).)
for which we needed to use a modified prescription in the preceding section. The fundamental set of the corresponding homogeneous equation

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

consists of $y_{1}=e^{-t}$ and $y_{2}=t e^{-t}$, and their Wronskian is $W\left(y_{1}, y_{2}\right)(t)=$ $e^{-2 t}$. Then by the formulas (8.5), $u_{1}^{\prime}=-t^{2}$, giving $u_{1}=-\frac{t^{3}}{3}$, and $u_{2}^{\prime}=t$, giving $u_{2}=\frac{t^{2}}{2}$. Obtain $Y=u_{1} y_{1}+u_{2} y_{2}=\frac{1}{6} t^{3} e^{-t}$. Answer: $y(t)=$ $\frac{1}{6} t^{3} e^{-t}+c_{1} e^{-t}+c_{2} t e^{-t}$

2.9 The Convolution Integral

This section introduces the convolution integral, which allows quick computation of a particular solution $Y(t)$, in case of constant coefficients.

2.9.1 Differentiation of Integrals

If $g(t, s)$ is a continuously differentiable function of two variables, then the integral $\int_{a}^{b} g(t, s) d s$ depends on a parameter t (s is a dummy variable). This integral is differentiated as follows

$$
\frac{d}{d t} \int_{a}^{b} g(t, s) d s=\int_{a}^{b} g_{t}(t, s) d s
$$

8 where $g_{t}(t, s)$ denotes the partial derivative in t. To differentiate the integral ${ }^{9} \int_{a}^{t} g(s) d s$, one uses the fundamental theorem of calculus:

$$
\frac{d}{d t} \int_{a}^{t} g(s) d s=g(t)
$$

$$
\begin{equation*}
\frac{d}{d t} \int_{a}^{t} z(t-s) f(s) d s=\int_{a}^{t} z^{\prime}(t-s) f(s) d s+z(0) f(t) \tag{9.1}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime \prime}+p y^{\prime}+g y=f(t), \tag{9.2}
\end{equation*}
$$

where p and g are given numbers, and $f(t)$ is a given function. Let $z(t)$ denote the solution of the corresponding homogeneous equation, satisfying

$$
\begin{equation*}
z^{\prime \prime}+p z^{\prime}+g z=0, \quad z(0)=0, z^{\prime}(0)=1 \tag{9.3}
\end{equation*}
$$

$$
\begin{equation*}
Y(t)=\int_{0}^{t} z(t-s) f(s) d s \tag{9.4}
\end{equation*}
$$

To justify this formula, we compute the derivatives of $Y(t)$, by using the formula (9.1), and the initial conditions $z(0)=0$ and $z^{\prime}(0)=1$:

$$
Y^{\prime}(t)=\int_{0}^{t} z^{\prime}(t-s) f(s) d s+z(0) f(t)=\int_{0}^{t} z^{\prime}(t-s) f(s) d s
$$

$$
Y^{\prime \prime}(t)=\int_{0}^{t} z^{\prime \prime}(t-s) f(s) d s+z^{\prime}(0) f(t)=\int_{0}^{t} z^{\prime \prime}(t-s) f(s) d s+f(t)
$$

5 Then

$$
\begin{gathered}
Y^{\prime \prime}(t)+p Y^{\prime}(t)+g Y(t) \\
=\int_{0}^{t}\left[z^{\prime \prime}(t-s)+p z^{\prime}(t-s)+g z(t-s)\right] f(s) d s+f(t)=f(t) .
\end{gathered}
$$

Here the integral is zero, because $z(t)$ satisfies the homogeneous equation in (9.3), with constant coefficients p and g, at all values of its argument t, including $t-s$.
Example Let us now revisit the equation

$$
y^{\prime \prime}+y=\tan t
$$

Solving

$$
z^{\prime \prime}+z=0, \quad z(0)=0, z^{\prime}(0)=1
$$

gives $z(t)=\sin t$. Then

$$
Y(t)=\int_{0}^{t} \sin (t-s) \tan s d s
$$

Writing $\sin (t-s)=\sin t \cos s-\cos t \sin s$, and integrating, it is easy to obtain the solution we had before.

2.10 Applications of Second Order Equations

One of the main applications of differential equations is to model mechanical and electrical oscillations. This section is mostly devoted to oscillations of springs, like the springs used in our cars.

2.10.1 Vibrating Spring

Spring at rest

Extended spring

If a spring is either extended or compressed, it will oscillate around its equilibrium position. We direct the y-axis along the spring, with the origin chosen at the equilibrium position. Let $y=y(t)$ denote the displacement of a spring from its natural position. Its motion is governed by Newton's second law

$$
m a=f
$$

The acceleration $a=y^{\prime \prime}(t)$. We assume that the only force f, acting on the spring, is its own restoring force, which by Hooke's law is $f=-k y$, for small displacements. Here the physical constant $k>0$ describes the stiffness (or the hardness) of the spring. Then

$$
m y^{\prime \prime}=-k y
$$

Divide both sides by the mass m of the spring, and denote $k / m=\omega^{2}$ (so that $\omega=\sqrt{k / m}$, obtaining

$$
y^{\prime \prime}+\omega^{2} y=0
$$

The general solution, $y(t)=c_{1} \cos \omega t+c_{2} \sin \omega t$, gives us the harmonic motion of the spring.

To understand the solution better, let us write $y(t)$ as

$$
\begin{gathered}
y(t)=\sqrt{c_{1}^{2}+c_{2}^{2}}\left(\frac{c_{1}}{\sqrt{c_{1}^{2}+c_{2}^{2}}} \cos \omega t+\frac{c_{2}}{\sqrt{c_{1}^{2}+c_{2}^{2}}} \sin \omega t\right) \\
=A\left(\frac{c_{1}}{A} \cos \omega t+\frac{c_{2}}{A} \sin \omega t\right)
\end{gathered}
$$

where we denoted $A=\sqrt{c_{1}^{2}+c_{2}^{2}}$. Observe that $\left(\frac{c_{1}}{A}\right)^{2}+\left(\frac{c_{2}}{A}\right)^{2}=1$, which means that we can find an angle δ, such that $\cos \delta=\frac{c_{1}}{A}$, and $\sin \delta=\frac{c_{2}}{A}$. Then our solution takes the form

$$
y(t)=A(\cos \omega t \cos \delta+\sin \omega t \sin \delta)=A \cos (\omega t-\delta)
$$

$$
\begin{equation*}
y^{\prime \prime}+\omega^{2} y=a \sin \nu t \tag{10.2}
\end{equation*}
$$

where $a>0$ is the amplitude of the external force, and ν is the forcing frequency. If $\nu \neq \omega$, we look for a particular solution of this non-homogeneous equation in the form $Y(t)=A \sin \nu t$. Substituting this in, gives $A=$ $\frac{a}{\omega^{2}-\nu^{2}}$. The general solution of (10.2), which is $y(t)=\frac{a}{\omega^{2}-\nu^{2}} \sin \nu t+$ $c_{1} \cos \omega t+c_{2} \sin \omega t$, is a superposition (sum) of the harmonic motion, and the response term $\left(\frac{a}{\omega^{2}-\nu^{2}} \sin \nu t\right)$ to the external force. We see that the solution is still bounded, although not periodic anymore, for general ν and ω, as a sum of functions of different periods $\frac{2 \pi}{\nu}$ and $\frac{2 \pi}{\omega}$ (such functions are called quasiperiodic).

A very important case is when $\nu=\omega$, so that the forcing frequency is the same as the natural frequency. Then a particular solution has the form $Y(t)=A t \sin \nu t+B t \cos \nu t$, so that solutions become unbounded, as time t increases. This is the case of resonance, when a bounded external force

Figure 2.3: The graph of the secular term $y=-\frac{1}{4} t \cos 2 t$, oscillating between the lines $y=-\frac{1}{4} t$, and $y=\frac{1}{4} t$
produces unbounded response. Large displacements will break the spring. Resonance is a serious engineering concern.

Example $2 y^{\prime \prime}+4 y=\sin 2 t, y(0)=0, y^{\prime}(0)=1$.

Both the natural and forcing frequencies are equal to 2 . The fundamental set of the corresponding homogeneous equation consists of $\sin 2 t$ and $\cos 2 t$. We search for a particular solution in the form $Y(t)=A t \sin 2 t+B t \cos 2 t$, corresponding to a modified prescription (alternatively, one can use the variation of parameters method). As before, we compute $Y(t)=-\frac{1}{4} t \cos 2 t$. Then the general solution is $y(t)=-\frac{1}{4} t \cos 2 t+c_{1} \cos 2 t+c_{2} \sin 2 t$. Using the initial conditions, calculate $c_{1}=0$ and $c_{2}=\frac{5}{8}$, so that $y(t)=-\frac{1}{4} t \cos 2 t+\frac{5}{8} \sin 2 t$. The term $-\frac{1}{4} t \cos 2 t$ introduces oscillations, with the amplitude $\frac{1}{4} t$ increasing without bound, as time $t \rightarrow \infty$. (It is customary to call such unbounded term a secular term, which seems to imply that the harmonic terms are divine.)

2.10.2 Problems

I. Solve the following non-homogeneous equations.

1. $2 y^{\prime \prime}-3 y^{\prime}+y=2 \sin t$.
Answer. $y=c_{1} e^{t / 2}+c_{2} e^{t}+\frac{3}{5} \cos t-\frac{1}{5} \sin t$.
2. $y^{\prime \prime}+4 y^{\prime}+5 y=2 \cos 2 t-3 \sin 2 t$.

Answer. $y=\frac{2}{5} \cos 2 t+\frac{1}{5} \sin 2 t+c_{1} e^{-2 t} \cos t+c_{2} e^{-2 t} \sin t$.

1
3. $y^{\prime \prime}-y^{\prime}=5 \sin 2 t$. \quad Answer. $y=c_{1}+c_{2} e^{t}+\frac{1}{2} \cos 2 t-\sin 2 t$.
4. $y^{\prime \prime}+9 y=2 \cos \nu t, \quad \nu \neq 3$ is a constant.

Answer. $y=\frac{2}{9-\nu^{2}} \cos \nu t+c_{1} \cos 3 t+c_{2} \sin 3 t$.
5. $y^{\prime \prime}+2 y^{\prime}+y=2 t \cos t$.

Hint: By Prescription 1, look for a particular solution in the form $y=$ $(A t+B) \cos t+(C t+D) \sin t$. Answer. $y=\cos t+(t-1) \sin t+c_{1} e^{-t}+c_{2} t e^{-t}$.
6. $y^{\prime \prime}-2 y^{\prime}+y=t+2$. Answer. $y=t+4+c_{1} e^{t}+c_{2} e^{t} t$.
7. $y^{\prime \prime}+4 y=t^{2}-3 t+1$. Answer. $y=\frac{1}{8}\left(2 t^{2}-6 t+1\right)+c_{1} \cos 2 t+c_{2} \sin 2 t$.
8. $y^{\prime \prime}-9 y=e^{5 t}$. Answer. $y=\frac{e^{5 t}}{16}+c_{1} e^{-3 t}+c_{2} e^{3 t}$.
9. $y^{\prime \prime}-4 y=t e^{3 t}, y(0)=0, y^{\prime}(0)=1$.

Answer. $y=\left(\frac{1}{5} t-\frac{6}{25}\right) e^{3 t}-\frac{13}{50} e^{-2 t}+\frac{1}{2} e^{2 t}$.
10. $2 y^{\prime \prime}+y^{\prime}-y=\left(5 t^{2}+t-1\right) e^{-2 t}$.

Answer. $y=\frac{1}{5} e^{-2 t}\left(5 t^{2}+15 t+16\right)+c_{1} e^{t / 2}+c_{2} e^{-t}$.
11. $4 y^{\prime \prime}+8 y^{\prime}+5 y=5 t-\sin t$.

Answer. $y=t-\frac{8}{5}+\frac{8}{65} \cos t-\frac{1}{65} \sin t+c_{1} e^{-t} \cos \frac{t}{2}+c_{2} e^{-t} \sin \frac{t}{2}$.
12. $y^{\prime \prime}+y=2 e^{4 t}+t^{2}$.

Answer. $y=\frac{2}{17} e^{4 t}+t^{2}-2+c_{1} \cos t+c_{2} \sin t$.
13. $y^{\prime \prime}-y^{\prime}=2 \sin t-\cos 2 t$.

Answer. $y=\cos t-\sin t+\frac{1}{5} \cos 2 t+\frac{1}{10} \sin 2 t+c_{1}+c_{2} e^{t}$.
14. For the first order equation

$$
y^{\prime}-x^{2} y=2 x-x^{4}
$$

the integrating factor $\mu=e^{-\frac{x^{3}}{3}}$ leads to an intractable integral. Instead, look for a particular solution as a quadratic polynomial, and add to it the general solution of the corresponding homogeneous equation.

Answer. $y=x^{2}+c e^{\frac{x^{3}}{3}}$.
II. Solve the non-homogeneous equations (using the modified prescriptions).

1. $y^{\prime \prime}+y=2 \cos t$.

Answer. $y=t \sin t+c_{1} \cos t+c_{2} \sin t$.
2. $y^{\prime \prime}+y^{\prime}-6 y=-e^{2 t}$.

Answer. $y=-\frac{1}{5} e^{2 t} t+c_{1} e^{-3 t}+c_{2} e^{2 t}$.
3. $y^{\prime \prime}+2 y^{\prime}+y=2 e^{-t}$.

Answer. $y=t^{2} e^{-t}+c_{1} e^{-t}+c_{2} t e^{-t}$.
4. $y^{\prime \prime}-2 y^{\prime}+y=t e^{t}$.

Answer. $y=\frac{t^{3} e^{t}}{6}+c_{1} e^{t}+c_{2} t e^{t}$.
8
9
5. $y^{\prime \prime}-4 y^{\prime}=2-\cos t . \quad$ Answer. $y=-\frac{t}{2}+\frac{\cos t}{17}+\frac{4 \sin t}{17}+c_{1} e^{4 t}+c_{2}$.
6. $2 y^{\prime \prime}-y^{\prime}-y=3 e^{t}$. Answer. $y=t e^{t}+c_{1} e^{-\frac{1}{2} t}+c_{2} e^{t}$.
III. Write down the form in which one should look for a particular solution, but DO NOT compute the coefficients.

1. $y^{\prime \prime}+y=2 \sin 2 t-\cos 3 t-5 t^{2} e^{3 t}+4 t$.

Answer. $A \cos 2 t+B \sin 2 t+C \cos 3 t+D \sin 3 t+\left(E t^{2}+F t+G\right) e^{3 t}+H t+I$.
2. $y^{\prime \prime}+y=4 \cos t-\cos 5 t+8$.

Answer. $t(A \cos t+B \sin t)+C \cos 5 t+D \sin 5 t+E$.
3. $y^{\prime \prime}-4 y^{\prime}+4 y=3 t e^{2 t}+\sin 4 t-t^{2}$.

Answer. $t^{2}(A t+B) e^{2 t}+C \cos 4 t+D \sin 4 t+E t^{2}+F t+G$.
IV. Find a particular solution, by using the method of variation of parameters, and then write down the general solution.

1. $y^{\prime \prime}+y^{\prime}-6 y=5 e^{2 t}$. Answer. $y=t e^{2 t}+c_{1} e^{-3 t}+c_{2} e^{2 t}$.
2. $y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{t}}{1+t^{2}}$.

Answer. $y=c_{1} e^{t}+c_{2} t e^{t}-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right)+t e^{t} \tan ^{-1} t$.
3. $y^{\prime \prime}+y=\sin t . \quad$ Answer. $y=-\frac{t}{2} \cos t+c_{1} \cos t+c_{2} \sin t$.
4. $y^{\prime \prime}+9 y=-2 e^{3 t}$.

1 Hint: Similar integrals were considered in Section 1.1. For this equation it is easier to use the Prescription 3 from Section 2.6.
Answer. $y=-\frac{e^{3 t}}{9}+c_{1} \cos 3 t+c_{2} \sin 3 t$.
5. $y^{\prime \prime}+2 y^{\prime}+y=\frac{e^{-t}}{t}$. Answer. $y=-t e^{-t}+t e^{-t} \ln t+c_{1} e^{-t}+c_{2} t e^{-t}$.
6. $y^{\prime \prime}+4 y^{\prime}+4 y=\frac{e^{-2 t}}{t^{2}} . \quad$ Answer. $y=-e^{-2 t}(1+\ln t)+c_{1} e^{-2 t}+c_{2} t e^{-2 t}$.
7. $y^{\prime \prime}-4 y=8 e^{2 t}$. Answer. $y=2 t e^{2 t}+c_{1} e^{-2 t}+c_{2} e^{2 t}$.
8. $y^{\prime \prime}+y=\sec t$. Answer. $y=c_{1} \cos t+c_{2} \sin t+\cos t \ln |\cos t|+t \sin t$.
9. $y^{\prime \prime}+3 y^{\prime}=6 t . \quad$ Answer. $y=t^{2}-\frac{2}{3} t+c_{1} e^{-3 t}+c_{2}$.
10. $y^{\prime \prime}-y^{\prime}-2 y=e^{-t} . y(0)=1, y^{\prime}(0)=0$.

Answer. $y=\frac{4}{9} e^{2 t}+\frac{1}{9} e^{-t}(3 t-5)$.
11. $y^{\prime \prime}+4 y=\sin 2 t, y(0)=0, y^{\prime}(0)=1$.

Answer. $y=-\frac{1}{4} t \cos 2 t+\frac{5}{8} \sin 2 t$.
12. $2 y^{\prime \prime}+2 y^{\prime}-4 y=e^{-2 t}$.

Hint: Put this equation into the right form for the variation of parameters formula (8.5).
Answer. $y=-\frac{1}{6} t e^{-2 t}+c_{1} e^{-2 t}+c_{2} e^{t}$.
13. $4 y^{\prime \prime}+4 y^{\prime}+y=3 t e^{t} . \quad$ Answer. $y=\frac{1}{9} e^{t}(3 t-4)+c_{1} e^{-\frac{t}{2}}+c_{2} t e^{-\frac{t}{2}}$.
V. Verify that the functions $y_{1}(t)$ and $y_{2}(t)$ form a fundamental solution set for the corresponding homogeneous equation, and then use variation of parameters to find the general solution.

1. $t^{2} y^{\prime \prime}-2 y=t^{3}-1 . \quad y_{1}(t)=t^{2}, \quad y_{2}(t)=t^{-1}$.

Hint: Begin by putting this equation into the right form to use (8.5).
Answer. $y=\frac{1}{2}+\frac{1}{4} t^{3}+c_{1} t^{2}+c_{2} \frac{1}{t}$.
2. $t y^{\prime \prime}-(1+t) y^{\prime}+y=t^{2} e^{3 t} . \quad y_{1}(t)=t+1, \quad y_{2}(t)=e^{t}$.
${ }^{1}$ Answer. $y=\frac{1}{12} e^{3 t}(2 t-1)+c_{1}(t+1)+c_{2} e^{t}$.
3. $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{4}\right) y=x^{3 / 2}$. (Non-homogeneous Bessel's equation.)
$3 y_{1}(x)=x^{-1 / 2} \cos x, y_{2}(x)=x^{-1 / 2} \sin x$.
4 Answer. $y=x^{-1 / 2}\left(1+c_{1} \cos x+c_{2} \sin x\right)$.
${ }_{5} \quad 4^{*} .\left(3 t^{3}+t\right) y^{\prime \prime}+2 y^{\prime}-6 t y=4-12 t^{2} . \quad y_{1}(t)=\frac{1}{t}, \quad y_{2}(t)=t^{2}+1$.
${ }_{6}$ Hint: Use Mathematica to compute the integrals.
7 Answer. $y=2 t+c_{1} \frac{1}{t}+c_{2}\left(t^{2}+1\right)$.
8 VI.
9 1. Use the convolution integral, to solve

$$
y^{\prime \prime}+y=t^{2}, \quad y(0)=0, y^{\prime}(0)=1 .
$$

10 Answer. $y=t^{2}-2+2 \cos t+\sin t$.
11 2. (i) Show that $y(t)=\int_{0}^{t} \frac{(t-s)^{n-1}}{(n-1)!} f(s) d s$ gives a solution of the n-th
12 order equation

$$
y^{(n)}=f(t) .
$$

${ }_{13}$ (This formula lets you compute n consecutive antiderivatives at once.)
14 Hint: Use the formula (9.1).
15 (ii) Solve the following integral equation

$$
y(t)+\int_{0}^{t}(t-s) y(s) d s=t .
$$

16 Hint: Differentiate the equation twice, and also evaluate $y(0), y^{\prime}(0)$.
${ }_{17}$ Answer. $y=\sin t$.
183^{*}. For the equation

$$
u^{\prime \prime}+(1+f(t)) u=0
$$

19 assume that $|f(t)| \leq \frac{c}{t^{1+\alpha}}$, with positive constants α and c, for $t \geq 1$.
20 (i) Show that all solutions are bounded as $t \rightarrow \infty$.
${ }_{21}$ Hint: Consider the "energy" of the solution $E(t)=\frac{1}{2} u^{\prime 2}+\frac{1}{2} u^{2}$. Then

$$
E^{\prime}=-f(t) u u^{\prime} \leq|f(t)|\left|u^{\prime} u\right| \leq|f(t)|\left(\frac{1}{2} u^{\prime 2}+\frac{1}{2} u^{2}\right) \leq \frac{c}{t^{1+\alpha}} E .
$$

(ii) Show that this equation has two solutions such that for $t \rightarrow \infty$

$$
u_{1}(t)=\cos t+O\left(\frac{1}{t^{\alpha}}\right), u_{2}(t)=\sin t+O\left(\frac{1}{t^{\alpha}}\right)
$$

(The "big O" $O\left(\frac{1}{t^{\alpha}}\right)$ denotes any function, whose absolute value is bounded by $\frac{c o n s t}{t^{\alpha}}$, as $t \rightarrow \infty$.)

Hint: Take $f(t) u$ to the right hand side, and treat it as a known function.
Then for any $1<t<a$

$$
u(t)=\cos t+\int_{t}^{a} \sin (t-s) f(s) u(s) d s
$$

gives the unique solution of our equation, satisfying the initial conditions $u(a)=\cos a, u^{\prime}(a)=-\sin a$. This solution is written using an integral involving itself. Since $u(s)$ is bounded, $\left|\int_{t}^{a} \sin (t-s) f(s) u(s) d s\right| \leq \frac{c_{1}}{t^{\alpha}}$.

4*. For the equation

$$
u^{\prime \prime}-(1+f(t)) u=0
$$

assume that $|f(t)| \leq \frac{c}{t^{1+\alpha}}$, with positive constants α and c, for $t \geq 1$. Show that the equation has two solutions such that for $t \rightarrow \infty$

$$
u_{1}(t)=e^{t}\left(1+O\left(\frac{1}{t^{\alpha}}\right)\right), u_{2}(t)=e^{-t}\left(1+O\left(\frac{1}{t^{\alpha}}\right)\right)
$$

Hint: Expressing a solution as $u(t)=e^{t}+\int_{1}^{t} \sinh (t-s) f(s) u(s) d s$, estimate

$$
|u(t)| \leq e^{t}+\frac{1}{2} e^{t} \int_{1}^{t} e^{-s}|f(s)||u(s)| d s
$$

Apply Bellman-Gronwall's lemma to show that $z(t)=e^{-t}|u(t)|$ is bounded, and therefore $|u(t)| \leq c e^{t}$. Then for any $1<t<a$

$$
u(t)=e^{t}-\int_{t}^{a} \sinh (t-s) f(s) u(s) d s
$$

and estimate the integral as above. (Similar questions are discussed in a nice old book by R. Bellman [2].)
5^{*}. In the equation

$$
y^{\prime \prime} \pm a^{4}(x) y=0
$$

1 make a substitution $y=b(x) u$ to obtain

$$
b^{2}\left(b^{2} u^{\prime}\right)^{\prime}+\left(b^{\prime \prime} b^{3} \pm a^{4} b^{4}\right) u=0 .
$$

2 Select $b(x)=\frac{1}{a(x)}$, then make a change of the independent variable $x \rightarrow t$, 3 so that $\frac{d x}{d t}=\frac{1}{a^{2}}$, or $t=\int a^{2}(x) d x$. Show that $u=u(t)$ satisfies

$$
u^{\prime \prime}+\left(\pm 1+\frac{1}{a^{3}}\left(\frac{1}{a}\right)_{x x}\right) u=0 .
$$

4 This procedure is known as the Liouville transformation. It often happens that $\frac{1}{a^{3}}\left(\frac{1}{a}\right)_{x x} \rightarrow 0$ as $t \rightarrow \infty$.
6^{*}. Apply the Liouville transformation to the equation

$$
\begin{equation*}
y^{\prime \prime}+e^{2 x} y=0 . \tag{10.3}
\end{equation*}
$$

Hint: Here $a(x)=e^{\frac{1}{2} x}, t=e^{x}, \frac{1}{a^{3}}\left(\frac{1}{a}\right)_{x x}=\frac{1}{4} e^{-2 x}=\frac{1}{4 t^{2}}$. Obtain:

$$
u^{\prime \prime}+\left(1+\frac{1}{4 t^{2}}\right) u=0 .
$$

8

7^{*}. Apply the Liouville transformation to the equation

$$
x y^{\prime \prime}-y=0 .
$$

11
Conclude that the general solution satisfies

$$
y=c_{1} x^{\frac{1}{4}} e^{2 \sqrt{x}}+c_{2} x^{\frac{1}{4}} e^{-2 \sqrt{x}}+O\left(x^{-\frac{1}{4}} e^{2 \sqrt{x}}\right), \text { as } x \rightarrow \infty .
$$

12 VII.
13 1. A spring has natural frequency $\omega=2$. Its initial displacement is -1 , and
14 the initial velocity is 2 . Find its displacement $y(t)$ at any time t. What is
15 the amplitude of the oscillations?
16 Answer. $y(t)=\sin 2 t-\cos 2 t, A=\sqrt{2}$.
2. A spring of mass 2 lb is hanging down from the ceiling, and its stiffness constant is $k=18$. Initially, the spring is pushed up 3 inches, and is given velocity of $2 \mathrm{inch} / \mathrm{sec}$, directed downward. Find the displacement of the spring $y(t)$ at any time t, and the amplitude of oscillations. (Assume that the y axis is directed down from the equilibrium position.)
Answer. $y(t)=\frac{2}{3} \sin 3 t-3 \cos 3 t, A=\frac{\sqrt{85}}{3}$.
3. A spring has natural frequency $\omega=3$. An outside force, with acceleration $f(t)=2 \cos \nu t$, is applied to the spring. Here ν is a constant, $\nu \neq 3$. Find the displacement of the spring $y(t)$ at any time t. What happens to the amplitude of oscillations in case ν is close to 3 ?
Answer. $y(t)=\frac{2}{9-\nu^{2}} \cos \nu t+c_{1} \cos 3 t+c_{2} \sin 3 t$.
4. Assume that $\nu=3$ in the preceding problem. Find the displacement of the spring $y(t)$ at any time t. What happens to the spring in the long run?
Answer. $y(t)=\frac{1}{3} t \sin 3 t+c_{1} \cos 3 t+c_{2} \sin 3 t$.
5. Consider dissipative (or damped) motion of a spring

$$
y^{\prime \prime}+\alpha y^{\prime}+9 y=0 .
$$

Write down the solution, assuming that $\alpha<6$. What is the smallest value of the dissipation constant α, which will prevent the spring from oscillating?

Answer. No oscillations for $\alpha \geq 6$.
6. Consider forced vibrations of a dissipative spring

$$
y^{\prime \prime}+\alpha y^{\prime}+9 y=\sin 3 t
$$

Write down the general solution for
(i) $\alpha=0$
(ii) $\alpha \neq 0$.

What does friction do to the resonance?

2.10.3 A Meteor Approaching the Earth

Let $r=r(t)$ denote the distance of some meteor from the center of the Earth. The motion of the meteor is governed by Newton's law of gravitation

$$
\begin{equation*}
m r^{\prime \prime}=-\frac{m M G}{r^{2}} \tag{10.4}
\end{equation*}
$$

Here m is the mass of the meteor, M denotes the mass of the Earth, and G is the universal gravitational constant. Let a be the radius of the Earth. If an object is sitting on Earth's surface, then $r=a$, and the acceleration $r^{\prime \prime}=-g$, the gravity of Earth, so that from (10.4)

$$
g=\frac{M G}{a^{2}} .
$$

5 Then $M G=g a^{2}$, and we can rewrite (10.4) as

$$
\begin{equation*}
r^{\prime \prime}=-g \frac{a^{2}}{r^{2}} \tag{10.5}
\end{equation*}
$$

We could solve this equation by letting $r^{\prime}=v(r)$, because the independent variable t is missing. Instead, to obtain the solution in a more instructive way, let us multiply both sides of the equation by r^{\prime}, and write the result as

$$
r^{\prime} r^{\prime \prime}+g \frac{a^{2}}{r^{2}} r^{\prime}=0
$$

$$
\frac{d}{d t}\left(\frac{1}{2} r^{\prime 2}-g \frac{a^{2}}{r}\right)=0
$$

$$
\begin{equation*}
\frac{1}{2} r^{\prime 2}(t)-g \frac{a^{2}}{r(t)}=c . \tag{10.6}
\end{equation*}
$$

So that the energy of the meteor, $E(t)=\frac{1}{2} r^{\prime 2}(t)-g \frac{a^{2}}{r(t)}$, remains constant at all time. (That is why the gravitational force field is called conservative.) We can now express $r^{\prime}(t)=-\sqrt{2 c+\frac{2 g a^{2}}{r(t)}}$, and calculate the motion of meteor $r(t)$ by separation of variables. However, as we are not riding on the meteor, this seems to be not worth the effort. What really concerns us is the velocity of impact, when the meteor hits the Earth, which is discussed next.

Let us assume that the meteor "begins" its journey with zero velocity $r^{\prime}(0)=0$, and at a distance so large that we may assume $r(0)=\infty$. Then the energy of the meteor at time $t=0$ is zero, $E(0)=0$. As the energy remains constant at all time, the energy at the time of impact is also zero. At the time of impact, we have $r=a$, and the velocity of impact we denote by $v\left(r^{\prime}=v\right)$. Then from (10.6)

$$
\frac{1}{2} v^{2}(t)-g \frac{a^{2}}{a}=0
$$

and the velocity of impact is

$$
v=\sqrt{2 g a} .
$$

Food for thought: the velocity of impact is the same, as it would have been achieved by free fall from height a.

Let us now revisit the harmonic oscillations of a spring:

$$
y^{\prime \prime}+\omega^{2} y=0 .
$$

Similarly to the meteor case, multiply this equation by y^{\prime} :

$$
\begin{gathered}
y^{\prime} y^{\prime \prime}+\omega^{2} y y^{\prime}=0 \\
\frac{d}{d t}\left(\frac{1}{2} y^{\prime 2}+\frac{1}{2} \omega^{2} y^{2}\right)=0, \\
E(t)=\frac{1}{2} y^{\prime 2}+\frac{1}{2} \omega^{2} y^{2}=\text { constant } .
\end{gathered}
$$

With the energy $E(t)$ being conserved, no wonder the motion of the spring was periodic.

2.10.4 Damped Oscillations

We add an extra term to our model of spring motion:

$$
m y^{\prime \prime}=-k y-k_{1} y^{\prime},
$$

where k_{1} is another positive constant. It represents an additional force, which is directed in the opposite direction, and is proportional to the velocity of motion y^{\prime}. This can be either air resistance or friction. Denoting $k_{1} / m=$ $\alpha>0$, and $k / m=\omega^{2}$, rewrite the equation as

$$
\begin{equation*}
y^{\prime \prime}+\alpha y^{\prime}+\omega^{2} y=0 . \tag{10.7}
\end{equation*}
$$

Let us see what effect the extra term αy^{\prime} has on the energy of the spring, $E(t)=\frac{1}{2} y^{\prime 2}+\frac{1}{2} \omega^{2} y^{2}$. We differentiate the energy, and express from the equation (10.7), $y^{\prime \prime}=-\alpha y^{\prime}-\omega^{2} y$, obtaining

$$
E^{\prime}(t)=y^{\prime} y^{\prime \prime}+\omega^{2} y y^{\prime}=y^{\prime}\left(-\alpha y^{\prime}-\omega^{2} y\right)+\omega^{2} y y^{\prime}=-\alpha y^{\prime 2} .
$$

It follows that $E^{\prime}(t) \leq 0$, and the energy decreases. This is an example of a dissipative motion. We expect the amplitude of oscillations to decrease with time. We call α the dissipation (or damping) coefficient.

4 (i) $\alpha^{2}-4 \omega^{2}<0$. (The dissipation coefficient α is small.) The roots are 5 complex. If we denote $\alpha^{2}-4 \omega^{2}=-q^{2}$, with $q>0$, the roots are $-\frac{\alpha}{2} \pm i \frac{q}{2}$.
6 The general solution

$$
y(t)=c_{1} e^{-\frac{\alpha}{2} t} \sin \frac{q}{2} t+c_{2} e^{-\frac{\alpha}{2} t} \cos \frac{q}{2} t
$$

exhibits damped oscillations (the amplitude of oscillations tends to zero, as $t \rightarrow \infty)$.
(ii) $\alpha^{2}-4 \omega^{2}=0$. There is a double real root $-\frac{\alpha}{2}$. The general solution

$$
y(t)=c_{1} e^{-\frac{\alpha}{2} t}+c_{2} t e^{-\frac{\alpha}{2} t}
$$

tends to zero as $t \rightarrow \infty$, without oscillating.
(iii) $\alpha^{2}-4 \omega^{2}>0$. The roots are real and distinct. If we denote $q=$ $\sqrt{\alpha^{2}-4 \omega^{2}}$, then the roots are $r_{1}=\frac{-\alpha-q}{2}$, and $r_{2}=\frac{-\alpha+q}{2}$. Both roots are negative, because $q<\alpha$. The general solution

$$
y(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

tends to zero as $t \rightarrow \infty$, without oscillating. We see that large enough dissipation coefficient α "kills" the oscillations.

2.11 Further Applications

This section begins with forced vibrations in presence of damping. It turns out that any amount of damping "kills" the resonance, and the largest amplitude of oscillations occurs when the forcing frequency ν is a little smaller than the natural frequency ω. Then oscillations of a pendulum, and of two coupled pendulums, are studied.

2.11.1 Forced and Damped Oscillations

It turns out that even a little damping is enough to avoid resonance. Consider the equation

$$
\begin{equation*}
y^{\prime \prime}+\alpha y^{\prime}+\omega^{2} y=\sin \nu t \tag{11.1}
\end{equation*}
$$

4 modeling forced vibrations of a spring in the presence of damping. Our theory tells us to look for a particular solution in the form $Y(t)=A_{1} \cos \nu t+$ $A_{2} \sin \nu t$. Once the constants A_{1} and A_{2} are determined, we can use trigonometric identities to put this solution into the form

$$
\begin{equation*}
Y(t)=A \sin (\nu t-\gamma) \tag{11.2}
\end{equation*}
$$

s with the constants $A>0$ and γ depending on A_{1} and A_{2}. So, let us look for a particular solution directly in the form (11.2). We transform the forcing term as a linear combination of $\sin (\nu t-\gamma)$ and $\cos (\nu t-\gamma)$:

$$
\sin \nu t=\sin ((\nu t-\gamma)+\gamma)=\sin (\nu t-\gamma) \cos \gamma+\cos (\nu t-\gamma) \sin \gamma
$$

${ }_{11}$ Substitute $Y(t)=A \sin (\nu t-\gamma)$ into the equation (11.1):

$$
\begin{gathered}
-A \nu^{2} \sin (\nu t-\gamma)+A \alpha \nu \cos (\nu t-\gamma)+A \omega^{2} \sin (\nu t-\gamma)= \\
\sin (\nu t-\gamma) \cos \gamma+\cos (\nu t-\gamma) \sin \gamma .
\end{gathered}
$$

12 Equating the coefficients in $\sin (\nu t-\gamma)$ and $\cos (\nu t-\gamma)$, gives

$$
\begin{gather*}
A\left(\omega^{2}-\nu^{2}\right)=\cos \gamma \tag{11.3}\\
A \alpha \nu=\sin \gamma .
\end{gather*}
$$

Square both of these equations, and add the results

$$
A^{2}\left(\omega^{2}-\nu^{2}\right)^{2}+A^{2} \alpha^{2} \nu^{2}=1,
$$

4 which allows us to calculate A :

$$
A=\frac{1}{\sqrt{\left(\omega^{2}-\nu^{2}\right)^{2}+\alpha^{2} \nu^{2}}} .
$$

To calculate γ, divide the second equation in (11.3) by the first

$$
\tan \gamma=\frac{\alpha \nu}{\omega^{2}-\nu^{2}}, \text { or } \gamma=\tan ^{-1} \frac{\alpha \nu}{\omega^{2}-\nu^{2}} .
$$

We computed a particular solution

$$
Y(t)=\frac{1}{\sqrt{\left(\omega^{2}-\nu^{2}\right)^{2}+\alpha^{2} \nu^{2}}} \sin (\nu t-\gamma), \text { where } \gamma=\tan ^{-1} \frac{\alpha \nu}{\omega^{2}-\nu^{2}} .
$$

We now make a physically reasonable assumption that the damping coefficient α is small, so that $\alpha^{2}-4 \omega^{2}<0$. Then the characteristic equation for the homogeneous equation corresponding to (11.1)

$$
r^{2}+\alpha r+\omega^{2}=0
$$

has a pair of complex roots $-\frac{\alpha}{2} \pm i \beta$, where $\beta=\frac{\sqrt{4 \omega^{2}-\alpha^{2}}}{2}$. The general solution of (11.1) is then

$$
y(t)=c_{1} e^{-\frac{\alpha}{2} t} \cos \beta t+c_{2} e^{-\frac{\alpha}{2} t} \sin \beta t+\frac{1}{\sqrt{\left(\omega^{2}-\nu^{2}\right)^{2}+\alpha^{2} \nu^{2}}} \sin (\nu t-\gamma)
$$

The first two terms of this solution are called the transient oscillations, because they quickly tend to zero, as the time t goes on ("sic transit gloria mundi"). So that the third term, $Y(t)$, describes the oscillations in the long run. We see that oscillations of $Y(t)$ are bounded, no matter what is the frequency ν of the forcing term. The resonance is gone! Moreover, the largest amplitude of $Y(t)$ occurs not at $\nu=\omega$, but at a slightly smaller value of ν. Indeed, the maximal amplitude happens when the quantity in the denominator, $\left(\omega^{2}-\nu^{2}\right)^{2}+\alpha^{2} \nu^{2}$, is the smallest. This quantity is a quadratic in ν^{2}. Its minimum occurs when $\nu^{2}=\omega^{2}-\frac{\alpha^{2}}{2}$, or $\nu=\sqrt{\omega^{2}-\frac{\alpha^{2}}{2}}$.

2.11.2 An Example of a Discontinuous Forcing Term

We now consider equations with a jumping force function. A simple function with a jump at some number c, is the Heaviside step function

$$
u_{c}(t)= \begin{cases}0 & \text { if } t<c \\ 1 & \text { if } t \geq c\end{cases}
$$

Example For $t>0$, solve the problem

$$
\begin{gathered}
y^{\prime \prime}+4 y=f(t) \\
y(0)=0, \quad y^{\prime}(0)=3
\end{gathered}
$$

where

$$
f(t)= \begin{cases}0 & \text { if } t<\pi / 4 \\ t+1 & \text { if } t \geq \pi / 4\end{cases}
$$

Physical interpretation: no external force is applied to the spring before the time $t=\pi / 4$, and the force is equal to $t+1$ afterwards. The forcing function can be written as $f(t)=u_{\pi / 4}(t)(t+1)$.

1 The problem naturally breaks down into two parts. When $0<t<\pi / 4$, 2 we are solving

$$
y^{\prime \prime}+4 y=0 .
$$

${ }_{3}$ Its general solution is $y(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$. Using the initial conditions,
4 calculate $c_{1}=0, c_{2}=\frac{3}{2}$, so that

$$
\begin{equation*}
y(t)=\frac{3}{2} \sin 2 t, \text { for } t \leq \pi / 4 \tag{11.4}
\end{equation*}
$$

5 At later times, when $t \geq \pi / 4$, our equation is

$$
\begin{equation*}
y^{\prime \prime}+4 y=t+1 \tag{11.5}
\end{equation*}
$$

${ }_{6}$ But what are the new initial conditions at the time $t=\pi / 4$? Clearly, we 7 can get them from (11.4):

$$
\begin{equation*}
y(\pi / 4)=\frac{3}{2}, \quad y^{\prime}(\pi / 4)=0 \tag{11.6}
\end{equation*}
$$

8 The general solution of (11.5) is $y(t)=\frac{1}{4} t+\frac{1}{4}+c_{1} \cos 2 t+c_{2} \sin 2 t$. Calculating c_{1} and c_{2} from the initial conditions in (11.6), gives $y(t)=\frac{1}{4} t+\frac{1}{4}+$ $\frac{1}{8} \cos 2 t+\left(\frac{5}{4}-\frac{\pi}{16}\right) \sin 2 t$. Answer:

$$
y(t)=\left\{\begin{array}{ll}
\frac{3}{2} \sin 2 t, & \text { if } t<\pi / 4 \\
\frac{1}{4} t+\frac{1}{4}+\frac{1}{8} \cos 2 t+\left(\frac{5}{4}-\frac{\pi}{16}\right) \sin 2 t, & \text { if } t \geq \pi / 4
\end{array} .\right.
$$

Observe that the solution $y(t)$ is continuous at $t=\pi / 4$.

2.11.3 Oscillations of a Pendulum

Gravity acting on a pendulum, $\varphi=\frac{\pi}{2}-\theta$

Assume that a small ball of mass m is attached to one end of a rigid rod of length l, while the other end of the rod is attached to the ceiling. Assume also that the mass of the rod itself is so small, that it can be neglected. Clearly, the ball will move on an arch of a circle of radius l. Let $\theta=\theta(t)$ be the angle that the pendulum makes with the vertical line, at the time t. We assume that $\theta>0$ if the pendulum is to the left of the vertical line, and $\theta<0$ to the right of the vertical. If the pendulum moves by an angle θ radians, it covers the distance $l \theta=l \theta(t)$. It follows that $l \theta^{\prime}(t)$ gives its velocity, and $l \theta^{\prime \prime}(t)$ the acceleration. We assume that the only force acting on the mass is the force of gravity. Only the projection of this force on the tangent line to the circle is active, which is $m g \cos \left(\frac{\pi}{2}-\theta\right)=m g \sin \theta$. Newton's second law of motion gives

$$
m l \theta^{\prime \prime}(t)=-m g \sin \theta
$$

(Minus, because the force works to decrease the angle θ, when $\theta>0$, and to increase θ, if $\theta<0$.) Denoting $g / l=\omega^{2}$, we obtain the pendulum equation

$$
\theta^{\prime \prime}(t)+\omega^{2} \sin \theta(t)=0
$$

If the oscillation angle $\theta(t)$ is small, then $\sin \theta(t) \approx \theta(t)$, giving us again a harmonic oscillator

$$
\theta^{\prime \prime}(t)+\omega^{2} \theta(t)=0
$$

this time as a model of small oscillations of a pendulum.

2.11.4 Sympathetic Oscillations

Suppose that we have two pendulums hanging from the ceiling, and they are coupled (connected) through a weightless spring. Let x_{1} denote the angle the left pendulum makes with the vertical line. We consider this angle to be positive if the pendulum is to the left of the vertical line, and $x_{1}<0$ if the pendulum is to the right of the vertical line. Let x_{2} be the angle the right pendulum makes with the vertical, with the same assumptions on its sign. We assume that x_{1} and x_{2} are small in absolute value, which means that each pendulum separately can be modeled by a harmonic oscillator.

For the coupled pendulums the model is

$$
\begin{align*}
x_{1}^{\prime \prime}+\omega^{2} x_{1} & =-k\left(x_{1}-x_{2}\right) \tag{11.7}\\
x_{2}^{\prime \prime}+\omega^{2} x_{2} & =k\left(x_{1}-x_{2}\right)
\end{align*}
$$

where $k>0$ is a physical constant, describing the stiffness of the coupling spring. Indeed, if $x_{1}>x_{2}>0$, then the coupling spring is extended, so that
the spring tries to contract, and in doing so it pulls back the left pendulum, while pulling forward (accelerating) the right pendulum. (Correspondingly, the forcing term is negative in the first equation, and positive in the second one.) In case $0<x_{1}<x_{2}$, the spring is compressed, and as it tries to expand, it accelerates the first (left) pendulum, and slows down the second (right) pendulum. We shall solve the system (11.7), together with the simple initial conditions

$$
\begin{equation*}
x_{1}(0)=a, \quad x_{1}^{\prime}(0)=0, \quad x_{2}(0)=0, \quad x_{2}^{\prime}(0)=0 \tag{11.8}
\end{equation*}
$$

$$
\begin{equation*}
x_{1}=\frac{z_{1}+z_{2}}{2}=\frac{a \cos \omega t+a \cos \omega_{1} t}{2}=a \cos \frac{\omega_{1}-\omega}{2} t \cos \frac{\omega_{1}+\omega}{2} t \tag{11.9}
\end{equation*}
$$

using a trigonometric identity on the last step. Similarly,

$$
\begin{equation*}
x_{2}=\frac{z_{1}-z_{2}}{2}=\frac{a \cos \omega t-a \cos \omega_{1} t}{2}=a \sin \frac{\omega_{1}-\omega}{2} t \sin \frac{\omega_{1}+\omega}{2} t . \tag{11.10}
\end{equation*}
$$

We now analyze the solution, given by the formulas (11.9) and (11.10). If k is small (the coupling is weak), then ω_{1} is close to ω, and so their difference $\omega_{1}-\omega$ is small. It follows that both $\cos \frac{\omega_{1}-\omega}{2} t$ and $\sin \frac{\omega_{1}-\omega}{2} t$ change very slowly with time t. Rewrite the solution as

$$
x_{1}=A \cos \frac{\omega_{1}+\omega}{2} t, \quad \text { and } x_{2}=B \sin \frac{\omega_{1}+\omega}{2} t
$$

where we regard $A=a \cos \frac{\omega_{1}-\omega}{2} t$, and $B=a \sin \frac{\omega_{1}-\omega}{2} t$, as slowly varying amplitudes. We interpret this by saying that the pendulums oscillate with the frequency $\frac{\omega_{1}+\omega}{2}$, and with slowly varying amplitudes A and B. (The amplitudes A and B are also periodic. Oscillations with periodically varying amplitudes are known as beats, see Figure 2.4.)

At times t, when $\cos \frac{\omega_{1}-\omega}{2} t$ is zero, and the first pendulum is at rest $\left(x_{1}=0\right)$, the amplitude of the second pendulum satisfies $\left|\sin \frac{\omega_{1}-\omega}{2} t\right|=1$, obtaining its largest possible absolute value. There is a complete exchange of energy: when one of the pendulums is doing the maximal work, the other one is resting. We see "sympathy" between the pendulums. Observe also that $A^{2}+B^{2}=a^{2}$. This means that the point $\left(x_{1}(t), x_{2}(t)\right)$ lies on the circle of radius a in the (x_{1}, x_{2}) plane, for all t.

Example Using Mathematica, we solved a particular case of (11.7)

$$
\begin{gathered}
x_{1}^{\prime \prime}+x_{1}=-0.1\left(x_{1}-x_{2}\right) \\
x_{2}^{\prime \prime}+x_{2}=0.1\left(x_{1}-x_{2}\right) \\
x_{1}(0)=2, x_{1}^{\prime}(0)=0, x_{2}(0)=x_{2}^{\prime}(0)=0
\end{gathered}
$$

The graphs of $x_{1}(t)$ and $x_{2}(t)$ in Figure 2.4 both exhibit beats. Observe that maximal amplitude of each of these functions occurs at times when the amplitude of the other function is zero.

2.12 Oscillations of a Spring Subject to a Periodic Force

This section develops the Fourier series, one of the most important concepts of mathematics. Application is made to periodic vibrations of a spring.

Figure 2.4: Oscillations of coupled pendulums: beats

2.12.1 The Fourier Series

For vectors in three dimensions, one of the central notions is that of the scalar product (also known as the "inner product", or the "dot product").
${ }_{4}$ Namely, if $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ and $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$, then their scalar product is

$$
(x, y)=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3} .
$$

${ }_{5}$ Scalar product can be used to compute the length of a vector $\|x\|=\sqrt{(x, x)}$, 6 and the angle θ between the vectors x and y

$$
\cos \theta=\frac{(x, y)}{\|x\|\|y\|} .
$$

In particular, the vectors x and y are orthogonal (perpendicular) if $(x, y)=$ 0 . If i, j and k are the unit coordinate vectors, then $(x, i)=x_{1},(x, j)=x_{2}$, and $(x, k)=x_{3}$. Writing $x=x_{1} i+x_{2} j+x_{3} k$, we express

$$
\begin{equation*}
x=(x, i) i+(x, j) j+(x, k) k . \tag{12.1}
\end{equation*}
$$

This formula gives probably the simplest example of the Fourier Series.
We shall now consider functions $f(t)$ that are periodic, with period 2π. Such functions are determined by their values on any interval of length 2π. So let us consider them on the interval $(-\pi, \pi)$. Given two functions $f(t)$ and $g(t)$, we define their scalar product as

$$
(f, g)=\int_{-\pi}^{\pi} f(t) g(t) d t
$$

We call the functions orthogonal if $(f, g)=0$. For example, $(\sin t, \cos t)=$ $\int_{-\pi}^{\pi} \sin t \cos t d t=0$, so that $\sin t$ and $\cos t$ are orthogonal. (Observe that the orthogonality of these functions has nothing to do with the angle at which their graphs intersect.) The notion of scalar product allows us to define the norm of a function

$$
\|f\|=\sqrt{(f, f)}=\sqrt{\int_{-\pi}^{\pi} f^{2}(t) d t}
$$

For example,

$$
\|\sin t\|=\sqrt{\int_{-\pi}^{\pi} \sin ^{2} t d t}=\sqrt{\int_{-\pi}^{\pi}\left(\frac{1}{2}-\frac{1}{2} \cos 2 t\right) d t}=\sqrt{\pi}
$$

Similarly, for any positive integer $n,\|\sin n t\|=\sqrt{\pi},\|\cos n t\|=\sqrt{\pi}$, and $\|1\|=\sqrt{2 \pi}$.

We now consider an infinite set of functions
$1, \cos t, \cos 2 t, \ldots, \cos n t, \ldots, \sin t, \sin 2 t, \ldots, \sin n t, \ldots$. They are all mutually orthogonal. This is because

$$
(1, \cos n t)=\int_{-\pi}^{\pi} \cos n t d t=0
$$

$$
(1, \sin n t)=\int_{-\pi}^{\pi} \sin n t d t=0
$$

$$
(\cos n t, \cos m t)=\int_{-\pi}^{\pi} \cos n t \cos m t d t=0, \text { for all } n \neq m
$$

$$
(\sin n t, \sin m t)=\int_{-\pi}^{\pi} \sin n t \sin m t d t=0, \text { for all } n \neq m
$$

$$
(\sin n t, \cos m t)=\int_{-\pi}^{\pi} \sin n t \cos m t d t=0, \text { for any } n \text { and } m .
$$

1 The last three integrals are computed by using trigonometric identities. If we divide these functions by their norms, we shall obtain an orthonormal set of functions

$$
\frac{1}{\sqrt{2 \pi}}, \frac{\cos t}{\sqrt{\pi}}, \frac{\cos 2 t}{\sqrt{\pi}}, \ldots, \frac{\cos n t}{\sqrt{\pi}}, \ldots, \frac{\sin t}{\sqrt{\pi}}, \frac{\sin 2 t}{\sqrt{\pi}}, \ldots, \frac{\sin n t}{\sqrt{\pi}}, \ldots,
$$

4 which is similar to the coordinate vectors i, j and k. It is known that these functions form a complete set, so that "any" function $f(t)$ can be represented as their linear combination. Similarly to the formula for vectors (12.1), we decompose an arbitrary function $f(t)$ as

$$
f(t)=\alpha_{0} \frac{1}{\sqrt{2 \pi}}+\sum_{n=1}^{\infty}\left(\alpha_{n} \frac{\cos n t}{\sqrt{\pi}}+\beta_{n} \frac{\sin n t}{\sqrt{\pi}}\right)
$$

$$
\alpha_{n}=\left(f(t), \frac{\cos n t}{\sqrt{\pi}}\right)=\frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(t) \cos n t d t
$$

$$
\beta_{n}=\left(f(t), \frac{\sin n t}{\sqrt{\pi}}\right)=\frac{1}{\sqrt{\pi}} \int_{-\pi}^{\pi} f(t) \sin n t d t .
$$

where

$$
\alpha_{0}=\left(f(t), \frac{1}{\sqrt{2 \pi}}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} f(t) d t
$$

It is customary to denote $a_{0}=\alpha_{0} / \sqrt{2 \pi}, a_{n}=\alpha_{n} / \sqrt{\pi}$, and $b_{n}=\beta_{n} / \sqrt{\pi}$, so that the Fourier Series takes the final form

$$
f(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

with the coefficients given by

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(t) d t
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t \\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t
\end{aligned}
$$

The Pythagorean theorem takes the form

$$
\|f\|^{2}=\alpha_{0}^{2}+\sum_{n=1}^{\infty}\left(\alpha_{n}^{2}+\beta_{n}^{2}\right),
$$

1 Or

$$
\frac{1}{\pi} \int_{-\pi}^{\pi} f^{2}(x) d x=2 a_{0}^{2}+\sum_{n=1}^{\infty}\left(a_{n}^{2}+b_{n}^{2}\right),
$$

2 which is known as Parseval's identity.

3

The saw-tooth function
4 Example Let $f(t)$ be a function of period 2π, which is equal to $t+\pi$ on 5 the interval $(-\pi, \pi)$. This is the saw-tooth function. It is not defined at the ${ }_{6}$ points $n \pi$ and $-n \pi$, with n odd, but this does not affect the integrals that 7 we need to compute. Compute

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi}(t+\pi) d t=\left.\frac{1}{4 \pi}(t+\pi)^{2}\right|_{-\pi} ^{\pi}=\pi .
$$

8 Integrating by parts (or using guess-and-check)

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}(t+\pi) \cos n t d t=\left.\left[\frac{1}{\pi}(t+\pi) \frac{\sin n t}{n}+\frac{\cos n t}{n^{2} \pi}\right]\right|_{-\pi} ^{\pi}=0,
$$

9 because $\sin n \pi=0$, and cosine is an even function. Similarly

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi}(t+\pi) \sin n t d t=\left.\left[\frac{1}{\pi}(t+\pi)\left(-\frac{\cos n t}{n}\right)+\frac{\sin n t}{n^{2} \pi}\right]\right|_{-\pi} ^{\pi}
$$

10

$$
=-\frac{2}{n} \cos n \pi=-\frac{2}{n}(-1)^{n}=\frac{2}{n}(-1)^{n+1} .
$$

${ }_{11}$ (Observe that $\cos n \pi$ is equal to 1 for even n, and to -1 for odd n, which 12 may be combined as $\cos n \pi=(-1)^{n}$.) The Fourier series for the function
${ }_{13} f(t)$ is then

$$
f(t)=\pi+\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin n t
$$

which is valid on $(-\infty, \infty)$ (with the exception of points $n \pi$ and $-n \pi$, with $2 n$ odd). Restricting to the interval ($-\pi, \pi$), gives

$$
t+\pi=\pi+\sum_{n=1}^{\infty} \frac{2}{n}(-1)^{n+1} \sin n t, \text { for }-\pi<t<\pi .
$$

It might look that we did not accomplish much by expressing a simple function $t+\pi$ through an infinite series. However, one can now express solutions of differential equations through Fourier series.

2.12.2 Vibrations of a Spring Subject to a Periodic Force

Consider the model

$$
y^{\prime \prime}+\omega^{2} y=f(t),
$$

where $y=y(t)$ is the displacement of a spring, $\omega>0$ is a constant (the natural frequency), and $f(t)$ is a given function of period 2π, the acceleration of an external force. This equation also models oscillations in electrical circuits. Expressing $f(t)$ by its Fourier series, rewrite this model as

$$
y^{\prime \prime}+\omega^{2} y=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) .
$$

Let us assume that $\omega \neq n$, for any integer n (to avoid resonance). According to our theory, we look for a particular solution in the form $Y(t)=A_{0}+$ $\sum_{n=1}^{\infty}\left(A_{n} \cos n t+B_{n} \sin n t\right)$. Substituting this in, we find

$$
Y(t)=\frac{a_{0}}{\omega^{2}}+\sum_{n=1}^{\infty}\left(\frac{a_{n}}{\omega^{2}-n^{2}} \cos n t+\frac{b_{n}}{\omega^{2}-n^{2}} \sin n t\right) .
$$

The general solution is then

$$
y(t)=\frac{a_{0}}{\omega^{2}}+\sum_{n=1}^{\infty}\left(\frac{a_{n}}{\omega^{2}-n^{2}} \cos n t+\frac{b_{n}}{\omega^{2}-n^{2}} \sin n t\right)+c_{1} \cos \omega t+c_{2} \sin \omega t .
$$ are large, provided that the natural frequency ω is selected to be close to m. That is basically what happens, when one is turning the tuning knob of a radio set. (The knob controls ω, while your favorite station broadcasts at a frequency m, so that its signal has the form $f(t)=a_{m} \cos m t+b_{m} \sin m t$.)

$$
\begin{equation*}
\frac{d}{d t} \ln |t|=\frac{\operatorname{sign}(t)}{|t|}=\frac{1}{t}, \text { for all } t \neq 0 \tag{13.2}
\end{equation*}
$$

$$
\begin{equation*}
a t^{2} y^{\prime \prime}+b t y^{\prime}+c y=0, \tag{13.3}
\end{equation*}
$$

9 where a, b and c are given numbers. Assume first that $t>0$. We look for a solution in the form $y=t^{r}$, with the constant r to be determined. Substituting this in, gives

$$
a t^{2} r(r-1) t^{r-2}+b t r t^{r-1}+c t^{r}=0
$$

$$
\begin{equation*}
\operatorname{ar}(r-1)+b r+c=0 \tag{13.4}
\end{equation*}
$$

gives us a quadratic equation, called the characteristic equation. There are three possibilities with respect to its roots, which we consider next.
4 Case 1 There are two real and distinct roots $r_{1} \neq r_{2}$. Then $t^{r_{1}}$ and $t^{r_{2}}$ are two solutions, which are not constant multiples of each other, and the general solution (valid for $t>0$) is

$$
y(t)=c_{1} t^{r_{1}}+c_{2} t^{r_{2}}
$$

7 If r_{1} is either an integer, or a fraction with an odd denominator, then $t^{r_{1}}$ is also defined for $t<0$. If the same is true for r_{2}, then the above general solution is valid for all $t \neq 0$. For other r_{1} and r_{2}, this solution is not even defined for $t<0$.

We claim that $y(t)=|t|^{r_{1}}$ gives a solution of Euler's equation, which is valid for all $t \neq 0$. Indeed, calculate $y^{\prime}(t)=r_{1}|t|^{r_{1}-1} \operatorname{sign}(t), y^{\prime \prime}(t)=$ $r_{1}\left(r_{1}-1\right)|t|^{r_{1}-2}(\operatorname{sign}(t))^{2}=r_{1}\left(r_{1}-1\right)|t|^{r_{1}-2}$, and then substituting $y(t)$ into Euler's equation (13.3) gives

$$
a t^{2} r_{1}\left(r_{1}-1\right)|t|^{r_{1}-2}+b t r_{1}|t|^{r_{1}-1} \operatorname{sign}(t)+c|t|^{r_{1}}
$$

$$
=|t|^{r_{1}}\left(a r_{1}\left(r_{1}-1\right)+b r_{1}+c\right)=0
$$

gives a general solution valid for all $t \neq 0$.
Example 1 Solve $2 t^{2} y^{\prime \prime}+t y^{\prime}-3 y=0$.
The characteristic equation

$$
2 r(r-1)+r-3=0
$$

has roots $r_{1}=-1$, and $r_{2}=\frac{3}{2}$. The general solution $y(t)=c_{1} t^{-1}+c_{2} t^{\frac{3}{2}}$ is valid only for $t>0$, while $y(t)=c_{1}|t|^{-1}+c_{2}|t|^{\frac{3}{2}}$ is valid for $t \neq 0$.
Example 2 Solve $\quad t^{2} y^{\prime \prime}+2 t y^{\prime}-2 y=0$.
The characteristic equation

$$
r(r-1)+2 r-2=0
$$

has roots $r_{1}=-2$, and $r_{2}=1$. The general solution $y(t)=c_{1} t^{-2}+c_{2} t$ is valid not just for $t>0$, but for all $t \neq 0$. Another general solution valid for all $t \neq 0$ is $y(t)=c_{1}|t|^{-2}+c_{2}|t|=c_{1} t^{-2}+c_{2}|t|$. This is a truly different function! Why such an unexpected complexity? If one divides this equation by t^{2}, then the functions $p(t)=2 / t$ and $g(t)=-2 / t^{2}$ from our general theory, are both discontinuous at $t=0$. We have a singularity at $t=0$, and, in general, the solution $y(t)$ is not even defined at $t=0$ (as we see in this example), and that is the reason for the complexity. However, when solving initial value problems, it does not matter which form of the general solution one uses. For example, if we prescribe some initial conditions at $t=-1$, then both forms of the general solution can be continued only on the interval $(-\infty, 0)$, and on that interval both forms are equivalent.

We now turn to the cases of equal roots, and of complex roots, for the characteristic equation. One could proceed similarly to the linear equations with constant coefficients. Instead, to understand what lies behind the nice properties of Euler's equation, we make a change of independent variables from t to a new variable s, by letting $t=e^{s}$, or $s=\ln t$. By the chain rule

$$
\frac{d y}{d t}=\frac{d y}{d s} \frac{d s}{d t}=\frac{d y}{d s} \frac{1}{t} .
$$

Using the product rule, and then the chain rule,

$$
\frac{d^{2} y}{d t^{2}}=\frac{d}{d t}\left(\frac{d y}{d s}\right) \frac{1}{t}-\frac{d y}{d s} \frac{1}{t^{2}}=\frac{d^{2} y}{d s^{2}} \frac{d s}{d t} \frac{1}{t}-\frac{d y}{d s} \frac{1}{t^{2}}=\frac{d^{2} y}{d s^{2}} \frac{1}{t^{2}}-\frac{d y}{d s} \frac{1}{t^{2}} .
$$

Then Euler's equation (13.3) becomes

$$
a \frac{d^{2} y}{d s^{2}}-a \frac{d y}{d s}+b \frac{d y}{d s}+c y=0 .
$$

This is a linear equations with constant coefficients! It can be solved for any a, b and c. Let us use primes again to denote the derivatives in s in this equation. Then it becomes

$$
\begin{equation*}
a y^{\prime \prime}+(b-a) y^{\prime}+c y=0 . \tag{13.5}
\end{equation*}
$$

3 Its characteristic equation

$$
\begin{equation*}
a r^{2}+(b-a) r+c=0 \tag{13.6}
\end{equation*}
$$

is exactly the same as (13.4).

We now return to Euler's equation, and its characteristic equation (13.4).

Case $2 r_{1}$ is a double root of the characteristic equation (13.4), i.e., r_{1} is a double root of (13.6). Then $y=c_{1} e^{r_{1} s}+c_{2} s e^{r_{1} s}$ is the general solution of (13.5). Returning to the original variable t, by substituting $s=\ln t$, and simplifying (using that $e^{r_{1} \ln t}=t^{r_{1}}$), obtain

$$
y(t)=c_{1} t^{r_{1}}+c_{2} t^{r_{1}} \ln t
$$

This general solution of Euler's equation is valid for $t>0$. More generally, it is straightforward to verify that

$$
y(t)=c_{1}|t|^{r_{1}}+c_{2}|t|^{r_{1}} \ln |t|
$$

gives us the general solution of Euler's equation, valid for all $t \neq 0$.
Case $3 p \pm i q$ are complex roots of the characteristic equation (13.4). Then $y=c_{1} e^{p s} \cos q s+c_{2} s e^{p s} \sin q s$ is the general solution of (13.5). Returning to the original variable t, by substituting $s=\ln t$, we get the general solution of Euler's equation

$$
y(t)=c_{1} t^{p} \cos (q \ln t)+c_{2} t^{p} \sin (q \ln t)
$$

valid for $t>0$. One verifies that replacing t by $|t|$, gives the general solution of Euler's equation, valid for all $t \neq 0$:

$$
y(t)=c_{1}|t|^{p} \cos (q \ln |t|)+c_{2}|t|^{p} \sin (q \ln |t|)
$$

Example 3 Solve $t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0, t>0$.
The characteristic equation

$$
r(r-1)-3 r+4=0
$$

has a double root $r=2$. The general solution: $y=c_{1} t^{2}+c_{2} t^{2} \ln t$.
Example 4 Solve $t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0, \quad y(1)=4, y^{\prime}(1)=7$.
Using the general solution from the preceding example, calculate $c_{1}=4$ and $c_{2}=-1$. Answer: $y=4 t^{2}-t^{2} \ln t$
Example 5 Solve $t^{2} y^{\prime \prime}+t y^{\prime}+4 y=0, \quad y(-1)=0, y^{\prime}(-1)=3$.
The characteristic equation

$$
r(r-1)+r+4=0
$$

has a pair of complex roots $\pm 2 i$. Here $p=0, q=2$, and the general solution, valid for both positive and negative t, is

$$
y(t)=c_{1} \cos (2 \ln |t|)+c_{2} \sin (2 \ln |t|) .
$$

From the first initial condition, $y(-1)=c_{1}=0$, so that $y(t)=c_{2} \sin (2 \ln |t|)$. Using the chain rule and the formula (13.2)

$$
y^{\prime}(t)=c_{2} \cos (2 \ln |t|) \frac{2}{t},
$$

and then $y^{\prime}(-1)=-2 c_{2}=3$, giving $c_{2}=-3 / 2$. Answer: $y(t)=-\frac{3}{2} \sin (2 \ln |t|)$.
Example 6 Solve $t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=t-2, t>0$.
This is a non-homogeneous equation. Look for a particular solution in the form $Y=A t+B$, and obtain $Y=t-\frac{1}{2}$. The fundamental solution set of the corresponding homogeneous equation is given by t^{2} and $t^{2} \ln t$, as we saw in Example 3 above. The general solution is $y=t-\frac{1}{2}+c_{1} t^{2}+c_{2} t^{2} \ln t$.

2.14 Linear Equations of Order Higher Than Two

Differential equations of order higher than two occur frequently in applications, for example when modeling vibrations of a beam.

2.14.1 The Polar Form of Complex Numbers

For a complex number $x+i y$, one can use the point (x, y) to represent it. This turns the usual plane into the complex plane. The point (x, y) can also be identified by its polar coordinates (r, θ). We shall always take $r>0$. Then

$$
z=x+i y=r \cos \theta+i r \sin \theta=r(\cos \theta+i \sin \theta)
$$

gives us the polar form of a complex number z. Using Euler's formula, we can also write $z=r e^{i \theta}$. For example, $-2 i=2 e^{i \frac{3 \pi}{2}}$, because the point $(0,-2)$ has polar coordinates $\left(2, \frac{3 \pi}{2}\right)$. Similarly, $1+i=\sqrt{2} e^{i \frac{\pi}{4}}$, and $-1=e^{i \pi}$ (real numbers are just particular cases of complex ones).

There are infinitely many ways to represent a complex number using polar coordinates $z=r e^{i(\theta+2 \pi m)}$, where m is any integer (positive or negative). Let n be a positive integer. We now compute the n-th root(s) of z :

$$
\begin{equation*}
z^{1 / n}=r^{1 / n} e^{i\left(\frac{\theta}{n}+\frac{2 \pi m}{n}\right)}, \quad m=0,1, \ldots, n-1 \tag{14.1}
\end{equation*}
$$

Here $r^{1 / n}$ is the positive n-th root of the positive number r. (The "high school" n-th root.) Clearly, $\left(z^{1 / n}\right)^{n}=z$. When m varies from 0 to $n-1$, we get different values, and then the roots repeat themselves. There are n complex n-th roots of any complex number (and in particular, of any real number). All of these roots lie on a circle of radius $r^{1 / n}$ around the origin, and the difference in the polar angles between any two neighbors is $2 \pi / n$.

The four complex fourth roots of -16 , on the circle of radius 2
Example 1 Solve the equation: $z^{4}+16=0$.
We need the four complex roots of $-16=16 e^{i(\pi+2 \pi m)}$. The formula (14.1) gives

$$
(-16)^{(1 / 4)}=2 e^{i\left(\frac{\pi}{4}+\frac{\pi m}{2}\right)}, \quad m=0,1,2,3
$$

When $m=0$, the root is $2 e^{i \frac{\pi}{4}}=2\left(\cos \frac{\pi}{4}+i \sin \frac{\pi}{4}\right)=\sqrt{2}+i \sqrt{2}$. The other roots, $2 e^{i \frac{3 \pi}{4}}, 2 e^{i \frac{5 \pi}{4}}$ and $2 e^{i \frac{7 \pi}{4}}$, are computed similarly. They come in two complex conjugate pairs: $\sqrt{2} \pm i \sqrt{2}$ and $-\sqrt{2} \pm i \sqrt{2}$. In the complex plane, they all lie on the circle of radius 2 , and the difference in the polar angles between any two neighbors is $\pi / 2$.

Example 2 Solve the equation: $r^{3}+8=0$.
We need the three complex cube roots of -8 . One of them is $r_{1}=-2=2 e^{i \pi}$, and the other two lie on the circle of radius 2 , at an angle $2 \pi / 3$ away, so that $r_{2}=2 e^{i \pi / 3}=1+\sqrt{3} i$, and $r_{3}=2 e^{-i \pi / 3}=1-\sqrt{3} i$. (Alternatively, the root $r=-2$ is easy to guess. Then factor $r^{3}+8=(r+2)\left(r^{2}-2 r+4\right)$, and set the second factor to zero, to find the other two roots.)

2.14.2 Linear Homogeneous Equations

Let us consider fourth order equations

$$
\begin{equation*}
a_{0} y^{\prime \prime \prime \prime}+a_{1} y^{\prime \prime \prime}+a_{2} y^{\prime \prime}+a_{3} y^{\prime}+a_{4} y=0 \tag{14.2}
\end{equation*}
$$

with given numbers $a_{0}, a_{1}, a_{2}, a_{3}$, and a_{4}. Again, we search for a solution in the form $y(t)=e^{r t}$, with a constant r to be determined. Substituting this in, and dividing by the positive exponent $e^{r t}$, we obtain the characteristic equation

$$
\begin{equation*}
a_{0} r^{4}+a_{1} r^{3}+a_{2} r^{2}+a_{3} r+a_{4}=0 \tag{14.3}
\end{equation*}
$$

$$
\begin{equation*}
a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0 \tag{14.4}
\end{equation*}
$$

$$
\begin{equation*}
a_{0} r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=0 . \tag{14.5}
\end{equation*}
$$

The fundamental theorem of algebra says that any polynomial of degree n has n roots in the complex plane, counted according to their multiplicity (double root is counted as two roots, and so on). The characteristic equation (14.3) has four roots.

The theory is similar to the second order case. We need four different solutions of (14.2), so that every solution is not a linear combination of the other three (for the equation (14.4) we need n different solutions). Every root of the characteristic equation must "pull its weight". If the root is simple, it brings in one solution, if it is repeated twice, then two solutions. (Three solutions, if the root is repeated three times, and so on.) The following cases may occur for the n-th order equation (14.4).

Case $1 r_{1}$ is a simple real root. Then it brings $e^{r_{1} t}$ into the fundamental set.

Case $2 r_{1}$ is a real root repeated s times. Then it brings the following s solutions into the fundamental set: $e^{r_{1} t}, t e^{r_{1} t}, \ldots, t^{s-1} e^{r_{1} t}$.
Case $3 p+i q$ and $p-i q$ are simple complex roots. They contribute: $e^{p t} \cos q t$ and $e^{p t} \sin q t$ into the fundamental set.

Case $4 p+i q$ and $p-i q$ are repeated s times each. They bring the following $2 s$ solutions into the fundamental set: $e^{p t} \cos q t$ and $e^{p t} \sin q t, t e^{p t} \cos q t$ and $t e^{p t} \sin q t, \ldots, t^{s-1} e^{p t} \cos q t$ and $t^{s-1} e^{p t} \sin q t$.

The cases 1 and 3 are justified as for the second order equations. The other two cases are discussed in the Problems.
Example 1 Solve $y^{\prime \prime \prime \prime}-y=0$.

The characteristic equation is

$$
r^{4}-1=0
$$

We solve it by factoring

$$
(r-1)(r+1)\left(r^{2}+1\right)=0
$$

The roots are $-1,1,-i, i$. The general solution: $y(t)=c_{1} e^{-t}+c_{2} e^{t}+$ $c_{3} \cos t+c_{4} \sin t$.
Example 2 Solve $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$.
The characteristic equation is

$$
r^{3}-3 r^{2}+3 r-1=0
$$

This is a cubic equation. You probably did not study how to solve it by Cardano's formula. Fortunately, you must remember that the quantity on the left is an exact cube:

$$
(r-1)^{3}=0 .
$$

The root $r=1$ is repeated 3 times. The general solution: $y(t)=c_{1} e^{t}+$ $c_{2} t e^{t}+c_{3} t^{2} e^{t}$.

Let us suppose that you did not know the formula for cube of a difference. Then one can guess that $r=1$ is a root. This means that the cubic polynomial can be factored, with one factor being $r-1$. The other factor is then found by the long division. The other factor is a quadratic polynomial, and its roots are easy to find.
Example 3 Solve $y^{\prime \prime \prime}-y^{\prime \prime}+3 y^{\prime}+5 y=0$.
The characteristic equation is

$$
r^{3}-r^{2}+3 r+5=0
$$

We need to guess a root. The procedure for guessing a root (for textbook examples) is a simple one: try $r=0, r= \pm 1, r= \pm 2$, and then give up. One sees that $r=-1$ is a root, $r_{1}=-1$. It follows that the first factor is $r+1$, and the second factor is found by the long division:

$$
(r+1)\left(r^{2}-2 r+5\right)=0
$$

The roots of the quadratic are $r_{2}=1-2 i$, and $r_{3}=1+2 i$. The general solution: $y(t)=c_{1} e^{-t}+c_{2} e^{t} \cos 2 t+c_{3} e^{t} \sin 2 t$.

1 Example 4 Solve $y^{\prime \prime \prime \prime}+2 y^{\prime \prime}+y=0$.
2 The characteristic equation is

$$
r^{4}+2 r^{2}+1=0
$$

3 It can be solved by factoring

$$
\left(r^{2}+1\right)^{2}=0
$$

4 (Or one could set $z=r^{2}$, and obtain a quadratic equation for z.) The ${ }_{5}$ roots are $-i, i$, each repeated twice. The general solution: $y(t)=c_{1} \cos t+$ ${ }_{6} c_{2} \sin t+c_{3} t \cos t+c_{4} t \sin t$.
7 Example 5 Solve $y^{\prime \prime \prime \prime}+16 y=0$.
8 The characteristic equation is

$$
r^{4}+16=0 .
$$

${ }_{9}$ Its solutions are the four complex roots of -16 , computed earlier: $\sqrt{2} \pm i \sqrt{2}$, and $-\sqrt{2} \pm i \sqrt{2}$. The general solution:
$y(t)=c_{1} e^{\sqrt{2} t} \cos (\sqrt{2} t)+c_{2} e^{\sqrt{2} t} \sin (\sqrt{2} t)+c_{3} e^{-\sqrt{2} t} \cos (\sqrt{2} t)+c_{4} e^{-\sqrt{2} t} \sin (\sqrt{2} t)$.
Example 6 Solve $y^{(5)}+9 y^{\prime \prime \prime}=0$.
The characteristic equation is

$$
r^{5}+9 r^{3}=0 .
$$

Factoring $r^{3}\left(r^{2}+9\right)=0$, we see that the roots are: $0,0,0,-3 i, 3 i$. The general solution: $y(t)=c_{1}+c_{2} t+c_{3} t^{2}+c_{4} \cos 3 t+c_{5} \sin 3 t$.

2.14.3 Non-Homogeneous Equations

The theory is parallel to the second order case. Again, a particular solution is needed, to which we add the general solution of the corresponding homogeneous equation.
Example Solve $y^{(5)}+9 y^{\prime \prime \prime}=3 t-\sin 2 t$.
General solution of the corresponding homogeneous equation was found in the Example 6. A particular solution is produced in the form $Y(t)=Y_{1}(t)+$ $Y_{2}(t)$, where $Y_{1}(t)$ is a particular solution of

$$
y^{(5)}+9 y^{\prime \prime \prime}=3 t
$$

and $Y_{2}(t)$ is a particular solution of

$$
y^{(5)}+9 y^{\prime \prime \prime}=-\sin 2 t
$$

We guess that $Y_{1}(t)=A t^{4}$, and compute $A=\frac{1}{72}$, and that $Y_{2}(t)=B \cos 2 t$, which gives $B=-\frac{1}{40}$. So that $Y(t)=\frac{1}{72} t^{4}-\frac{1}{40} \cos 2 t$.
Answer: $y(t)=\frac{1}{72} t^{4}-\frac{1}{40} \cos 2 t+c_{1}+c_{2} t+c_{3} t^{2}+c_{4} \cos 3 t+c_{5} \sin 3 t$.

2.14.4 Problems

I. Solve the non-homogeneous equations with discontinuous forcing function.

1. $y^{\prime \prime}+9 y=f(t)$, where $f(t)=0$ for $0<t<\pi$, and $f(t)=t$ for $t>\pi$, $y(0)=0, y^{\prime}(0)=-2$. Answer:

$$
y(t)=\left\{\begin{array}{ll}
-\frac{2}{3} \sin 3 t, & \text { if } t \leq \pi \\
\frac{1}{9} t+\frac{\pi}{9} \cos 3 t-\frac{17}{27} \sin 3 t, & \text { if } t>\pi
\end{array} .\right.
$$

2. $y^{\prime \prime}+y=f(t)$, where $f(t)=0$ for $0<t<\pi$, and $f(t)=t$ for $t>\pi$, $y(0)=2, y^{\prime}(0)=0$.
II. Find the general solution, valid for $t>0$.
3. $t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0 . \quad$ Answer. $y=c_{1} t+c_{2} t^{2}$.
4. $t^{2} y^{\prime \prime}+t y^{\prime}+4 y=0$. Answer. $y=c_{1} \cos (2 \ln t)+c_{2} \sin (2 \ln t)$.
5. $t^{2} y^{\prime \prime}+5 t y^{\prime}+4 y=0 . \quad$ Answer. $y=c_{1} t^{-2}+c_{2} t^{-2} \ln t$.
6. $t^{2} y^{\prime \prime}+5 t y^{\prime}+5 y=0$. Answer. $y=c_{1} t^{-2} \cos (\ln t)+c_{2} t^{-2} \sin (\ln t)$.
7. $t^{2} y^{\prime \prime}-3 t y^{\prime}=0$. Answer. $y=c_{1}+c_{2} t^{4}$.
8. $y^{\prime \prime}+\frac{1}{4} t^{-2} y=0 . \quad$ Answer. $y=c_{1} \sqrt{t}+c_{2} \sqrt{t} \ln t$.
9. $2 t^{2} y^{\prime \prime}+5 t y^{\prime}+y=0$. Answer. $y=c_{1} t^{-\frac{1}{2}}+c_{2} t^{-1}$.
10. $9 t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0 . \quad$ Answer. $y=c_{1} t^{2 / 3}+c_{2} t^{2 / 3} \ln t$.
11. $4 x^{2} y^{\prime \prime}(x)+4 x y^{\prime}(x)+y(x)=0, x>0$.

Answer. $y=c_{1} \cos \left(\frac{1}{2} \ln x\right)+c_{2} \sin \left(\frac{1}{2} \ln x\right)$.

1
10. Find the general solution of

$$
y^{\prime \prime}+\frac{3}{t} y^{\prime}+\frac{5}{t^{2}} y=\frac{1}{t^{3}}, \quad t>0
$$

Hint: Look for a particular solution in the form $y=\frac{A}{t}$.
Answer. $y=\frac{1}{4 t}+c_{1} \frac{\cos (2 \ln t)}{t}+c_{2} \frac{\sin (2 \ln t)}{t}$.
4 11. Use variation of parameters to find the general solution of

$$
y^{\prime \prime}+\frac{3}{t} y^{\prime}+\frac{5}{t^{2}} y=\frac{\ln t}{t^{3}}, \quad t>0 .
$$

Answer. $y=\frac{\ln t}{4 t}+c_{1} \frac{\cos (2 \ln t)}{t}+c_{2} \frac{\sin (2 \ln t)}{t}$.
12. Find the general solution of

$$
t^{3} y^{\prime \prime \prime}+t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0 .
$$

Hint: Look for a solution in the form $y=t^{r}$.
Answer. $y=c_{1} \frac{1}{t}+c_{2} t+c_{3} t^{2}$.
III. Find the general solution, valid for all $t \neq 0$.

1. $t^{2} y^{\prime \prime}+t y^{\prime}+4 y=0$. Answer. $y=c_{1} \cos (2 \ln |t|)+c_{2} \sin (2 \ln |t|)$.
2. $2 t^{2} y^{\prime \prime}-t y^{\prime}+y=0$. Answer. $y=c_{1} \sqrt{|t|}+c_{2}|t| .\left(y=c_{1} \sqrt{|t|}+c_{2} t\right.$ is also a correct answer.)
3. $4 t^{2} y^{\prime \prime}-4 t y^{\prime}+13 y=0 . \quad$ Answer. $y=c_{1}|t| \cos \left(\frac{3}{2} \ln |t|\right)+c_{2}|t| \sin \left(\frac{3}{2} \ln |t|\right)$.
4. $9 t^{2} y^{\prime \prime}+3 t y^{\prime}+y=0$. Answer. $y=c_{1}|t|^{1 / 3}+c_{2}|t|^{1 / 3} \ln |t|$.
5. $2 t y^{\prime \prime}+y^{\prime}=0$. Answer. $y=c_{1}+c_{2} \sqrt{|t|}$.
6. $2 t^{2} y^{\prime \prime}-t y^{\prime}+y=t^{2}-3$.

Hint: Look for a particular solution as $Y=A t^{2}+B t+C$.
Answer. $y=\frac{1}{3} t^{2}-3+c_{1} \sqrt{|t|}+c_{2}|t|$.
7. $2 t^{2} y^{\prime \prime}-t y^{\prime}+y=t^{3}$. Hint: Look for a particular solution as $Y=A t^{3}$.

Answer. $y=\frac{1}{10} t^{3}+c_{1} \sqrt{|t|}+c_{2}|t|$.
8. $2(t+1)^{2} y^{\prime \prime}-3(t+1) y^{\prime}+2 y=0, t \neq-1$.

3 Hint: Look for a solution in the form $y=(t+1)^{r}$.
Answer. $c_{1} \sqrt{|t+1|}+c_{2}(t+1)^{2}$.
9. Solve the following integro-differential equation

$$
4 y^{\prime}(t)+\int_{0}^{t} \frac{y(s)}{(s+1)^{2}} d s=0, \quad t>-1
$$

Hint: Differentiate the equation, and observe that $y^{\prime}(0)=0$.
Answer. $y=c\left[2(t+1)^{1 / 2}-(t+1)^{1 / 2} \ln (t+1)\right]$.
IV. Solve the following initial value problems.

1. $t^{2} y^{\prime \prime}-2 t y^{\prime}+2 y=0, y(1)=2, y^{\prime}(1)=5 . \quad$ Answer. $y=-t+3 t^{2}$.
2. $t^{2} y^{\prime \prime}-3 t y^{\prime}+4 y=0, y(-1)=1, y^{\prime}(-1)=2$. Answer. $y=t^{2}-4 t^{2} \ln |t|$.
3. $t^{2} y^{\prime \prime}+3 t y^{\prime}-3 y=0, y(-1)=1, y^{\prime}(-1)=2 . \quad$ Answer. $y=-\frac{3}{4} t^{-3}-\frac{1}{4} t$.
4. $t^{2} y^{\prime \prime}-t y^{\prime}+5 y=0, y(1)=0, y^{\prime}(1)=2 . \quad$ Answer. $y=t \sin (2 \ln t)$.
5. $t^{2} y^{\prime \prime}+t y^{\prime}+4 y=0, y(-1)=0, y^{\prime}(-1)=4$. Answer. $y=-2 \sin (2 \ln |t|)$.
6. $6 t^{2} y^{\prime \prime}+t y^{\prime}+y=0, y(2)=0, y^{\prime}(2)=1$. Answer. $y=12\left[\left(\frac{t}{2}\right)^{1 / 2}-\left(\frac{t}{2}\right)^{1 / 3}\right]$.
7. $t y^{\prime \prime}+y^{\prime}=0, y(-3)=0, y^{\prime}(-3)=1$. Answer. $y=3 \ln 3-3 \ln |t|$.
8. $2 t^{2} y^{\prime \prime}-t y^{\prime}+y=0, y(-1)=0, y^{\prime}(-1)=\frac{1}{2}$. Answer. $y=t+\sqrt{|t|}$.
V. Solve the polynomial equations.
9. $r^{3}-1=0$. Answer. The roots are $1, e^{i \frac{2 \pi}{3}}, e^{i \frac{4 \pi}{3}}$.
10. $r^{3}+27=0$. \quad Answer. $-3, \frac{3}{2}-\frac{3 \sqrt{3}}{2} i, \frac{3}{2}+\frac{3 \sqrt{3}}{2} i$.
11. $r^{4}-16=0 . \quad$ Answer. ± 2 and $\pm 2 i$.
12. $r^{3}-3 r^{2}+r+1=0$.
13. $2 r^{3}-5 r^{2}+4 r-1=0$.
14. $r^{3}+2 r^{2}+r+2=0$.
15. $3 r^{4}+5 r^{3}+r^{2}-r=0$.

Answer. $1,1-\sqrt{2}, 1+\sqrt{2}$.
Answer. $\frac{1}{2}, 1,1$.
Answer. $-2,-i, i$.
Answer. $0, \frac{1}{3},-1,-1$.

5 8. $r^{4}+1=0$.
6 $9 . r^{4}+4=0$. Answer. $e^{i \frac{\pi}{4}}, e^{i \frac{3 \pi}{4}}, e^{i \frac{5 \pi}{4}}, e^{i \frac{7 \pi}{4}}$.

7 10. $r^{4}+8 r^{2}+16=0$. Answer. $1+i, 1-i,-1+i,-1-i$.

Answer. $2 i$ and $-2 i$ are both double roots.
11. $r^{4}+5 r^{2}+4=0 . \quad$ Answer. $\pm i$ and $\pm 2 i$.
12. $r^{6}+r^{4}+4 r^{2}+4=0$.

Hint: Write the equation as $r^{2}\left(r^{4}+4\right)+r^{4}+4=0$.
Answer. $\pm i, 1 \pm i,-1 \pm i$.
VI. Find the general solution.

1. $y^{\prime \prime \prime}-y=0 . \quad$ Answer. $y=c_{1} e^{t}+c_{2} e^{-t / 2} \cos \frac{\sqrt{3}}{2} t+c_{3} e^{-t / 2} \sin \frac{\sqrt{3}}{2} t$.
2. $y^{\prime \prime \prime}-5 y^{\prime \prime}+8 y^{\prime}-4 y=0 . \quad$ Answer. $y=c_{1} e^{t}+c_{2} e^{2 t}+c_{3} t e^{2 t}$.
3. $y^{\prime \prime \prime}-3 y^{\prime \prime}+y^{\prime}+y=0$. Answer. $y=c_{1} e^{t}+c_{2} e^{(1-\sqrt{2}) t}+c_{3} e^{(1+\sqrt{2}) t}$.
4. $y^{\prime \prime \prime}-3 y^{\prime \prime}+y^{\prime}-3 y=0 . \quad$ Answer. $y=c_{1} e^{3 t}+c_{2} \cos t+c_{3} \sin t$.
5. $y^{(4)}-8 y^{\prime \prime}+16 y=0 . \quad$ Answer. $y=c_{1} e^{-2 t}+c_{2} e^{2 t}+c_{3} t e^{-2 t}+c_{4} t e^{2 t}$.
6. $y^{(4)}+8 y^{\prime \prime}+16 y=0$.

Answer. $y=c_{1} \cos 2 t+c_{2} \sin 2 t+c_{3} t \cos 2 t+c_{4} t \sin 2 t$.
7. $y^{(4)}+y=0$.

Answer. $y=c_{1} e^{\frac{t}{\sqrt{2}}} \cos \frac{t}{\sqrt{2}}+c_{2} e^{\frac{t}{\sqrt{2}}} \sin \frac{t}{\sqrt{2}}+c_{3} e^{-\frac{t}{\sqrt{2}}} \cos \frac{t}{\sqrt{2}}+c_{4} e^{-\frac{t}{\sqrt{2}}} \sin \frac{t}{\sqrt{2}}$.
8. $y^{\prime \prime \prime}-y=t^{2}$. Answer. $y=-t^{2}+c_{1} e^{t}+c_{2} e^{-t / 2} \cos \frac{\sqrt{3}}{2} t+c_{3} e^{-t / 2} \sin \frac{\sqrt{3}}{2} t$.
9. $y^{(6)}-y^{\prime \prime}=0 . \quad$ Answer. $y=c_{1}+c_{2} t+c_{3} e^{-t}+c_{4} e^{t}+c_{5} \cos t+c_{6} \sin t$.
10. $2 y^{\prime \prime \prime}-5 y^{\prime \prime}+4 y^{\prime}-y=0$. Answer. $y=c_{1} e^{\frac{1}{2} t}+c_{2} e^{t}+c_{3} t e^{t}$.
11. $y^{(5)}-3 y^{\prime \prime \prime \prime}+3 y^{\prime \prime \prime}-3 y^{\prime \prime}+2 y^{\prime}=0$.

Answer. $y=c_{1}+c_{2} e^{t}+c_{3} e^{2 t}+c_{4} \cos t+c_{5} \sin t$.
12. $y^{(8)}-y^{(6)}=\sin t$.

Answer. $y=\frac{1}{2} \sin t+c_{1}+c_{2} t+c_{3} t^{2}+c_{4} t^{3}+c_{5} t^{4}+c_{6} t^{5}+c_{7} e^{-t}+c_{8} e^{t}$.
13. $y^{\prime \prime \prime \prime}+4 y=4 t^{2}-1$.

Answer. $y=t^{2}-\frac{1}{4}+c_{1} e^{t} \cos t+c_{2} e^{t} \sin t+c_{3} e^{-t} \cos t+c_{4} e^{-t} \sin t$.
14. $y^{\prime \prime \prime \prime}-2 y^{\prime \prime \prime}-8 y^{\prime}+16 y=27 e^{-t}$.

Answer. $y=e^{-t}+c_{1} e^{2 t}+c_{2} t e^{2 t}+c_{3} e^{-t} \cos \sqrt{3} t+c_{4} e^{-t} \sin \sqrt{3} t$.
VII. Solve the following initial value problems.

1. $y^{\prime \prime \prime}+4 y^{\prime}=0, y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=2$.

Answer. $y=\frac{3}{2}-\frac{1}{2} \cos 2 t-\frac{1}{2} \sin 2 t$.
2. $y^{\prime \prime \prime \prime}+4 y=0, y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=2, \quad y^{\prime \prime \prime}(0)=3$.

Answer. $y=-\frac{1}{8} e^{t}(\cos t-5 \sin t)+\frac{3}{8} e^{-t}(3 \cos t-\sin t)$.
3. $y^{\prime \prime \prime}+8 y=0, y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=-2$.

Answer. $y=-\frac{1}{3} e^{-2 t}+\frac{1}{3} e^{t} \cos \sqrt{3} t$.
4. $y^{(5)}+y^{(4)}=1, y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=1, y^{\prime \prime \prime}(0)=-1, y^{\prime \prime \prime \prime}(0)=2$.

Answer. $y=\frac{t^{4}}{24}+e^{-t}$.
5. $y^{\prime \prime \prime \prime}+y^{\prime \prime \prime}+y^{\prime \prime}+y^{\prime}=0, y(0)=0, y^{\prime}(0)=3, y^{\prime \prime}(0)=-1, y^{\prime \prime \prime}(0)=-1$.

Answer. $y=1-e^{-t}+2 \sin t$.
6. $y^{\prime \prime \prime \prime}-3 y^{\prime \prime}-4 y=0, y(0)=1, y^{\prime}(0)=-1, y^{\prime \prime}(0)=4, y^{\prime \prime \prime}(0)=1$.

Answer. $y=\cosh 2 t-\sin t$.
26
7. $y^{(5)}-y^{\prime}=0, y(0)=2, y^{\prime}(0)=0, y^{\prime \prime}(0)=1, y^{\prime \prime \prime}(0)=0, y^{\prime \prime \prime \prime}(0)=1$.

1 Hint: Write the general solution as $y=c_{1}+c_{2} \cos t+c_{3} \sin t+c_{4} \cosh t+$ ${ }_{2} c_{5} \sinh t$. Answer. $y=1+\cosh t$.

VIII.

4 1. Write the equation (14.4) in the operator form

$$
\begin{equation*}
L[y]=a_{0} y^{(n)}+a_{1} y^{(n-1)}+\cdots+a_{n-1} y^{\prime}+a_{n} y=0 . \tag{14.6}
\end{equation*}
$$

5 Here $L[y]$ is a function of a function $y(t)$, or an operator.
(i) Show that

$$
\begin{equation*}
L\left[e^{r t}\right]=e^{r t}\left(a_{0} r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}\right) . \tag{14.7}
\end{equation*}
$$

(ii) Assume that r_{1} is a real root of the characteristic equation (14.5), which is repeated s times, so that

$$
a_{0} r^{n}+a_{1} r^{n-1}+\cdots+a_{n-1} r+a_{n}=a_{0}\left(r-r_{1}\right)^{s} q(r),
$$

where $q(r)$ is a polynomial of degree $n-s$, with $q\left(r_{1}\right) \neq 0$. Differentiate the equation (14.7) in r, and set $r=r_{1}$, to show that $t e^{r_{1} t}$ is a solution of (14.6). Show that $e^{r_{1} t}, t e^{r_{1} t}, \ldots, t^{s-1} e^{r_{1} t}$ are solutions of (14.6).
(iii) Assume that $p+i q$ and $p-i q$ are roots of the characteristic equation (14.5), each repeated s times. By above, $z_{1}=t^{k} e^{(p+i q) t}$ and $z_{2}=t^{k} e^{(p-i q) t}$ are solutions of (14.6), for $k=0,1, \ldots, s-1$. By considering $\frac{z_{1}+z_{2}}{2}$ and $\frac{z_{1}-z_{2}}{2 i}$, justify that these roots bring the following $2 s$ solutions into the fundamental set: $e^{p t} \cos q t$ and $e^{p t} \sin q t, t e^{p t} \cos q t$ and $t e^{p t} \sin q t, \ldots, t^{s-1} e^{p t} \cos q t$ and $t^{s-1} e^{p t} \sin q t$.
2. Find the linear homogeneous differential equation of the lowest possible order, which has the following functions as its solutions: $1, e^{-2 t}, \sin t$.
Answer. $y^{\prime \prime \prime \prime}+2 y^{\prime \prime \prime}+y^{\prime \prime}+2 y^{\prime}=0$.
3. Find the general solution of

$$
(t+1)^{2} y^{\prime \prime}-4(t+1) y^{\prime}+6 y=0
$$

Hint: Look for the solution in the form $y=(t+1)^{r}$.
Answer. $y=c_{1}(t+1)^{2}+c_{2}(t+1)^{3}$.
4. Find the general solution of

$$
t y^{\prime \prime \prime}+y^{\prime \prime}=1
$$

$$
u^{\prime \prime}-a^{2} u+2 u^{3}=0, \quad-\infty<x<\infty, \quad u(-\infty)=u^{\prime}(-\infty)=u(\infty)=u^{\prime}(\infty)=0
$$

20
Hint: Multiply the equation by u^{\prime}, and integrate:

$$
u^{\prime 2}-a^{2} u^{2}+u^{4}=\text { constant }=0
$$

1 Solve this equation for u^{\prime}, to obtain a first order separable equation.
2 Answer. $u(x)=\frac{a}{\cosh a(x-c)}$, for any number c.
3 8. (i) Solve the nonlinear equation $(y=y(t))$

$$
y^{\prime \prime}-\frac{1}{y^{3}}=0, \quad y(0)=q, y^{\prime}(0)=p
$$

4 with the given numbers $q \neq 0$ and p.
5 Hint: Multiply the equation by y^{\prime} to get

$$
\frac{d}{d t}\left(y^{\prime 2}+y^{-2}\right)=0
$$

6 Integration gives

$$
\begin{equation*}
y^{\prime 2}+y^{-2}=p^{2}+\frac{1}{q^{2}} \tag{14.8}
\end{equation*}
$$

7 Now multiply the equation by y :

$$
\begin{equation*}
y y^{\prime \prime}-y^{-2}=0 \tag{14.9}
\end{equation*}
$$

8 Using (14.8),

$$
y y^{\prime \prime}=\frac{1}{2}\left(y^{2}\right)^{\prime \prime}-y^{\prime 2}=\frac{1}{2}\left(y^{2}\right)^{\prime \prime}+y^{-2}-p^{2}-\frac{1}{q^{2}}
$$

9 Setting $v=y^{2}$, obtain from (14.9)

$$
v^{\prime \prime}=2\left(p^{2}+\frac{1}{q^{2}}\right), \quad v(0)=q^{2}, v^{\prime}(0)=2 p q
$$

10 Answer. $y= \pm \sqrt{\left(p^{2}+\frac{1}{q^{2}}\right) t^{2}+2 p q t+q^{2}}$, with "plus" if $q>0$, and "mi-
11 nus" if $q<0$.
12 (ii) Solve Pinney's equation ($a>0$ is a constant)

$$
y^{\prime \prime}+a^{2} y-\frac{1}{y^{3}}=0, \quad y(0)=q \neq 0, y^{\prime}(0)=p
$$

13 Hint: Proceed similarly, and show that $v=y^{2}$ satisfies

$$
v^{\prime \prime}+4 a^{2} v=2\left(p^{2}+a^{2} q^{2}+\frac{1}{q^{2}}\right), v(0)=q^{2}, v^{\prime}(0)=2 p q
$$

Answer. $y=\frac{\sqrt{\left(a^{2} q^{4}-p^{2} q^{2}-1\right) \cos (2 a t)+2 a p q^{3} \sin (2 a t)+p^{2} q^{2}+a^{2} q^{4}+1}}{\sqrt{2} a q}$.
(iii) Let $u(x)$ and $v(x)$ be the solutions of the linear equation

$$
\begin{equation*}
y^{\prime \prime}+a(x) y=0 \tag{14.10}
\end{equation*}
$$

for which $u\left(x_{0}\right)=q, u^{\prime}\left(x_{0}\right)=p$, and $v\left(x_{0}\right)=0, v^{\prime}\left(x_{0}\right)=\frac{1}{q}$. Here $a(x)$ is a given function, $q \neq 0, p$ and x_{0} are given numbers. Use the Theorem 2.4.2 to show that their Wronskian $W(x)=W(u, v)(x)$ satisfies

$$
W(x)=u^{\prime}(x) v(x)-u(x) v^{\prime}(x)=1, \text { for all } x
$$

(iv) Consider Pinney's equation (more general than the one in part (ii))

$$
y^{\prime \prime}+a(x) y+\frac{c}{y^{3}}=0, \quad y\left(x_{0}\right)=q \neq 0, y^{\prime}\left(x_{0}\right)=p
$$

with a given function $a(x)$ and a constant $c \neq 0$. Show that its solution is

$$
y(x)= \pm \sqrt{u^{2}(x)-c v^{2}(x)},
$$

where one takes "plus" if $q>0$, and "minus" if $q<0$.
Hint: Substituting $y=\sqrt{u^{2}(x)-c v^{2}(x)}$ into Pinney's equation, and using that $u^{\prime \prime}=-a(x) u$ and $v^{\prime \prime}=-a(x) v$, obtain

$$
y^{\prime \prime}+a(x) y+\frac{c}{y^{3}}=-c \frac{\left[u^{\prime}(x) v(x)-u(x) v^{\prime}(x)\right]^{2}-1}{\left[u^{2}(x)-c v^{2}(x)\right]^{\frac{3}{2}}}=0 .
$$

2.15 Oscillation and Comparison Theorems

The equation

$$
y^{\prime \prime}+n^{2} y=0
$$

has a solution $y(t)=\sin n t$. The larger is n, the more roots this solution has, and so it oscillates faster. In 1836, J.C.F. Sturm discovered the following theorem.

Theorem 2.15.1 (The Sturm Comparison Theorem.) Let $y(t)$ and $v(t)$ be respectively non-trivial solutions of the following equations

$$
\begin{equation*}
y^{\prime \prime}+b(t) y=0, \tag{15.1}
\end{equation*}
$$

1

$$
\begin{equation*}
v^{\prime \prime}+b_{1}(t) v=0 \tag{15.2}
\end{equation*}
$$

Assume that the given continuous functions $b(t)$, and $b_{1}(t)$ satisfy

$$
\begin{equation*}
b_{1}(t) \geq b(t) \text { for all } t . \tag{15.3}
\end{equation*}
$$

In case $b_{1}(t)=b(t)$ on some interval $\left(t_{1}, t_{2}\right)$, assume additionally that $y(t)$ and $v(t)$ are not constant multiples of one another on $\left(t_{1}, t_{2}\right)$. Then $v(t)$ has a root between any two consecutive roots of $y(t)$.

Proof: Let $t_{1}<t_{2}$ be two consecutive roots of $y(t)$,

$$
\begin{equation*}
y\left(t_{1}\right)=y\left(t_{2}\right)=0 . \tag{15.4}
\end{equation*}
$$

We may assume that $y(t)>0$ on $\left(t_{1}, t_{2}\right)$ (in case $y(t)<0$ on $\left(t_{1}, t_{2}\right)$, we may consider $-y(t)$, which is also a solution of (15.1)). Assume, contrary to what we want to prove, that $v(t)$ has no roots on $\left(t_{1}, t_{2}\right)$. We may assume that $v(t)>0$ on $\left(t_{1}, t_{2}\right)$ (by considering $-v(t)$, in case $\left.v(t)<0\right)$.

11

12

The functions $y(t)$ and $v(t)$

Multiply the equation (15.2) by $y(t)$, and subtract from that the equation (15.1), multiplied by $v(t)$. The result may be written as

$$
\left(v^{\prime} y-v y^{\prime}\right)^{\prime}+\left(b_{1}-b\right) y v=0
$$

Integrating this over $\left(t_{1}, t_{2}\right)$, and using (15.4) gives

$$
\begin{equation*}
-v\left(t_{2}\right) y^{\prime}\left(t_{2}\right)+v\left(t_{1}\right) y^{\prime}\left(t_{1}\right)+\int_{t_{1}}^{t_{2}}\left[b_{1}(t)-b(t)\right] y(t) v(t) d t=0 \tag{15.5}
\end{equation*}
$$

All three terms on the left are non-negative. If $b_{1}(t)>b(t)$ on some subinterval of $\left(t_{1}, t_{2}\right)$, then the third term is strictly positive, and we have a contradiction.

$$
\begin{equation*}
\left(v^{\prime} u-v u^{\prime}\right)^{\prime} \leq 0, \quad \text { for } x \in(a, b) \tag{15.7}
\end{equation*}
$$

Let us prove (i). Assume that $v(t)>0$ on (a, b), and contrary to what we want to prove, $u(\xi)=0$ at some $\xi \in(a, b)$.

Now consider the remaining case when $b_{1}(t)=b(t)$ for all $t \in\left(t_{1}, t_{2}\right)$, so that the equations (15.1) and (15.2) coincide on $\left(t_{1}, t_{2}\right)$, and $v(t)$ is a solution of (15.1). We claim that $v(t)$ cannot vanish at t_{1} and at t_{2}, so that $v\left(t_{1}\right)>0$, and $v\left(t_{2}\right)>0$. Indeed, in case $v\left(t_{1}\right)=0$, we consider the function $z(t)=\frac{y^{\prime}\left(t_{1}\right)}{v^{\prime}\left(t_{1}\right)} v(t)$. This function is a solution of (15.1), and $z\left(t_{1}\right)=y\left(t_{1}\right)=0, z^{\prime}\left(t_{1}\right)=y^{\prime}\left(t_{1}\right)$, so that by the uniqueness of solutions for initial value problems, $z(t)=y(t)$ for all $t \in\left(t_{1}, t_{2}\right)$, and then $y(t)$ and $v(t)$ are constant multiples of one another on $\left(t_{1}, t_{2}\right)$, which is not allowed. It follows that $v\left(t_{1}\right)>0$, and similarly we prove that $v\left(t_{2}\right)>0$. Clearly, $y^{\prime}\left(t_{1}\right) \geq 0$ and $y^{\prime}\left(t_{2}\right) \leq 0$. The uniqueness Theorem 2.4.1 for initial value problems implies that $y^{\prime}\left(t_{1}\right)>0$, and $y^{\prime}\left(t_{2}\right)<0$ (otherwise, if say $y^{\prime}\left(t_{1}\right)=0$, then $y(t)=0$ for all t, by Theorem 2.4.1). Then the first two terms in (15.5) are strictly positive, and we have a contradiction in (15.5).

In case $y(t)$ and $v(t)$ are two solutions of the same equation (15.1), which are not constant multiples of one another, the theorem implies that their roots interlace, which means that between any two roots of one of the solutions there is a root of the other one.

By a similar argument, one proves the following version of the Sturm comparison theorem, involving a differential inequality.

Lemma 2.15.1 Assume that the functions $u(t)$ and $v(t)$ are twice continuously differentiable, and they satisfy

$$
\begin{gather*}
v^{\prime \prime}+q(t) v=0, \quad v(a)=0 \\
u^{\prime \prime}+q(t) u \geq 0, u(a)=0, \quad u^{\prime}(a)>0 \tag{15.6}
\end{gather*}
$$

on some interval (a, b) (with a given continuous function $q(t)$). Then $v(t)$ oscillates faster than $u(t)$, provided that both functions are positive. Namely, (i) if $v(t)>0$ on (a, b), then $u(t)>0$ on (a, b).
(ii) If, on the other hand, $u(t)>0$ on (a, b) and $u(b)=0$, then $v(t)$ must vanish on ($a, b]$.

Proof: As in Theorem 2.15.1, obtain

Case 1. The inequality in (15.6) is strict on some sub-interval of (a, ξ). The the same is then true for the inequality (15.7). Integrating (15.7) over (a, ξ), obtain

$$
-v(\xi) u^{\prime}(\xi)<0
$$

which is a contradiction (because $v(\xi)>0, u^{\prime}(\xi) \leq 0$).
Case 2. Assume that $u^{\prime \prime}+q(t) u=0$ on (a, ξ). Then $u(t)$ and $v(t)$ are solutions of the same equation on (a, ξ), and $u(a)=v(a)=0$. It follows that $u(t)$ and $v(t)$ are constant multiples of one another, but $u(\xi)=0$, while $v(\xi)>0$, a contradiction, proving the first part of the lemma.

The second statement of the lemma is proved similarly.
We shall need the following formula from calculus, discovered by an Italian mathematician Mauro Picone in 1909.

Lemma 2.15.2 (Picone's Identity) Assume that the functions a(t) and $a_{1}(t)$ are differentiable, the functions $u(t)$ and $v(t)$ are twice differentiable, and $v(t)>0$ for all t. Then

$$
\left[\frac{u}{v}\left(v a u^{\prime}-u a_{1} v^{\prime}\right)\right]^{\prime}=u\left(a u^{\prime}\right)^{\prime}-\frac{u^{2}}{v}\left(a_{1} v^{\prime}\right)^{\prime}+\left(a-a_{1}\right) u^{\prime^{2}}+a_{1}\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2} .
$$

$$
\begin{equation*}
p(t) u^{\prime \prime}+q(t) u^{\prime}+r(t) u=0 . \tag{15.8}
\end{equation*}
$$

Assume that the functions $p(t), q(t)$ and $r(t)$ are differentiable, with $p(t)>0$ for all t. We divide this equation by $p(t)$

$$
u^{\prime \prime}+\frac{q(t)}{p(t)} u^{\prime}+\frac{r(t)}{p(t)} u=0
$$

and then multiply by the integrating factor $a(t)=e^{\int \frac{q(t)}{p(t)} d t}$. Denoting $b(t)=$ $a(t) \frac{r(t)}{p(t)}$, we arrive at

$$
\begin{equation*}
\left(a(t) u^{\prime}\right)^{\prime}+b(t) u=0, \tag{15.9}
\end{equation*}
$$

$$
\begin{equation*}
u\left(t_{1}\right)=u\left(t_{2}\right)=0 . \tag{15.10}
\end{equation*}
$$

Again, we may assume that $u(t)>0$ on $\left(t_{1}, t_{2}\right)$. Assume, contrary to what we want to prove, that $v(t)$ has no roots on $\left(t_{1}, t_{2}\right)$. We may assume that $v(t)>$ 0 on $\left(t_{1}, t_{2}\right)$. Apply Picone's identity to $u(t)$ and $v(t)$. Expressing from the corresponding equations, $\left(a(t) u^{\prime}\right)^{\prime}=-b(t) u$ and $\left(a_{1}(t) v^{\prime}\right)^{\prime}=-b_{1}(t) v$, we rewrite Picone's identity as

$$
\left[\frac{u}{v}\left(v a u^{\prime}-u a_{1} v^{\prime}\right)\right]^{\prime}=\left(b_{1}-b\right) u^{2}+\left(a-a_{1}\right) u^{\prime^{2}}+a_{1}\left(u^{\prime}-\frac{u}{v} v^{\prime}\right)^{2} .
$$

$$
\begin{equation*}
v^{\prime \prime}+q^{+}(t) v=0, \quad v(0)=0, \quad v^{\prime}(0)=c>0 \tag{15.12}
\end{equation*}
$$

By Lemma 2.15.1, $v(t)$ must vanish on $(0, b]$. Let $t_{2} \in(0, b]$ be the first root of $v(t)$, so that $v(t)>0$ on $\left(0, t_{2}\right)$. (In case $q^{-}(t) \equiv 0$, we have $t_{2}=b$, because $v(t)$ is a constant multiple of $u(t)$.) Integrating (15.12) (treating $q^{+}(t) v$ as a known quantity),

$$
\begin{equation*}
v(t)=c t-\int_{0}^{t}(t-s) q^{+}(s) v(s) d s, \quad \text { for } t \in\left[0, t_{2}\right] \tag{15.13}
\end{equation*}
$$

From $v\left(t_{2}\right)=0$, it follows that $c=\frac{1}{t_{2}} \int_{0}^{t_{2}}\left(t_{2}-s\right) q^{+}(s) v(s) d s$. Substituting 2 this back into (15.13), we express

$$
v(t)=\frac{t}{t_{2}} \int_{0}^{t_{2}}\left(t_{2}-s\right) q^{+}(s) v(s) d s-\int_{0}^{t}(t-s) q^{+}(s) v(s) d s, \quad \text { for } t \in\left[0, t_{2}\right] .
$$

${ }_{3}$ Breaking the first integral, $\int_{0}^{t_{2}}=\int_{0}^{t}+\int_{t}^{t_{2}}$, we continue:

$$
t_{2} v(t)=\int_{0}^{t}\left[t\left(t_{2}-s\right)-t_{2}(t-s)\right] q^{+}(s) v(s) d s+t \int_{t}^{t_{2}}\left(t_{2}-s\right) q^{+}(s) v(s) d s
$$

5 Let t_{0} be the point of maximum of $v(t)$ on $\left(0, t_{2}\right), v\left(t_{0}\right)>0$. Estimate ${ }^{6} v(s)<v\left(t_{0}\right)$ in both integrals on the right, then evaluate the last formula at $>t_{0}$, and cancel $v\left(t_{0}\right)$. Obtain:

$$
t_{2}<\left(t_{2}-t_{0}\right) \int_{0}^{t_{0}} s q^{+}(s) d s+t_{0} \int_{t_{0}}^{t_{2}}\left(t_{2}-s\right) q^{+}(s) d s
$$

8

$$
<\int_{0}^{t_{0}}\left(t_{2}-s\right) s q^{+}(s) d s+\int_{t_{0}}^{t_{2}} s\left(t_{2}-s\right) q^{+}(s) d s=\int_{0}^{t_{2}}\left(t_{2}-s\right) s q^{+}(s) d s .
$$

${ }_{9}$ Dividing by t_{2}, gives

$$
1<\int_{0}^{t_{2}}\left(1-\frac{s}{t_{2}}\right) s q^{+}(s) d s \leq \int_{0}^{b}\left(1-\frac{s}{b}\right) s q^{+}(s) d s<\int_{0}^{b} \frac{b}{4} q^{+}(s) d s
$$

Theorem 2.15.3 (Lyapunov's inequality) If a non-trivial solution of the

 equation$$
u^{\prime \prime}+q(t) u=0
$$

14 has two roots on an interval $[a, b]$, then

$$
\int_{a}^{b} q^{+}(t) d t>\frac{4}{b-a} .
$$

1 Proof: Let t_{1} and t_{2} be two consecutive roots of $u(t), a \leq t_{1}<t_{2} \leq b$. 2 We may assume that $u(t)>0$ on $\left(t_{1}, t_{2}\right)$, and use the above lemma

$$
\int_{a}^{b} q^{+}(t) d t \geq \int_{t_{1}}^{t_{2}} q^{+}(t) d t>\frac{4}{t_{2}-t_{1}} \geq \frac{4}{b-a} .
$$

(We may declare the point t_{1} to be the origin, to use the above lemma.) \diamond

Remarkably, the constant 4 appears in another well-known and useful inequality.

Theorem 2.15.4 (Hardy's inequality) Assume that $f(x)$ is a continuously differentiable function on $[0, b]$, where $b>0$ is arbitrary, and $f(0)=0$. Then

$$
\int_{0}^{b} \frac{f^{2}(x)}{x^{2}} d x \leq 4 \int_{0}^{b} f^{\prime 2}(x) d x
$$

10

Chapter 3

Using Infinite Series to Solve Differential Equations

Abstract

"Most" differential equations cannot be solved by a formula. One traditional approach involves using infinite series to approximate solutions near some point a. (Another possibility is to use numerical methods, which is discussed in Chapters 1 and 9.) We begin with the case when the point a is regular, and it is possible to compute all derivatives of solutions at $x=a$, and then write down the corresponding Taylor's series. Turning to singular a, we distinguish the easier case when a is a simple root of the leading coefficient (we call such equations mildly singular). Then we show that the case when a is a double root of the leading coefficient can often be reduced to a mildly singular case, by a change of variables.

3.1 Series Solution Near a Regular Point

3.1.1 Maclauren and Taylor Series

Infinitely differentiable functions can often be represented by a series

$$
\begin{equation*}
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots . \tag{1.1}
\end{equation*}
$$

Letting $x=0$, we see that $a_{0}=f(0)$. Differentiating (1.1), and then letting $x=0$, shows that $a_{1}=f^{\prime}(0)$. Differentiating (1.1) twice, and then letting $x=0$, gives $a_{2}=\frac{f^{\prime \prime}(0)}{2}$. Continuing this way, we see that $a_{n}=\frac{f^{(n)}(0)}{n!}$,

$$
f(x)=f(0)+f^{\prime}(0) x+\frac{f^{\prime \prime}(0)}{2!} x^{2}+\cdots+\frac{f^{(n)}(0)}{n!} x^{n}+\cdots=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n} .
$$

It is known that for each $f(x)$ there is a number R, so that the Maclauren series converges for x inside the interval $(-R, R)$, and diverges outside of this interval, when $|x|>R$. We call R the radius of convergence. For some $f(x)$, we have $R=\infty$ (for example, for $\sin x, \cos x, e^{x}$), while for some series $R=0$, and in general $0 \leq R \leq \infty$.

Computing the Maclauren series for some specific functions, gives:

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!},
$$

$$
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!},
$$

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

$$
\frac{1}{1-x}=1+x+x^{2}+\cdots+x^{n}+\cdots=\sum_{n=0}^{\infty} x^{n}
$$

The last series, called the geometric series, converges on the interval $(-1,1)$, so that $R=1$.

Maclauren's series gives an approximation of $f(x)$, for x close to zero. For example, $\sin x \approx x$ gives a reasonably good approximation for $|x|$ small. If we add one more term of the Maclauren series: $\sin x \approx x-\frac{x^{3}}{6}$, then, say on the interval $(-1,1)$, we get an excellent approximation, see Figure 3.1.

If one needs the Maclauren series for $\sin x^{2}$, one begins with a series for $\sin x$, and then replaces each x by x^{2}, obtaining

$$
\sin x^{2}=x^{2}-\frac{x^{6}}{3!}+\frac{x^{10}}{5!}+\cdots=\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{4 n+2}}{(2 n+1)!} .
$$

One can split Maclauren's series into a sum of series with either even or odd powers:

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=\sum_{n=0}^{\infty} \frac{f^{(2 n)}(0)}{(2 n)!} x^{2 n}+\sum_{n=0}^{\infty} \frac{f^{(2 n+1)}(0)}{(2 n+1)!} x^{2 n+1}
$$

Figure 3.1: The approximation of $y=\sin x$ by $y=x-\frac{x^{3}}{6}$ near $x=0$
${ }_{11} \quad$ Clearly, $\sum_{n=1}^{\infty} a_{n} x^{n}=\sum_{m=1}^{\infty} a_{m} x^{m}$, so that the index n can be regarded as a "dummy" index of summation. It is often desirable to put a series like
${ }_{1} \sum_{n=1}^{\infty} \frac{n}{n+4} x^{n+1}$ into the form $\sum a_{n} x^{n}$. We set $n+1=m$, or $n=m-1$,
2 and get

$$
\sum_{n=1}^{\infty} \frac{n}{n+4} x^{n+1}=\sum_{m=2}^{\infty} \frac{m-1}{m+3} x^{m}=\sum_{n=2}^{\infty} \frac{n-1}{n+3} x^{n} .
$$

3 The same result can be accomplished in one step, by the shift of the index 4 of summation: $n \rightarrow n-1$, or replacing each occurrence of n by $n-1$, and incrementing by 1 the limit(s) of summation.

6 3.1.2 A Toy Problem
7 Let us begin with the equation (here $y=y(x)$)

$$
y^{\prime \prime}+y=0
$$

8 for which we already know the general solution. Let us denote by $y_{1}(x)$ the 9 solution of the initial value problem

$$
\begin{equation*}
y^{\prime \prime}+y=0, \quad y(0)=1, y^{\prime}(0)=0 \tag{1.2}
\end{equation*}
$$

10 By $y_{2}(x)$ we denote the solution of the same equation, together with the initial conditions $y(0)=0, y^{\prime}(0)=1$. Clearly, $y_{1}(x)$ and $y_{2}(x)$ are not constant multiples of each other. Therefore, they form a fundamental set, giving us the general solution $y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)$.

Let us now compute $y_{1}(x)$, the solution of (1.2). From the initial conditions, we already know the first two terms of its Maclauren series

$$
y(x)=y(0)+y^{\prime}(0) x+\frac{y^{\prime \prime}(0)}{2} x^{2}+\cdots+\frac{y^{(n)}(0)}{n!} x^{n}+\cdots
$$

16 To get more terms, we need to compute the derivatives of $y(x)$ at zero. From
17 the equation $(1.2), y^{\prime \prime}(0)=-y(0)=-1$. We now differentiate the equation 18 (1.2), getting $y^{\prime \prime \prime}+y^{\prime}=0$, and then set $x=0$ to obtain

$$
y^{\prime \prime \prime}(0)=-y^{\prime}(0)=0
$$

19 Differentiating again, gives $y^{\prime \prime \prime \prime}+y^{\prime \prime}=0$, and setting $x=0$,

$$
y^{\prime \prime \prime \prime}(0)=-y^{\prime \prime}(0)=1
$$

On the next step:

$$
y^{(5)}(0)=-y^{\prime \prime \prime}(0)=0
$$

We see that all derivatives of odd order vanish at $x=0$, while the derivatives of even order alternate between 1 and -1 . The Maclauren series is then

$$
y_{1}(x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\cdots=\cos x
$$

Similarly, we compute the series representation for $y_{2}(x)$:

$$
y_{2}(x)=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\cdots=\sin x .
$$

We shall solve the equations with variable coefficients

$$
\begin{equation*}
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0 \tag{1.3}
\end{equation*}
$$

where continuous functions $P(x), Q(x)$ and $R(x)$ are given. We shall always denote by $y_{1}(x)$ the solution of (1.3) satisfying the initial conditions $y(0)=1$, $y^{\prime}(0)=0$, and by $y_{2}(x)$ the solution of (1.3) satisfying the initial conditions $y(0)=0, y^{\prime}(0)=1$. If one needs to solve (1.3), together with the given initial conditions

$$
y(0)=\alpha, \quad y^{\prime}(0)=\beta,
$$

then the solution is

$$
y(x)=\alpha y_{1}(x)+\beta y_{2}(x)
$$

Indeed, $y(0)=\alpha y_{1}(0)+\beta y_{2}(0)=\alpha$, and $y^{\prime}(0)=\alpha y_{1}^{\prime}(0)+\beta y_{2}^{\prime}(0)=\beta$.

3.1.3 Using Series When Other Methods Fail

Let us try to find the general solution of the equation

$$
y^{\prime \prime}+x y^{\prime}+2 y=0 .
$$

This equation has variable coefficients, and none of the previously considered methods will apply here. Our goal is to use the Maclauren series $\sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^{n}$ to approximate solutions near $x=0$.

We shall derive a formula for $y^{(n)}(0)$, and use it to calculate the solutions $y_{1}(x)$ and $y_{2}(x)$, defined in the preceding subsection. From the equation we express $y^{\prime \prime}(0)=-2 y(0)$. Differentiate the equation

$$
y^{\prime \prime \prime}+x y^{\prime \prime}+3 y^{\prime}=0,
$$

which gives $y^{\prime \prime \prime}(0)=-3 y^{\prime}(0)$. Differentiate the last equation again

$$
y^{\prime \prime \prime \prime}+x y^{\prime \prime \prime}+4 y^{\prime \prime}=0,
$$

148CHAPTER 3. USING INFINITE SERIES TO SOLVE DIFFERENTIAL EQUATIONS

$$
\begin{equation*}
y^{(n)}(0)=-n y^{(n-2)}(0), \quad n=2,3, \ldots \tag{1.4}
\end{equation*}
$$

By a convention, $y^{(0)}(x)=y(x)$, so that $y^{(0)}(0)=y(0)$.
Let us begin with the computation of $y_{2}(x)$, for which we use the initial conditions $y(0)=0, y^{\prime}(0)=1$. Then, using the recurrence relation (1.4), obtain

$$
\begin{gathered}
y^{\prime \prime}(0)=-2 y(0)=0, \\
y^{\prime \prime \prime}(0)=-3 y^{\prime}(0)=-3 \cdot 1, \\
y^{\prime \prime \prime \prime}(0)=-4 y^{\prime \prime}(0)=0 .
\end{gathered}
$$

It is clear that all derivatives of even order are zero at $x=0$. Let us continue with the derivatives of odd order:

$$
y^{(5)}(0)=-5 y^{\prime \prime \prime}(0)=(-1)^{2} 5 \cdot 3 \cdot 1
$$

$$
y^{(7)}(0)=-7 y^{\prime \prime \prime}(0)=(-1)^{3} 7 \cdot 5 \cdot 3 \cdot 1 .
$$

And in general,

$$
y^{(2 n+1)}(0)=(-1)^{n}(2 n+1) \cdot(2 n-1) \cdots 3 \cdot 1
$$

Then the Maclauren series for $y_{2}(x)$ is

$$
y_{2}(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}(0)}{n!} x^{n}=x+\sum_{n=1}^{\infty} \frac{y^{(2 n+1)}(0)}{(2 n+1)!} x^{2 n+1}
$$

$$
=x+\sum_{n=1}^{\infty}(-1)^{n} \frac{(2 n+1) \cdot(2 n-1) \cdots 3 \cdot 1}{(2 n+1)!} x^{2 n+1}
$$

$$
=x+\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2 n \cdot(2 n-2) \cdots 4 \cdot 2} x^{2 n+1} .
$$

One can also write this solution as $y_{2}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{n} n!} x^{2 n+1}$.
To compute $y_{1}(x)$, we use the initial conditions $y(0)=1, y^{\prime}(0)=0$. Similarly to the above, we see from the recurrence relation that all derivatives of odd order vanish at $x=0$, while the even ones satisfy

$$
y^{(2 n)}(0)=(-1)^{n} 2 n \cdot(2 n-2) \cdots 4 \cdot 2, \text { for } n=1,2,3, \ldots
$$

1

$$
y_{1}(x)=1+\sum_{n=1}^{\infty}(-1)^{n} \frac{y^{(2 n)}(0)}{(2 n)!} x^{2 n}=1+\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{(2 n-1) \cdot(2 n-3) \cdots 3 \cdot 1} x^{2 n}
$$

2 The general solution:
$y(x)=c_{1}\left(1+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n-1)(2 n-3) \cdots 3 \cdot 1} x^{2 n}\right)+c_{2} \sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{n} n!} x^{2 n+1}$.
We shall need a formula for repeated differentiation of a product of two functions. Starting with the product rule $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$, express

$$
\begin{gathered}
(f g)^{\prime \prime}=f^{\prime \prime} g+2 f^{\prime} g^{\prime}+f g^{\prime \prime} \\
(f g)^{\prime \prime \prime}=f^{\prime \prime \prime} g+3 f^{\prime \prime} g^{\prime}+3 f^{\prime} g^{\prime \prime}+f g^{\prime \prime \prime}
\end{gathered}
$$

and in general, for the n-th derivative:

$$
\begin{equation*}
(f g)^{(n)}=f^{(n)} g+n f^{(n-1)} g^{\prime}+\frac{n(n-1)}{2} f^{(n-2)} g^{\prime \prime}+\cdots \tag{1.5}
\end{equation*}
$$

$$
+\frac{n(n-1)}{2} f^{\prime \prime} g^{(n-2)}+n f^{\prime} g^{(n-1)}+f g^{(n)}
$$

(Convention: $f^{(0)}=f$.) This formula is similar to the binomial formula for the expansion of $(x+y)^{n}$. Using the summation notation, we can write it as

$$
(f g)^{(n)}=\sum_{k=0}^{n}\binom{n}{k} f^{(n-k)} g^{(k)}
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$ are the binomial coefficients.
The formula (1.5) simplifies considerably in case $f(x)=x$, or if $f(x)=x^{2}$:

$$
(x g)^{(n)}=n g^{(n-1)}+x g^{(n)}
$$

$$
\left(x^{2} g\right)^{(n)}=n(n-1) g^{(n-2)}+2 n x g^{(n-1)}+x^{2} g^{(n)}
$$

We shall use Taylor's series centered at $x=a, y(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}(a)}{n!}(x-a)^{n}$, to solve linear second order equations with variable coefficients

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

where the functions $P(x), Q(x)$ and $R(x)$ are given. A number a is called a regular point if $P(a) \neq 0$. If $P(a)=0$, then $x=a$ is called a singular point. If a is a regular point, we can compute $y^{(n)}(a)$ from the equation, as in the examples above. If the point a is singular, it is not even possible to compute $y^{\prime \prime}(a)$ from the equation.
Example $1 \quad\left(2+x^{2}\right) y^{\prime \prime}-x y^{\prime}+4 y=0$.
For this equation, any a is a regular point. Let us find the general solution as an infinite series, centered at $a=0$, the Maclauren series for $y(x)$. We differentiate both sides of this equation n times. When we use the formula (1.5) to differentiate the first term, only the last three terms are non-zero, because the derivatives of $2+x^{2}$, of order three and higher, are zero. Obtain

$$
\left[\left(2+x^{2}\right) y^{\prime \prime}\right]^{(n)}=\frac{n(n-1)}{2} 2 y^{(n)}+n(2 x) y^{(n+1)}+\left(2+x^{2}\right) y^{(n+2)} .
$$

When we differentiate n times $x y^{\prime}$, only the last two terms survive, giving

$$
\left[x y^{\prime}\right]^{(n)}=n y^{(n)}+x y^{(n+1)} .
$$

It follows that n differentiations of our equation produce
$\frac{n(n-1)}{2} 2 y^{(n)}+n(2 x) y^{(n+1)}+\left(2+x^{2}\right) y^{(n+2)}-n y^{(n)}-x y^{(n+1)}+4 y^{(n)}=0$.
Set here $x=0$. Several terms vanish. Combining the like terms, we get

$$
2 y^{(n+2)}(0)+\left(n^{2}-2 n+4\right) y^{(n)}(0)=0,
$$

which gives us the recurrence relation

$$
y^{(n+2)}(0)=-\frac{\left(n^{2}-2 n+4\right)}{2} y^{(n)}(0) .
$$

This relation is too involved to get a general formula for $y^{(n)}(0)$ as a function of n. However, it can be used to crank out the derivatives at zero, as many as you wish.

To compute $y_{1}(x)$, we use the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$. It follows from the recurrence relation that all of the derivatives of odd order are zero at $x=0$. Setting $n=0$ in the recurrence relation, obtain

$$
y^{\prime \prime}(0)=-2 y(0)=-2 .
$$

$$
y^{(5)}(0)=-\frac{7}{2} y^{\prime \prime \prime}(0)=\frac{21}{4} .
$$

Using these derivatives in the Maclauren series, we conclude

$$
y_{2}(x)=x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}+\cdots
$$

The general solution:

$$
y(x)=c_{1} y_{1}(x)+c_{2} y_{2}(x)=c_{1}\left(1-x^{2}+\frac{1}{6} x^{4}+\cdots\right)
$$

$$
+c_{2}\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}+\cdots\right)
$$

Suppose that we wish to solve the above equation, together with the initial conditions: $y(0)=-2, y^{\prime}(0)=3$. Then $y(0)=c_{1} y_{1}(0)+c_{2} y_{2}(0)=$ $c_{1}=-2$, and $y^{\prime}(0)=c_{1} y_{1}^{\prime}(0)+c_{2} y_{2}^{\prime}(0)=c_{2}=3$. It follows that $y(x)=$ $-2 y_{1}(x)+3 y_{2}(x)$. If one needs to approximate $y(x)$ near $x=0$, say on the interval $(-0.3,0.3)$, then

$$
y(x) \approx-2\left(1-x^{2}+\frac{1}{6} x^{4}\right)+3\left(x-\frac{1}{4} x^{3}+\frac{7}{160} x^{5}\right)
$$

15 will provide an excellent approximation.
16 Example $2 y^{\prime \prime}-x y^{\prime}+y=0, a=0$.
${ }_{17}$ Differentiating this equation n times gives

$$
y^{(n+2)}(x)-n y^{(n)}(x)-x y^{(n+1)}(x)+y^{(n)}(x)=0
$$

$$
y^{(2 n)}(0)=-1 \cdot 3 \cdot 5 \cdots(2 n-3)
$$

8 Then

Example 3 Approximate the general solution of Airy's equation

$$
y^{\prime \prime}-x y=0
$$

${ }^{7}$ near $x=1$. This equation was encountered in 1838 by G.B. Airy, in his study of optics.

We need to compute Taylor's series about the regular point $a=1$, which is $y(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}(1)}{n!}(x-1)^{n}$. From the equation,

$$
y^{\prime \prime}(1)=y(1)
$$

$$
y^{(n+2)}(x)-n y^{(n-1)}(x)-x y^{(n)}(x)=0,
$$

$$
\begin{equation*}
y^{(n+2)}(1)=n y^{(n-1)}(1)+y^{(n)}(1), \quad n=1,2, \ldots . \tag{1.6}
\end{equation*}
$$

17 We consider again the equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

with given functions $P(x), Q(x)$ and $R(x)$ that are continuous near a point a, 9 at which we wish to compute solution as a series $y(x)=\sum_{n=0}^{\infty} \frac{y^{(n)}(a)}{n!}(x-a)^{n}$.

If $P(a)=0$, we have a problem: one cannot compute $y^{\prime \prime}(a)$ from the equation (and the same problem occurs for higher derivatives). However, if a is a simple root of $P(x)$, it turns out that one can still use series to produce a solution. Namely, we assume that $P(x)=(x-a) P_{1}(x)$, with $P_{1}(a) \neq 0$. We call $x=a$ a mildly singular point. Dividing the equation by $P_{1}(x)$, and calling $q(x)=\frac{Q(x)}{P_{1}(x)}, r(x)=\frac{R(x)}{P_{1}(x)}$, we put it into the form

$$
(x-a) y^{\prime \prime}+q(x) y^{\prime}+r(x) y=0
$$

The functions $q(x)$ and $r(x)$ are continuous near a. In case $a=0$, the equation becomes

$$
\begin{equation*}
x y^{\prime \prime}+q(x) y^{\prime}+r(x) y=0 \tag{2.1}
\end{equation*}
$$

For this equation we cannot expect to obtain two linearly independent solutions, by prescribing $y_{1}(0)=1, y_{1}^{\prime}(0)=0$, and $y_{2}(0)=0, y_{2}^{\prime}(0)=1$, the way we did before. This equation is singular at $x=0$ (the functions $\frac{q(x)}{x}$ and $\frac{r(x)}{x}$ are discontinuous at $x=0$, and so the existence and uniqueness Theorem 2.4.1 from Chapter 2 does not apply).

Example 1 Let us try to solve:

$$
x y^{\prime \prime}-y^{\prime}=0, \quad y(0)=0, y^{\prime}(0)=1
$$

Multiplying through by x, we obtain Euler's equation with the general solution $y(x)=c_{1} x^{2}+c_{2}$. Then $y^{\prime}(x)=2 c_{1} x$, and $y^{\prime}(0)=0 \neq 1$. This initial value problem has no solution. However, if we change the initial conditions, and consider the problem

$$
x y^{\prime \prime}-y^{\prime}=0, \quad y(0)=1, y^{\prime}(0)=0
$$

then there are infinitely many solutions $y=1+c_{1} x^{2}$.
We therefore lower our expectations, and we shall be satisfied to compute just one series solution of (2.1). It turns out that in most cases it is possible to calculate a series solution of the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, starting with $a_{0}=1$, which corresponds to $y(0)=1$. (If $a_{0} \neq 1$, then $\frac{1}{a_{0}} y(x)$ is another solution of (2.1), which begins with 1 . So that we shall always assume that $a_{0}=1$. The possibility of $a_{0}=0$ is considered later.)

Example 2 Find a series solution, centered at $a=0$, of

$$
x y^{\prime \prime}+3 y^{\prime}-2 y=0
$$

1 It is convenient to multiply this equation by x :

$$
\begin{equation*}
x^{2} y^{\prime \prime}+3 x y^{\prime}-2 x y=0 . \tag{2.2}
\end{equation*}
$$

2
${ }_{3}$ with $a_{0}=1$. Calculate

$$
y^{\prime}=\sum_{n=1}^{\infty} a_{n} n x^{n-1}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots,
$$

4

$$
y^{\prime \prime}=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}=2 a_{2}+6 a_{3} x+\cdots .
$$

5 Observe that each differentiation "kills" a term. Substituting $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ 6 into the equation (2.2), gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} 3 a_{n} n x^{n}-\sum_{n=0}^{\infty} 2 a_{n} x^{n+1}=0 \tag{2.3}
\end{equation*}
$$

7 The third series is not "lined up" with the other two. We therefore shift the index of summation, replacing n by $n-1$ in that series, obtaining

$$
\sum_{n=0}^{\infty} 2 a_{n} x^{n+1}=\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}
$$

9 Then (2.3) becomes

$$
\begin{equation*}
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} 3 a_{n} n x^{n}-\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}=0 \tag{2.4}
\end{equation*}
$$

We shall use the following fact: if $\sum_{n=1}^{\infty} b_{n} x^{n}=0$ for all x, then $b_{n}=0$ for all $n=1,2, \ldots$. Our goal is to combine the three series in (2.4) into a single one, so that we can set all of the resulting coefficients to zero. The x term is present in the second and the third series, but not in the first. However, we can start the first series at $n=1$, because at $n=1$ the coefficient is zero. So that (2.4) becomes

$$
\sum_{n=1}^{\infty} a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} 3 a_{n} n x^{n}-\sum_{n=1}^{\infty} 2 a_{n-1} x^{n}=0 .
$$

Now for all $n \geq 1$, the x^{n} term is present in all three series, so that we can combine these series into one series. We therefore just set the sum of the coefficients to zero

$$
a_{n} n(n-1)+3 a_{n} n-2 a_{n-1}=0 .
$$

4 Solve for a_{n}, to get the recurrence relation

$$
a_{n}=\frac{2}{n(n+2)} a_{n-1}, \quad n \geq 1 .
$$

${ }_{5}$ Starting with $a_{0}=1$, compute $a_{1}=\frac{2}{1 \cdot 3}$, then

$$
a_{2}=\frac{2}{2 \cdot 4} a_{1}=\frac{2^{2}}{(1 \cdot 2)(3 \cdot 4)}=\frac{2^{3}}{2!4!},
$$

$$
a_{3}=\frac{2}{3 \cdot 5} a_{2}=\frac{2^{4}}{3!5!},
$$

and, in general, $a_{n}=\frac{2^{n+1}}{n!(n+2)!}$.
Answer: $y(x)=1+\sum_{n=1}^{\infty} \frac{2^{n+1}}{n!(n+2)!} x^{n}=\sum_{n=0}^{\infty} \frac{2^{n+1}}{n!(n+2)!} x^{n}$.
g Example 3 Find a series solution, centered at $a=0$, of

$$
x y^{\prime \prime}-3 y^{\prime}-2 y=0 .
$$

10 This equation is a small modification of the preceding one, so that we can ${ }_{11}$ quickly derive the recurrence relation:

$$
\begin{equation*}
a_{n}=\frac{2}{n(n-4)} a_{n-1}, \quad n \geq 1 . \tag{2.5}
\end{equation*}
$$

14 for the solution in the form $y=\sum_{n=4}^{\infty} a_{n} x^{n}$. Substituting this series into the
15 equation

$$
x^{2} y^{\prime \prime}-3 x y^{\prime}-2 x y=0
$$

16 (which is the original equation, multiplied by x), gives

$$
\sum_{n=4}^{\infty} a_{n} n(n-1) x^{n}-\sum_{n=4}^{\infty} 3 a_{n} n x^{n}-\sum_{n=4}^{\infty} 2 a_{n} x^{n+1}=0
$$

$$
\begin{equation*}
\sum_{n=5}^{\infty} a_{n} n(n-1) x^{n}-\sum_{n=5}^{\infty} 3 a_{n} n x^{n}-\sum_{n=4}^{\infty} 2 a_{n} x^{n+1}=0 \tag{2.6}
\end{equation*}
$$

The coefficient in x^{4}, which is $a_{4}(4 \cdot 3-3 \cdot 4)$, is zero for any choice of a_{4}. We can then begin the first two series at $n=5$:

Shifting $n \rightarrow n-1$ in the last series in (2.6), we see that the recurrence relation (2.5) holds for $n \geq 5$. We choose $a_{4}=1$, and use the recurrence relation (2.5) to calculate a_{5}, a_{6}, etc.
Compute: $a_{5}=\frac{2}{5 \cdot 1} a_{4}=\frac{2}{5 \cdot 1}, a_{6}=\frac{2}{6 \cdot 2} a_{5}=\frac{2^{2}}{6 \cdot 5 \cdot 2 \cdot 1}=24 \frac{2^{2}}{6!2!}$, and in general, $a_{n}=24 \frac{2^{n-4}}{n!(n-4)!}$.
Answer: $y(x)=x^{4}+24 \sum_{n=5}^{\infty} \frac{2^{n-4}}{n!(n-4)!} x^{n}=24 \sum_{n=4}^{\infty} \frac{2^{n-4}}{n!(n-4)!} x^{n}$.
Our experience with the previous two problems can be summarized as follows (convergence of the series is proved in more advanced books).
Theorem 3.2.1 Consider the equation (2.1). Assume that the functions $q(x)$ and $r(x)$ have convergent Maclauren series expansions on some interval $(-\delta, \delta)$. If $q(0)$ is not a non-positive integer $(q(0)$ is not equal to $0,-1,-2, \ldots)$, one can find a series solution of the form $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, starting with $a_{0}=1$. In case $q(0)=-k$, where k is a non-negative integer, one can find a series solution of the form $y(x)=\sum_{n=k+1}^{\infty} a_{n} x^{n}$, starting with $a_{k+1}=1$. In both cases, the series for $y(x)$ is convergent on $(-\delta, \delta)$.

We now turn to one of the most important examples of this chapter.
Example $4 x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\nu^{2}\right) y=0$.
This is the Bessel equation, which is of great importance in mathematical physics! It depends on a real parameter ν. It is also called Bessel's equation of order ν. Its solutions are called Bessel's functions of order ν. We see that $a=0$ is not a mildly singular point, for $\nu \neq 0$. (Zero is a double root of x^{2}.) But in case $\nu=0$, one can cancel x, putting Bessel's equation of order zero into the form

$$
\begin{equation*}
x y^{\prime \prime}+y^{\prime}+x y=0 \tag{2.7}
\end{equation*}
$$

so that $a=0$ is a mildly singular point. We shall find the solution of this equation, as a series centered at $a=0$, the Maclauren series for $y(x)$.

1 We put the equation (2.7) back into the form

$$
x^{2} y^{\prime \prime}+x y^{\prime}+x^{2} y=0
$$

2 and look for solution in the form $y=\sum_{n=0}^{\infty} a_{n} x^{n}$, with $a_{0}=1$. Substitute 3 this in:

$$
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} a_{n} n x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+2}=0
$$

4 In the last series we replace n by $n-2$:

$$
\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} a_{n} n x^{n}+\sum_{n=2}^{\infty} a_{n-2} x^{n}=0
$$

${ }_{5}$ None of the three series has a constant term. The x term is present only in 6 the second series. Its coefficient is a_{1}, and so

$$
a_{1}=0
$$

${ }_{7}$ The terms involving x^{n}, starting with $n=2$, are present in all series, so that 8 (after combining the series)

$$
a_{n} n(n-1)+a_{n} n+a_{n-2}=0
$$

9 giving

$$
a_{n}=-\frac{1}{n^{2}} a_{n-2}
$$

10 This recurrence relation tells us that all odd coefficients are zero, $a_{2 n+1}=$
${ }_{11} 0$. Starting with $a_{0}=1$, compute $a_{2}=-\frac{1}{2^{2}} a_{0}=-\frac{1}{2^{2}}, a_{4}=-\frac{1}{4^{2}} a_{2}=$ ${ }_{12}(-1)^{2} \frac{1}{2^{2} 4^{2}}, a_{6}=-\frac{1}{6^{2}} a_{4}=(-1)^{3} \frac{1}{2^{2} 4^{2} 6^{2}}$, and in general, $a_{2 n}=(-1)^{n} \frac{1}{2^{2} 4^{2} 6^{2} \cdots(2 n)^{2}}=(-1)^{n} \frac{1}{(2 \cdot 4 \cdot 6 \cdots 2 n)^{2}}=(-1)^{n} \frac{1}{2^{2 n}(n!)^{2}}$.

13 We then have

$$
y(x)=1+\sum_{n=1}^{\infty} a_{2 n} x^{2 n}=1+\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{2^{2 n}(n!)^{2}} x^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{2 n}(n!)^{2}} x^{2 n}
$$

5 tomary notation: $J_{0}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{2 n}(n!)^{2}} x^{2 n}$.

Figure 3.2: The graph of Bessel's function $J_{0}(x)$

3.2.1* Derivation of $J_{0}(x)$ by Differentiation of the Equation

It turns out that one can obtain $J_{0}(x)$ by differentiating the equation, and using the initial conditions $y(0)=1$ and $y^{\prime}(0)=0$, even though the point $a=0$ is singular.

Differentiate the equation (2.7) n times, and then set $x=0$:

$$
n y^{(n+1)}+x y^{(n+2)}+y^{(n+1)}+n y^{(n-1)}+x y^{(n)}=0 ;
$$

$$
n y^{(n+1)}(0)+y^{(n+1)}(0)+n y^{(n-1)}(0)=0 .
$$

(It is not always true that $x y^{(n+2)} \rightarrow 0$ as $x \rightarrow 0$. However, in case of the initial conditions $y(0)=1, y^{\prime}(0)=0$ that is true, as was justified in author's paper [16].) We get the recurrence relation

$$
y^{(n+1)}(0)=-\frac{n}{n+1} y^{(n-1)}(0) .
$$

We use the initial conditions $y(0)=1, y^{\prime}(0)=0$. Then all derivatives of odd order vanish, while

$$
\begin{aligned}
& y^{(2 n)}(0)=-\frac{2 n-1}{2 n} y^{(2 n-2)}(0)=(-1)^{2} \frac{2 n-1}{2 n} \frac{2 n-3}{2 n-4} y^{(2 n-4)}(0)=\ldots \\
& =(-1)^{n} \frac{(2 n-1)(2 n-3) \cdots 3 \cdot 1}{2 n(2 n-2) \cdots 2} y(0)=(-1)^{n} \frac{(2 n-1)(2 n-3) \cdots 3 \cdot 1}{2^{n} n!} .
\end{aligned}
$$

Then

$$
y(x)=\sum_{n=0}^{\infty} \frac{y^{(2 n)}(0)}{(2 n)!} x^{2 n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{2 n}(n!)^{2}} x^{2 n}
$$

We obtained again Bessel's function of order zero of the first kind, $J_{0}(x)=$ $\sum_{n=0}^{\infty}(-1)^{n} \frac{1}{2^{2 n}(n!)^{2}} x^{2 n}$

In case of the initial conditions $y(0)=0$ and $y^{\prime}(0)=1$, there is no solution of Bessel's equation (2.7) (the recurrence relation above is not valid, because the relation $x y^{(n+2)} \rightarrow 0$ as $x \rightarrow 0$ is not true in this case). In fact, the second solution of Bessel's equation cannot possibly be continuously differentiable at $x=0$. Indeed, by the Theorem 2.4.2 from Chapter 2, the Wronskian of any two solutions is equal to $c e^{-\int \frac{1}{x} d x}=\frac{c}{x}$, so that $W\left(y_{1}, y_{2}\right)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=\frac{c}{x}$. The solution $J_{0}(x)$ satisfies $J_{0}(0)=1, J_{0}^{\prime}(0)=$ 0 . Therefore, the other solution, or its derivative, must be discontinuous at $x=0$. It turns out that the other solution, called Bessel's function of the second type, and denoted $Y_{0}(x)$, has a term involving $\ln x$ in its series representation, see the book of J. Bowman [3] for a concise introduction.

Bessel's function of order ν of the first kind is denoted by $J_{\nu}(x)$. Similarly to $J_{0}(x)$, the function $J_{\nu}(x)$ is continuous at $x=0$, and it has an infinite sequence of roots, tending to infinity, see [3].

3.3 Moderately Singular Equations

This section deals only with series centered at zero, so that $a=0$, and the general case is similar. We consider the equation

$$
\begin{equation*}
x^{2} y^{\prime \prime}+x p(x) y^{\prime}+q(x) y=0 \tag{3.1}
\end{equation*}
$$

where the given functions $p(x)$ and $q(x)$ are assumed to be infinitely differentiable functions, that can be represented by their Maclauren series

$$
\begin{align*}
& p(x)=p(0)+p^{\prime}(0) x+\frac{1}{2} p^{\prime \prime}(0) x^{2}+\cdots \tag{3.2}\\
& q(x)=q(0)+q^{\prime}(0) x+\frac{1}{2} q^{\prime \prime}(0) x^{2}+\cdots
\end{align*}
$$

(Observe the special form of the coefficient function in front of y^{\prime}.) If it so happens that $q(0)=0$, then $q(x)$ has a factor of x, and one can divide the equation (3.1) by x, to obtain a mildly singular equation. So that the difference with the preceding section is that we now allow the case of
$q(0) \neq 0$. Observe also that in case $p(x)$ and $q(x)$ are constants, the equation (3.1) is Euler's equation, that was studied in Section 2.13. This connection with Euler's equation is the "guiding light" of the theory that follows.

We change to a new unknown function $v(x)$, by letting $y(x)=x^{r} v(x)$, with a constant r to be specified. With $y^{\prime}=r x^{r-1} v+x^{r} v^{\prime}$, and $y^{\prime \prime}=r(r-1) x^{r-2} v+2 r x^{r-1} v^{\prime}+x^{r} v^{\prime \prime}$, we substitute $y(x)$ into (3.1), obtaining

$$
\begin{equation*}
x^{r+2} v^{\prime \prime}+x^{r+1} v^{\prime}(2 r+p(x))+x^{r} v[r(r-1)+r p(x)+q(x)]=0 . \tag{3.3}
\end{equation*}
$$

$$
\begin{equation*}
r(r-1)+r p(0)+q(0)=0 . \tag{3.4}
\end{equation*}
$$

$$
\begin{equation*}
x^{2} y^{\prime \prime}-\frac{1}{2} x y^{\prime}+\left(\frac{1}{2}+\frac{1}{2} x\right) y=0 . \tag{3.5}
\end{equation*}
$$

24
Here $p(x)=-\frac{1}{2}$ and $q(x)=\frac{1}{2}+\frac{1}{2} x$. The characteristic equation is then

$$
r(r-1)-\frac{1}{2} r+\frac{1}{2}=0
$$

1 Its roots are $r=\frac{1}{2}$, and $r=1$.
The case $r=\frac{1}{2}$. We know that the substitution $y=x^{\frac{1}{2}} v$ will produce a mildly singular equation for $v(x)$. Substituting this y into our equation 4 (3.5) (or using (3.3)), gives

$$
x^{5 / 2} v^{\prime \prime}+\frac{1}{2} x^{3 / 2} v^{\prime}+\frac{1}{2} x^{3 / 2} v=0 .
$$

${ }_{5}$ Dividing by $x^{3 / 2}$, produces a mildly singular equation

$$
x v^{\prime \prime}+\frac{1}{2} v^{\prime}+\frac{1}{2} v=0 .
$$

6 Multiply this equation by $2 x$, for convenience,

$$
\begin{equation*}
2 x^{2} v^{\prime \prime}+x v^{\prime}+x v=0 \tag{3.6}
\end{equation*}
$$

7 and look for a solution in the form $v(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Substituting $v(x)$ 8 into (3.6), gives

$$
\begin{equation*}
\sum_{n=2}^{\infty} 2 a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} a_{n} n x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=0 \tag{3.7}
\end{equation*}
$$

9

Combine these series into a single series, and set its coefficients to zero

$$
2 a_{n} n(n-1)+a_{n} n+a_{n-1}=0
$$

13 which gives us the recurrence relation

$$
a_{n}=-\frac{1}{n(2 n-1)} a_{n-1}
$$

14 Starting with $a_{0}=1$, compute $a_{1}=-\frac{1}{1 \cdot 1}, a_{2}=-\frac{1}{2 \cdot 3} a_{1}=(-1)^{2} \frac{1}{(1 \cdot 2)(1 \cdot 3)}$,
${ }_{15} \quad a_{3}=-\frac{1}{3 \cdot 5} a_{2}=(-1)^{3} \frac{1}{(1 \cdot 2 \cdot 3)(1 \cdot 3 \cdot 5)}$, and in general

$$
a_{n}=(-1)^{n} \frac{1}{n!\cdot 1 \cdot 3 \cdot 5 \cdots(2 n-1)}
$$

1
We obtained the first solution:

$$
y_{1}(x)=x^{1 / 2} v(x)=x^{1 / 2}\left[1+\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!\cdot 1 \cdot 3 \cdot 5 \cdots(2 n-1)} x^{n}\right] .
$$

2 The case $r=1$. Set $y=x v$. Substituting this y into (3.5), and simplifying

$$
x^{3} v^{\prime \prime}+\frac{3}{2} x^{2} v^{\prime}+\frac{1}{2} x^{2} v=0 .
$$

3 Dividing by x^{2}, gives a mildly singular equation

$$
x v^{\prime \prime}+\frac{3}{2} v^{\prime}+\frac{1}{2} v=0 .
$$

4 Multiply this equation by $2 x$, for convenience,

$$
\begin{equation*}
2 x^{2} v^{\prime \prime}+3 x v^{\prime}+x v=0, \tag{3.8}
\end{equation*}
$$

5 and look for a solution in the form $v=\sum_{n=0}^{\infty} a_{n} x^{n}$. Substituting $v(x)$ into 6 (3.8), obtain

$$
\sum_{n=2}^{\infty} 2 a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} 3 a_{n} n x^{n}+\sum_{n=0}^{\infty} a_{n} x^{n+1}=0 .
$$

7 We start the first series at $n=1$, and make a shift $n \rightarrow n-1$ in the third 8 series:

$$
\sum_{n=1}^{\infty} 2 a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} 3 a_{n} n x^{n}+\sum_{n=1}^{\infty} a_{n-1} x^{n}=0 .
$$

9 Setting the coefficient of x^{n} to zero,

$$
2 a_{n} n(n-1)+3 a_{n} n+a_{n-1}=0,
$$

10 gives us the recurrence relation

$$
a_{n}=-\frac{1}{n(2 n+1)} a_{n-1} .
$$

${ }_{11}$ Starting with $a_{0}=1$, compute $a_{1}=-\frac{1}{1 \cdot 3}, a_{2}=-\frac{1}{2 \cdot 5} a_{1}=(-1)^{2} \frac{1}{(1 \cdot 2)(1 \cdot 3 \cdot 5)}$,
${ }_{12} \quad a_{3}=-\frac{1}{3 \cdot 7} a_{2}=(-1)^{3} \frac{1}{(1 \cdot 2 \cdot 3)(1 \cdot 3 \cdot 5 \cdot 7)}$, and in general

$$
a_{n}=(-1)^{n} \frac{1}{n!\cdot 1 \cdot 3 \cdot 5 \cdots(2 n+1)} .
$$

1
second solution is then

$$
y_{2}(x)=x\left[1+\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{n!\cdot 1 \cdot 3 \cdot 5 \cdots(2 n+1)} x^{n}\right]
$$

2 The general solution is, of course, $y(x)=c_{1} y_{1}+c_{2} y_{2}$.
Example 2 Solve $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-\frac{1}{9}\right) y=0$.
4 This is Bessel's equation of order $\frac{1}{3}$. Here $p(x)=1$, and $q(x)=x^{2}-\frac{1}{9}$. The characteristic equation

$$
r(r-1)+r-\frac{1}{9}=0
$$

has roots $r=-\frac{1}{3}$, and $r=\frac{1}{3}$.
The case $r=-\frac{1}{3}$. Set $y=x^{-\frac{1}{3}} v$. Compute $y^{\prime}=-\frac{1}{3} x^{-\frac{4}{3}} v+x^{-\frac{1}{3}} v^{\prime}, y^{\prime \prime}=$ $\frac{4}{9} x^{-\frac{7}{3}} v-\frac{2}{3} x^{-\frac{4}{3}} v^{\prime}+x^{-\frac{1}{3}} v^{\prime \prime}$. Substituting this y in and simplifying, produces a mildly singular equation

$$
x v^{\prime \prime}+\frac{1}{3} v^{\prime}+x v=0 .
$$

Multiply this equation by $3 x$

$$
\begin{equation*}
3 x^{2} v^{\prime \prime}+x v^{\prime}+3 x^{2} v=0 \tag{3.9}
\end{equation*}
$$

and look for a solution in the form $v=\sum_{n=0}^{\infty} a_{n} x^{n}$. Substituting this series into (3.9), gives

$$
\sum_{n=2}^{\infty} 3 a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} a_{n} n x^{n}+\sum_{n=0}^{\infty} 3 a_{n} x^{n+2}=0
$$

13 We shift $n \rightarrow n-2$ in the last series:

$$
\sum_{n=2}^{\infty} 3 a_{n} n(n-1) x^{n}+\sum_{n=1}^{\infty} a_{n} n x^{n}+\sum_{n=2}^{\infty} 3 a_{n-2} x^{n}=0
$$

$$
\begin{equation*}
a_{1}=0 . \tag{3.10}
\end{equation*}
$$

The term x^{n}, with $n \geq 2$, is present in all three series. Setting its coefficient to zero

$$
3 a_{n} n(n-1)+a_{n} n+3 a_{n-2}=0
$$

1

2

4
${ }_{5}$
$a_{6}=(-1)^{3} \frac{3^{2}}{(2 \cdot 4 \cdot 6)(4 \cdot 10 \cdot 16)}$, and in general,

$$
a_{2 n}=(-1)^{n} \frac{3^{n}}{(2 \cdot 4 \cdots 2 n)(4 \cdot 10 \cdots(6 n-2))}
$$

6

7

8

9

Multiply the last equation by $3 x$

$$
3 x^{2} v^{\prime \prime}+5 x v^{\prime}+3 x^{2} v=0
$$

and look for a solution in the form $v=\sum_{n=0}^{\infty} a_{n} x^{n}$. Substituting this in, we conclude again that $a_{1}=0$, and that the following recurrence relation holds

$$
a_{n}=-\frac{3}{n(3 n+2)} a_{n-2}
$$

14 It follows that all odd coefficients are zero, while the even ones satisfy

$$
a_{2 n}=-\frac{3}{2 n(6 n+2)} a_{2 n-2}=-\frac{1}{2 n(2 n+2 / 3)} a_{2 n-2}
$$

15

$$
y_{2}(x)=x^{1 / 3}\left[1+\sum_{n=1}^{\infty}(-1)^{n} \frac{1}{(2 \cdot 4 \cdots 2 n)((2+2 / 3) \cdot(4+2 / 3) \cdots(2 n+2 / 3))} x^{2 n}\right]
$$

3.3.1 Problems

I. Find the Maclauren series of the following functions, and state their radius of convergence

1. $\sin x^{2}$.
2. $\frac{1}{1+x^{2}}$.
3. $x e^{-x^{3}}$.

5 II. 1. Find the Taylor series of $f(x)$ centered at a.
(i) $f(x)=\sin x, a=\frac{\pi}{2}$.
(ii) $f(x)=e^{x}, a=1$.
(iii) $f(x)=\frac{1}{x}, a=1$.

8 2. Show that $\sum_{n=1}^{\infty} \frac{1+(-1)^{n}}{n^{2}} x^{n}=\frac{1}{2} \sum_{n=1}^{\infty} \frac{1}{n^{2}} x^{2 n}$.
3. Show that $\sum_{n=1}^{\infty} \frac{1-\cos n \pi}{n^{3}} x^{n}=\sum_{n=1}^{\infty} \frac{2}{(2 n-1)^{3}} x^{2 n-1}$.

Hint: $\cos n \pi=(-1)^{n}$.
4. Show that $\sum_{n=0}^{\infty} \frac{n+3}{n!(n+1)} x^{n+1}=\sum_{n=1}^{\infty} \frac{n+2}{(n-1)!n} x^{n}$.
5. Show that $\sum_{n=0}^{\infty} a_{n} x^{n+2}=\sum_{n=2}^{\infty} a_{n-2} x^{n}$.
6. Show that $\sum_{n=0}^{\infty} \frac{n+3}{n!(n+1)} x^{n+2}=\sum_{n=2}^{\infty} \frac{n+1}{(n-2)!(n-1)} x^{n}$.
7. Expand the n-th derivative: $\left[\left(x^{2}+x\right) g(x)\right]^{(n)}$.

Answer. $n(n-1) g^{(n-2)}(x)+n(2 x+1) g^{(n-1)}(x)+\left(x^{2}+x\right) g^{(n)}(x)$.
8. Find the n-th derivative: $\left[\left(x^{2}+x\right) e^{2 x}\right]^{(n)}$.

Answer. $2^{n-2} e^{2 x}\left[n(n-1)+2 n(2 x+1)+4\left(x^{2}+x\right)\right]$.
9. Expand the n-th derivative: $\left[x y^{\prime}\right]^{(n)}$.

Answer. $n y^{(n)}+x y^{(n+1)}$.
10. Expand the n-th derivative: $\left[\left(x^{2}+1\right) y^{\prime \prime}\right]^{(n)}$.

Answer. $n(n-1) y^{(n)}+2 n x y^{(n+1)}+\left(x^{2}+1\right) y^{(n+2)}$.
11. Let $y(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$. Show that

2 $y^{\prime}(x)=\sum_{n=1}^{\infty} a_{n} n x^{n-1}$, and $y^{\prime \prime}(x)=\sum_{n=2}^{\infty} a_{n} n(n-1) x^{n-2}$.
12. Let $y(x)=\sum_{n=1}^{\infty} \frac{1}{n!(n-1)!} x^{n}$. Show that
${ }^{4} y^{\prime \prime}(x)=\sum_{n=2}^{\infty} \frac{1}{(n-1)!(n-2)!} x^{n-2}$, and $x y^{\prime \prime}(x)=\sum_{n=1}^{\infty} \frac{1}{n!(n-1)!} x^{n}$.
${ }_{5}$ Conclude that $y(x)$ is a solution of

$$
x y^{\prime \prime}-y=0 .
$$

6

$$
7
$$

7
8
9

12 Answer. $y_{1}(x)=1-x^{2}, y_{2}(x)=x-\frac{1}{6} x^{3}-\frac{1}{120} x^{5}-\cdots$.

17 Answer. The recurrence relation: $y^{(n+2)}(0)=-(n+1)^{2} y^{(n)}(0)$.
${ }^{18} y_{1}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdots(2 n-1)}{2^{n} n!} x^{2 n}$,
${ }^{19} \quad y_{2}(x)=\sum_{n=0}^{\infty}(-1)^{n} \frac{2 \cdot 4 \cdots 2 n}{1 \cdot 3 \cdot 5 \cdots(2 n+1)} x^{2 n+1}$.
$20 \quad$ 5. $\left(x^{2}+1\right) y^{\prime \prime}-x y^{\prime}+y=0, a=0$.
21 Answer. The recurrence relation: $y^{(n+2)}(0)=-(n-1)^{2} y^{(n)}(0)$.

168CHAPTER 3. USING INFINITE SERIES TO SOLVE DIFFERENTIAL EQUATIONS

${ }_{1} y_{1}(x)=1+\sum_{n=1}^{\infty}(-1)^{n} \frac{1^{2} \cdot 3^{2} \cdots(2 n-3)^{2}}{(2 n)!} x^{2 n}, y_{2}(x)=x$.

2

3
${ }_{4} y_{2}(x)=(x-2)+\frac{1}{3}(x-2)^{3}+\frac{1}{12}(x-2)^{4}+\frac{1}{30}(x-2)^{5}+\cdots$.
5 7. $y^{\prime \prime}-x y^{\prime}-y=0, a=1$.
${ }_{6}$ Answer. $y_{1}(x)=1+\frac{1}{2}(x-1)^{2}+\frac{1}{6}(x-1)^{3}+\frac{1}{6}(x-1)^{4}+\cdots$,
${ }_{7} y_{2}(x)=(x-1)+\frac{1}{2}(x-1)^{2}+\frac{1}{2}(x-1)^{3}+\frac{1}{4}(x-1)^{4}+\cdots$.
8
9
10

11
12$y_{1}(x)=1+\frac{1}{4}(x+2)^{2}+\frac{1}{24}(x+2)^{3}+\cdots$,

$$
y_{2}(x)=x+2+\frac{1}{12}(x+2)^{3}+\frac{1}{48}(x+2)^{4}+\cdots
$$

$$
\text { 11. } y^{\prime \prime}+x^{2} y=0, a=1
$$

Hint: Before using the recurrence relation

$$
y^{(n+2)}(1)=-n(n-1) y^{(n-2)}(1)-2 n y^{(n-1)}(1)-y^{(n)}(1)
$$

21 calculate from the equation $y^{\prime \prime}(1)=-y(1)$, and $y^{\prime \prime \prime}(1)=-2 y(1)-y^{\prime}(1)$.
22 Answer. $y_{1}(x)=1-\frac{1}{2}(x-1)^{2}-\frac{1}{3}(x-1)^{3}-\frac{1}{24}(x-1)^{4}+\cdots$,
${ }^{23} \quad y_{2}(x)=x-1-\frac{1}{6}(x-1)^{3}-\frac{1}{6}(x-1)^{4}+\cdots$.

1 IV. 1. Find the solution of the initial value problem, using power series centered at 0

$$
y^{\prime \prime}-x y^{\prime}+2 y=0, \quad y(0)=1, y^{\prime}(0)=2 .
$$

Answer. $y=1+2 x-x^{2}-\frac{1}{3} x^{3}+\cdots$.
4 2. Find the solution of the initial value problem, using power series centered at 2

$$
y^{\prime \prime}-2 x y=0, \quad y(2)=1, y^{\prime}(2)=0 .
$$

6 Answer. $y=1+2(x-2)^{2}+\frac{1}{3}(x-2)^{3}+\frac{2}{3}(x-2)^{4}+\cdots$.
3. Find the solution of the initial value problem, using power series centered at -1

$$
y^{\prime \prime}+x y=0, \quad y(-1)=2, y^{\prime}(-1)=-3 .
$$

Answer. $y=2-3(x+1)+(x+1)^{2}-\frac{5}{6}(x+1)^{3}+\cdots$.
4. Find the solution of the initial value problem, using power series centered at 0

$$
\left(1+x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0, \quad y(0)=1, \quad y^{\prime}(0)=-2 .
$$

Hint: Differentiate the equation to conclude that $y^{\prime \prime \prime}(x)=0$ for all x, so that $y(x)$ is a quadratic polynomial. Answer. $y=1-2 x-x^{2}$.
V. Find one series solution of the following mildly singular equations, centered at $a=0$

1. $2 x y^{\prime \prime}+y^{\prime}+x y=0$.

Answer. $y=1-\frac{x^{2}}{2 \cdot 3}+\frac{x^{4}}{2 \cdot 4 \cdot 3 \cdot 7}-\frac{x^{6}}{2 \cdot 4 \cdot 6 \cdot 3 \cdot 7 \cdot 11}+\cdots$

$$
=1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{2^{n} n!3 \cdot 7 \cdot 11 \cdots(4 n-1)} .
$$

2. $x y^{\prime \prime}+y^{\prime}-y=0$.

Answer. $y=\sum_{n=0}^{\infty} \frac{x^{n}}{(n!)^{2}}$.
3. $x y^{\prime \prime}+2 y^{\prime}+y=0$.

Answer. $y=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{n!(n+1)!} x^{n}$.

1

2

4

5

$$
6 \quad 1
$$ mildly singular equation, centered at $a=0$

$$
x y^{\prime \prime}-4 y^{\prime}+y=0 .
$$

Answer. $y=x^{5}+120 \sum_{n=6}^{\infty} \frac{(-1)^{n-5}}{n!(n-5)!} x^{n}=120 \sum_{n=5}^{\infty} \frac{(-1)^{n-5}}{n!(n-5)!} x^{n}$.
2. Find one series solution of the following mildly singular equation, centered at $a=0$

$$
x y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

Hint: Look for a solution in the form $y=\sum_{n=3}^{\infty} a_{n} x^{n}$, starting with $a_{3}=1$.
Answer. $y=x^{3}+6 \sum_{n=4}^{\infty} \frac{2^{n-3}}{n!(n-3)!} x^{n}=6 \sum_{n=3}^{\infty} \frac{2^{n-3}}{n!(n-3)!} x^{n}$.
3. Find one series solution of the following mildly singular equation, centered at $a=0$

$$
x y^{\prime \prime}+y=0
$$

4 Hint: Look for a solution in the form $y=\sum_{n=1}^{\infty} a_{n} x^{n}$, starting with $a_{1}=1$.
5 Answer. $y=x+\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n!(n-1)!} x^{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n!(n-1)!} x^{n}$.
16
4. Recall that Bessel's function $J_{0}(x)$ is a solution of (for $x>0$)

$$
x y^{\prime \prime}+y^{\prime}+x y=0
$$

Show that the "energy" $E(x)=y^{\prime 2}(x)+y^{2}(x)$ is a decreasing function. Conclude that each maximum value of $J_{0}(x)$ is greater than the absolute value of the minimum value that follows it, which in turn is larger than the next maximum value, and so on (see the graph of $J_{0}(x)$).
5. Show that the absolute value of the slope of the tangent line decreases at each consecutive root of $J_{0}(x)$.

Hint: Use the energy function $E(x)$ from the preceding problem.
VII. We assume that $a=0$ for all problems of this set.

1. Verify that the Bessel equation of order $1 / 2$

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1 / 4\right) y=0
$$

has a moderate singularity at zero. Write down the characteristic equation, and find its roots.
(i) Corresponding to the root $r=1 / 2$, perform a change of variables $y=$ $x^{1 / 2} v$, and obtain a mildly singular equation for $v(x)$. Solve that equation, to obtain one of the solutions of the Bessel equation.
Answer. $y=x^{1 / 2}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}\right]=x^{-1 / 2}\left[x+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{(2 n+1)!}\right]=$ $x^{-1 / 2} \sin x$.
(ii) Corresponding to the root $r=-1 / 2$, perform a change of variables $y=x^{-1 / 2} v$, and obtain a mildly singular equation for $v(x)$. Solve that equation, to obtain the second solution of the Bessel equation.
Answer. $y=x^{-1 / 2} \cos x$.
(iii) Find the general solution.

Answer. $y=c_{1} x^{-1 / 2} \sin x+c_{2} x^{-1 / 2} \cos x$.
2. Find the fundamental solution set of the Bessel equation of order $3 / 2$

$$
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-9 / 4\right) y=0 .
$$

${ }_{24}$ Answer. $y_{1}=x^{\frac{3}{2}}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!2^{2 n}\left(1+\frac{3}{2}\right)\left(2+\frac{3}{2}\right) \cdots\left(n+\frac{3}{2}\right)}\right]$,
${ }^{25} y_{2}=x^{-\frac{3}{2}}\left[1+\sum_{n=1}^{\infty} \frac{(-1)^{n} x^{2 n}}{n!2^{2 n}\left(1-\frac{3}{2}\right)\left(2-\frac{3}{2}\right) \cdots\left(n-\frac{3}{2}\right)}\right]$.

1 3. Find the fundamental solution set of

$$
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-(1+x) y=0 .
$$

2 Answer. $y_{1}=x^{\frac{1}{2}}\left[1+\sum_{n=1}^{\infty} \frac{x^{n}}{n!2^{n}\left(1+\frac{3}{2}\right)\left(2+\frac{3}{2}\right) \cdots\left(n+\frac{3}{2}\right)}\right]$,
з $y_{2}=x^{-1}\left[1-x-\sum_{n=2}^{\infty} \frac{x^{n}}{n!1 \cdot 3 \cdots(2 n-3)}\right]$.
4 4. Find the fundamental solution set of

$$
9 x^{2} y^{\prime \prime}+\left(2-x^{2}\right) y=0 .
$$

${ }_{5}$ Answer. $y_{1}=x^{\frac{1}{3}}\left(1+\frac{x^{2}}{5 \cdot 6}+\frac{x^{4}}{5 \cdot 6 \cdot 11 \cdot 12}+\cdots\right)$,
${ }_{6} y_{2}=x^{\frac{2}{3}}\left(1+\frac{x^{2}}{6 \cdot 7}+\frac{x^{4}}{6 \cdot 7 \cdot 12 \cdot 13}+\cdots\right)$.
7 5. Find the fundamental solution set of

$$
9 x^{2} y^{\prime \prime}+(2+x) y=0
$$

8 6. Find the fundamental solution set of

$$
2 x^{2} y^{\prime \prime}+3 x y^{\prime}-\left(x^{2}+1\right) y=0 .
$$

9 Answer. $y_{1}=x^{\frac{1}{2}}\left(1+\frac{x^{2}}{14}+\frac{x^{4}}{616}+\cdots\right), y_{2}=x^{-1}\left(1+\frac{x^{2}}{2}+\frac{x^{4}}{40}+\cdots\right)$.

Chapter 4

The Laplace Transform

The method of Laplace Transform is prominent in engineering, and in fact it was developed by an English electrical engineer - Oliver Heaviside (18501925). We present this method in great detail, show its many uses, and make an application to the historic tautochrone problem. The chapter concludes with a brief presentation of distribution theory.

4.1 The Laplace Transform And Its Inverse

4.1.1 Review of Improper Integrals

The mechanics of computing the integrals, involving infinite limits, is similar to that for integrals with finite end-points. For example,

$$
\int_{0}^{\infty} e^{-2 t} d t=-\left.\frac{1}{2} e^{-2 t}\right|_{0} ^{\infty}=\frac{1}{2} .
$$

Here we did not set the upper limit $t=\infty$, but rather computed the limit as $t \rightarrow \infty$ (the limit is zero). This is an example of a convergent integral. On the other hand, the integral

$$
\int_{1}^{\infty} \frac{1}{t} d t=\left.\ln t\right|_{1} ^{\infty}
$$

is divergent, because $\ln t$ has an infinite limit as $t \rightarrow \infty$. When computing improper integrals, we use the same techniques of integration, in essentially the same way. For example

$$
\int_{0}^{\infty} t e^{-2 t} d t=\left.\left[-\frac{1}{2} t e^{-2 t}-\frac{1}{4} e^{-2 t}\right]\right|_{0} ^{\infty}=\frac{1}{4} .
$$

Here the antiderivative is computed by the guess-and-check method (or by integration by parts). The limit at infinity is computed by L'Hospital's rule to be zero.

4.1.2 The Laplace Transform

Let the function $f(t)$ be defined on the interval $[0, \infty)$. Let $s>0$ be a positive parameter. We define the Laplace transform of $f(t)$ as

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t=\mathcal{L}(f(t))
$$

provided that this integral converges. It is customary to use the corresponding capital letters to denote the Laplace transform (so that the Laplace transform of $g(t)$ is denoted by $G(s)$, of $h(t)$ by $H(s)$, etc.). We also use the operator notation for the Laplace transform: $\mathcal{L}(f(t))$.

We now build up a collection of Laplace transforms.

$$
\mathcal{L}(1)=\int_{0}^{\infty} e^{-s t} d t=-\left.\frac{e^{-s t}}{s}\right|_{0} ^{\infty}=\frac{1}{s},
$$

$$
\mathcal{L}(t)=\int_{0}^{\infty} e^{-s t} t d t=\left.\left[-\frac{e^{-s t} t}{s}-\frac{e^{-s t}}{s^{2}}\right]\right|_{0} ^{\infty}=\frac{1}{s^{2}} .
$$

$$
\mathcal{L}\left(t^{n}\right)=\int_{0}^{\infty} e^{-s t} t^{n} d t=-\left.\frac{e^{-s t} t^{n}}{s}\right|_{0} ^{\infty}+\frac{n}{s} \int_{0}^{\infty} e^{-s t} t^{n-1} d t=\frac{n}{s} \mathcal{L}\left(t^{n-1}\right) .
$$

$14\left(\right.$ Here $\lim _{t \rightarrow \infty} e^{-s t} t^{n}=\lim _{t \rightarrow \infty} \frac{t^{n}}{e^{s t}}=0$, after n applications of L'Hospital's rule.) With this recurrence relation, we now compute $\mathcal{L}\left(t^{2}\right)=\frac{2}{s} \mathcal{L}(t)=$ $\frac{2}{s} \cdot \frac{1}{s^{2}}=\frac{2}{s^{3}}, \mathcal{L}\left(t^{3}\right)=\frac{3}{s} \mathcal{L}\left(t^{2}\right)=\frac{3!}{s^{4}}$, and in general

$$
\mathcal{L}\left(t^{n}\right)=\frac{n!}{s^{n+1}} .
$$

${ }_{17}$ The next class of functions are the exponentials $e^{a t}$, where a is some number: $\mathcal{L}\left(e^{a t}\right)=\int_{0}^{\infty} e^{-s t} e^{a t} d t=-\left.\frac{1}{s-a} e^{-(s-a) t}\right|_{0} ^{\infty}=\frac{1}{s-a}$, provided that $s>a$.

Here we had to assume that $s>a$, to obtain a convergent integral.

$$
\begin{equation*}
\mathcal{L}\left(c_{1} f(t)+c_{2} g(t)\right)=c_{1} F(s)+c_{2} G(s), \tag{1.1}
\end{equation*}
$$

because a similar property holds for integrals (and the Laplace transform is an integral). This formula expands considerably the set of functions for 4 which one can write down the Laplace transform. For example, with $a>0$,

$$
\mathcal{L}(\cosh a t)=\mathcal{L}\left(\frac{1}{2} e^{a t}+\frac{1}{2} e^{-a t}\right)=\frac{1}{2} \frac{1}{s-a}+\frac{1}{2} \frac{1}{s+a}=\frac{s}{s^{2}-a^{2}}, \text { for } s>a .
$$

σ The formula (1.1) holds with an arbitrary number of terms, and it allows to compute the Laplace transform of any polynomial. For example,

$$
\mathcal{L}\left(2 t^{5}-3 t^{2}+5\right)=2 \mathcal{L}\left(t^{5}\right)-3 \mathcal{L}\left(t^{2}\right)+5 \mathcal{L}(1)=\frac{240}{s^{6}}-\frac{6}{s^{3}}+\frac{5}{s} .
$$

Compute

$$
\mathcal{L}(\cos a t)=\int_{0}^{\infty} e^{-s t} \cos a t d t=\left.\frac{e^{-s t}(a \sin a t-s \cos a t)}{s^{2}+a^{2}}\right|_{0} ^{\infty}=\frac{s}{s^{2}+a^{2}} .
$$

(One guesses that the antiderivative of $e^{-s t} \cos a t$ is of the form $A e^{-s t} \cos a t+$ $B e^{-s t} \sin a t$, and then evaluates the constants A and B by differentiation.) Similarly,

$$
\mathcal{L}(\sin a t)=\int_{0}^{\infty} e^{-s t} \sin a t d t=-\left.\frac{e^{-s t}(s \sin a t+a \cos a t)}{s^{2}+a^{2}}\right|_{0} ^{\infty}=\frac{a}{s^{2}+a^{2}} .
$$

For example,

$$
\mathcal{L}\left(\cos ^{2} 3 t\right)=\mathcal{L}\left(\frac{1}{2}+\frac{1}{2} \cos 6 t\right)=\frac{1}{2 s}+\frac{s}{2\left(s^{2}+36\right)} .
$$

13
If c is some number, then

$$
\mathcal{L}\left(e^{c t} f(t)\right)=\int_{0}^{\infty} e^{-s t} e^{c t} f(t) d t=\int_{0}^{\infty} e^{-(s-c) t} f(t) d t=F(s-c) .
$$

14 We derived the shift formula:

$$
\begin{equation*}
\mathcal{L}\left(e^{c t} f(t)\right)=F(s-c) . \tag{1.2}
\end{equation*}
$$

1
For example,

$$
\mathcal{L}\left(e^{5 t} \sin 3 t\right)=\frac{3}{(s-5)^{2}+9} .
$$

(Start with $\mathcal{L}(\sin 3 t)=\frac{3}{s^{2}+9}$, and then perform the shift $s \rightarrow s-5$, to account for the extra exponential factor $e^{5 t}$.) Another example:

$$
\mathcal{L}\left(e^{-2 t} \cosh 3 t\right)=\frac{s+2}{(s+2)^{2}-9}
$$

4 In the last example $c=-2$, so that $s-c=s+2$. Similarly,

$$
\mathcal{L}\left(e^{t} t^{5}\right)=\frac{5!}{(s-1)^{6}}
$$

5

6
7

8
9

10

11

$$
\mathcal{L}^{-1}\left(\frac{s}{s^{2}+a^{2}}\right)=\cos a t
$$

12

$$
\mathcal{L}^{-1}\left(\frac{1}{s^{2}+a^{2}}\right)=\frac{1}{a} \sin a t
$$

$$
\mathcal{L}^{-1}\left(\frac{1}{s-a}\right)=e^{a t}
$$

13 and so on. For example,

$$
\mathcal{L}^{-1}\left(\frac{1}{4 s^{2}+1}\right)=\frac{1}{4} \mathcal{L}^{-1}\left(\frac{1}{s^{2}+\frac{1}{4}}\right)=\frac{1}{2} \sin \frac{t}{2}
$$

14
15

4.1.3 The Inverse Laplace Transform

This is just going from $F(s)$ back to $f(t)$. We denote it by $\mathcal{L}^{-1}(F(s))=f(t)$. We have

$$
\mathcal{L}^{-1}\left(c_{1} F(s)+c_{2} G(s)\right)=c_{1} f(t)+c_{2} g(t)
$$

corresponding to the formula (1.1), read backward. Each of the formulas for the Laplace Transform leads to the corresponding formula for its inverse:

$$
\mathcal{L}^{-1}\left(\frac{1}{s^{n+1}}\right)=\frac{t^{n}}{n!}
$$

To compute \mathcal{L}^{-1}, one often uses partial fractions, as well as the inverse of the shift formula (1.2)

$$
\begin{equation*}
\mathcal{L}^{-1}(F(s-c))=e^{c t} f(t) \tag{1.3}
\end{equation*}
$$

1 which is also called the shift formula.
${ }_{2}$ Example 1 Find $\mathcal{L}^{-1}\left(\frac{3 s-5}{s^{2}+4}\right)$.
3 Breaking this fraction into a difference of two fractions, obtain

$$
\mathcal{L}^{-1}\left(\frac{3 s-5}{s^{2}+4}\right)=3 \mathcal{L}^{-1}\left(\frac{s}{s^{2}+4}\right)-5 \mathcal{L}^{-1}\left(\frac{1}{s^{2}+4}\right)=3 \cos 2 t-\frac{5}{2} \sin 2 t .
$$

${ }_{6}$ We recognize that a shift by 5 is performed in the function $\frac{2}{s^{4}}$. Begin by
, inverting this function, $\mathcal{L}^{-1}\left(\frac{2}{s^{4}}\right)=\frac{t^{3}}{3}$, and then account for the shift, 8 according to the shift formula (1.3):

$$
\mathcal{L}^{-1}\left(\frac{2}{(s-5)^{4}}\right)=e^{5 t} \frac{t^{3}}{3} .
$$

9

Factor the denominator, and use partial fractions

$$
\frac{s+7}{s^{2}-s-6}=\frac{s+7}{(s-3)(s+2)}=\frac{2}{s-3}-\frac{1}{s+2},
$$

which gives

$$
\mathcal{L}^{-1}\left(\frac{s+7}{s^{2}-s-6}\right)=2 e^{3 t}-e^{-2 t} .
$$

The method of partial fractions is reviewed in the Appendix.
Example 4 Find $\mathcal{L}^{-1}\left(\frac{s^{3}+2 s^{2}-s+12}{s^{4}+10 s^{2}+9}\right)$.
Again, we factor the denominator, and use partial fractions

$$
\frac{s^{3}+2 s^{2}-s+12}{s^{4}+10 s^{2}+9}=\frac{s^{3}+2 s^{2}-s+12}{\left(s^{2}+1\right)\left(s^{2}+9\right)}=\frac{-\frac{1}{4} s+\frac{5}{4}}{s^{2}+1}+\frac{\frac{5}{4} s+\frac{3}{4}}{s^{2}+9},
$$

17
which leads to

$$
\mathcal{L}^{-1}\left(\frac{s^{3}+2 s^{2}-s+12}{s^{4}+10 s^{2}+9}\right)=\frac{1}{4}(-\cos t+5 \sin t+5 \cos 3 t+\sin 3 t) .
$$

${ }^{1}$ Example 5 Find $\mathcal{L}^{-1}\left(\frac{2 s-1}{s^{2}+2 s+5}\right)$.
2 One cannot factor the denominator, so we complete the square

$$
\frac{2 s-1}{s^{2}+2 s+5}=\frac{2 s-1}{(s+1)^{2}+4}=\frac{2(s+1)-3}{(s+1)^{2}+4},
$$

$$
\begin{equation*}
\mathcal{L}\left(y^{\prime}(t)\right)=-y(0)+s Y(s) . \tag{2.1}
\end{equation*}
$$

12 This formula shows that the Laplace transform of the derivative of $y(t)$ is obtained from the Laplace transform of $y(t)$ by a simple algebraic operation. To compute the Laplace transform of $y^{\prime \prime}(t)$, we use the formula (2.1) twice $(2.2) \mathcal{L}\left(y^{\prime \prime}(t)\right)=\mathcal{L}\left(\left(y^{\prime}(t)\right)^{\prime}\right)=-y^{\prime}(0)+s \mathcal{L}\left(y^{\prime}(t)\right)=-y^{\prime}(0)-s y(0)+s^{2} Y(s)$.

$$
\begin{equation*}
\mathcal{L}\left(y^{(n)}(t)\right)=-y^{(n-1)}(0)-s y^{(n-2)}(0)-\cdots-s^{n-1} y(0)+s^{n} Y(s) . \tag{2.3}
\end{equation*}
$$

Example 1 Solve $y^{\prime \prime}+3 y^{\prime}+2 y=0, \quad y(0)=-1, y^{\prime}(0)=4$.
Apply the Laplace transform to both sides of the equation. Using the linearity of the Laplace transform (the formula (1.1)), and that $\mathcal{L}(0)=0$, obtain

$$
\mathcal{L}\left(y^{\prime \prime}\right)+3 \mathcal{L}\left(y^{\prime}\right)+2 \mathcal{L}(y)=0 .
$$

By the formulas (2.1), (2.2), and our initial conditions $(\mathcal{L}(y(t))=Y(s))$:

$$
-y^{\prime}(0)-s y(0)+s^{2} Y(s)+3(-y(0)+s Y(s))+2 Y(s)=0
$$

$$
-4+s+s^{2} Y(s)+3(1+s Y(s))+2 Y(s)=0
$$

$$
\left(s^{2}+3 s+2\right) Y(s)+s-1=0
$$

Solve for $Y(s)$:

$$
Y(s)=\frac{1-s}{s^{2}+3 s+2}
$$

To get the solution, it remains to find the inverse Laplace transform $y(t)=$ $\mathcal{L}^{-1}(Y(s))$. We factor the denominator, and use partial fractions

$$
\frac{1-s}{s^{2}+3 s+2}=\frac{1-s}{(s+1)(s+2)}=\frac{2}{s+1}-\frac{3}{s+2}
$$

Answer: $y(t)=2 e^{-t}-3 e^{-2 t}$.
Of course, this problem could also be solved without using the Laplace transform. The Laplace transform gives an alternative solution method, it is more convenient for discontinuous forcing functions, and in addition, it provides a tool that can be used in more involved situations, for example, to solve partial differential equations.
Example 2 Solve $y^{\prime \prime}-4 y^{\prime}+5 y=0, \quad y(0)=1, y^{\prime}(0)=-2$.
Apply the Laplace transform to both sides of the equation. Using the initial conditions, obtain

$$
2-s+s^{2} Y(s)-4(-1+s Y(s))+5 Y(s)=0
$$

$$
Y(s)=\frac{s-6}{s^{2}-4 s+5}
$$

To invert the Laplace transform, we complete the square in the denominator, and then produce the same shift in the numerator:

$$
Y(s)=\frac{s-6}{s^{2}-4 s+5}=\frac{(s-2)-4}{(s-2)^{2}+1}
$$

Using the shift formula, leads to the answer: $y(t)=e^{2 t} \cos t-4 e^{2 t} \sin t$.
Example 3 Solve

$$
\begin{gathered}
y^{\prime \prime}+\omega^{2} y=5 \cos 2 t, \quad \omega \neq 2 \\
y(0)=1, \quad y^{\prime}(0)=0
\end{gathered}
$$

1 This problem models a spring, with the natural frequency ω, subjected to 2 an external force of frequency 2. Applying the Laplace transform to both ${ }_{3}$ sides of the equation, and using the initial conditions, we get

$$
-s+s^{2} Y(s)+\omega^{2} Y(s)=\frac{5 s}{s^{2}+4}
$$

4

$$
Y(s)=\frac{5 s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)}+\frac{s}{s^{2}+\omega^{2}} .
$$

5 The second term is easy to invert. To find the inverse Laplace transform of 6 the first term, we use the guess-and-check method (or partial fractions)

$$
\frac{s}{\left(s^{2}+4\right)\left(s^{2}+\omega^{2}\right)}=\frac{1}{\omega^{2}-4}\left[\frac{s}{s^{2}+4}-\frac{s}{s^{2}+\omega^{2}}\right] .
$$

7 Answer: $y(t)=\frac{5}{\omega^{2}-4}(\cos 2 t-\cos \omega t)+\cos \omega t$.
8 When ω approaches 2, the amplitude of the oscillations becomes large.
To treat the case of resonance, when $\omega=2$, we need one more formula.
10 Differentiate in s both sides of the formula

$$
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

11 to obtain

$$
F^{\prime}(s)=-\int_{0}^{\infty} e^{-s t} t f(t) d t=-\mathcal{L}(t f(t))
$$

12 or

$$
\mathcal{L}(t f(t))=-F^{\prime}(s) .
$$

${ }_{13}$ For example,

$$
\begin{equation*}
\mathcal{L}(t \sin 2 t)=-\frac{d}{d s} \mathcal{L}(\sin 2 t)=-\frac{d}{d s}\left(\frac{2}{s^{2}+4}\right)=\frac{4 s}{\left(s^{2}+4\right)^{2}} . \tag{2.4}
\end{equation*}
$$

14 Example 4 Solve (a case of resonance)

$$
\begin{gathered}
y^{\prime \prime}+4 y=5 \cos 2 t \\
y(0)=0, \quad y^{\prime}(0)=0
\end{gathered}
$$

15 Using the Laplace transform, obtain

$$
s^{2} Y(s)+4 Y(s)=\frac{5 s}{s^{2}+4}
$$

1

2
3

4.2.1 Step Functions

Sometimes an external force acts only over some time interval. One uses step functions to model such forces. The basic step function is the Heaviside function $u_{c}(t)$, defined for any positive constant c by

$$
u_{c}(t)= \begin{cases}0 & \text { if } 0 \leq t<c \\ 1 & \text { if } t \geq c\end{cases}
$$

$$
Y(s)=\frac{s^{3}+s}{s^{4}-1}=\frac{s\left(s^{2}+1\right)}{\left(s^{2}-1\right)\left(s^{2}+1\right)}=\frac{s}{s^{2}-1}
$$

We conclude that $y(t)=\cosh t$.

The Heaviside step function $u_{c}(t)$

1 (Oliver Heaviside, 1850-1925, was a self-taught English electrical engineer.) Using $u_{c}(t)$, we can build up other step functions. For example, the function $u_{1}(t)-u_{3}(t)$ is equal to 1 for $1 \leq t<3$, and is zero otherwise. Indeed

$$
u_{1}(t)-u_{3}(t)= \begin{cases}0-0=0, & \text { if } 0 \leq t<1 \\ 1-0=1, & \text { if } 1 \leq t<3 \\ 1-1=0, & \text { if } t \geq 3\end{cases}
$$

4

5
: Correspondingly,

$$
\mathcal{L}^{-1}\left(\frac{e^{-c s}}{s}\right)=u_{c}(t) .
$$

For example, if $f(t)$ is equal to 3 for $2 \leq t<7$, and is equal to zero for all other $t \geq 0$, then $f(t)=3\left[u_{2}(t)-u_{7}(t)\right]$, and

$$
\mathcal{L}(f(t))=3 \mathcal{L}\left(u_{2}(t)\right)-3 \mathcal{L}\left(u_{7}(t)\right)=3 \frac{e^{-2 s}}{s}-3 \frac{e^{-7 s}}{s}
$$

We compute the Laplace transform of the following "shifted" function, which "begins" at $t=c$ (it is zero for $0<t<c$):

$$
\mathcal{L}\left(u_{c}(t) f(t-c)\right)=\int_{0}^{\infty} e^{-s t} u_{c}(t) f(t-c) d t=\int_{c}^{\infty} e^{-s t} f(t-c) d t .
$$

${ }_{13}$ In the last integral we change the variable $t \rightarrow z$, by setting $t-c=z$. Then ${ }^{4} \quad d t=d z$, and the integral becomes

$$
\int_{0}^{\infty} e^{-s(c+z)} f(z) d z=e^{-c s} \int_{0}^{\infty} e^{-s z} f(z) d z=e^{-c s} F(s)
$$

1 The result is another pair of shift formulas:

2

$$
\begin{gather*}
\mathcal{L}\left(u_{c}(t) f(t-c)\right)=e^{-c s} F(s), \tag{2.5}\\
\mathcal{L}^{-1}\left(e^{-c s} F(s)\right)=u_{c}(t) f(t-c) \tag{2.6}
\end{gather*}
$$

The function $y=u_{c}(t) f(t-c)$
4 For example,

$$
\mathcal{L}\left(u_{1}(t)(t-1)\right)=e^{-s} \mathcal{L}(t)=\frac{e^{-s}}{s^{2}} .
$$

5 Using that $\mathcal{L}^{-1}\left(\frac{1}{s^{2}+1}\right)=\sin t$, obtain

$$
\mathcal{L}^{-1}\left(e^{-\pi s} \frac{1}{s^{2}+1}\right)=u_{\pi}(t) \sin (t-\pi)=-u_{\pi}(t) \sin t
$$

6 Example 1 Solve

$$
y^{\prime \prime}+9 y=u_{2}(t)-u_{4}(t), \quad y(0)=1, \quad y^{\prime}(0)=0 .
$$

7 Here the forcing term is equal to 1 , for $2 \leq t<4$, and is zero for other t.
8 Taking the Laplace transform, then solving for $Y(s)$, we have

$$
s^{2} Y(s)-s+9 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-4 s}}{s}
$$

9

$$
Y(s)=\frac{s}{s^{2}+9}+e^{-2 s} \frac{1}{s\left(s^{2}+9\right)}-e^{-4 s} \frac{1}{s\left(s^{2}+9\right)} .
$$

10 Using the guess-and-check method (or partial fractions)

$$
\frac{1}{s\left(s^{2}+9\right)}=\frac{1}{9}\left[\frac{1}{s}-\frac{s}{s^{2}+9}\right],
$$

1 and therefore

$$
\mathcal{L}^{-1}\left(\frac{1}{s\left(s^{2}+9\right)}\right)=\frac{1}{9}-\frac{1}{9} \cos 3 t .
$$

2
Using (2.6), we conclude

$$
y(t)=\cos 3 t+u_{2}(t)\left[\frac{1}{9}-\frac{1}{9} \cos 3(t-2)\right]-u_{4}(t)\left[\frac{1}{9}-\frac{1}{9} \cos 3(t-4)\right] .
$$

${ }_{3}$ Observe that the solution undergoes jumps in its behavior at $t=2$, and ${ }_{4}$ at $t=4$, which corresponds to the force being switched on at $t=2$, and 5 switched off at $t=4$.

6 Example 2 Solve

$$
y^{\prime \prime}+4 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0,
$$

7 where $g(t)$ is the ramp function:

$$
g(t)=\left\{\begin{array}{ll}
t & \text { if } 0 \leq t<1 \\
1 & \text { if } t \geq 1
\end{array} .\right.
$$

8
Express

$$
g(t)=t\left(1-u_{1}(t)\right)+u_{1}(t)=t-u_{1}(t)(t-1),
$$

9 so that by the shift formula (2.5) its Laplace transform is

$$
G(s)=\frac{1}{s^{2}}-e^{-s} \frac{1}{s^{2}} .
$$

Take the Laplace transform of the equation:

$$
s^{2} Y(s)+4 Y(s)=\frac{1}{s^{2}}-e^{-s} \frac{1}{s^{2}},
$$

${ }^{11}$

$$
Y(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}-e^{-s} \frac{1}{s^{2}\left(s^{2}+4\right)}=\frac{1 / 4}{s^{2}}-\frac{1 / 4}{s^{2}+4}-e^{-s}\left[\frac{1 / 4}{s^{2}}-\frac{1 / 4}{s^{2}+4}\right] .
$$

12 Using the shift formula (2.6), we conclude that

$$
y(t)=\frac{1}{4} t-\frac{1}{8} \sin 2 t-u_{1}(t)\left[\frac{1}{4}(t-1)-\frac{1}{8} \sin 2(t-1)\right] .
$$

13

The ramp function $y=g(t)$

4.3 The Delta Function and Impulse Forces

Imagine a rod so thin that we may consider it to be one dimensional and so long that we assume it to extend for $-\infty<t<\infty$, along the t axis. Assume that the function $\rho(t)$ gives the density of the rod (weight per unit length). If we subdivide the interval $(-N, N)$, for some $N>0$, using the points t_{1}, t_{2}, \ldots, t_{n}, at a distance $\Delta t=\frac{2 N}{n}$ apart, then the weight of the piece i can be approximated by $\rho\left(t_{i}\right) \Delta t$, and $\sum_{i=1}^{n} \rho\left(t_{i}\right) \Delta t$ gives an approximation of the total weight. Passing to the limit, letting $\Delta t \rightarrow 0$, and $N \rightarrow \infty$, we get the exact value of the weight:

$$
w=\lim _{\Delta t \rightarrow 0} \sum_{i=1}^{n} \rho\left(t_{i}\right) \Delta t=\int_{-\infty}^{\infty} \rho(t) d t
$$

Assume now that the rod is moved to a new position in the (t, y) plane, with each point $(t, 0)$ moved to a point $(t, f(t))$, where $f(t)$ is a given function. What is the work needed for this move? For the piece i, the work is approximated by $f\left(t_{i}\right) \rho\left(t_{i}\right) \Delta t$. The total work is then

$$
\text { Work }=\int_{-\infty}^{\infty} \rho(t) f(t) d t
$$

Assume now that the rod has unit weight, $w=1$, and the entire weight is pushed into a single point $t=0$. The resulting distribution of weight is called the delta distribution or the delta function, and is denoted $\delta(t)$. In view of the discussion above, it has the following properties:
(i) $\delta(t)=0$, for $t \neq 0$,
(ii) $\int_{-\infty}^{\infty} \delta(t) d t=1 \quad$ (unit weight),
(iii) $\int_{-\infty}^{\infty} \delta(t) f(t) d t=f(0)$.

The last formula holds, because work is expended only to move the weight 1 at $t=0$, the distance of $f(0)$. Observe that $\delta(t)$ is not a usual function, like the ones studied in calculus. (If a usual function is equal to zero, except at one point, its integral is zero, over any interval.) One can think of $\delta(t)$ as the limit of the following sequence of functions (a delta sequence)

$$
f_{\epsilon}(t)= \begin{cases}\frac{1}{2 \epsilon} & \text { if }-\epsilon \leq t \leq \epsilon \\ 0 & \text { for other } t\end{cases}
$$

1 as $\epsilon \rightarrow 0$. (Observe that $\int_{-\infty}^{\infty} f_{\epsilon}(t) d t=1$.)

2

The step function $f_{\epsilon}(x)$

A delta sequence

For any number t_{0}, the function $\delta\left(t-t_{0}\right)$ gives a translation of the delta function, with the unit weight concentrated at $t=t_{0}$. Correspondingly, its properties are
(i) $\delta\left(t-t_{0}\right)=0$, for $t \neq t_{0}$,
(ii) $\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) d t=1$,
(iii) $\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) f(t) d t=f\left(t_{0}\right)$.

Using the properties (i) and (iii), we compute the Laplace transform, for any $t_{0} \geq 0$,

$$
\mathcal{L}\left(\delta\left(t-t_{0}\right)\right)=\int_{0}^{\infty} \delta\left(t-t_{0}\right) e^{-s t} d t=\int_{-\infty}^{\infty} \delta\left(t-t_{0}\right) e^{-s t} d t=e^{-s t_{0}}
$$

11

12

13

In particular,

$$
\mathcal{L}(\delta(t))=1
$$

Correspondingly,

$$
\mathcal{L}^{-1}\left(e^{-s t_{0}}\right)=\delta\left(t-t_{0}\right), \text { and } \mathcal{L}^{-1}(1)=\delta(t)
$$

For example,

$$
\mathcal{L}^{-1}\left(\frac{s+1}{s+3}\right)=\mathcal{L}^{-1}\left(1-\frac{2}{s+3}\right)=\delta(t)-2 e^{-3 t}
$$

Figure 4.1: Spring's response to an impulse force

Other physical quantities may be concentrated at a single point. In the following example we consider forced vibrations of a spring, with the external force concentrated at $t=2$. We say that an external impulse force is applied at $t=2$.

Example Solve the initial value problem

$$
y^{\prime \prime}+2 y^{\prime}+5 y=6 \delta(t-2), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Applying the Laplace transform, then solving for $Y(s)$ and completing the square, obtain

$$
\left(s^{2}+2 s+5\right) Y(s)=6 e^{-2 s},
$$

$$
Y(s)=\frac{6 e^{-2 s}}{s^{2}+2 s+5}=e^{-2 s} \frac{6}{(s+1)^{2}+4} .
$$

By the shift formula $\mathcal{L}^{-1}\left(\frac{1}{(s+1)^{2}+4}\right)=\frac{1}{2} e^{-t} \sin 2 t$, and using the second shift formula (2.6), we conclude that

$$
y(t)=3 u_{2}(t) e^{-(t-2)} \sin 2(t-2) .
$$

Before the time $t=2$, the external force is zero. Coupled with zero initial conditions, this leaves the spring at rest for $t \leq 2$. The impulse force at $t=2$ sets the spring in motion, but the vibrations quickly die down, because of the heavy damping; see the Figure 4.1 for the graph of $y(t)$.

4 then the solution is

$$
\begin{equation*}
y(t)=\int_{0}^{t} \sin (t-v) g(v) d v \tag{4.1}
\end{equation*}
$$

$$
y(t)=\sin t * g(t)
$$

Another example of convolution:

$$
t * t^{2}=\int_{0}^{t}(t-v) v^{2} d v=t \int_{0}^{t} v^{2} d v-\int_{0}^{t} v^{3} d v=\frac{t^{4}}{3}-\frac{t^{4}}{4}=\frac{t^{4}}{12}
$$

4.4 Convolution and the Tautochrone Curve

The problem

$$
y^{\prime \prime}+y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
$$

has solution $y=\sin t$. If we now add a forcing term $g(t)$, and consider

$$
y^{\prime \prime}+y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0
$$

as we saw in the section on convolution integrals. Motivated by this formula, we now define the concept of convolution of two functions $f(t)$ and $g(t)$

$$
f * g=\int_{0}^{t} f(t-v) g(v) d v
$$

The result is a function of t, which is also denoted as $(f * g)(t)$. The formula

$$
\mathcal{L}(f * g)=F(s) G(s)
$$

1 Indeed,

$$
\mathcal{L}(f * g)=\int_{0}^{\infty} e^{-s t} \int_{0}^{t} f(t-v) g(v) d v d t=\iint_{D} e^{-s t} f(t-v) g(v) d v d t
$$

2 where the double integral on the right hand side is taken over the region D
3 of the $t v$-plane, which is an infinite wedge $0<v<t$ in the first quadrant.
4 We now evaluate this double integral by using the reverse order of repeated
5 integrations:

$$
\begin{equation*}
\iint_{D} e^{-s t} f(t-v) g(v) d v d t=\int_{0}^{\infty} g(v)\left(\int_{v}^{\infty} e^{-s t} f(t-v) d t\right) d v \tag{4.2}
\end{equation*}
$$

6 For the integral in the brackets, we make a change of variables $t \rightarrow u$, by 7 letting $u=t-v$,

$$
\int_{v}^{\infty} e^{-s t} f(t-v) d t=\int_{0}^{\infty} e^{-s(v+u)} f(u) d u=e^{-s v} F(s),
$$

8 and then the right hand side of (4.2) is equal to $F(s) G(s)$.

9

The infinite wedge D
10 We conclude a useful formula

$$
\mathcal{L}^{-1}(F(s) G(s))=(f * g)(t) .
$$

11 For example,

$$
\mathcal{L}^{-1}\left(\frac{s^{2}}{\left(s^{2}+4\right)^{2}}\right)=\cos 2 t * \cos 2 t=\int_{0}^{t} \cos 2(t-v) \cos 2 v d v .
$$

12
Using that

$$
\cos 2(t-v)=\cos 2 t \cos 2 v+\sin 2 t \sin 2 v,
$$

we conclude

$$
\begin{gathered}
\mathcal{L}^{-1}\left(\frac{s^{2}}{\left(s^{2}+4\right)^{2}}\right)=\cos 2 t \int_{0}^{t} \cos ^{2} 2 v d v+\sin 2 t \int_{0}^{t} \sin 2 v \cos 2 v d v \\
=\frac{1}{2} t \cos 2 t+\frac{1}{4} \sin 2 t
\end{gathered}
$$

Example Consider the vibrations of a spring at resonance

$$
y^{\prime \prime}+y=-3 \cos t, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

4 Taking the Laplace transform, compute

$$
Y(s)=-3 \frac{s}{\left(s^{2}+1\right)^{2}}
$$

Writing $Y(s)=-3 \frac{1}{s^{2}+1} \cdot \frac{s}{s^{2}+1}$, we invert it as

$$
y(t)=-3 \sin t * \cos t=-\frac{3}{2} t \sin t
$$

because

$$
\begin{aligned}
\sin t * \cos t= & \int_{0}^{t} \sin (t-v) \cos v d v=\int_{0}^{t}[\sin t \cos v-\cos t \sin v] \cos v d v \\
& =\sin t \int_{0}^{t} \cos ^{2} v d v-\cos t \int_{0}^{t} \sin v \cos v d v \\
= & \frac{1}{2} t \sin t+\frac{1}{4} \sin 2 t \sin t-\frac{1}{2} \cos t \sin ^{2} t=\frac{1}{2} t \sin t
\end{aligned}
$$

We see again that the amplitude of oscillations, which is $\frac{1}{2} t$, tends to infinity with time t.

The Tautochrone curve
Assume that we have a curve through the origin in the first quadrant of the $x y$-plane, and a particle slides down this curve, under the influence of the force of gravity. The initial velocity at the starting point is assumed to be zero. We wish to find the curve so that the time T it takes to reach the bottom at $(0,0)$ is the same, for any starting point (x, y). This historic curve, called the tautochrone (which means loosely "the same time" in Latin), was found by Christian Huygens in 1673 . He was motivated by the construction of a clock pendulum with the period independent of its amplitude.
${ }_{2} s=f(v)$ be the length of the curve from $(0,0)$ to $\left(x_{1}, v\right)$. Of course, the
3 length s depends also on the time t, and $\frac{d s}{d t}$ gives the speed of the particle. 4 The kinetic energy of the particle at $\left(x_{1}, v\right)$ is due to the decrease of its 5 potential energy (m is the mass of the particle):

$$
\frac{1}{2} m\left(\frac{d s}{d t}\right)^{2}=m g(y-v)
$$

The Tautochrone curve
${ }_{7}$ By the chain rule, $\frac{d s}{d t}=\frac{d s}{d v} \frac{d v}{d t}=f^{\prime}(v) \frac{d v}{d t}$, so that

$$
\frac{1}{2}\left(f^{\prime}(v) \frac{d v}{d t}\right)^{2}=g(y-v)
$$

8

$$
f^{\prime}(v) \frac{d v}{d t}=-\sqrt{2 g} \sqrt{y-v}
$$

(Minus, because the function $v(t)$ is decreasing, while $f^{\prime}(v)>0$.) We separate the variables, and integrate

$$
\begin{equation*}
\int_{0}^{y} \frac{f^{\prime}(v)}{\sqrt{y-v}} d v=\int_{0}^{T} \sqrt{2 g} d t=\sqrt{2 g} T \tag{4.3}
\end{equation*}
$$

${ }_{1}$ (Over the time interval $(0, T)$, the particle descends from $v=y$ to $v=0$.)
2 To find the function f^{\prime}, we need to solve the integral equation (4.3), which 3 may be written as

$$
\begin{equation*}
y^{-1 / 2} * f^{\prime}(y)=\sqrt{2 g} T . \tag{4.4}
\end{equation*}
$$

${ }_{4}$ Recall that in Problems we had the formula $\mathcal{L}\left(t^{-\frac{1}{2}}\right)=\sqrt{\frac{\pi}{s}}$, or in terms of 5 the variable y

$$
\begin{equation*}
\mathcal{L}\left(y^{-\frac{1}{2}}\right)=\sqrt{\frac{\pi}{s}} . \tag{4.5}
\end{equation*}
$$

6 Now apply the Laplace transform to the equation (4.4), and get

$$
\sqrt{\frac{\pi}{s}} \mathcal{L}\left(f^{\prime}(y)\right)=\sqrt{2 g} T \frac{1}{s} .
$$

7 Solving for $\mathcal{L}\left(f^{\prime}(y)\right)$, gives

$$
\mathcal{L}\left(f^{\prime}(y)\right)=\frac{T}{\pi} \sqrt{2 g} \sqrt{\frac{\pi}{s}}=\sqrt{a} \sqrt{\frac{\pi}{s}},
$$

8 where we denoted $a=\frac{T^{2}}{\pi^{2}} 2 g$. Using (4.5) again

$$
\begin{equation*}
f^{\prime}(y)=\sqrt{a} y^{-1 / 2} \tag{4.6}
\end{equation*}
$$

9 We have $d s=\sqrt{d x^{2}+d y^{2}}$, and so $f^{\prime}(y)=\frac{d s}{d y}=\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}$. Use this expression in (4.6):

$$
\begin{equation*}
\sqrt{1+\left(\frac{d x}{d y}\right)^{2}}=\sqrt{a} \frac{1}{\sqrt{y}} \tag{4.7}
\end{equation*}
$$

This is a first order differential equation. One could solve it for $\frac{d x}{d y}$, and
12 then separate the variables. But it appears easier to use the parametric 13

$$
\begin{equation*}
y=\frac{a}{1+\left(\frac{d x}{d y}\right)^{2}} \tag{4.8}
\end{equation*}
$$

14 and set

$$
\begin{equation*}
\frac{d x}{d y}=\frac{1+\cos \theta}{\sin \theta} \tag{4.9}
\end{equation*}
$$

$$
\begin{equation*}
(f, \varphi)=\int_{-\infty}^{\infty} f(t) \varphi(t) d t \tag{5.10}
\end{equation*}
$$

Convergence is not a problem here, because the integrand vanishes outside of some bounded interval. This functional is linear, because

$$
\left(f, c_{1} \varphi_{1}+c_{2} \varphi_{2}\right)=\int_{-\infty}^{\infty} f(t)\left(c_{1} \varphi_{1}+c_{2} \varphi_{2}\right) d t
$$

1

$$
=c_{1} \int_{-\infty}^{\infty} f(t) \varphi_{1} d t+c_{2} \int_{-\infty}^{\infty} f(t) \varphi_{2} d t=c_{1}\left(f, \varphi_{1}\right)+c_{2}\left(f, \varphi_{2}\right),
$$

for any two constants c_{1} and c_{2}, and any two test functions $\varphi_{1}(t)$ and $\varphi_{2}(t)$. This way "usual" functions can be viewed as distributions. The formula (5.10) lets us consider $f(t)$ in the sense of distributions.

Example 2 The Delta distribution. Define

$$
(\delta(t), \varphi)=\varphi(0)
$$

(Compare this with (5.10), and the intuitive formula $\int_{-\infty}^{\infty} \delta(t) \varphi(t) d t=\varphi(0)$ from Section 4.3.) We see that in the realm of distributions the delta function $\delta(t)$ sits next to usual functions, as an equal member of the club.

Assume that $f(t)$ is a differentiable function. Viewing $f^{\prime}(t)$ as a distribution, we have

$$
\left(f^{\prime}, \varphi\right)=\int_{-\infty}^{\infty} f^{\prime}(t) \varphi(t) d t=-\int_{-\infty}^{\infty} f(t) \varphi^{\prime}(t) d t=-\left(f, \varphi^{\prime}\right)
$$

using integration by parts (recall that $\varphi(t)$ is zero outside of some bounded interval). Motivated by this formula, we now define the derivative of any distribution f :

$$
\left(f^{\prime}, \varphi\right)=-\left(f, \varphi^{\prime}\right)
$$

In particular,

$$
\left(\delta^{\prime}, \varphi\right)=-\left(\delta, \varphi^{\prime}\right)=-\varphi^{\prime}(0)
$$

(So that δ^{\prime} is another distribution. We know how it acts on test functions.) Similarly, $\left(\delta^{\prime \prime}, \varphi\right)=-\left(\delta^{\prime}, \varphi^{\prime}\right)=\varphi^{\prime \prime}(0)$, and in general

$$
\left(\delta^{(n)}, \varphi\right)=(-1)^{n} \varphi^{(n)}(0)
$$

We see that all distributions are infinitely differentiable! In particular, all continuous functions are infinitely differentiable, if we view them as distributions.

Example 3 The Heaviside function

$$
H(t)= \begin{cases}0 & \text { if }-\infty \leq t<0 \\ 1 & \text { if } t \geq 0\end{cases}
$$

has a jump at $t=0$. Clearly, $H(t)$ is not differentiable at $t=0$. But, in the sense of distributions, we claim that

$$
H^{\prime}(t)=\delta(t)
$$

3 Indeed,

$$
\left(H^{\prime}(t), \varphi\right)=-\left(H(t), \varphi^{\prime}\right)=-\int_{0}^{\infty} \varphi^{\prime}(t) d t=\varphi(0)=(\delta(t), \varphi) .
$$

4 Example 4 The function $|t|$ is not differentiable at $t=0$. But, in the 5 sense of distributions,

$$
|t|^{\prime}=2 H(t)-1
$$

6

$$
\left(|t|^{\prime}, \varphi\right)=-\left(|t|, \varphi^{\prime}\right)=-\int_{-\infty}^{0}(-t) \varphi^{\prime}(t) d t-\int_{0}^{\infty} t \varphi^{\prime}(t) d t
$$

7 Integrating by parts in both integrals, we continue

$$
\left(|t|^{\prime}, \varphi\right)=-\int_{-\infty}^{0} \varphi(t) d t+\int_{0}^{\infty} \varphi(t) d t=(2 H(t)-1, \varphi) .
$$

4.5.1 Problems

I. Find the Laplace transform of the following functions.

1. $5+2 t^{3}-e^{-4 t} . \quad$ Answer. $\frac{5}{s}+\frac{12}{s^{4}}-\frac{1}{s+4}$.
2. $2 \sin 3 t-t^{3}$. \quad Answer. $\frac{6}{s^{2}+9}-\frac{6}{s^{4}}$.
3. $\cosh 2 t-e^{4 t}$ Answer. $\frac{s}{s^{2}-4}-\frac{1}{s-4}$.
4. $e^{2(t-1)}$. Answer. $\frac{1}{e^{2}(s-2)}$.
5. $e^{2 t} \cos 3 t . \quad$ Answer. $\frac{s-2}{(s-2)^{2}+9}$.
6. $\frac{t^{3}-3 t}{t}$. Answer. $\frac{2}{s^{3}}-\frac{3}{s}$.
7. $e^{-3 t} t^{4} . \quad$ Answer. $\frac{24}{(s+3)^{5}}$
$18 . \sin ^{2} 2 t$.
Answer. $\frac{1}{2 s}-\frac{s}{2\left(s^{2}+16\right)}$.
2
8. $\sin 2 t \cos 2 t$.

Answer. $\frac{2}{s^{2}+16}$.

3

4
11. $|t-2|$.

Answer. $\frac{1}{s^{2}-4}$.
Answer. $\frac{2 e^{-2 s}+2 s-1}{s^{2}}$.
5 Hint: Split the integral into two pieces.
6 12. $f(t)=t$ for $1<t<3$, and $f(t)=0$ for all other $t>0$.
7 Answer. $F(s)=\frac{e^{-s}(s+1)}{s^{2}}-\frac{e^{-3 s}(3 s+1)}{s^{2}}$.
8 II. Find the inverse Laplace transform of the following functions.

9

10

11

12

13

14

15

16

17

18

19

1. $\frac{1}{s^{2}+4}-\frac{2}{s^{3}} . \quad$ Answer. $\frac{1}{2} \sin 2 t-t^{2}$.
2. $\frac{s}{s^{2}-9}-\frac{2}{s+3}$.

Answer. $\cosh 3 t-2 e^{-3 t}$.
3. $\frac{1}{s^{2}+s}$.

Answer. $1-e^{-t}$.
4. $\frac{1}{s^{2}-3 s}$.

Answer. $\frac{1}{3} e^{3 t}-\frac{1}{3}$.
5. $\frac{1}{s^{3}-7 s+6}$.

Answer. $\frac{1}{5} e^{2 t}-\frac{1}{4} e^{t}+\frac{1}{20} e^{-3 t}$.
6. $\frac{1}{s^{3}+s}$.
7. $\frac{1}{\left(s^{2}+1\right)\left(s^{2}+4\right)}$.

Answer. $1-\cos t$.
8. $\frac{s}{s^{4}+5 s^{2}+4}$.

Answer. $\frac{1}{3} \cos t-\frac{1}{3} \cos 2 t$.
9. $\frac{1}{s^{2}+2 s+10}$.

Answer. $\frac{1}{3} e^{-t} \sin 3 t$.
10. $\frac{1}{s^{2}+s-2}$.

Answer. $\frac{1}{3} e^{t}-\frac{1}{3} e^{-2 t}$.
11. $\frac{s}{s^{2}+s+1}$.

Answer. $e^{-\frac{1}{2} t}\left[\cos \frac{\sqrt{3}}{2} t-\frac{1}{\sqrt{3}} \sin \frac{\sqrt{3}}{2} t\right]$.

1

$$
\begin{equation*}
\frac{p(s)}{q(s)}=\frac{a_{1}}{s-s_{1}}+\frac{a_{2}}{s-s_{2}}+\cdots+\frac{a_{n}}{s-s_{n}}, \tag{5.11}
\end{equation*}
$$

for some numbers $a_{1}, a_{2}, \ldots, a_{n}$. Show that $a_{1}=\frac{p\left(s_{1}\right)}{q^{\prime}\left(s_{1}\right)}$, and derive similar formulas for the other a_{i} 's.

Hint: Multiply (5.11) by $s-s_{1}$, take the limit as $s \rightarrow s_{1}$, and use L'Hospital's rule.
(ii) Show that

$$
\mathcal{L}^{-1}\left(\frac{p(s)}{q(s)}\right)=\sum_{i=1}^{n} \frac{p\left(s_{i}\right)}{q^{\prime}\left(s_{i}\right)} e^{s_{i} t} .
$$

(iii) Calculate $\mathcal{L}^{-1}\left(\frac{s^{2}+5}{(s-1)(s-2)(s-3)}\right) . \quad$ Answer. $y=3 e^{t}-9 e^{2 t}+7 e^{3 t}$.
III. Using the Laplace transform, solve the following initial value problems.

1. $y^{\prime \prime}+3 y^{\prime}+2 y=0, y(0)=-1, y^{\prime}(0)=2$. Answer. $y=-e^{-2 t}$.
2. $y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=-2$.

Answer. $\frac{1}{2} e^{-t}(2 \cos 2 t-\sin 2 t)$.

1 2

3
$4 \quad$ Answer. $y=\frac{1}{5} e^{t}-\frac{1}{5} e^{-t}(\cos t-3 \sin t)$.
5
${ }_{6} \quad$ Answer. $y=\frac{1}{2} \sin t+\frac{1}{2} \sinh t$.
7 6. $y^{\prime \prime \prime \prime}-16 y=0, \quad y(0)=0, y^{\prime}(0)=2, y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=8$.
8 Answer. $y=\sinh 2 t$.
9
3. $y^{\prime \prime}+y=\sin 2 t, y(0)=0, y^{\prime}(0)=1$. \quad Answer. $y=\frac{5}{3} \sin t-\frac{1}{3} \sin 2 t$.
4. $y^{\prime \prime}+2 y^{\prime}+2 y=e^{t}, \quad y(0)=0, y^{\prime}(0)=1$.
5. $y^{\prime \prime \prime \prime}-y=0, \quad y(0)=0, y^{\prime}(0)=1, y^{\prime \prime}(0)=0, y^{\prime \prime \prime}(0)=0$.
7. $y^{\prime \prime \prime}+3 y^{\prime \prime}+2 y^{\prime}=0, \quad y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=-1$.

Answer. $y=-\frac{1}{2}-\frac{e^{-2 t}}{2}+e^{-t}$.
8. $y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=e^{-t}, \quad y(0)=0, y^{\prime}(0)=0, y^{\prime \prime}(0)=0$.

Answer. $y=\frac{t^{3} e^{-t}}{6}$.
IV.

1. (a) Let $s>0$. Show that

$$
\int_{-\infty}^{\infty} e^{-s x^{2}} d x=\sqrt{\frac{\pi}{s}}
$$

Hint: Denote $I=\int_{-\infty}^{\infty} e^{-s x^{2}} d x$. Then

$$
I^{2}=\int_{-\infty}^{\infty} e^{-s x^{2}} d x \int_{-\infty}^{\infty} e^{-s y^{2}} d y=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-s\left(x^{2}+y^{2}\right)} d A
$$

This is a double integral over the entire $x y$-plane. Evaluate it by using the polar coordinates, to obtain $I^{2}=\frac{\pi}{s}$.
(b) Show that $\mathcal{L}\left(t^{-\frac{1}{2}}\right)=\sqrt{\frac{\pi}{s}}$.

Hint: $\mathcal{L}\left(t^{-\frac{1}{2}}\right)=\int_{0}^{\infty} t^{-\frac{1}{2}} e^{-s t} d t$. Make a change of variables $t \rightarrow x$, by letting $x=t^{\frac{1}{2}}$. Then $\mathcal{L}\left(t^{-\frac{1}{2}}\right)=2 \int_{0}^{\infty} e^{-s x^{2}} d x=\int_{-\infty}^{\infty} e^{-s x^{2}} d x=\sqrt{\frac{\pi}{s}}$.
2. Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$.

Hint: Consider $f(t)=\int_{0}^{\infty} \frac{\sin t x}{x} d x$, and calculate its Laplace transform $F(s)=\frac{\pi}{2} \frac{1}{s}$.
3. Solve the following system of differential equations

$$
\frac{d x}{d t}=2 x-y, \quad x(0)=4
$$

$$
\frac{d y}{d t}=-x+2 y, \quad y(0)=-2
$$

6 Answer. $x(t)=e^{t}+3 e^{3 t}, y(t)=e^{t}-3 e^{3 t}$.
74 . Solve the following non-homogeneous system of differential equations

$$
\begin{gathered}
x^{\prime}=2 x-3 y+t, \quad x(0)=0 \\
y^{\prime}=-2 x+y, \quad y(0)=1 .
\end{gathered}
$$

Answer. $x(t)=e^{-t}-\frac{9}{16} e^{4 t}+\frac{1}{16}(-7+4 t), y(t)=e^{-t}+\frac{3}{8} e^{4 t}+\frac{1}{8}(-3+4 t)$.
V.

1. A function $f(t)$ is equal to 1 for $1 \leq t<5$, and is equal to 0 for all other $t \geq 0$. Represent $f(t)$ as a difference of two step functions, and find its Laplace transform.
Answer. $f(t)=u_{1}(t)-u_{5}(t), F(s)=\frac{e^{-s}}{s}-\frac{e^{-5 s}}{s}$.
2. A function $g(t)$ is equal to 1 for $0 \leq t<5$, and is equal to -2 for $t \geq 5$. Represent $g(t)$ using step functions, and find its Laplace transform.
Answer. $g(t)=1-3 u_{5}(t), G(s)=\frac{1}{s}-3 \frac{e^{-5 s}}{s}$.
3. A function $h(t)$ is equal to -2 for $0 \leq t<3$, to 4 for $3 \leq t<7$, and to zero for $t \geq 7$. Represent $h(t)$ using step functions, and find its Laplace transform.
Answer. $h(t)=-2+6 u_{3}(t)-4 u_{7}(t), H(s)=-\frac{2}{s}+6 \frac{e^{-3 s}}{s}-4 \frac{e^{-7 s}}{s}$.
4. A function $k(t)$ is equal to t for $0 \leq t<4$, and to 4 for $t \geq 4$. Represent $k(t)$ using step functions, and find its Laplace transform.
$1 \quad$ Answer. $k(t)=t\left(1-u_{4}(t)\right)+4 u_{4}(t)=t-u_{4}(t)(t-4), K(s)=\frac{1}{s^{2}}-\frac{e^{-4 s}}{s^{2}}$,
2 by using the second shift formula (2.5).
5. Find the Laplace transform of $t^{2}-2 u_{4}(t)$. Answer. $F(s)=\frac{2}{s^{3}}-2 \frac{e^{-4 s}}{s}$.
6. Sketch the graph of the function $u_{2}(t)-2 u_{3}(t)+4 u_{6}(t)$, and find its
${ }_{6}$ Laplace transform.
7. Find the inverse Laplace transform of $\frac{1}{s^{2}}\left(2 e^{-s}-3 e^{-4 s}\right)$.

8 Answer. $2 u_{1}(t)(t-1)-3 u_{4}(t)(t-4)$.
8. Find the inverse Laplace transform of $e^{-2 s} \frac{3 s-1}{s^{2}+4}$.

Answer. $u_{2}(t)\left[3 \cos 2(t-2)-\frac{1}{2} \sin 2(t-2)\right]$.
9. Find the inverse Laplace transform of $e^{-s} \frac{1}{s^{2}+s-6}$.

Answer. $u_{1}(t)\left(\frac{1}{5} e^{2 t-2}-\frac{1}{5} e^{-3 t+3}\right)$.
10. Find the inverse Laplace transform of $e^{-\frac{\pi}{2} s} \frac{1}{s^{2}+2 s+5}$, and simplify the answer.
Answer. $-\frac{1}{2} u_{\pi / 2}(t) e^{-t+\pi / 2} \sin 2 t$.
11. Solve

$$
y^{\prime \prime}+y=4 u_{1}(t)-u_{5}(t), \quad y(0)=2, y^{\prime}(0)=0 .
$$

$$
y^{\prime \prime}+4 y=u_{\pi}(t) \sin t, \quad y(0)=-1, y^{\prime}(0)=1
$$

Hint: Write $\sin t=-\sin (t-\pi)$, and use the shift formula (2.5).
${ }_{22}$ Answer. $y(t)=-\cos 2 t+\frac{1}{2} \sin 2 t+u_{\pi}(t)\left(\frac{1}{3} \sin t+\frac{1}{6} \sin 2 t\right)$.

1
14. Solve

$$
y^{\prime \prime}+y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0,
$$

2
where

$$
g(t)=\left\{\begin{array}{ll}
t & \text { if } 0 \leq t<\pi \\
\pi & \text { if } t \geq \pi
\end{array} .\right.
$$

Answer. $y(t)=t-\sin t-u_{\pi}(t)(t-\pi+\sin t)$.
VI.

1. Show that $\mathcal{L}\left(u_{c}^{\prime}(t)\right)=\mathcal{L}(\delta(t-c)), c>0$.

This formula shows that $u_{c}^{\prime}(t)=\delta(t-c)$.
2. Find the Laplace transform of $\delta(t-4)-2 u_{4}(t)$.
3. Find the inverse Laplace transform of $\frac{s+1}{s+3}$. Answer. $\delta(t)-2 e^{-3 t}$.
4. Find the inverse Laplace transform of $\frac{s^{2}+1}{s^{2}+2 s+2}$.

Answer. $\delta(t)-e^{-t}(2 \cos t-\sin t)$.
5. Solve

$$
y^{\prime \prime}+y=\delta(t-\pi), \quad y(0)=0, y^{\prime}(0)=2 .
$$

Answer. $y(t)=2 \sin t-u_{\pi}(t) \sin t$.
6. Solve

$$
y^{\prime \prime}+2 y^{\prime}+10 y=\delta(t-\pi), \quad y(0)=0, y^{\prime}(0)=0 .
$$

Answer. $y(t)=-\frac{1}{3} u_{\pi}(t) e^{-t+\pi} \sin 3 t$.
7. Solve

$$
4 y^{\prime \prime}+y=\delta(t), \quad y(0)=0, y^{\prime}(0)=0 .
$$

Answer. $y(t)=\frac{1}{2} \sin \frac{1}{2} t$.
8. Solve

$$
4 y^{\prime \prime}+4 y^{\prime}+5 y=\delta(t-2 \pi), \quad y(0)=0, y^{\prime}(0)=1
$$

Answer. $y(t)=e^{-\frac{1}{2} t} \sin t+\frac{1}{4} u_{2 \pi}(t) e^{-\frac{1}{2}(t-2 \pi)} \sin t$.
9. Show that $\mathcal{L}\left(\delta\left(t-t_{0}\right) f(t)\right)=e^{-s t_{0}} f\left(t_{0}\right)$.

20 10. Solve

$$
y^{\prime \prime}+4 y=\delta\left(t-\frac{\pi}{3}\right) \cos t, \quad y(0)=0, y^{\prime}(0)=0
$$

${ }_{1}$ Answer. $y(t)=\frac{1}{4} u_{\pi / 3}(t) \sin 2\left(t-\frac{\pi}{3}\right)$.
VII.

3 1. Show that $\sin t * 1=1-\cos t$. (Observe that $\sin t * 1 \neq \sin t$.)
4 2. Show that $f(t) * \delta(t)=f(t)$, for any $f(t)$.
${ }_{5}$ (So that the delta function plays the role of unity for convolution.)
6 3. Find the convolution $t * t$.
Answer. $\frac{t^{3}}{6}$.
7. Find the convolution $t * \sin a t$.

Answer. $\frac{a t-\sin a t}{a^{2}}$.
8 5. Find the convolution $\cos t * \cos t$.
Hint: $\cos (t-v)=\cos t \cos v+\sin t \sin v$.
Answer. $\frac{1}{2} t \cos t+\frac{1}{2} \sin t$.
6. Using convolutions, find the inverse Laplace transform of the following functions
(a) $\frac{1}{s^{3}\left(s^{2}+1\right)}$.
Answer. $\quad \frac{t^{2}}{2} * \sin t=\frac{t^{2}}{2}+\cos t-1$.
14

15

16

7. Solve the following initial value problem at resonance

$$
y^{\prime \prime}+9 y=\cos 3 t, \quad y(0)=0, \quad y^{\prime}(0)=0
$$

Answer. $y(t)=\frac{1}{6} t \sin 3 t$.
8. Solve the initial value problem with a given forcing term $g(t)$

$$
y^{\prime \prime}+4 y=g(t), \quad y(0)=0, \quad y^{\prime}(0)=0 .
$$

Answer. $y(t)=\frac{1}{2} \int_{0}^{t} \sin 2(t-v) g(v) d v$.

1
9. Find $f(t)$ given that

$$
\mathcal{L}(t * f(t))=\frac{1}{s^{4}\left(s^{2}+1\right)} .
$$

2

3

4

$$
5
$$

5
11. Solve the following Volterra's integral equation

$$
y(t)+\int_{0}^{t}(t-v) y(v) d v=\cos 2 t
$$

${ }_{6}$ Answer. $y(t)=-\frac{1}{3} \cos t+\frac{4}{3} \cos 2 t$.
7 12. By using the Laplace transform, calculate $t * t * t$. Answer. $\frac{t^{5}}{5!}$.
VIII.

9 1. Find the second derivative of $|t|$ in the sense of distributions.
10
11 2. Find $f(t)$, such that (n is a positive integer)

$$
f^{(n)}(t)=\delta(t)
$$

Answer. $f(t)=\left\{\begin{array}{ll}0 & \text { if } t<0 \\ \frac{t^{n-1}}{(n-1)!} & \text { if } t \geq 0\end{array}\right.$.
3. Let $f(t)=\left\{\begin{array}{ll}t^{2} & \text { if } t<0 \\ t^{2}+5 & \text { if } t \geq 0\end{array}\right.$.

14
15 Hint: $f(t)=t^{2}+5 H(t)$.
16 4. Consider a family of functions $f_{\epsilon}(t)=\frac{\epsilon}{\pi\left(t^{2}+\epsilon^{2}\right)}, \epsilon>0$. Show that in
17 the sense of distributions

$$
\lim _{\epsilon \rightarrow 0} f_{\epsilon}(t)=\delta(t)
$$

1 One refers to $f_{\epsilon}(t)$ as a delta sequence. (Other delta sequences can be found 2 in the book of M. Renardy and R.C. Rogers [25].)
3 Hint: $\left(f_{\epsilon}, \varphi\right)=\int_{-\infty}^{\infty} \frac{\epsilon \varphi(t)}{\pi\left(t^{2}+\epsilon^{2}\right)} d t=\int_{-\infty}^{\infty} \frac{\varphi(\epsilon z)}{\pi\left(z^{2}+1\right)} d z$

$$
\rightarrow \varphi(0) \int_{-\infty}^{\infty} \frac{1}{\pi\left(z^{2}+1\right)} d z=\varphi(0)=(\delta, \varphi)
$$

4 5. (i) The function $K(x, t)=\frac{1}{2 \sqrt{\pi k t}} e^{-\frac{x^{2}}{4 k t}}$ is known as the heat kernel $(k>0$
5 is a constant). Show that in the sense of distributions

$$
\lim _{t \rightarrow 0} K(x, t)=\delta(x) .
$$

6 (ii) Conclude that

$$
\lim _{t \rightarrow 0} K(x, t) * f(x)=\lim _{t \rightarrow 0} \frac{1}{2 \sqrt{\pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-y)^{2}}{4 k t}} f(y) d y=f(x)
$$

7 (iii) Show that the function $K(x, t)$ satisfies the heat equation

$$
K_{t}=k K_{x x} .
$$

8 (iv) Conclude that the function $u(x, t)=K(x, t) * f(x)$ satisfies

$$
u_{t}=k u_{x x}, \quad u(x, 0)=f(x)
$$

Linear Systems of Differential Equations

We begin this chapter by solving systems of linear differential equations with constant coefficients, using the eigenvalues and eigenvectors of the corresponding coefficient matrices. Then we study the long term properties of these systems, and the notion of the exponential of a matrix. We develop the Floquet theory for systems with periodic coefficients, and make an application to Massera's theorem. We classify the pictures at the origin for 2×2 systems, and discuss the controllability and observability of linear systems.

5.1 The Case of Distinct Eigenvalues

The case when the coefficient matrix has distinct eigenvalues turns out to be the easiest. We begin by recalling the basic notions of matrix theory.

5.1.1 Review of Vectors and Matrices

Recall that given two vectors

$$
C_{1}=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right], \quad C_{2}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

1 we can add them as $C_{1}+C_{2}=\left[\begin{array}{c}a_{1}+b_{1} \\ a_{2}+b_{2} \\ a_{3}+b_{3}\end{array}\right]$, or multiply by a constant x :
${ }^{2} x C_{1}=\left[\begin{array}{l}x a_{1} \\ x a_{2} \\ x a_{3}\end{array}\right]$. More generally, we can compute the linear combination

$$
x_{1} C_{1}+x_{2} C_{2}=\left[\begin{array}{l}
x_{1} a_{1}+x_{2} b_{1} \\
x_{1} a_{2}+x_{2} b_{2} \\
x_{1} a_{3}+x_{2} b_{3}
\end{array}\right],
$$

for any two constants x_{1} and x_{2}.
We shall be dealing only with the square matrices, like the following 3×3 matrix

$$
A=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \tag{1.1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] .
$$

${ }_{6}$ We shall view A as a row of column vectors $A=\left[\begin{array}{lll}C_{1} & C_{2} & C_{3}\end{array}\right]$, where

$$
C_{1}=\left[\begin{array}{l}
a_{11} \\
a_{21} \\
a_{31}
\end{array}\right], \quad C_{2}=\left[\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right], \quad C_{3}=\left[\begin{array}{c}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right] .
$$

7 The product of a matrix A and of a vector $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is defined as the 8 vector

$$
A x=C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3} .
$$

9 (This definition is equivalent to the more traditional one, that you might

Two vectors C_{1} and C_{2} are called linearly dependent if one of them is a constant multiple of the other, so that $C_{2}=a C_{1}$, for some number a. (The zero vector is linearly dependent with any other vector.) Linearly dependent vectors C_{1} and C_{2} go along the same line. If the vectors C_{1} and C_{2} do not
go along the same line, they are linearly independent. Three vectors C_{1}, C_{2} and C_{3} are called linearly dependent if one of them is a linear combination of the others, e.g., if $C_{3}=a C_{1}+b C_{2}$, for some numbers a, b. This means that C_{3} lies in the plane determined by C_{1} and C_{2}, so that all three vectors lie in the same plane. If C_{1}, C_{2} and C_{3} do not lie in the same plane, they are linearly independent.

A system of 3 equations with 3 unknowns

$$
\begin{align*}
& a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \tag{1.2}\\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{align*}
$$

can be written in the matrix form

$$
A x=b,
$$

where A is the 3×3 matrix above, and $b=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$ is the given vector of the right hand sides. Recall that the system (1.2) has a unique solution for any vector b if and only if the columns of the matrix A are linearly independent. (In that case, the determinant $|A| \neq 0$, and the inverse matrix A^{-1} exists.)

5.1.2 Linear First Order Systems with Constant Coefficients

We wish to find the functions $x_{1}(t), x_{2}(t)$ and $x_{3}(t)$ that solve the following system of equations, with given constant coefficients a_{11}, \ldots, a_{33},

$$
\begin{gather*}
x_{1}^{\prime}=a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3} \tag{1.3}\\
x_{2}^{\prime}=a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3} \\
x_{3}^{\prime}=a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3},
\end{gather*}
$$

subject to the given initial conditions

$$
x_{1}\left(t_{0}\right)=\alpha, \quad x_{2}\left(t_{0}\right)=\beta, \quad x_{3}\left(t_{0}\right)=\gamma .
$$

$$
\begin{equation*}
x^{\prime}=A x, \quad x\left(t_{0}\right)=x_{0}, \tag{1.4}
\end{equation*}
$$

208CHAPTER 5. LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS
where $x(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t) \\ x_{3}(t)\end{array}\right]$ is the unknown vector function, A is the 3×3 matrix (1.1) of the coefficients, and $x_{0}=\left[\begin{array}{l}\alpha \\ \beta \\ \gamma\end{array}\right]$ is the vector of initial conditions. Indeed, on the left in (1.3) we have components of the vector $x^{\prime}(t)=\left[\begin{array}{l}x_{1}^{\prime}(t) \\ x_{2}^{\prime}(t) \\ x_{3}^{\prime}(t)\end{array}\right]$, while on the right we see the components of the vector $A x$.

Let us observe that given two vector functions $y(t)$ and $z(t)$, which are solutions of the system $x^{\prime}=A x$, their linear combination $c_{1} y(t)+c_{2} z(t)$ is also a solution of the same system, for any constants c_{1} and c_{2}. Our system of differential equations is linear, because it involves only linear combinations of the unknown functions.

We now search for a solution of (1.4) in the form

$$
\begin{equation*}
x(t)=e^{\lambda t} \xi \tag{1.5}
\end{equation*}
$$

with a constant λ, and a vector ξ, with entries independent of t. Substituting this into (1.4), we have

$$
\lambda e^{\lambda t} \xi=A\left(e^{\lambda t} \xi\right),
$$

giving

$$
A \xi=\lambda \xi
$$

So that if λ is an eigenvalue of A, and ξ the corresponding eigenvector, then (1.5) gives us a solution of the problem (1.4). Observe that the same is true for any square $n \times n$ matrix A. Let λ_{1}, λ_{2} and λ_{3} be the eigenvalues of our 3×3 matrix A. There are several cases to consider.
Case 1 The eigenvalues of A are real and distinct. It is known from matrix theory that the corresponding eigenvectors ξ_{1}, ξ_{2} and ξ_{3} are then linearly independent. We know that $e^{\lambda_{1} t} \xi_{1}, e^{\lambda_{2} t} \xi_{2}$ and $e^{\lambda_{3} t} \xi_{3}$ are solutions of our system (1.4), so that their linear combination

$$
\begin{equation*}
x(t)=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2} e^{\lambda_{2} t} \xi_{2}+c_{3} e^{\lambda_{3} t} \xi_{3} \tag{1.6}
\end{equation*}
$$

also solves the system (1.4). We claim that (1.6) gives the general solution of our system, meaning that it is possible to determine the constants c_{1}, c_{2},

$$
\begin{equation*}
x\left(t_{0}\right)=c_{1} e^{\lambda_{1} t_{0}} \xi_{1}+c_{2} e^{\lambda_{2} t_{0}} \xi_{2}+c_{3} e^{\lambda_{3} t_{0}} \xi_{3}=x_{0} \tag{1.7}
\end{equation*}
$$

This is a system of three linear equations with three unknowns c_{1}, c_{2}, and c_{3}. The matrix of this system is non-singular, because its columns, $e^{\lambda_{1} t_{0}} \xi_{1}$, ${ }_{4} e^{\lambda_{2} t_{0}} \xi_{2}$ and $e^{\lambda_{3} t_{0}} \xi_{3}$, are linearly independent (observe that these columns 5 are constant multiples of the linearly independent vectors ξ_{1}, ξ_{2} and ξ_{3}). 6 Therefore, we can find a unique solution triple \bar{c}_{1}, \bar{c}_{2}, and \bar{c}_{3} of the system (1.7). Then $x(t)=\bar{c}_{1} e^{\lambda_{1} t} \xi_{1}+\bar{c}_{2} e^{\lambda_{2} t} \xi_{2}+\bar{c}_{3} e^{\lambda_{3} t} \xi_{3}$ is the desired solution of 8 our initial value problem (1.4).

9 Example 1 Solve the system

$$
x^{\prime}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] x, x(0)=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] .
$$

${ }_{13} \lambda_{2}=3$, with the corresponding eigenvector $\xi_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$. The general solution 14 is then

$$
x(t)=c_{1} e^{t}\left[\begin{array}{r}
-1 \\
1
\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}
1 \\
1
\end{array}\right],
$$

5 or in components

$$
\begin{aligned}
& x_{1}(t)=-c_{1} e^{t}+c_{2} e^{3 t} \\
& x_{2}(t)=c_{1} e^{t}+c_{2} e^{3 t} .
\end{aligned}
$$

Turning to the initial conditions,

$$
\begin{gathered}
x_{1}(0)=-c_{1}+c_{2}=-1 \\
x_{2}(0)=c_{1}+c_{2}=2 .
\end{gathered}
$$

${ }_{7}$ Calculate $c_{1}=3 / 2, c_{2}=1 / 2$. Answer:

$$
\begin{aligned}
& x_{1}(t)=-\frac{3}{2} e^{t}+\frac{1}{2} e^{3 t} \\
& x_{2}(t)=\frac{3}{2} e^{t}+\frac{1}{2} e^{3 t} .
\end{aligned}
$$

${ }_{1}$ Case 2 The eigenvalue λ_{1} is double, $\lambda_{2}=\lambda_{1}, \lambda_{3} \neq \lambda_{1}$, however, λ_{1} has two linearly independent eigenvectors ξ_{1} and ξ_{2}. Let ξ_{3} denote again an eigenvector corresponding to λ_{3}. This vector cannot lie in the plane spanned by ξ_{1} and ξ_{2}, and then the vectors ξ_{1}, ξ_{2} and ξ_{3} are linearly independent. The general solution is given again by the formula (1.6), with λ_{2} replaced by λ_{1} :

$$
x(t)=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2} e^{\lambda_{1} t} \xi_{2}+c_{3} e^{\lambda_{3} t} \xi_{3} .
$$

${ }_{7}$ To satisfy the initial conditions, we get a linear system for c_{1}, c_{2} and c_{3}

$$
c_{1} e^{\lambda_{1} t_{0}} \xi_{1}+c_{2} e^{\lambda_{1} t_{0}} \xi_{2}+c_{3} e^{\lambda_{3} t_{0}} \xi_{3}=x_{0}
$$

8 which has a unique solution, because its matrix has linearly independent columns. (Linearly independent eigenvectors is the key here!)
Example 2 Solve the system

$$
x^{\prime}=\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right] x, x(0)=\left[\begin{array}{r}
1 \\
0 \\
-4
\end{array}\right] .
$$

${ }_{11}$ Expanding the determinant of $A-\lambda I$ in the first row, we write the characteristic equation as

$$
(2-\lambda)\left[(2-\lambda)^{2}-1\right]-(2-\lambda-1)+1+\lambda-2=0,
$$

$$
(2-\lambda)(1-\lambda)(3-\lambda)-2(1-\lambda)=0
$$

$$
(1-\lambda)[(2-\lambda)(3-\lambda)-2]=0
$$

The roots are: $\lambda_{1}=1, \lambda_{2}=1, \lambda_{3}=4$. We calculate that the double eigenvalue $\lambda_{1}=1$ has two linearly independent eigenvectors $\xi_{1}=\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]$
${ }_{7}$ and $\xi_{2}=\left[\begin{array}{r}0 \\ -1 \\ 1\end{array}\right]$. The other eigenvalue $\lambda_{3}=4$ has the corresponding eigenvector $\xi_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$. The general solution is then

$$
x(t)=c_{1} e^{t}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{r}
0 \\
-1 \\
1
\end{array}\right]+c_{3} e^{4 t}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] .
$$

$$
\begin{equation*}
\left(A-\lambda_{1} I\right) \eta=\xi \tag{1.9}
\end{equation*}
$$

$$
\begin{gathered}
x_{1}(t)=-c_{1} e^{t}+c_{3} e^{4 t} \\
x_{2}(t)=-c_{2} e^{t}+c_{3} e^{4 t} \\
x_{3}(t)=c_{1} e^{t}+c_{2} e^{t}+c_{3} e^{4 t}
\end{gathered}
$$ Answer:

$$
\begin{gathered}
x_{1}(t)=2 e^{t}-e^{4 t} \\
x_{2}(t)=e^{t}-e^{4 t} \\
x_{3}(t)=-3 e^{t}-e^{4 t}
\end{gathered}
$$ initial value problem (1.4) for any system with a symmetric matrix. modify our guess:

$$
\begin{equation*}
x(t)=t e^{\lambda_{1} t} \xi+e^{\lambda_{1} t} \eta \tag{1.8}
\end{equation*}
$$

$$
e^{\lambda_{1} t} \xi+\lambda_{1} t e^{\lambda_{1} t} \xi+\lambda_{1} e^{\lambda_{1} t} \eta=\lambda_{1} t e^{\lambda_{1} t} \xi+e^{\lambda_{1} t} A \eta
$$

Cancelling a pair of terms, and dividing by $e^{\lambda_{1} t}$, we simplify this to

Using the initial conditions, calculate $c_{1}=-2, c_{2}=-1$, and $c_{3}=-1$.

Proceeding similarly, we can solve the initial value problem (1.4) for any $n \times n$ matrix A, provided that all of its eigenvalues are real, and it has a full set of n linearly independent eigenvectors. Recall that if an $n \times n$ matrix A is symmetric $\left(a_{i j}=a_{j i}\right.$, for all i and $\left.j\right)$, then all of its eigenvalues are real. The eigenvalues of a symmetric matrix may be repeated, but there is always a full set of n linearly independent eigenvectors. So that one can solve the

Case 3 The eigenvalue λ_{1} has multiplicity two $\left(\lambda_{1}\right.$ is a double root of the characteristic equation, $\left.\lambda_{2}=\lambda_{1}\right), \lambda_{3} \neq \lambda_{1}$, but λ_{1} has only one linearly independent eigenvector ξ. The eigenvalue λ_{1} brings in only one solution $e^{\lambda_{1} t} \xi$. By analogy with the second order equations, we try $t e^{\lambda_{1} t} \xi$ for the second solution. However, this vector function is a scalar multiple of the first solution, so that it is linearly dependent with it, at any $t=t_{0}$. We
and choose a vector η, to obtain a second linearly independent solution. Substituting (1.8) into our system (1.4), and using that $A \xi=\lambda_{1} \xi$, obtain

Even though the matrix $A-\lambda_{1} I$ is singular (its determinant is zero), it can be shown (using the Jordan normal form) that the linear system (1.9) always has a solution η, called generalized eigenvector. We see from (1.9) that η
is not a multiple of ξ. Using this η in (1.8), gives us the second linearly independent solution, corresponding to $\lambda=\lambda_{1}$. (Observe that $c \eta$ is not a generalized eigenvector for any constant $c \neq 1$, unlike the usual eigenvectors. If η is a generalized eigenvector, then so is $\eta+c \xi$, for any constant c.)

Example 3 Solve the system

$$
x^{\prime}=\left[\begin{array}{rr}
1 & -1 \\
1 & 3
\end{array}\right] x .
$$

6
7
8

This matrix has a double eigenvalue $\lambda_{1}=\lambda_{2}=2$, and only one linearly independent eigenvector $\xi=\left[\begin{array}{r}1 \\ -1\end{array}\right]$. We have one solution: $x_{1}(t)=e^{2 t}\left[\begin{array}{r}1 \\ -1\end{array}\right]$. The system (1.9) to determine the vector $\eta=\left[\begin{array}{l}\eta_{1} \\ \eta_{2}\end{array}\right]$ takes the form

$$
\begin{gathered}
-\eta_{1}-\eta_{2}=1 \\
\eta_{1}+\eta_{2}=-1
\end{gathered}
$$

Discard the second equation, because it is a multiple of the first. The first equation has infinitely many solutions. But all we need is just one solution, that is not a multiple of ξ. So we set $\eta_{2}=0$, which gives $\eta_{1}=-1$. We computed the second linearly independent solution:

$$
x_{2}(t)=t e^{2 t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+e^{2 t}\left[\begin{array}{r}
-1 \\
0
\end{array}\right] .
$$

The general solution is then

$$
x(t)=c_{1} e^{2 t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+c_{2}\left(t e^{2 t}\left[\begin{array}{r}
1 \\
-1
\end{array}\right]+e^{2 t}\left[\begin{array}{r}
-1 \\
0
\end{array}\right]\right) .
$$

5.2 A Pair of Complex Conjugate Eigenvalues

5.2.1 Complex Valued and Real Valued Solutions

Recall that one differentiates complex valued functions much the same way, as the real ones. For example,

$$
\frac{d}{d t} e^{i t}=i e^{i t}
$$

where $i=\sqrt{-1}$ is treated the same way as any other constant. Any complex valued function $f(t)$ can be written in the form $f(t)=u(t)+i v(t)$, where $u(t)$ and $v(t)$ are real valued functions. It follows by the definition of derivative that $f^{\prime}(t)=u^{\prime}(t)+i v^{\prime}(t)$. For example, using Euler's formula,

$$
\frac{d}{d t} e^{i t}=\frac{d}{d t}(\cos t+i \sin t)=-\sin t+i \cos t=i(\cos t+i \sin t)=i e^{i t} .
$$

Any complex valued vector function $x(t)$ can also be written as $x(t)=$ $u(t)+i v(t)$, where $u(t)$ and $v(t)$ are real valued vector functions. Again, we have $x^{\prime}(t)=u^{\prime}(t)+i v^{\prime}(t)$.

If $x(t)=u(t)+i v(t)$ is a complex valued solution of our system (1.4), then

$$
u^{\prime}(t)+i v^{\prime}(t)=A(u(t)+i v(t)) .
$$

Equating the real and imaginary parts, we see that both $u(t)$ and $v(t)$ are real valued solutions of our system (1.4).

5.2.2 The General Solution

Assume that the matrix A has a pair of complex conjugate eigenvalues $p+i q$ and $p-i q$. They need to contribute two linearly independent solutions. The eigenvector corresponding to $p+i q$ is complex valued, which we may write as $\xi+i \eta$, where ξ and η are real valued vectors. Then $x(t)=e^{(p+i q) t}(\xi+i \eta)$ is a solution of our system. To get two real valued solutions, we take the real and the imaginary parts of this solution. Obtain:

$$
\begin{gathered}
x(t)=e^{p t}(\cos q t+i \sin q t)(\xi+i \eta) \\
=e^{p t}(\cos q t \xi-\sin q t \eta)+i e^{p t}(\sin q t \xi+\cos q t \eta) .
\end{gathered}
$$

So that

$$
\begin{gathered}
u(t)=e^{p t}(\cos q t \xi-\sin q t \eta), \\
v(t)=e^{p t}(\sin q t \xi+\cos q t \eta)
\end{gathered}
$$

give us two real valued solutions. In case of a 2×2 matrix (when there are no other eigenvalues), the general solution is

$$
\begin{equation*}
x(t)=c_{1} u(t)+c_{2} v(t) . \tag{2.1}
\end{equation*}
$$

(If one uses the other eigenvalue $p-i q$, and the corresponding eigenvector, the answer is the same.) We show in the exercises that one can choose the constants c_{1} and c_{2} to satisfy any initial condition $x\left(t_{0}\right)=x_{0}$.

1 Example 1 Solve the system

$$
x^{\prime}=\left[\begin{array}{rr}
1 & -2 \\
2 & 1
\end{array}\right] x, x(0)=\left[\begin{array}{l}
2 \\
1
\end{array}\right] .
$$

2 Calculate the eigenvalues $\lambda_{1}=1+2 i$ and $\lambda_{2}=1-2 i$. The eigenvector ${ }_{3}$ corresponding to λ_{1} is $\left[\begin{array}{c}i \\ 1\end{array}\right]$. So that we have a complex valued solution
$4 e^{(1+2 i) t}\left[\begin{array}{l}i \\ 1\end{array}\right]$. Using Euler's formula, rewrite it as

$$
e^{t}(\cos 2 t+i \sin 2 t)\left[\begin{array}{c}
i \\
1
\end{array}\right]=e^{t}\left[\begin{array}{r}
-\sin 2 t \\
\cos 2 t
\end{array}\right]+i e^{t}\left[\begin{array}{c}
\cos 2 t \\
\sin 2 t
\end{array}\right]
$$

5 The real and imaginary parts give us two linearly independent solutions, so
${ }_{6}$ that the general solution is

$$
x(t)=c_{1} e^{t}\left[\begin{array}{r}
-\sin 2 t \\
\cos 2 t
\end{array}\right]+c_{2} e^{t}\left[\begin{array}{c}
\cos 2 t \\
\sin 2 t
\end{array}\right] .
$$

7 In components

$$
\begin{aligned}
& x_{1}(t)=-c_{1} e^{t} \sin 2 t+c_{2} e^{t} \cos 2 t \\
& x_{2}(t)=c_{1} e^{t} \cos 2 t+c_{2} e^{t} \sin 2 t .
\end{aligned}
$$

8 From the initial conditions

$$
\begin{gathered}
x_{1}(0)=c_{2}=2 \\
x_{2}(0)=c_{1}=1,
\end{gathered}
$$

9 so that $c_{1}=1$, and $c_{2}=2$. Answer:

$$
\begin{aligned}
& x_{1}(t)=-e^{t} \sin 2 t+2 e^{t} \cos 2 t \\
& x_{2}(t)=e^{t} \cos 2 t+2 e^{t} \sin 2 t .
\end{aligned}
$$

10
Example 2 Solve the system

$$
x^{\prime}=\left[\begin{array}{rrr}
2 & -1 & 2 \\
1 & 0 & 2 \\
-2 & 1 & -1
\end{array}\right] x .
$$

5 giving us a complex valued solution $e^{i t}\left[\begin{array}{c}-1-i \\ -1-i \\ 1\end{array}\right]$. We rewrite it as

$$
(\cos t+i \sin t)\left[\begin{array}{c}
-1-i \\
-1-i \\
1
\end{array}\right]=\left[\begin{array}{c}
-\cos t+\sin t \\
-\cos t+\sin t \\
\cos t
\end{array}\right]+i\left[\begin{array}{c}
-\cos t-\sin t \\
-\cos t-\sin t \\
\sin t
\end{array}\right]
$$

Taking its real and imaginary parts gives us two more linearly independent solutions, so that the general solution is

$$
x(t)=c_{1} e^{t}\left[\begin{array}{l}
0 \\
2 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{c}
-\cos t+\sin t \\
-\cos t+\sin t \\
\cos t
\end{array}\right]+c_{3}\left[\begin{array}{c}
-\cos t-\sin t \\
-\cos t-\sin t \\
\sin t
\end{array}\right] .
$$

Examining the form of the solutions in all of the above cases, we see that if all eigenvalues of a matrix A are either negative or have negative real parts, then $\lim _{t \rightarrow \infty} x(t)=0$ (all components of the vector $x(t)$ tend to zero).

5.2.3 Non-Homogeneous Systems

Similarly to the case of a single equation, the general solution of a nonhomogeneous system

$$
x^{\prime}=A x+f(t),
$$

with a given vector-function $f(t)$, is the sum of any particular solution $Y(t)$ of this system and the general solution of the corresponding homogeneous system

$$
x^{\prime}=A x .
$$

Sometimes one can guess the form of $Y(t)$.

1 Example 3 Solve the system

$$
x^{\prime}=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] x+\left[\begin{array}{r}
e^{-t} \\
0
\end{array}\right] .
$$

2 We look for a particular solution in the form $Y(t)=\left[\begin{array}{c}A e^{-t} \\ B e^{-t}\end{array}\right]$, and calculate ${ }^{3} A=-\frac{3}{8}, B=\frac{1}{8}$, so that $Y(t)=\left[\begin{array}{c}-\frac{3}{8} e^{-t} \\ \frac{1}{8} e^{-t}\end{array}\right]$. The general solution of the 4 corresponding homogeneous system was found in the Example 1.
5 Answer. $x(t)=\left[\begin{array}{r}-\frac{3}{8} e^{-t} \\ \frac{1}{8} e^{-t}\end{array}\right]+c_{1} e^{t}\left[\begin{array}{r}-1 \\ 1\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
6 Later on we shall develop the method of variation of parameters for 7 non-homogeneous systems.

: 5.3 The Exponential of a Matrix

9 In matrix notation, a linear system with a square matrix A,

$$
\begin{equation*}
x^{\prime}=A x, \quad x(0)=x_{0} \tag{3.1}
\end{equation*}
$$

10
11
we define (I is the identity matrix)

$$
e^{A}=I+A+\frac{A^{2}}{2!}+\frac{A^{3}}{3!}+\frac{A^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{A^{n}}{n!} .
$$

${ }_{7}$ So that e^{A} is the sum of infinitely many matrices, and each entry of e^{A} is
looks like a single equation. In case A and x_{0} are constants, the solution of (3.1) is

$$
\begin{equation*}
x(t)=e^{A t} x_{0} . \tag{3.2}
\end{equation*}
$$

In order to write the solution of our system in the form (3.2), we shall define the notion of the exponential of a matrix. First, we define powers of a matrix: $A^{2}=A \cdot A, A^{3}=A^{2} \cdot A$, and so on, using repeated matrix multiplications. Starting with the Maclauren series

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\frac{x^{4}}{4!}+\cdots=\sum_{n=0}^{\infty} \frac{x^{n}}{n!},
$$

any matrix A, so that we can compute e^{A} for any square matrix A (we shall prove this fact for diagonalizable matrices). If O denotes a square matrix with all entries equal to zero, then $e^{O}=I$.

We have

$$
e^{A t}=I+A t+\frac{A^{2} t^{2}}{2!}+\frac{A^{3} t^{3}}{3!}+\frac{A^{4} t^{4}}{4!}+\cdots,
$$

and then

$$
\frac{d}{d t} e^{A t}=A+A^{2} t+\frac{A^{3} t^{2}}{2!}+\frac{A^{4} t^{3}}{3!}+\cdots=A e^{A t} .
$$

6 We conclude by a direct substitution that the formula (3.2) gives the solution of the initial-value problem (3.1). (Observe that $x(0)=e^{O} x_{0}=x_{0}$.)

- Example 1 Let $A=\left[\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right]$, where a and b are constants. Then $A^{n}=\left[\begin{array}{ll}a^{n} & 0 \\ 0 & b^{n}\end{array}\right]$, and we have

$$
e^{A}=\left[\begin{array}{lr}
1+a+\frac{a^{2}}{2!}+\frac{a^{3}}{3!}+\cdots & 0 \\
0 & 1+b+\frac{b^{2}}{2!}+\frac{b^{3}}{3!}+\cdots
\end{array}\right]=\left[\begin{array}{ll}
e^{a} & 0 \\
0 & e^{b}
\end{array}\right] .
$$

${ }_{11}$ Example 2 Let $A=\left[\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right]$. Calculate: $A^{2}=-I, A^{3}=-A, A^{4}=I$.
12

$$
e^{A t}=\left[\begin{array}{cc}
1-t^{2} / 2!+t^{4} / 4!+\cdots & -t+t^{3} / 3!-t^{5} / 5!+\cdots \\
t-t^{3} / 3!+t^{5} / 5!+\cdots & 1-t^{2} / 2!+t^{4} / 4!+\cdots
\end{array}\right]=\left[\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right] .
$$

$$
\begin{array}{cc}
x_{1}^{\prime}= & -x_{2}, \tag{3.3}\\
x_{1}(0)=\alpha \\
x_{2}^{\prime}=x_{1}, & x_{2}(0)=\beta
\end{array}
$$

in the form

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=e^{A t}\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right]=\left[\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]\left[\begin{array}{l}
\alpha \\
\beta
\end{array}\right],
$$

which is rotation of the initial vector $\left[\begin{array}{l}\alpha \\ \beta\end{array}\right]$ by the angle t, counterclockwise.
We see that the integral curves of our system are circles in the $\left(x_{1}, x_{2}\right)$ plane.

1 This makes sense, because the velocity vector $\left[\begin{array}{l}x_{1}^{\prime} \\ x_{2}^{\prime}\end{array}\right]=\left[\begin{array}{r}-x_{2} \\ x_{1}\end{array}\right]$ is always 2 perpendicular to the position vector $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$.
3 Observe that the system (3.3) is equivalent to the equation

$$
x_{1}^{\prime \prime}+x_{1}=0,
$$

4 modeling a harmonic oscillator.
5 Recall that we can write a square matrix

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

6 as a row of column vectors $A=\left[C_{1} C_{2} C_{3}\right]$, where $C_{1}=\left[\begin{array}{l}a_{11} \\ a_{21} \\ a_{31}\end{array}\right], C_{2}=$ $7\left[\begin{array}{l}a_{12} \\ a_{22} \\ a_{32}\end{array}\right]$, and $C_{3}=\left[\begin{array}{l}a_{13} \\ a_{23} \\ a_{33}\end{array}\right]$. Then the product of the matrix A and of a 8 vector $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ is defined as the vector

$$
A x=C_{1} x_{1}+C_{2} x_{2}+C_{3} x_{3}
$$

9 If B is another 3×3 matrix, whose columns are the vectors K_{1}, K_{2} and K_{3}, we define the product of the matrices A and B as follows:

$$
A B=A\left[\begin{array}{lll}
K_{1} & K_{2} & K_{3}
\end{array}\right]=\left[\begin{array}{lll}
A K_{1} & A K_{2} & A K_{3}
\end{array}\right] .
$$

${ }^{13}$ Let Λ be a diagonal matrix $\Lambda=\left[\begin{array}{lll}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$. Compute the product

$$
A \Lambda=\left[A\left[\begin{array}{l}
\lambda_{1} \\
0 \\
0
\end{array}\right] A\left[\begin{array}{l}
0 \\
\lambda_{2} \\
0
\end{array}\right] A\left[\begin{array}{l}
0 \\
0 \\
\lambda 3
\end{array}\right]\right]=\left[\begin{array}{lll}
\lambda_{1} C_{1} & \lambda_{2} C_{2} & \lambda_{3} C_{3}
\end{array}\right] .
$$

So that multiplying a matrix A from the right by a diagonal matrix Λ, results in the columns of A being multiplied by the corresponding entries of Λ. (Multiplication of a matrix A from the left by a diagonal matrix Λ, results in the rows of A being multiplied by the corresponding entries of Λ.)

Assume now that the matrix A has three linearly independent eigenvectors E_{1}, E_{2}, and E_{3}, so that $A E_{1}=\lambda_{1} E_{1}, A E_{2}=\lambda_{2} E_{2}$, and $A E_{3}=\lambda_{3} E_{3}$ (the eigenvalues λ_{1}, λ_{2} and λ_{3} are not necessarily different). Form a matrix $S=\left[\begin{array}{lll}E_{1} & E_{2} & E_{3}\end{array}\right]$. Observe that S has an inverse matrix S^{-1}. Calculate

$$
A S=\left[\begin{array}{llll}
A E_{1} & A E_{2} & A E_{3}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} & E_{1} & \lambda_{2} & E_{2}
\end{array} \lambda_{3} E_{3}\right]=S \Lambda .
$$

Multiplying both sides from the left by S^{-1}, obtain

$$
\begin{equation*}
S^{-1} A S=\Lambda \tag{3.4}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
A=S \Lambda S^{-1} \tag{3.5}
\end{equation*}
$$

One refers to the formulas (3.4) and (3.5) as giving the diagonalization of the matrix A. We see that any matrix with a full set of three linearly independent eigenvectors can be diagonalized. An $n \times n$ matrix A is diagonalizable, if it has a complete set of n linearly independent eigenvectors. In particular, symmetric matrices are diagonalizable.

If A is diagonalizable, so that the formula (3.5) holds, then $A^{2}=A A=$ $S \Lambda S^{-1} S \Lambda S^{-1}=S \Lambda^{2} S^{-1}$, and in general $A^{n}=S \Lambda^{n} S^{-1}$. We then have (for any real scalar t)

$$
e^{A t}=\sum_{n=0}^{\infty} \frac{A^{n} t^{n}}{n!}=\sum_{n=0}^{\infty} \frac{S \Lambda^{n} t^{n} S^{-1}}{n!}=S \sum_{n=0}^{\infty} \frac{\Lambda^{n} t^{n}}{n!} S^{-1}=S e^{\Lambda t} S^{-1}
$$

The following important theorem holds for any $n \times n$ matrix.

Theorem 5.3.1 Assume that all eigenvalues of the matrix A are either negative or have negative real parts. Then all solutions of the system

$$
x^{\prime}=A x
$$

tend to zero as $t \rightarrow \infty$.

$$
\begin{equation*}
x^{\prime}=A x+f(t), x\left(t_{0}\right)=x_{0} \tag{3.6}
\end{equation*}
$$

where $f(t)$ is a given vector function, and A is a constant square matrix. The solution is

$$
\begin{equation*}
x(t)=e^{A\left(t-t_{0}\right)} x_{0}+e^{A t} \int_{t_{0}}^{t} e^{-A s} f(s) d s \tag{3.7}
\end{equation*}
$$

6 How does one think of this formula? In case of one equation (when A is a number) we have an easy linear equation (with the integrating factor $\mu=$ $\left.e^{-A t}\right)$, for which (3.7) gives the solution. We use that $\frac{d}{d t} e^{A\left(t-t_{0}\right)}=A e^{A\left(t-t_{0}\right)}$ to justify this formula for matrices.
Example 3 Solve

$$
x^{\prime}=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right] x+\left[\begin{array}{l}
1 \\
t
\end{array}\right], x(0)=\left[\begin{array}{l}
0 \\
3
\end{array}\right]
$$

1 By (3.7)

$$
x(t)=e^{A t}\left[\begin{array}{l}
0 \\
3
\end{array}\right]+e^{A t} \int_{0}^{t} e^{-A s}\left[\begin{array}{l}
1 \\
s
\end{array}\right] d s
$$

$$
e^{-A s}\left[\begin{array}{l}
1 \\
s
\end{array}\right]=\left[\begin{array}{rr}
\cos s & \sin s \\
-\sin s & \cos s
\end{array}\right]\left[\begin{array}{l}
1 \\
s
\end{array}\right]=\left[\begin{array}{r}
\cos s+s \sin s \\
-\sin s+s \cos s
\end{array}\right]
$$

4 Then

$$
\begin{gathered}
\int_{0}^{t} e^{-A s}\left[\begin{array}{l}
1 \\
s
\end{array}\right] d s=\left[\begin{array}{r}
\int_{0}^{t}(\cos s+s \sin s) d s \\
\int_{0}^{t}(-\sin s+s \cos s) d s
\end{array}\right]=\left[\begin{array}{r}
-t \cos t+2 \sin t \\
-2+2 \cos t+t \sin t
\end{array}\right] \\
e^{A t} \int_{0}^{t} e^{-A s}\left[\begin{array}{l}
1 \\
s
\end{array}\right] d s=\left[\begin{array}{r}
-t+2 \sin t \\
2-2 \cos t
\end{array}\right]
\end{gathered}
$$

We conclude that

$$
x(t)=\left[\begin{array}{r}
-3 \sin t \\
3 \cos t
\end{array}\right]+\left[\begin{array}{r}
-t+2 \sin t \\
2-2 \cos t
\end{array}\right]=\left[\begin{array}{r}
-t-\sin t \\
2+\cos t
\end{array}\right],
$$

or, in components, $x_{1}(t)=-t-\sin t, x_{2}(t)=2+\cos t$.
An easier approach for this particular system is to convert it to a single equation

$$
x_{1}^{\prime \prime}+x_{1}=-t, \quad x_{1}(0)=0, x_{1}^{\prime}(0)=-2,
$$

2. $x^{\prime}=\left[\begin{array}{ll}1 & -1 \\ 2 & -1\end{array}\right] x . \quad$ Answer. $x(t)=c_{1}\left[\begin{array}{c}\cos t-\sin t \\ 2 \cos t\end{array}\right]+c_{2}\left[\begin{array}{c}\cos t+\sin t \\ 2 \sin t\end{array}\right]$.

16
3. $x^{\prime}=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right] x$
${ }_{1}$ Answer. $x(t)=c_{1} e^{4 t}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+c_{2} e^{t}\left[\begin{array}{r}-1 \\ 0 \\ 1\end{array}\right]+c_{3} e^{t}\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$.
2 4. $x^{\prime}=\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right] x$. Check your answer by reducing this system to a second order equation for $x_{1}(t)$.
4 Answer. $x(t)=c_{1} e^{3 t}\left[\begin{array}{l}1 \\ 0\end{array}\right]+c_{2} e^{3 t}\left(t\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]\right)$.
5 5. $x^{\prime}=\left[\begin{array}{rrr}-1 & 0 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right] x$.
${ }^{6}$ Answer. $x(t)=c_{1} e^{-t}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+c_{3} e^{2 t}\left(t\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right)$.
6. $x^{\prime}=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right] x, x(0)=\left[\begin{array}{r}1 \\ -3\end{array}\right]$. Answer.

$$
\begin{gathered}
x_{1}(t)=2 e^{2 t}-e^{4 t} \\
x_{2}(t)=-2 e^{2 t}-e^{4 t} .
\end{gathered}
$$

8 7. $x^{\prime}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] x, \quad x(0)=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Check your answer by reducing this
9 system to a second order equation for $x_{1}(t)$. Answer.

$$
\begin{gathered}
x_{1}(t)=\frac{1}{2} e^{-t}+\frac{3}{2} e^{t} \\
x_{2}(t)=-\frac{1}{2} e^{-t}+\frac{3}{2} e^{t} .
\end{gathered}
$$

10
8. $x^{\prime}=\left[\begin{array}{lll}-2 & 2 & 3 \\ -2 & 3 & 2 \\ -4 & 2 & 5\end{array}\right] x, x(0)=\left[\begin{array}{l}0 \\ 1 \\ 2\end{array}\right]$. Answer.

$$
\begin{gathered}
x_{1}(t)=-3 e^{t}-2 e^{2 t}+5 e^{3 t} \\
x_{2}(t)=-4 e^{2 t}+5 e^{3 t} \\
x_{3}(t)=-3 e^{t}+5 e^{3 t} .
\end{gathered}
$$

1
9. $x^{\prime}=\left[\begin{array}{rrr}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right] x, x(0)=\left[\begin{array}{r}-2 \\ 5 \\ 0\end{array}\right]$. Answer.

$$
\begin{gathered}
x_{1}(t)=2 e^{2 t}-4 e^{3 t} \\
x_{2}(t)=5 e^{t}-4 e^{2 t}+4 e^{3 t} \\
x_{3}(t)=-4 e^{2 t}+4 e^{3 t} .
\end{gathered}
$$

10. $x^{\prime}=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 2\end{array}\right] x, x(0)=\left[\begin{array}{r}-2 \\ 3 \\ 2\end{array}\right]$. Answer.

$$
x_{1}(t)=-3 e^{t}+e^{4 t}
$$

$$
x_{2}(t)=2 e^{t}+e^{4 t}
$$

$$
x_{3}(t)=e^{t}+e^{4 t}
$$

3 11. $x^{\prime}=\left[\begin{array}{rrr}1 & 4 & 0 \\ -4 & -7 & 0 \\ 0 & 0 & 5\end{array}\right] x, x(0)=\left[\begin{array}{r}-2 \\ 6 \\ 1\end{array}\right]$. Answer.

$$
\begin{gathered}
x_{1}(t)=2 e^{-3 t}(-1+8 t) \\
x_{2}(t)=-2 e^{-3 t}(-3+8 t) \\
x_{3}(t)=e^{5 t} .
\end{gathered}
$$

4
12. $x^{\prime}=\left[\begin{array}{rr}0 & -2 \\ 2 & 0\end{array}\right] x, \quad x(0)=\left[\begin{array}{r}-2 \\ 1\end{array}\right]$. Check your answer by reducing 5 this system to a second order equation for $x_{1}(t)$. Answer.

$$
\begin{aligned}
& x_{1}(t)=-2 \cos 2 t-\sin 2 t \\
& x_{2}(t)=\cos 2 t-2 \sin 2 t .
\end{aligned}
$$

6
13. $x^{\prime}=\left[\begin{array}{rr}3 & -2 \\ 2 & 3\end{array}\right] x, x(0)=\left[\begin{array}{l}0 \\ 1\end{array}\right]$. Answer. $x_{1}(t)=-e^{3 t} \sin 2 t$ $x_{2}(t)=e^{3 t} \cos 2 t$.
14. $x^{\prime}=\left[\begin{array}{rrr}1 & 2 & 2 \\ -1 & 1 & 0 \\ 0 & -2 & -1\end{array}\right] x, x(0)=\left[\begin{array}{r}-1 \\ 1 \\ 2\end{array}\right]$. Answer.

$$
x_{1}(t)=-\cos t+5 \sin t
$$

$$
\begin{gathered}
x_{2}(t)=-e^{t}+2 \cos t+3 \sin t \\
x_{3}(t)=e^{t}+\cos t-5 \sin t .
\end{gathered}
$$

15. $x^{\prime}=\left[\begin{array}{rrr}0 & -3 & 0 \\ 3 & 0 & 4 \\ 0 & -4 & 0\end{array}\right] x, x(0)=\left[\begin{array}{l}1 \\ 0 \\ 3\end{array}\right]$. Answer.

$$
\begin{gathered}
x_{1}(t)=\frac{1}{5}(9 \cos 5 t-4) \\
x_{2}(t)=3 \sin 5 t \\
x_{3}(t)=\frac{3}{5}(4 \cos 5 t+1) .
\end{gathered}
$$

2
16. Solve the second order system

$$
x^{\prime \prime}=\left[\begin{array}{rr}
6 & 2 \\
-5 & -1
\end{array}\right] x .
$$

3 Hint: The system

$$
\begin{equation*}
x^{\prime \prime}=A x \tag{3.8}
\end{equation*}
$$

has a solution of the form $x=e^{\lambda t} \xi$, provided that λ^{2} is an eigenvalue of A, and ξ the corresponding eigenvector. If $\lambda_{1}>0$ and $\lambda_{2}>0$ are the eigenvalues of a 2×2 matrix A with the corresponding eigenvectors ξ_{1} and ξ_{2}, then the general solution of (3.8) is

$$
x=c_{1} e^{-\sqrt{\lambda_{1}} t} \xi_{1}+c_{2} e^{\sqrt{\lambda_{1}} t} \xi_{1}+c_{3} e^{-\sqrt{\lambda_{2}} t} \xi_{2}+c_{4} e^{\sqrt{\lambda_{2}} t} \xi_{2} .
$$

Answer. $x=c_{1} e^{-2 t}\left[\begin{array}{r}-1 \\ 1\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{r}-1 \\ 1\end{array}\right]+c_{3} e^{-t}\left[\begin{array}{r}-2 \\ 5\end{array}\right]+c_{4} e^{t}\left[\begin{array}{r}-2 \\ 5\end{array}\right]$.
17. (i) Solve the second order system

$$
x^{\prime \prime}=\left[\begin{array}{ll}
0 & 4 \\
4 & 0
\end{array}\right] x .
$$

Hint: If the matrix A has a negative eigenvalue $\lambda=-p^{2}$, corresponding to an eigenvector ξ, then $x=\cos p t \xi$ and $x=\sin p t \xi$ are solutions of the system (3.8).
Answer. $x=c_{1} e^{-2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{2} e^{2 t}\left[\begin{array}{l}1 \\ 1\end{array}\right]+c_{3} \cos 2 t\left[\begin{array}{r}1 \\ -1\end{array}\right]+c_{4} \sin 2 t\left[\begin{array}{r}1 \\ -1\end{array}\right]$.
(ii) Verify the answer by converting this system to a single equation:

$$
x_{1}^{\prime \prime \prime \prime}-16 x_{1}=0
$$

18. Solve the non-homogeneous system

$$
x^{\prime}=\left[\begin{array}{rr}
0 & -1 \\
3 & 4
\end{array}\right] x+\left[\begin{array}{r}
e^{2 t} \\
-5 e^{2 t}
\end{array}\right] .
$$

Answer. $x(t)=e^{2 t}\left[\begin{array}{r}-3 \\ 7\end{array}\right]+c_{1} e^{t}\left[\begin{array}{r}-1 \\ 1\end{array}\right]+c_{2} e^{3 t}\left[\begin{array}{r}-1 \\ 3\end{array}\right]$.
19. Solve the non-homogeneous system

$$
x^{\prime}=\left[\begin{array}{rr}
1 & -1 \\
1 & 1
\end{array}\right] x+\left[\begin{array}{l}
1 \\
t
\end{array}\right], x(0)=\left[\begin{array}{l}
4 \\
1
\end{array}\right] .
$$

Hint: Look for a particular solution in the form $Y(t)=\left[\begin{array}{c}A t+B \\ C t+D\end{array}\right]$.
Answer. $x_{1}=-\frac{t}{2}+5 e^{t} \cos t-\frac{1}{2} e^{t} \sin t-1, x_{2}=\frac{1-t}{2}+\frac{1}{2} e^{t}(\cos t+10 \sin t)$.
II.

1. Show that all solutions of the system $x^{\prime}=\left[\begin{array}{rr}-a & b \\ -b & -a\end{array}\right] x$, with positive constants a and b, satisfy

$$
\lim _{t \rightarrow \infty} x_{1}(t)=0, \text { and } \lim _{t \rightarrow \infty} x_{2}(t)=0
$$

2. Write the equation (here b and c are constants, $y=y(t)$)

$$
y^{\prime \prime}+b y^{\prime}+c y=0
$$

as a system of two first order equations, by letting $x_{1}(t)=y(t), x_{2}(t)=$ $y^{\prime}(t)$. Compute the eigenvalues for the matrix of this system. Show that all solutions tend to zero, as $t \rightarrow \infty$, provided that b and c are positive constants.
3. Consider the system

$$
\begin{aligned}
& x_{1}^{\prime}=a x_{1}+b x_{2} \\
& x_{2}^{\prime}=c x_{1}+d x_{2},
\end{aligned}
$$

with given constants a, b, c and d. Assume that $a+d<0$ and $a d-b c>0$. Show that all solutions tend to zero, as $t \rightarrow \infty\left(x_{1}(t) \rightarrow 0\right.$, and $x_{2}(t) \rightarrow 0$, as $t \rightarrow \infty)$.

Hint: Show that the eigenvalues for the matrix of this system are either negative, or have negative real parts.
4. (i) Let A be a 3×3 constant matrix. Suppose that all solutions of $x^{\prime}=A x$ are bounded as $t \rightarrow+\infty$, and as $t \rightarrow-\infty$. Show that every solution is periodic, and there is a common period for all solutions.

Hint: One of the eigenvalues of A must be zero, and the other two purely imaginary.
(ii) Assume that a constant 3×3 matrix A is skew-symmetric, which means that $A^{T}=-A$. Show that one of the eigenvalues of A is zero, and the other two are purely imaginary.

Hint: Observe that $a_{j i}=-a_{i j}, a_{i i}=0$, and then calculate the characteristic polynomial.
5. Let $x(t)$ and $y(t)$ be two solutions of the system

$$
x^{\prime}=A x,
$$

with an $n \times n$ matrix A. Show that $5 x(t)$, and $x(t)+y(t)$ are also solutions. Show that the same is true for $c_{1} x(t)+c_{2} y(t)$, with any numbers c_{1} and c_{2}. Are the above conclusions true if the entries of A depend on t ?
6. (i) Suppose that $p+i q$ is an eigenvalue of A, and $\xi+i \eta$ is a corresponding eigenvector. Show that $p-i q$ is also an eigenvalue of A, and $\xi-i \eta$ is a corresponding eigenvector. (A is an $n \times n$ matrix with real entries.)
(ii) Show that ξ and η are linearly independent. (There is no complex number c, such that $\eta=c \xi$.)
Hint: Linear dependence of ξ and η would imply linear dependence of the eigenvectors $\xi+i \eta$ and $\xi-i \eta$.
(iii) Show that the formula (2.1) gives the general solution of the 2×2 system $x^{\prime}=A x$, so that we can choose c_{1} and c_{2}, with $x\left(t_{0}\right)=x_{0}$, for any initial condition.
Hint: Decompose x_{0} as a linear combination of ξ and η, and then find c_{1} and c_{2}.
7. Consider the following system with a non-constant matrix

$$
x^{\prime}=\left[\begin{array}{cc}
-1+\frac{3}{2} \cos ^{2} t & 1-\frac{3}{2} \cos t \sin t \\
-1-\frac{3}{2} \cos t \sin t & -1+\frac{3}{2} \sin ^{2} t
\end{array}\right] x .
$$

1 Show that the eigenvalues of the matrix are $-\frac{1}{4} \pm \frac{\sqrt{7}}{4} i$, yet it has an un2 bounded solution $x(t)=e^{\frac{t}{2}}\left[\begin{array}{r}-\cos t \\ \sin t\end{array}\right]$.
3 This example shows that for systems with variable coefficients

$$
x^{\prime}=A(t) x
$$

4 the assumption that the eigenvalues of $A(t)$ are either negative or have 5 negative real parts does not imply that all solutions tend to zero (not even 6 if $A(t)$ is a periodic matrix).
${ }_{7}$ Hint: To compute the eigenvalues, calculate the trace and the determinant 8 of $A(t)$.

9 III.
10

1. Let $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$. Show that

$$
e^{A t}=\left[\begin{array}{cc}
1 & t \\
0 & 1
\end{array}\right]
$$

11 2. Let $A=\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0\end{array}\right]$. Show that

$$
e^{A t}=\left[\begin{array}{lll}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
$$

12 3. Let $A=\left[\begin{array}{rrr}-3 & 1 & 0 \\ 0 & -3 & 1 \\ 0 & 0 & -3\end{array}\right]$. Show that

$$
e^{A t}=e^{-3 t}\left[\begin{array}{ccc}
1 & t & \frac{1}{2} t^{2} \\
0 & 1 & t \\
0 & 0 & 1
\end{array}\right]
$$

${ }^{13}$ 4. Let $A=\left[\begin{array}{rrr}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 2\end{array}\right]$. Show that

$$
e^{A t}=\left[\begin{array}{rrl}
\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & e^{2 t}
\end{array}\right]
$$

228CHAPTER 5. LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

1 5. Let $A=\left[\begin{array}{rrr}3 & -1 & 0 \\ 1 & 3 & 0 \\ 0 & 0 & 2\end{array}\right]$. Show that

$$
e^{A t}=\left[\begin{array}{rrl}
e^{3 t} \cos t & -e^{3 t} \sin t & 0 \\
e^{3 t} \sin t & e^{3 t} \cos t & 0 \\
0 & 0 & e^{2 t}
\end{array}\right]
$$

2 6. Let $A=\left[\begin{array}{rrr}0 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2\end{array}\right]$. Show that

$$
e^{A t}=\left[\begin{array}{rrl}
1 & -t & 0 \\
0 & 1 & 0 \\
0 & 0 & e^{-2 t}
\end{array}\right]
$$

${ }^{3}$ 7. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Show that

$$
e^{A t}=\left[\begin{array}{cc}
\cosh t & \sinh t \\
\sinh t & \cosh t
\end{array}\right]
$$

4 8. Consider

$$
J=\left[\begin{array}{rrrr}
-2 & 1 & 0 & 0 \\
0 & -2 & 1 & 0 \\
0 & 0 & -2 & 1 \\
0 & 0 & 0 & -2
\end{array}\right],
$$

5 a Jordan block. Show that

$$
e^{J t}=e^{-2 t}\left[\begin{array}{cccc}
1 & t & \frac{1}{2} t^{2} & \frac{1}{3!} t^{3} \\
0 & 1 & t & \frac{1}{2} t^{2} \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right]
$$

6 9. Show that the series for e^{A} converges for any diagonalizable matrix A.
7 Hint: If $A=S \Lambda S^{-1}$, then $e^{A}=S e^{\Lambda} S^{-1}$.
8 10. Show that for any square matrix A

$$
A e^{A t}=e^{A t} A
$$

9 Is it true that $A^{2} e^{A t}=e^{A t} A^{2}$?

$$
\begin{equation*}
a_{i j} \geq 0, \text { for all } i \neq j \tag{3.9}
\end{equation*}
$$

s Hint: For small $t, e^{A t} \approx I+A t$, so that if all entries of $e^{A t}$ are non-negative, then (3.9) holds. The same formula also shows that if (3.9) holds, then all entries of $e^{A t}$ are non-negative, if $t>0$ is small. To see that the same is true for all $t>0$, write

$$
e^{A t}=\left(e^{A \frac{t}{m}}\right)^{m}
$$

for any integer $m>0$, and observe that the product of two matrices with all entries non-negative has all entries non-negative.
16. Show that

$$
\left(e^{A}\right)^{T}=e^{A^{T}}
$$

17. (i) Let λ be an eigenvalue of a square matrix A, corresponding to an eigenvector x. Show that e^{A} has an eigenvalue e^{λ}, corresponding to the 7 same eigenvector x.

18
11. Show that for any square matrix A, and any constants t and s

$$
e^{A t} e^{A s}=e^{A s} e^{A t}=e^{A(t+s)}
$$

12. Two square matrices of the same size, A and B, are said to commute if $A B=B A$. Show that then

$$
e^{A} e^{B}=e^{A+B}
$$

13. Show that for any $n \times n$ matrix A

$$
\left(e^{A}\right)^{-1}=e^{-A}
$$

14. Show that for any positive integer m

$$
\left(e^{A}\right)^{m}=e^{m A}
$$

15. Let A be a square matrix. Show that all entries of $e^{A t}$ are non-negative for $t \geq 0$ if and only if
$\left(e^{A}\right)^{T}=e^{A^{T}}$.

Hint: If $A x=\lambda x$, then

$$
e^{A} x=\sum_{k=0}^{\infty} \frac{A^{k} x}{k!}=\sum_{k=0}^{\infty} \frac{\lambda^{k}}{k!} x=e^{\lambda} x
$$

(ii) Show that there is no 2×2 matrix A with real entries, such that

$$
e^{A}=\left[\begin{array}{rr}
-1 & 0 \\
0 & -2
\end{array}\right]
$$

(iii) Show that the determinant $\left|e^{A}\right|$ of the matrix e^{A} is positive, so that e^{A} is non-singular.

5.4 Floquet Theory and Massera's Theorem

Logs of Negative Numbers, and Logs of Matrices

We wish to give a meaning to the natural logarithm $\ln (-2)$. We regard -2 as a complex number $-2+0 i$. Writing it in the polar form $-2=2 e^{i \pi}=$ $2 e^{i(\pi+2 \pi m)}$, where m is any integer, suggests that

$$
\ln (-2)=\ln 2+i(\pi+2 \pi m), \quad m=0, \pm 1, \pm 2, \ldots
$$

If $z=r e^{i \theta} \neq 0$ is any complex number, we define

$$
\ln z=\ln r+i(\theta+2 \pi m), \quad m=0, \pm 1, \pm 2, \ldots
$$

Observe that $\ln z$ is a multi-valued function.
Given any non-singular square matrix C (so that the determinant $|C|=$ $\operatorname{det} C \neq 0$), it is known that one can find a square matrix B, such that $e^{B}=C$. It is natural to write: $B=\ln C$. For example,

$$
\ln \left[\begin{array}{rr}
\cos t & -\sin t \\
\sin t & \cos t
\end{array}\right]=\left[\begin{array}{rr}
0 & -t \\
t & 0
\end{array}\right]
$$

In case C is a diagonal matrix, just take the logs of the diagonal entries, to compute $\ln C$. If C is diagonalizable, so that $C=S \Lambda S^{-1}$, and the diagonal matrix Λ has non-zero entries, then $\ln C=S \ln \Lambda S^{-1}$. Observe that the entries of $\ln C$ are complex valued, and that $\ln C$ is not unique. For a general matrix C, one needs the Jordan normal form to compute $\ln C$, which is outside of the scope of this book.

Linear Dependence and Independence of Vectors

Given n-dimensional vectors $x_{1}, x_{2}, \ldots, x_{k}$, we play the following game: choose the numbers $c_{1}, c_{2}, \ldots, c_{k}$ so that

$$
\begin{equation*}
c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{k} x_{k}=0 \tag{4.1}
\end{equation*}
$$

There is an easy way to "win": take all $c_{i}=0$. We declare this way to be illegal (like off-side in soccer, or false start in football). If we can choose the constants so that at least one of them is not zero, and (4.1) holds, we call the vectors $x_{1}, x_{2}, \ldots, x_{k}$ linearly dependent. Otherwise, if the only way to make (4.1) hold is by "cheating", or by taking $c_{1}=c_{2}=\cdots=c_{k}=0$, then the vectors are called linearly independent. Assume that the vectors $x_{1}, x_{2}, \ldots, x_{k}$ are linearly dependent, and say $c_{1} \neq 0$. Then from (4.1)

$$
x_{1}=-\frac{c_{2}}{c_{1}} x_{2}-\cdots-\frac{c_{k}}{c_{1}} x_{k},
$$

so that one of the vectors is a linear combination of the others.
Recall that if the columns of $n \times n$ matrix A are linearly independent, then the determinant $\operatorname{det} A \neq 0$, and the inverse matrix A^{-1} exists. In such a case, the system

$$
\begin{equation*}
A x=b \tag{4.2}
\end{equation*}
$$

is solvable for any vector $b\left(x=A^{-1} b\right)$. In case $\operatorname{det} A=0$, the system (4.2) is solvable only for "lucky" b, which we describe next. Consider the system

$$
\begin{equation*}
A^{T} v=0 \tag{4.3}
\end{equation*}
$$

where A^{T} is the transpose matrix. In case $\operatorname{det} A=0$, the system (4.2) is solvable if and only if $(b, v)=0$, where v is any solution (4.3). (Observe that $\operatorname{det} A^{T}=\operatorname{det} A=0$, so that (4.3) has non-zero solutions.) This fact is known as the Fredholm alternative. Here $(b, v)=b^{T} v$ is the scalar (inner) product. (The book by G. Stang [32] has more details.)

Recall also that $(A x, y)=\left(x, A^{T} y\right)$ for any square matrix A, and vectors x and y.

The Fundamental Solution Matrix

We consider systems of the form (here $x=x(t)$ is an n-dimensional vector)

$$
\begin{equation*}
x^{\prime}=A(t) x \tag{4.4}
\end{equation*}
$$

where the $n \times n$ matrix $A(t)$ depends on t. Assume that the vectors $x_{1}(t), x_{2}(t), \ldots, x_{n}(t)$ are linearly independent (at all t) solutions of this system. We use these vectors as columns of the matrix

$$
X(t)=\left[x_{1}(t) x_{2}(t) \ldots x_{n}(t)\right]
$$

This $n \times n$ matrix $X(t)$ is called a fundamental solution matrix or a fundamental matrix, for short. If, moreover, $X(0)=I$ (the identity matrix),

1 we call $X(t)$ the normalized fundamental matrix. We claim that the general solution of (4.4) is

$$
x(t)=c_{1} x_{1}(t)+c_{2} x_{2}(t)+\cdots+c_{n} x_{n}(t)=X(t) c
$$

where c is the column vector $c=\left[c_{1} c_{2} \ldots c_{n}\right]^{T}$, and c_{i} 's are arbitrary constants. Indeed, if $y(t)$ is any solution of (4.4), we choose the vector c_{0}, so that $X(0) c_{0}=y(0)\left(\right.$ or $\left.c_{0}=X^{-1}(0) y(0)\right)$. Then the two solutions of (4.4), $X(t) c_{0}$ and $y(t)$, have the same initial values at $t=0$. By the uniqueness of solution theorem (see the Theorem 6.1.1 below), $y(t)=X(t) c_{0}$.

Let $Y(t)$ be another fundamental matrix $Y(t)=\left[y_{1}(t) y_{2}(t) \ldots y_{n}(t)\right]$. Its first column $y_{1}(t)$ is a solution of (4.4), and so $y_{1}(t)=X(t) d_{1}$, where d_{1} is a constant n-dimensional vector. Similarly, $y_{2}(t)=X(t) d_{2}$, and so on. Form an $n \times n$ matrix $D=\left[d_{1} d_{2} \ldots d_{n}\right]$, with constant entries. Then

$$
\begin{equation*}
Y(t)=X(t) D \tag{4.5}
\end{equation*}
$$

by the rules of matrix multiplication. Observe that the matrix D is nonsingular $(\operatorname{det}(Y(t))=\operatorname{det}(X(t)) \operatorname{det}(D)$, and $\operatorname{det}(Y(t)) \neq 0)$.

Observe that any fundamental matrix X satisfies the equation (4.4), so that

$$
\begin{equation*}
X^{\prime}=A(t) X \tag{4.6}
\end{equation*}
$$

Indeed, the first column on the left, which is x_{1}^{\prime}, is equal to the first column on the right, which is $A x_{1}$, etc.

We now develop the variation of parameters method for the non-homogeneous system

$$
\begin{equation*}
x^{\prime}=A(t) x+f(t) . \tag{4.7}
\end{equation*}
$$

Since $X(t) c$ is the general solution of the corresponding homogeneous system (4.4), the general solution of (4.7) has the form

$$
x(t)=X(t) c+Y(t)
$$

where $Y(t)$ is any particular solution of (4.7). We search for $Y(t)$ in the form $x=X(t) c(t)$, with the appropriate vector-function $c(t)$. Substituting this into (4.7), and using (4.6), we see that $c(t)$ must satisfy

$$
X(t) c^{\prime}(t)=f(t)
$$

so that $c(t)=\int_{t_{0}}^{t} X^{-1}(s) f(s) d s$, with arbitrary number t_{0}. It follows that the general solution of (4.7) is given by

$$
\begin{equation*}
x(t)=X(t) c+X(t) \int_{t_{0}}^{t} X^{-1}(s) f(s) d s \tag{4.8}
\end{equation*}
$$

$$
\begin{equation*}
x(t)=X(t) x(0)+X(t) \int_{0}^{t} X^{-1}(s) f(s) d s \tag{4.9}
\end{equation*}
$$

Periodic Systems

We now consider $n \times n$ systems with periodic coefficients

$$
\begin{equation*}
x^{\prime}=A(t) x, \quad \text { with } A(t+p)=A(t) . \tag{4.10}
\end{equation*}
$$

We assume that all entries of the $n \times n$ matrix $A(t)$ are functions of the period p. Any solution $x(t)$ of (4.10) satisfies this system at all times t, in particular at the time $t+p$, so that

$$
x^{\prime}(t+p)=A(t+p) x(t+p),
$$

which implies that

$$
x^{\prime}(t+p)=A(t) x(t+p) .
$$

We conclude that $x(t+p)$ is also a solution of (4.10). Let $X(t)$ be a fundamental matrix of (4.10), then so is $X(t+p)$, and by (4.5)

$$
\begin{equation*}
X(t+p)=X(t) D \tag{4.11}
\end{equation*}
$$

with some non-singular $n \times n$ matrix D, with constant entries. Let the matrix B be such that $e^{B p}=D$, so that $e^{-B p}=D^{-1}$, and $B=\frac{1}{p} \ln D$ (the entries of B are complex numbers, in general). Define the matrix $P(t)=X(t) e^{-B t}$. Then $X(t)=P(t) e^{B t}$. We claim that $P(t+p)=P(t)$. Indeed, using (4.11),

$$
P(t+p)=X(t+p) e^{-B(t+p)}=X(t) D E^{-B p} e^{B t}=X(t) e^{B t}=P(t)
$$

We have just derived the following Floquet Theorem.

Theorem 5.4.1 Any fundamental matrix of the system (4.10) is of the form $X(t)=P(t) e^{B t}$, where the matrix $P(t)$ is p-periodic, and B is a constant matrix. (The entries of B and $P(t)$ are complex numbers, in general.)

The eigenvalues (possibly complex) of the matrix $D=e^{B p}$ are called the Floquet multipliers. Assume that ρ_{i} is a Floquet multiplier, and c_{i} is a corresponding eigenvector of $e^{B p}$. Consider $x(t)=X(t) c_{i}=P(t) e^{B t} c_{i}$, a solution of our system (4.10). It satisfies

$$
x(t+p)=P(t+p) e^{B(t+p)} c_{i}=P(t) e^{B t} e^{B p} c_{i}=\rho_{i} P(t) e^{B t} c_{i}=\rho_{i} x(t)
$$

so that

$$
\begin{equation*}
x(t+p)=\rho_{i} x(t) . \tag{4.12}
\end{equation*}
$$

In particular, the system (4.10) has a periodic solution (satisfying $x(t+p)=$ $x(t)$), exactly when one of the Floquet multipliers is equal to 1 . (If one of the Floquet multipliers is equal to -1 , then the system (4.10) has a solution of the period $2 p$.)

The general solution of the periodic system (4.10) is

$$
\begin{equation*}
x(t)=P(t) e^{B t} c \tag{4.13}
\end{equation*}
$$

The matrix $P(t)$ is periodic, and therefore it is bounded. We see that $x(t) \rightarrow 0$, as $t \rightarrow \infty$, exactly when the eigenvalues of B are either negative or have negative real parts. The eigenvalues λ_{i} 's of B are called the characteristic exponents. The Floquet multipliers ρ_{i} 's are the eigenvalues of $e^{B p}$, so that $\rho_{i}=e^{\lambda_{i} p}$, or $\lambda_{i}=\frac{1}{p} \ln \rho_{i}$. It follows that if the (complex) modulus of all Floquet multipliers is <1, then all characteristic exponents λ_{i} are either negative or have negative real parts, and then all solutions of the system (4.10) tend to zero, as $t \rightarrow \infty$. On the other hand, if some Floquet multiplier ρ_{i} has complex modulus greater than one, then iterating (4.12) gives $x(t+n p)=\rho_{i}^{n} x(t)$, for any integer n, concluding that $x(t)$ is an unbounded solution of the system (4.10).

Returning to the formula (4.13), denote $y(t)=e^{B t} c$. Then

$$
\begin{equation*}
y^{\prime}=B y \tag{4.14}
\end{equation*}
$$

It follows that the change of variables $x(t) \rightarrow y(t)$, given by

$$
x=P(t) y,
$$

transforms the periodic system (4.10) into the system (4.14) with constant coefficients.

In case $X(t)$ is the normalized fundamental matrix, $D=X(p)$ by (4.11), so that

$$
X(t+p)=X(t) X(p),
$$

and the matrix $X(p)$ is called the monodromy matrix.

Mathieu's and Hill's equations

Mathieu's equation for $y=y(t)$ has the form

$$
\begin{equation*}
y^{\prime \prime}+(\delta+\epsilon \cos 2 t) y=0 \tag{4.15}
\end{equation*}
$$

depending on two constant parameters $\delta>0$ and ϵ. If $\epsilon=0$, one obtains a harmonic oscillator which models small vibrations of pendulum attached to the ceiling (discussed in Chapter 2). If the support of the pendulum (or the ceiling itself) moves periodically in the vertical direction, one is led to Mathieu's equation (4.15). We shall discuss a more general Hill's equation

$$
\begin{equation*}
y^{\prime \prime}+a(t) y=0 \tag{4.16}
\end{equation*}
$$

with a given p-periodic function $a(t)$, so that $a(t+p)=a(t)$ for all t. For Mathieu's equation, $p=\pi$.

Let $y_{1}(t)$ be the solution of (4.16), satisfying the initial conditions $y(0)=$ 1 and $y^{\prime}(0)=0$, and let $y_{2}(t)$ be the solution of (4.16), with $y(0)=0$ and $y^{\prime}(0)=1$, the normalized solutions. Letting $x_{1}(t)=y(t)$, and $x_{2}(t)=y^{\prime}(t)$, one converts Hill's equation (4.16) into a system

$$
\begin{equation*}
x^{\prime}=A(t) x, \tag{4.17}
\end{equation*}
$$

with $x(t)=\left[\begin{array}{l}x_{1}(t) \\ x_{2}(t)\end{array}\right]$, and $A(t)=\left[\begin{array}{cc}0 & 1 \\ -a(t) & 0\end{array}\right]$. Since $A(t+p)=A(t)$, the Floquet theory applies. The matrix $X(t)=\left[\begin{array}{cc}y_{1}(t) & y_{2}(t) \\ y_{1}^{\prime}(t) & y_{2}^{\prime}(t)\end{array}\right]$ gives the normalized fundamental solution matrix of (4.17), and so the Floquet multipliers are the eigenvalues ρ_{1} and ρ_{2} of the monodromy matrix $D=X(p)$. The sum of the eigenvalues, $\rho_{1}+\rho_{2}=\operatorname{tr} X(p)=y_{1}(p)+y_{2}^{\prime}(p) \equiv \beta$, a quantity which is easily computed numerically. Since $\operatorname{tr} A(t)=0$, it follows by Liouville's formula (presented in Problems) that

$$
\begin{equation*}
\rho_{1} \rho_{2}=|X(p)|=|X(0)|=|I|=1 . \tag{4.18}
\end{equation*}
$$

It follows that ρ_{1} and ρ_{2} are roots of the quadratic equation

$$
\rho^{2}-\beta \rho+1=0
$$

which are $\rho=\frac{\beta \pm \sqrt{\beta^{2}-4}}{2}$.
Case 1. Assume that $|\beta|>2$. The Floquet multipliers are ρ_{1} and ρ_{2} real and distinct, and by (4.18), one of them is greater than 1 in absolute value. By the Floquet theory, the system (4.17), and hence Hill's equation has unbounded solutions. One says that Hill's equation is unstable in this case.

Case 2. Assume that $|\beta|<2$. The Floquet multipliers ρ_{1} and ρ_{2} are complex and distinct, and by (4.18), both have complex modulus equal to one, $\left|\rho_{1}\right|=\left|\rho_{2}\right|=1$. Since $\rho_{2} \neq \rho_{1}$, one can diagonalize $X(p)$:

$$
X(p)=S\left[\begin{array}{cc}
\rho_{1} & 0 \\
0 & \rho_{2}
\end{array}\right] S^{-1}
$$

where the entries of S and S^{-1} are complex constants. Any number t can be written in the form $t=t_{0}+n p$, with some integer n and $t_{0} \in[0, p)$. Then iterating the relation $X\left(t_{0}+p\right)=X\left(t_{0}\right) X(p)$, obtain

$$
X(t)=X\left(t_{0}+n p\right)=X\left(t_{0}\right) X(p)^{n}=X\left(t_{0}\right) S\left[\begin{array}{cc}
\rho_{1}^{n} & 0 \\
0 & \rho_{2}^{n}
\end{array}\right] S^{-1}
$$

Clearly, $\left|\rho_{1}^{n}\right|=\left|\rho_{2}^{n}\right|=1$, for any n. It follows that the fundamental matrix $X(t)$ has bounded entries for all t, and then all solutions of the system (4.17) (which are given by $x(t)=X(t) c)$ are bounded. One says that Hill's equation is stable in this case.
Case 3. $\beta=2$. Then $\rho_{1}=\rho_{2}=1$. The system (4.17) has a p-periodic solution. (The other solution in the fundamental set is known to be unbounded.)

Case 4. $\beta=-2$. Then $\rho_{1}=\rho_{2}=-1$. The system (4.17) has a solution of period $2 p$. (The other solution in the fundamental set is known to be unbounded.)

Massera's Theorem

We now consider non-homogeneous periodic systems

$$
\begin{equation*}
x^{\prime}=A(t) x+f(t), \quad \text { with } A(t+p)=A(t), \quad f(t+p)=f(t) \tag{4.19}
\end{equation*}
$$

where $f(t)$ is a given p-periodic vector function. The following spectacular theorem is due to the Uruguayan mathematician J.L. Massera (published in 1950).

Theorem 5.4.2 Assume that the system (4.19) has a bounded solution, for $t \geq 0$. Then the system (4.19) has a p-periodic solution.

Observe that this theorem provides a strong conclusion, with the minimum of assumptions.
Proof: Let $z(t)$ be a bounded solution, whose existence is assumed in the statement of the theorem, and let $X(t)$ be the normalized fundamental matrix of $x^{\prime}=A(t) x$, so that by (4.9)

$$
z(t)=X(t) z(0)+X(t) \int_{0}^{t} X^{-1}(s) f(s) d s
$$

In particular,

$$
z(p)=X(p) z(0)+b
$$

where we denoted $b=X(p) \int_{0}^{p} X^{-1}(s) f(s) d s$. By the periodicity of our system, $z(t+p)$ is also a solution of (4.19), which is equal to $z(p)$ at $t=0$. Therefore, using (4.9) again,

$$
z(t+p)=X(t) z(p)+X(t) \int_{0}^{t} X^{-1}(s) f(s) d s
$$

15 Then
$z(2 p)=X(p) z(p)+b=X(p)(X(p) z(0)+b)+b=X^{2}(p) z(0)+X(p) b+b$.
16 By induction, for any integer $m>0$,

$$
\begin{equation*}
z(m p)=X^{m}(p) z(0)+\sum_{k=0}^{m-1} X^{k}(p) b \tag{4.20}
\end{equation*}
$$

${ }_{17}$ For any solution of (4.19),

$$
x(t)=X(t) x(0)+X(t) \int_{0}^{t} X^{-1}(s) f(s) d s
$$

We obtain a p-periodic solution, with $x(p)=x(0)$, provided that the initial vector $x(0)$ satisfies

$$
\begin{equation*}
(I-X(p)) x(0)=b, \tag{4.21}
\end{equation*}
$$

where, as before, $b=X(p) \int_{0}^{p} X^{-1}(s) f(s) d s$.
Assume, contrary to what we want to prove, that the system (4.19) has no p-periodic solutions. Then the system (4.21) has no solutions. This implies that $\operatorname{det}(I-X(p))=0$, and then $\operatorname{det}(I-X(p))^{T}=\operatorname{det}(I-X(p))=0$. It follows that the system

$$
\begin{equation*}
(I-X(p))^{T} v=0 \tag{4.22}
\end{equation*}
$$

has non-trivial solutions, and, by the Fredholm alternative, we can find a non-trivial solution v_{0} of (4.22), which satisfies

$$
\begin{equation*}
\left(b, v_{0}\right) \neq 0 . \tag{4.23}
\end{equation*}
$$

(Otherwise, the system (4.21) would have solutions.) From (4.22), $v_{0}=$ $X(p)^{T} v_{0}$, then $X(p)^{T} v_{0}=X^{2}(p)^{T} v_{0}$, which gives $v_{0}=X^{2}(p)^{T} v_{0}$, and inductively we get

$$
\begin{equation*}
v_{0}=X^{k}(p)^{T} v_{0}, \text { for all positive integers } k \tag{4.24}
\end{equation*}
$$

$$
\begin{equation*}
f(t+p, x)=f(t, x), \quad \text { for all } t \text { and } x . \tag{4.26}
\end{equation*}
$$

Theorem 5.4.3 In addition to (4.26), assume that all solutions of (4.25) continue for all $t>0$, and one of the solutions, $x_{0}(t)$, is bounded for all $t>0$ (so that $\left|x_{0}(t)\right|<M$ for some $M>0$, and all $t>0$). Then (4.25) has a p-periodic solution.

For a proof, and an interesting historical discussion, see P. Murthy [20].

5.5 Solutions of Planar Systems Near the Origin

We now describe the solution curves in the $x_{1} x_{2}$-plane, near the origin $(0,0)$, of the system

$$
\begin{equation*}
x^{\prime}=A x, \tag{5.1}
\end{equation*}
$$

with a constant 2×2 matrix $A=\left[\begin{array}{cc}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$, and $x=\left[\begin{array}{c}x_{1} \\ x_{2}\end{array}\right]$.
If the eigenvalues of A are real and distinct, $\lambda_{1} \neq \lambda_{2}$, with the corresponding eigenvectors ξ_{1} and ξ_{2}, we know that the general solution is

$$
x(t)=c_{1} e^{\lambda_{1} t} \xi_{1}+c_{2} e^{\lambda_{2} t} \xi_{2} .
$$

We study the behavior of solutions as $t \rightarrow \pm \infty$, and distinguish between the following cases.
(i) Both eigenvalues are negative, $\lambda_{1}<\lambda_{2}<0$. The values of c_{1} and c_{2} are determined by the initial conditions. If $c_{2}=0$, then $x(t)=c_{1} e^{\lambda_{1} t} \xi_{1}$ tends to the origin $(0,0)$ as $t \rightarrow \infty$, along the vector ξ_{1} (or $-\xi_{1}$). If $c_{2} \neq 0$, then

$$
x(t) \approx c_{2} e^{\lambda_{2} t} \xi_{2}, \quad \text { for large } t>0
$$

The solution curves $\left(x_{1}(t), x_{2}(t)\right)$ tend to the origin $(0,0)$ as $t \rightarrow \infty$, and they are tangent to the vector ξ_{2}. The origin is called a stable node.

(ii) Both eigenvalues are positive, $\lambda_{1}>\lambda_{2}>0$. If $c_{2}=0$, then $x(t)=$ $c_{1} e^{\lambda_{1} t} \xi_{1}$ tends to the origin $(0,0)$ as $t \rightarrow-\infty$, along the vector ξ_{1} (or $-\xi_{1}$). So that solutions emerge from the origin along the vectors $\pm \xi_{1}$. If $c_{2} \neq 0$, then

$$
x(t) \approx c_{2} e^{\lambda_{2} t} \xi_{2}, \quad \text { as } t \rightarrow-\infty
$$

1 The solution curves $\left(x_{1}(t), x_{2}(t)\right)$ emerge from the origin $(0,0)$, and they are 2 tangent to the vector ξ_{2}. The origin is called an unstable node.
(iii) The eigenvalues have different sign, $\lambda_{1}>0>\lambda_{2}$. In case the initial point lies along the vector ξ_{2} (so that $c_{1}=0$), the solution curve $\left(x_{1}(t), x_{2}(t)\right.$) tends to the origin $(0,0)$, as $t \rightarrow \infty$. All other solutions (when $c_{1} \neq 0$) tend to infinity, and they are tangent to the vector ξ_{1}, as $t \rightarrow \infty$. The origin is called a saddle. For example, if $A=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$, we have $\lambda_{1}=1, \lambda_{2}=-1$, ${ }_{8}$ and $x_{1}=c_{1} e^{t}, x_{2}=c_{2} e^{-t}$. Express: $x_{2}=c_{2} \frac{1}{e^{t}}=c_{2} \frac{1}{x_{1} / c_{1}}=\frac{c_{1} c_{2}}{x_{1}}$. Denoting $c=c_{1} c_{2}$, we see that solutions are the hyperbolas $x_{2}=\frac{c}{x_{1}}$, which form a

Center

Saddle

Turning to the case of complex eigenvalues, we begin with a special matrix $B=\left[\begin{array}{cc}p & q \\ -q & p\end{array}\right]$, with the eigenvalues $p \pm i q$, and consider the system

$$
\begin{equation*}
y^{\prime}=B y \tag{5.2}
\end{equation*}
$$

14 Its solutions are

$$
y(t)=e^{B t}\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=e^{p t}\left[\begin{array}{cc}
\cos q t & \sin q t \\
-\sin q t & \cos q t
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right] .
$$

1

If $p=0$, then any initial vector $\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$ is rotated clockwise around the origin (infinitely many times, as $t \rightarrow \infty$). We say that the origin is a center. If $p<0$, the solutions spiral into the origin. The origin is called a stable spiral. If $p>0$, we have an unstable spiral.

Assume now that A is a 2×2 matrix with complex eigenvalues $p \pm i q$, $q \neq 0$. Let $\xi=u+i v$ be an eigenvector corresponding to $p+i q$, where u and v are real vectors. We have $A(u+i v)=(p+i q)(u+i v)=p u-q v+i(p v+q u)$, and separating the real and imaginary parts

$$
\begin{equation*}
A u=p u-q v, \text { and } A v=q u+p v . \tag{5.3}
\end{equation*}
$$

We form a 2×2 matrix $P=\left[\begin{array}{ll}u & v\end{array}\right]$, which has the vectors u and v as its columns. Then, using (5.3)

$$
A P=[A u A v]=[p u-q v q u+p v]=\left[\begin{array}{ll}
u v
\end{array}\right]\left[\begin{array}{cc}
p & q \\
-q & p
\end{array}\right]=P B,
$$

where B is the special matrix considered above. We now make a change of variables $x=P y$, transforming (5.1) to

$$
P y^{\prime}=A P y=P B y,
$$

and then to the system (5.2), that we have analyzed above (P^{-1}, the inverse of P exists, because the vectors u and v are linearly independent, which is justified in the exercises). We conclude that the origin is a center if $p=0$, a stable spiral if $p<0$, and an unstable spiral if $p>0$. If the determinant $|P|>0$, the motion on these curves is clockwise, and in case $|P|<0$, the motion is counterclockwise. (Recall that the solution curves of $y^{\prime}=B y$ move clockwise.)

Stable spiral

Unstable spiral

One often denotes the unknown functions by $x(t)$ and $y(t)$. Then the system (5.1) takes the form

$$
\begin{aligned}
& \frac{d x}{d t}=a_{11} x+a_{12} y \\
& \frac{d y}{d t}=a_{21} x+a_{22} y .
\end{aligned}
$$

Dividing the second equation by the first, we can write this system as a single equation

$$
\frac{d y}{d x}=\frac{a_{21} x+a_{22} y}{a_{11} x+a_{12} y},
$$

although one can no longer distinguish the direction along the integral curves.

5.5.1 Linearization and the Hartman-Grobman Theorem

We now briefly discuss nonlinear planar systems. Chapter 6 will be entirely devoted to nonlinear systems.

Suppose that a nonlinear system (for $x=x(t)$ and $y=y(t)$)

$$
\begin{gather*}
x^{\prime}=f(x, y) \tag{5.4}\\
y^{\prime}=g(x, y),
\end{gather*}
$$

11 with differentiable functions $f(x, y)$ and $g(x, y)$, has a rest point $\left(x_{0}, y_{0}\right)$,

$$
\begin{align*}
u^{\prime} & =f_{x}\left(x_{0}, y_{0}\right) u+f_{y}\left(x_{0}, y_{0}\right) v \tag{5.5}\\
v^{\prime} & =g_{x}\left(x_{0}, y_{0}\right) u+g_{y}\left(x_{0}, y_{0}\right) v
\end{align*}
$$

16 This approximation is valid for (u, v) close to $(0,0)$, which corresponds to ${ }_{17}(x, y)$ being near $\left(x_{0}, y_{0}\right)$. One calls (5.5) the linearized system. Its matrix

$$
A=\left[\begin{array}{ll}
f_{x}\left(x_{0}, y_{0}\right) & f_{y}\left(x_{0}, y_{0}\right) \\
g_{x}\left(x_{0}, y_{0}\right) & g_{y}\left(x_{0}, y_{0}\right)
\end{array}\right]
$$

is called the Jacobian matrix. We analyzed the behavior of linear systems near the rest point $(0,0)$ in the preceding section. The natural question is whether the picture near $(0,0)$ for the linearized system (5.4) remains similar for the nonlinear system (5.4) near $\left(x_{0}, y_{0}\right)$. The Hartman-Grobman theorem says that this is the case if the Jacobian matrix A does not have purely imaginary or zero eigenvalues. So that if the linearized system has a stable or unstable node, or a stable or unstable spiral, or a saddle at $(0,0)$, the picture remains similar for the nonlinear system near $\left(x_{0}, y_{0}\right)$. On the other hand, in case of a center, the picture may be different.

The Hartman-Grobman theorem also holds for $n \times n$ matrices, and the rest point which does not have purely imaginary or zero eigenvalues is called hyperbolic. For the proof, and the precise statement, see the book of M.W. Hirsh and S. Smale [13].
Example 1 The system

$$
\begin{gather*}
x^{\prime}=-y-x\left(x^{2}+y^{2}\right) \tag{5.6}\\
y^{\prime}=x-y\left(x^{2}+y^{2}\right)
\end{gather*}
$$

has a unique rest point at $x_{0}=0, y_{0}=0$. Indeed, to find the rest points we solve

$$
\begin{aligned}
& -y-x\left(x^{2}+y^{2}\right)=0 \\
& x-y\left(x^{2}+y^{2}\right)=0
\end{aligned}
$$

Multiplying the first equation by x, the second one by y, and adding the results gives

$$
-\left(x^{2}+y^{2}\right)^{2}=0
$$

or $x=y=0$. The linearized system at the rest point $(0,0)$,

$$
\begin{align*}
u^{\prime} & =-v \tag{5.7}\\
v^{\prime} & =u,
\end{align*}
$$

has a center at $(0,0)$, and its trajectories are circles around $(0,0)$. The Hartman-Grobman theorem does not apply. It turns out that the trajectories of (5.6) spiral into $(0,0)$ (so that $(0,0)$ is a stable spiral). Indeed, multiplying the first equation of (5.6) by x, the second one by y, adding the results, and calling $\rho=x^{2}+y^{2}$, we see that $\frac{1}{2} \rho^{\prime}=-\rho^{2}$. This gives $\rho(t)=\frac{1}{2 t+c} \rightarrow 0$, as $t \rightarrow \infty$.

1 Example 2 The system

$$
\begin{gather*}
x^{\prime}=-y+x y^{2} \tag{5.8}\\
y^{\prime}=x-x^{2} y
\end{gather*}
$$

2 has a rest point $(0,0)$. The linearized system at the rest point $(0,0)$ is again 3 given by (5.7), so that $(0,0)$ is a center. We claim that $(0,0)$ is a center 4 for the original system (5.8) too. Indeed, multiplying the first equation in (5.8) by x, the second one by y, and adding the results, we see that 6 $\frac{d}{d t}\left(x^{2}+y^{2}\right)=0$, or

$$
x^{2}+y^{2}=c,
$$

7 and all trajectories are circles around the origin.
8 The system (5.8) has another rest point: $(1,1)$. The Jacobian matrix at g $(1,1)$ is $\left[\begin{array}{rr}1 & 1 \\ -1 & -1\end{array}\right]$. It has zero as a double eigenvalue, and so it does not belong to any of the types of the rest points that we considered.

Example 3 The rest points of the system

$$
\begin{gather*}
x^{\prime}=2 x-y+2 \tag{5.9}\\
y^{\prime}=x y
\end{gather*}
$$

are $(0,2)$ and $(-1,0) .(x y=0$ implies that either $x=0$, or $y=0$.) The Jacobian matrix at $(0,2)$ is $\left[\begin{array}{rr}2 & -1 \\ 2 & 0\end{array}\right]$. Its eigenvalues are $1 \pm i$, so that the linearized system has an unstable spiral at $(0,0)$. By the Hartman-Grobman theorem, solutions of (5.9) spiral out of $(0,2)$. The Jacobian matrix at $(-1,0)$ is $\left[\begin{array}{ll}2 & -1 \\ 0 & -1\end{array}\right]$. Its eigenvalues are 2 and -1 . The linearized system has a saddle at $(0,0)$, and by the Hartman-Grobman theorem, the system (5.9) has a saddle at $(-1,0)$.

5.5.2 Phase Plane and the Prüfer Transformation

We saw that some 2×2 systems can be transformed into a single second order equation. Often one transforms the opposite way. For example, in the equation

$$
\begin{equation*}
y^{\prime \prime}(t)-a(t) y(t)=0 \tag{5.10}
\end{equation*}
$$

1 we let $y^{\prime}=v$, then $v^{\prime}=y^{\prime \prime}=a(t) y$, and we convert this equation into an equivalent system, with the variables (y, v) depending on t :

$$
\begin{equation*}
y^{\prime}=v \tag{5.11}
\end{equation*}
$$

3

4 One calls the (y, v) plane, or the $\left(y, y^{\prime}\right)$ plane, the phase plane. Solutions of 5 (5.11) define curves (called trajectories) in the (y, y^{\prime}) phase plane.

It is often useful to use polar coordinates in the phase plane, a technique known as the Prüfer transformation. We set

$$
\begin{align*}
y & =r \cos \theta \tag{5.12}\\
y^{\prime} & =r \sin \theta,
\end{align*}
$$

${ }_{8}$ with $r=r(t), \theta=\theta(t)$. Using that $\theta(t)=\arctan \frac{y^{\prime}}{y}$, compute

$$
\theta^{\prime}=\frac{1}{1+\left(\frac{y^{\prime}}{y}\right)^{2}} \frac{y^{\prime \prime} y-y^{\prime 2}}{y^{2}}=\frac{y^{\prime \prime} y-y^{\prime 2}}{y^{2}+{y^{\prime 2}}^{2}}=\frac{a(t) y^{2}-y^{\prime 2}}{y^{2}+y^{\prime 2}}
$$

Using (5.12), we have (observe that $y^{2}+y^{\prime 2}=r^{2}$)

$$
\begin{equation*}
\theta^{\prime}(t)=a(t) \cos ^{2} \theta(t)-\sin ^{2} \theta(t) . \tag{5.13}
\end{equation*}
$$

The point here is that this equation for $\theta(t)$ is decoupled from the other polar coordinate $r(t)$ (it does not contain $r(t)$).

To give an application, let us assume that some solution of the equation (5.10) satisfies $y(t)>0, y^{\prime}(t)<0$ for $t>t_{0} \geq 0$, and $\lim _{t \rightarrow \infty} y(t)=0$. Assume also that $a(t) \geq a_{1}>0$ for $t>t_{0}$. We shall show that $y(t)$ decays exponentially as $t \rightarrow \infty$.

The regions A and B

$$
\begin{equation*}
y^{\prime}=\tan (2 \pi-\epsilon) y=-\tan \epsilon y \tag{5.14}
\end{equation*}
$$

in the fourth quadrant of the phase plane (the dashed line in the picture). We claim that for ϵ small, the trajectory $\left(y(t), y^{\prime}(t)\right)$ cannot go above this line (or into the region B in the picture). Indeed, assuming the contrary, we can find

$$
\begin{equation*}
\theta(t) \in(2 \pi-\epsilon, 2 \pi) \tag{5.15}
\end{equation*}
$$

with ϵ small, so that $\cos \theta(t) \approx 1$ and $\sin \theta(t) \approx 0$. It follows from (5.13) that

$$
\begin{equation*}
\theta^{\prime}(t)>\frac{1}{2} a_{1} . \tag{5.16}
\end{equation*}
$$

The function $\theta(t)$ is increasing, which implies that (5.16) continues to hold, so long as (5.15) does. Then at some finite time t_{1}, we have $\theta\left(t_{1}\right)=2 \pi$, which corresponds to $y^{\prime}\left(t_{1}\right)=0$, contradicting our assumption that $y^{\prime}(t)<0$ for all t. It follows that the trajectory has to stay below the dashed line (or in the region A), so that

$$
y^{\prime}(t)<-\tan \epsilon y
$$

Integrating this inequality over $\left(t_{0}, t\right)$, we conclude

$$
y(t)<y\left(t_{0}\right) e^{-\tan \epsilon\left(t-t_{0}\right)},
$$

which implies the exponential decay.

5.5.3 Problems

I.

1. Consider a 2×2 system

$$
\begin{equation*}
x^{\prime}=A x \text {. } \tag{5.17}
\end{equation*}
$$

Assume that λ_{1} is repeated eigenvalue of $A\left(\lambda_{2}=\lambda_{1}\right)$, which has two linearly independent eigenvectors. Show that the solutions are $x(t)=e^{\lambda_{1} t} c$, which are straight lines through the origin in the $x_{1} x_{2}$-plane (c is an arbitrary vector). (If $\lambda_{1}<0$, solutions along all of these lines tend to the origin, as $t \rightarrow \infty$, and we say that the origin is a stable degenerate node. If $\lambda_{1}>0$, the origin is called an unstable degenerate node.)
2. Assume that λ_{1} is repeated eigenvalue of $A\left(\lambda_{2}=\lambda_{1}\right)$, which has only one linearly independent eigenvector ξ. If $\lambda_{1}<0$ show that all solutions of
(5.17) approach the origin in the $x_{1} x_{2}$-plane as $t \rightarrow \infty$, and they are tangent to ξ (again one says that the origin is a stable degenerate node). If $\lambda_{1}>0$ show that all solutions of (5.17) approach the origin in the $x_{1} x_{2}$-plane as $t \rightarrow-\infty$, and they are tangent to ξ (an unstable degenerate node).
Hint: Recall that using the generalized eigenvector η, the general solution of (5.17) is

$$
x(t)=c_{1} e^{\lambda_{1} t} \xi+c_{2}\left(t e^{\lambda_{1} t} \xi+e^{\lambda_{1} t} \eta\right) .
$$

7

$$
\begin{equation*}
(m x+n y) d x-(a x+b y) d y=0 \tag{5.19}
\end{equation*}
$$

Hint: Express $\frac{d y}{d x}$.
(ii) Assume that $(0,0)$ is a center for (5.18). Show that the equation (5.19) is exact, and solve it.
Hint: One needs $n=-a$ (and also that b and m have the opposite signs), in order for the matrix of (5.18) to have purely imaginary eigenvalues.
Answer. $m x^{2}+n x y-b y^{2}=c$, a family of closed curves around $(0,0)$.
(iii) Justify that the converse statement is not true.

Hint: For example, if one takes $a=1, b=1, m=3$, and $n=-1$, then the equation (5.19) is exact, but $(0,0)$ is a saddle.
II. Identify the rest point at the origin $(0,0)$. Sketch the integral curves near the origin, and indicate the direction in which they are traveled for increasing t.

1. $x^{\prime}=\left[\begin{array}{ll}3 & 2 \\ 2 & 3\end{array}\right] x . \quad$ Answer. Unstable node.
2. $x^{\prime}=\left[\begin{array}{rr}-2 & 1 \\ 4 & 1\end{array}\right] x . \quad$ Answer. Saddle.
3. $x^{\prime}=\left[\begin{array}{rr}0 & 1 \\ -4 & 0\end{array}\right] x . \quad$ Answer. Center.
4.

$$
\begin{gathered}
x^{\prime}=2 x+4 y \\
y^{\prime}=-5 x-7 y .
\end{gathered}
$$

Answer. Stable node. (Observe that the variables here are x and y, rather than x_{1} and x_{2}.)
5.

$$
\begin{gathered}
\frac{d x}{d t}=x-2 y \\
\frac{d y}{d t}=4 x-3 y
\end{gathered}
$$

Answer. Stable spiral.
6. $\frac{d y}{d x}=\frac{x-y}{4 x+y}$.

Hint: Convert to a system form for $x(t)$ and $y(t)$, with $A=\left[\begin{array}{rr}1 & -1 \\ 4 & 1\end{array}\right]$.
Answer. Unstable spiral.
7. $x^{\prime}=\left[\begin{array}{ll}-1 & 5 \\ -2 & 1\end{array}\right] x . \quad$ Answer. Center.
8. $\frac{d y}{d x}=\frac{x}{y} . \quad$ Answer. Saddle. Solution: $y^{2}-x^{2}=c$.
9. $x^{\prime}=\left[\begin{array}{rr}-3 & 0 \\ 0 & -3\end{array}\right] x$.

Answer. Stable degenerate node. Solution: $x_{1}(t)=c_{1} e^{-3 t}, x_{2}(t)=c_{2} e^{-3 t}$.
10. $\frac{d y}{d x}=\frac{y}{x} . \quad$ Answer. Degenerate node.
11. $x^{\prime}=\left[\begin{array}{ll}1 & 1 \\ \alpha & 1\end{array}\right] x, \alpha$ is a constant.

Answer. Saddle for $\alpha>1$, unstable node for $0<\alpha<1$, unstable degenerate node when $\alpha=0$, unstable spiral if $\alpha<0$.
III. Find all of the rest points for the following systems, and identify their type, for both the corresponding linearized system and the original system.

1
1.

$$
\begin{gathered}
x^{\prime}=2 x+y^{2}-1 \\
y^{\prime}=6 x-y^{2}+1 .
\end{gathered}
$$

2 Answer. $(0,1)$ is a saddle, $(0,-1)$ is an unstable spiral for both systems.
2.

$$
\begin{gathered}
x^{\prime}=y-2 \\
y^{\prime}=x^{2}-2 y .
\end{gathered}
$$

4 Answer. $(2,2)$ is a saddle, $(-2,2)$ is a stable spiral for both systems.
53.

$$
\begin{gathered}
x^{\prime}=y-x \\
y^{\prime}=(x-2)(y+1) .
\end{gathered}
$$

6 Answer. $(-1,-1)$ is a stable node, $(2,2)$ is a saddle for both systems.
4.

$$
\begin{aligned}
x^{\prime} & =-3 y+x\left(x^{2}+y^{2}\right) \\
y^{\prime} & =3 x+y\left(x^{2}+y^{2}\right) .
\end{aligned}
$$

A Answer. $(0,0)$ is a center for the linearized system, and an unstable spiral for the nonlinear system.
IV. 1. (i) Justify the formula for differentiation of a determinant

$$
\frac{d}{d t}\left|\begin{array}{cc}
a(t) & b(t) \\
c(t) & d(t)
\end{array}\right|=\left|\begin{array}{ll}
a^{\prime}(t) & b^{\prime}(t) \\
c(t) & d(t)
\end{array}\right|+\left|\begin{array}{cc}
a(t) & b(t) \\
c^{\prime}(t) & d^{\prime}(t)
\end{array}\right| .
$$

(ii) Consider a system

$$
\begin{equation*}
x^{\prime}=A(t) x \tag{5.20}
\end{equation*}
$$

with a 2×2 matrix $A=\left[a_{i j}(t)\right]$. Let $X(t)=\left[\begin{array}{ll}x_{11}(t) & x_{12}(t) \\ x_{21}(t) & x_{22}(t)\end{array}\right]$ be its fundamental matrix, so that the vectors $\left[\begin{array}{l}x_{11}(t) \\ x_{21}(t)\end{array}\right]$ and $\left[\begin{array}{l}x_{12}(t) \\ x_{22}(t)\end{array}\right]$ are two linearly independent solutions of (5.20). The determinant $W(t)=|X(t)|$ is called the Wronskian of (5.20). Show that for any number t_{0}

$$
\begin{equation*}
W(t)=W\left(t_{0}\right) e^{\int_{t_{0}}^{t} \operatorname{tr} A(s) d s}, \tag{5.21}
\end{equation*}
$$

16

$$
W^{\prime}=\left|\begin{array}{ll}
x_{11}^{\prime}(t) & x_{12}^{\prime}(t) \tag{5.22}\\
x_{21}(t) & x_{22}(t)
\end{array}\right|+\left|\begin{array}{ll}
x_{11}(t) & x_{12}(t) \\
x_{21}^{\prime}(t) & x_{22}^{\prime}(t)
\end{array}\right| .
$$

5 (iii) Show that the formula (5.21), called Liouville's formula, holds also in 6 case of $n \times n$ systems (5.20).
7 2. Consider the system

$$
\begin{equation*}
x^{\prime}=A x, \tag{5.23}
\end{equation*}
$$

8 where A is an $n \times n$ matrix with constant entries. Show that $e^{A t}$ is the 9 normalized fundamental solution matrix.
Hint: Recall that $x(t)=e^{A t} c$ gives the general solution. Choosing the first entry of the vector c to be one, and all other entries zero, conclude that the first column of $e^{A t}$ is a solution of (5.23).
3. (i) Consider the system

$$
\begin{equation*}
x^{\prime}=A(t) x \tag{5.24}
\end{equation*}
$$

where $A(t)$ is an $n \times n$ matrix with all entries continuous on $\left(t_{0}, \infty\right)$. Derive the following Ważewski inequality (for $t>t_{0}$)

$$
\left\|x\left(t_{0}\right)\right\| e^{\int_{t_{0}}^{t} \lambda(s) d s} \leq\|x(t)\| \leq\left\|x\left(t_{0}\right)\right\| e^{\int_{t_{0}}^{t} \Lambda(s) d s}
$$

where $\lambda(t)$ and $\Lambda(t)$ are the smallest and the largest eigenvalues of the matrix $\frac{1}{2}\left(A+A^{T}\right)$, and $\|x(t)\|$ is the length of the vector $x(t)$.
Hint: Observe that the matrix $\frac{1}{2}\left(A+A^{T}\right)$ is symmetric, so that all of its eigenvalues are real. Then integrate the inequality

$$
\frac{d}{d t}\|x(t)\|^{2}=\frac{d}{d t} x^{T} x=x^{T}\left(A+A^{T}\right) x \leq 2 \Lambda(t)\|x(t)\|^{2} .
$$

(ii) Let $A(t)=\left[\begin{array}{cc}-e^{t} & t^{3} \\ -t^{3} & -3\end{array}\right]$. Show that all solutions of (5.24) tend to zero, as $t \rightarrow \infty$.

5.6 Controllability and Observability

5.6.1 The Cayley-Hamilton Theorem

Recall that the eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ of an $n \times n$ matrix A are roots of the characteristic equation

$$
|A-\lambda I|=0
$$

The determinant $|A-\lambda I|$ is an n-th degree polynomial in λ, called the characteristic polynomial:

$$
p(\lambda)=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda+a_{n}
$$

with some coefficients $a_{0}, a_{1}, \ldots, a_{n}$.
Cayley-Hamilton Theorem Any square matrix A is a root of its own characteristic polynomial, so that

$$
p(A)=a_{0} A^{n}+a_{1} A^{n-1}+\cdots+a_{n-1} A+a_{n} I=O
$$

where O is the zero matrix.
Proof: We begin by assuming that the matrix A is diagonalizable, so that $A=S \operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) S^{-1}$. Here diag $\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ is the diagonal matrix with entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, and S is a non-singular matrix. Recall that $A^{k}=S \operatorname{diag}\left(\lambda_{1}^{k}, \lambda_{2}^{k}, \ldots, \lambda_{n}^{k}\right) S^{-1}$, for any integer k, and then

$$
p(A)=S \operatorname{diag}\left(p\left(\lambda_{1}\right), p\left(\lambda_{2}\right), \ldots, p\left(\lambda_{n}\right)\right) S^{-1}=S O S^{-1}=O .
$$

The proof for the general case can be given by a continuity argument, which we sketch next. An arbitrarily small perturbation of any matrix A produces a matrix B with distinct eigenvalues, and hence diagonalizable (over complex numbers). We have $p(B)=O$, by above, while the matrix $p(A)$ is arbitrarily close to $p(B)$, and therefore $p(A)=O$.

We shall use the following corollary of this theorem.
Proposition 5.6.1 (i) For any integer $s \geq n$, the matrix A^{s} is a linear combination of $I, A, A^{2}, \ldots, A^{n-1}$.
(ii) The matrix e^{A} is also a linear combination of $I, A, A^{2}, \ldots, A^{n-1}$.

Proof: Performing the long division of polynomials, write

$$
\lambda^{s}=p(\lambda) q(\lambda)+r(\lambda),
$$

where $q(\lambda)$ is a polynomial of degree $s-n$, and $r(\lambda)$ is a polynomial of degree $n-1, r(\lambda)=r_{0} \lambda^{n-1}+\cdots+r_{n-2} \lambda+r_{n-1}$, with some coefficients $r_{0}, \ldots, r_{n-2}, r_{n-1}$. Then, using the Cayley-Hamilton theorem

$$
A^{s}=p(A) q(A)+r(A)=r(A)=r_{0} A^{n-1}+\cdots+r_{n-2} A+r_{n-1} I,
$$

4
5

6

7

$$
\begin{equation*}
x^{\prime}=A x+B u(t) \tag{6.1}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{p} e^{A(p-t)} B \bar{u}(t) d t=x_{p}-e^{A p} x_{0} \tag{6.2}
\end{equation*}
$$

21
Here $x(t) \in R^{n}$ is the unknown vector function, with the components $x_{1}(t)$, $x_{2}(t), \ldots, x_{n}(t)$, while the vector function $u(t) \in R^{m}, m \geq 1$, is at our disposal, the control. The $n \times n$ matrix A and the $n \times m$ matrix B have constant coefficients, and are given. If we regard $u(t)$ as known, then solving the non-homogeneous system (6.1) with the initial condition $x(0)=x_{0}$ gives

$$
x(t)=e^{A t} x_{0}+\int_{0}^{t} e^{A(t-s)} B u(s) d s
$$

One says that the integral curve $x(t)$ is generated by the control vector $u(t)$, with $x(0)=x_{0}$.

Definition We say that the system (6.1) is controllable if, given any duration p and two arbitrary points $x_{0}, x_{p} \in R^{n}$, there exists a continuous vector function $\bar{u}(t)$ from $[0, p]$ to R^{m}, such that the integral curve $\bar{x}(t)$ generated by $\bar{u}(t)$ with $\bar{x}(0)=x_{0}$ satisfies $\bar{x}(p)=x_{p}$.

In other words, controllability means that

$$
x_{p}=e^{A p} x_{0}+\int_{0}^{p} e^{A(p-s)} B \bar{u}(s) d s
$$

for some $\bar{u}(t)$, or

We form Kalman's controllability matrix

$$
K=\left(B A B A^{2} B \ldots A^{n-1} B\right)
$$

Proof: Define the matrices

$$
C(t)=e^{A(p-t)} B, \text { and } G=\int_{0}^{p} C(t) C^{T}(t) d t
$$

where C^{T} is the transpose of C. The matrix function $C(t)$ is of type $n \times m$, while the constant matrix G is of type $n \times n$.

We claim that controllability of (6.1) is equivalent to G being invertible. Assume that G is invertible. We shall show that the vector

$$
\bar{u}(t)=B^{T} e^{A^{T}(p-t)} G^{-1}\left(x_{p}-e^{A p} x_{0}\right)
$$

gives the desired control. Indeed,

$$
\begin{gathered}
\int_{0}^{p} e^{A(p-t)} B \bar{u}(t) d t=\left(\int_{0}^{p} e^{A(p-t)} B B^{T} e^{A^{T}(p-t)} d t\right) G^{-1}\left(x_{p}-e^{A p} x_{0}\right) \\
=G G^{-1}\left(x_{p}-e^{A p} x_{0}\right)=x_{p}-e^{A p} x_{0}
\end{gathered}
$$

and the system (6.1) is controllable by (6.2).
Conversely, assume now that the system (6.1) is controllable. We wish to show that G is invertible. Assume, on the contrary, that G is not invertible. Then its rows are linearly dependent. Therefore there exists a non-zero column vector $v \in R^{n}$, such that

$$
\begin{equation*}
v^{T} G=0 \tag{6.3}
\end{equation*}
$$ then (6.3) is equivalent to $v_{1} g_{1}+v_{2} g_{2}+\cdots+v_{n} g_{n}=0$.) Then

$$
0=v^{T} G v=\int_{0}^{p} v^{T} C(t) C^{T}(t) v d t=\int_{0}^{p}\left\|v^{T} C(t)\right\|^{2} d t
$$

20
It follows that

$$
\begin{equation*}
v^{T} C(t)=0, \quad \text { for all } t \in[0, p] \tag{6.4}
\end{equation*}
$$

${ }_{1}$ Because the system (6.1) is controllable, for any x_{0} and x_{p} we can find $\bar{u}(t)$ so that (6.2) holds, or

$$
\int_{0}^{p} C(t) \bar{u}(t) d t=x_{p}-e^{A p} x_{0} .
$$

${ }_{3}$ Choose now $x_{0}=0$, and any x_{p} such that $v^{T} x_{p} \neq 0$. Using (6.4), we have

$$
0=\int_{0}^{p} v^{T} C(t) \bar{u}(t) d t=v^{T} x_{p} \neq 0
$$

a contradiction, proving that G is invertible.
We complete the proof by showing that G being invertible is equivalent to $\operatorname{rank} K=n$. Assume that G is not invertible. Then (6.4) holds for some vector $v \neq 0$, as we saw above. Write
(6.5) $v^{T} C(t)=v^{T} e^{A(p-t)} B=\sum_{i=0}^{\infty} \frac{v^{T} A^{i} B}{i!}(p-t)^{i}=0, \quad$ for all $t \in[0, p]$.

8 It follows that $v^{T} A^{i} B=0$ for all $i \geq 0$, which implies that $v^{T} K=0$. (Recall that $v^{T} K$ is a linear combination of the rows of K.) This means that the rows of K are linearly dependent, so that $\operatorname{rank} K<n$. By the logical contraposition, if $\operatorname{rank} K=n$, then G is invertible.

Conversely, assume that $\operatorname{rank} K<n$. Then we can find a non-zero vector $v \in R^{n}$, such that

$$
v^{T} K=0 .
$$

By the definition of K this implies that $v^{T} A^{i} B=0$ for $i=0,1, \ldots, n-1$. By the Proposition 5.6 .1 we conclude that $v^{T} A^{i} B=0$ for all $i \geq 0$. Then by (6.5), $v^{T} C(t)=0$. It follows that

$$
v^{T} G=\int_{0}^{p} v^{T} C(t) C^{T}(t) d t=0
$$ ible. Hence, if G is invertible, then $\operatorname{rank} K=n$.

Example 1 The system (we use (x, y) instead of $\left(x_{1}, x_{2}\right)$)

$$
\begin{gathered}
x^{\prime}=u(t) \\
y^{\prime}=x
\end{gathered}
$$

is controllable. Here $B=\left[\begin{array}{l}1 \\ 0\end{array}\right], A=\left[\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right], K=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \operatorname{rank} K=2$.
Writing this system as a single equation $y^{\prime \prime}=u(t)$, we see that the height $y(t)$ of an object, and its velocity $y^{\prime}(t)=x(t)$, can be jointly controlled with a jet pack (which controls the acceleration function $u(t)$).
Example 2 The system

$$
\begin{gathered}
x^{\prime}=u(t) \\
y^{\prime}=-u(t)
\end{gathered}
$$

is not controllable. Here $B=\left[\begin{array}{r}1 \\ -1\end{array}\right], A=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right], K=\left[\begin{array}{rr}1 & 0 \\ -1 & 0\end{array}\right]$, and $\operatorname{rank} K=1$.

Writing this system as $(x+y)^{\prime}=0$, we conclude that $x(t)+y(t)=$ constant, independently of the control $u(t)$. It follows that, for example, the point $(1,1)$ cannot be possibly be steered to $(2,-3)$, since $1+1 \neq 2-3$.

5.6.3 Observability

We now consider a control-observation process

$$
\begin{gather*}
x^{\prime}=A x+B u \tag{6.6}\\
v=C x .
\end{gather*}
$$

Here the first equation corresponds to using the control vector $u(t)$ to steer the solution $x(t)$, as in the preceding section, so that $x \in R^{n}, u \in R^{m}$, and we assume that the given matrices A of type $n \times n$ and B of type $n \times m$ have constant entries. The second equation involves a $q \times n$ observation matrix C with constant entries, and an observation vector $v(t) \in R^{q}$. (If C is the $n \times n$ identity matrix, then $v(t)$ is just $x(t)$.)
Definition We say that the system (6.6) is observable if for every time interval $\left(t_{0}, t_{1}\right)$ the knowledge of the input-output pair $(u(t), v(t))$ over $\left(t_{0}, t_{1}\right)$ uniquely determines the initial state $x\left(t_{0}\right)$.

Define the following $n \times n$ matrix function

$$
P(t)=\int_{t_{0}}^{t} e^{A^{T}\left(s-t_{0}\right)} C^{T} C e^{A\left(s-t_{0}\right)} d s
$$

Lemma 5.6.1 The system (6.6) is observable if and only if $P(t)$ is invertible for all $t>t_{0}$.

1 Proof: Assume that the system (6.6) is observable, but $P\left(t_{1}\right)$ is singular, at some $t_{1}>t_{0}$, contrary to the statement of the lemma. Then we can find a non-zero vector $x_{0} \in R^{n}$ satisfying $P\left(t_{1}\right) x_{0}=0$. It follows that

$$
0=x_{0}^{T} P\left(t_{1}\right) x_{0}=\int_{t_{0}}^{t_{1}}\left\|C e^{A\left(t-t_{0}\right)} x_{0}\right\|^{2} d s
$$

4 and then

$$
\begin{equation*}
C e^{A\left(t-t_{0}\right)} x_{0}=0, \quad \text { for all } t \in\left(t_{0}, t_{1}\right) . \tag{6.7}
\end{equation*}
$$

Set $\bar{u}(t) \equiv 0$. Then $\bar{x}(t)=e^{A\left(t-t_{0}\right)} \bar{x}\left(t_{0}\right)$ is the corresponding solution of 6 (6.6), for any initial vector $\bar{x}\left(t_{0}\right)$. We have, in view of (6.7),

$$
\bar{v}(t)=C e^{A\left(t-t_{0}\right)} \bar{x}\left(t_{0}\right)=C e^{A\left(t-t_{0}\right)}\left(\bar{x}\left(t_{0}\right)+\alpha x_{0}\right),
$$

for any constant α. Hence, the input-output pair $(0, \bar{v}(t))$ does not determine uniquely the initial state at t_{0}, contrary to the assumption of observability. It follows that $P(t)$ is invertible for all $t>t_{0}$.

Conversely, assume that $P\left(t_{1}\right)$ is invertible, at some $t_{1}>t_{0}$. Express

$$
v(t)=C e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+C \int_{t_{0}}^{t} e^{A(t-s)} B u(s) d s
$$

Multiplying both sides by $e^{A^{T}\left(t-t_{0}\right)} C^{T}$, and integrating over $\left(t_{0}, t_{1}\right)$ gives

$$
\begin{aligned}
& P\left(t_{1}\right) x\left(t_{0}\right)=\int_{t_{0}}^{t_{1}} e^{A^{T}\left(t-t_{0}\right)} C^{T} v(t) d t \\
& \quad-\int_{t_{0}}^{t_{1}} e^{A^{T}\left(t-t_{0}\right)} C^{T}\left(C \int_{t_{0}}^{t} e^{A(t-s)} B u(s) d s\right) d t .
\end{aligned}
$$

Since $P\left(t_{1}\right)$ is invertible, $x\left(t_{0}\right)$ is uniquely determined by the values of $u(t)$ and $v(t)$ over the interval $\left(t_{0}, t_{1}\right)$, and so (6.6) is observable.

We now consider Kalman's observability matrix, of type $q n \times n$,

$$
N=\left[\begin{array}{l}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right] .
$$

(Its first q rows are those of $C, C A$ gives the next q rows, and so on.) Clearly, $\operatorname{rank} N \leq n$.

Theorem 5.6.2 (R. Kalman) The system (6.6) is observable if and only if $\operatorname{rank} N=n$.

Proof: If the rank of N is less than n, its columns are linearly dependent, so that for some non-zero vector $a \in R^{n}$ we have $N a=0$, or equivalently

$$
C a=C A a=\cdots=C A^{n-1} a=0 .
$$

The Proposition 5.6.1 implies that

$$
C e^{A\left(s-t_{0}\right)} a=0, \text { for all } s>t_{0} .
$$

Multiplying by $e^{A^{T}\left(s-t_{0}\right)} C^{T}$, and integrating over $\left(t_{0}, t\right)$, we conclude that $P(t) a=0$ for all $t>t_{0}$, which implies that $P(t)$ is not invertible, and the system (6.6) is not observable by Lemma 5.6.1. By logical contraposition, if the system (6.6) is observable, then $\operatorname{rank} N=n$.

Conversely, assume that $\operatorname{rank} N=n$. Let $x\left(t_{0}\right)$ and $\hat{x}\left(t_{0}\right)$ be two initial states corresponding to the same input-output pair $(u(t), v(t))$. We wish to show that $x\left(t_{0}\right)=\hat{x}\left(t_{0}\right)$, so that the system (6.6) is observable. The difference $z(t) \equiv x(t)-\hat{x}(t)$ satisfies $z^{\prime}=A z$, and also $C z=C x(t)-C \hat{x}(t)=$ $v(t)-v(t)=0$, so that

$$
C e^{A\left(t-t_{0}\right)}\left[x\left(t_{0}\right)-\hat{x}\left(t_{0}\right)\right]=0, \text { for all } t \geq t_{0} .
$$

(Notice that $z(t)=e^{A\left(t-t_{0}\right)} z\left(t_{0}\right)$.) By taking the first $n-1$ derivatives, and setting $t=t_{0}$, we conclude

$$
C A^{k}\left[x\left(t_{0}\right)-\hat{x}\left(t_{0}\right)\right]=0, \quad k=0,1, \ldots, n-1,
$$

which is equivalent to $N\left[x\left(t_{0}\right)-\hat{x}\left(t_{0}\right)\right]=0$. Since N has full rank, its columns are linearly independent, and therefore $x\left(t_{0}\right)-\hat{x}\left(t_{0}\right)=0$.

Notice that observability does not depend on the matrix B.

Problems

1. Calculate the controllability matrix K, and determine if the system is controllable.

$$
\begin{gather*}
x_{1}^{\prime}=x_{1}+2 x_{2}+u(t) \tag{i}\\
x_{2}^{\prime}=2 x_{1}+x_{2}+u(t) .
\end{gather*}
$$

Answer. $K=\left[\begin{array}{ll}1 & 3 \\ 1 & 3\end{array}\right], \operatorname{rank} K=1$, not controllable.

$$
\begin{gathered}
x^{\prime}=x_{1}+2 x_{2}-2 u(t) \\
x_{2}^{\prime}=2 x_{1}+x_{2} .
\end{gathered}
$$

1 Answer. $K=\left[\begin{array}{rr}-2 & -2 \\ 0 & -4\end{array}\right], \operatorname{rank} K=2$, controllable.
2. Let $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 3\end{array}\right]$. Calculate e^{A}.

3 Hint: By the Proposition 5.6.1

$$
e^{A}=\alpha A+\beta I,
$$

4 for some constants α and β. The eigenvalues of A are -1 and 5 , which 5 implies that the eigenvalues of e^{A} are e^{-1} and e^{5}, while the eigenvalues of ${ }_{6} \alpha A+\beta I$ are $-\alpha+\beta$ and $5 \alpha+\beta$. It follows that

$$
\begin{gathered}
e^{-1}=-\alpha+\beta \\
e^{5}=5 \alpha+\beta
\end{gathered}
$$

7 Solve this system for α and β.
8 Answer. $\frac{1}{6}\left[\begin{array}{ll}2 e^{5}+4 e^{-1} & 2 e^{5}-2 e^{-1} \\ 4 e^{5}-4 e^{-1} & 4 e^{5}+2 e^{-1}\end{array}\right]$.

Chapter 6

Non-Linear Systems

3 We begin this chapter with applications to ecology of two species, including both competing species and predator-prey interactions, and to epidemiological modeling. Then we study some important general aspects of non-linear systems, including Lyapunov's stability and limit cycles. Finally, we include an in-depth presentation of periodic ecological models.

6.1 The Predator-Prey Interaction

In 1925, Vito Volterra's future son-in-law, biologist Umberto D'Ancona, told him of the following puzzle. During the World War I, when ocean fishing almost ceased, the ratio of predators (like sharks) to prey (like tuna) had increased. Why did sharks benefit more from the decreased fishing? (While the object of fishing is tuna, sharks are also caught in the nets.)

The Lotka-Volterra Equations

Let $x(t)$ and $y(t)$ give respectively the numbers of prey (tuna) and predators (sharks), as functions of time t. Let us assume that in the absence of sharks, tuna would obey the Malthusian model

$$
x^{\prime}(t)=a x(t),
$$

with some growth rate $a>0$. (It would grow exponentially, $x(t)=x(0) e^{a t}$.) In the absence of tuna, we assume that the number of sharks would decrease exponentially, and satisfy

$$
y^{\prime}(t)=-c y(t),
$$

with some $c>0$, because its other prey is less nourishing. Clearly, the presence of sharks will decrease the rate of growth of tuna, while tuna is good for sharks. The model is:

$$
\begin{gather*}
x^{\prime}(t)=a x(t)-b x(t) y(t) \tag{1.1}\\
y^{\prime}(t)=-c y(t)+d x(t) y(t),
\end{gather*}
$$

with two more given positive constants b and d. The $x(t) y(t)$ term is proportional to the number of encounters between sharks and tuna. These encounters decrease the growth rate of tuna, and increase the growth rate of sharks. Notice that both equations are nonlinear, and we are interested in solutions with $x(t)>0$, and $y(t)>0$. The system (1.1) represents the famous Lotka-Volterra model. Alfred J. Lotka was an American mathematician, who developed similar ideas at about the same time as V. Volterra.

A fascinating story of Vito Volterra's life and work, and of life in Italy in the first half of the 20-th Century, is told in a very nice book of Judith R. Goodstein [14].

Analysis of the Model

Remember the energy being constant for a vibrating spring? We have something similar here. It turns out that any solution $(x(t), y(t))$ of (1.1) satisfies

$$
\begin{equation*}
a \ln y(t)-b y(t)+c \ln x(t)-d x(t)=C=\text { constant }, \tag{1.2}
\end{equation*}
$$

for all time t. To justify that, let us introduce the function $F(x, y)=$ $a \ln y-b y+c \ln x-d x$. We wish to show that $F(x(t), y(t))=$ constant. Using the chain rule, and expressing the derivatives from the equations (1.1), we have

$$
\begin{gathered}
\frac{d}{d t} F(x(t), y(t))=F_{x} x^{\prime}+F_{y} y^{\prime}=c \frac{x^{\prime}(t)}{x(t)}-d x^{\prime}(t)+a \frac{y^{\prime}(t)}{y(t)}-b y^{\prime}(t) \\
=c(a-b y(t))-d(a x(t)-b x(t) y(t))+a(-c+d x(t))-b(-c y(t)+d x(t) y(t)) \\
=0,
\end{gathered}
$$

proving that $F(x(t), y(t))$ does not change with time t.
We assume that the initial numbers of both sharks and tuna are given:

$$
\begin{equation*}
x(0)=x_{0}>0, \quad y(0)=y_{0}>0 . \tag{1.3}
\end{equation*}
$$

The Lotka-Volterra system, together with the initial conditions (1.3), determines both populations $(x(t), y(t))$ at all time t, by the existence and

1 uniqueness Theorem 6.1.1 below. Letting $t=0$ in (1.2), we calculate the value of C

$$
\begin{equation*}
C_{0}=a \ln y_{0}-b y_{0}+c \ln x_{0}-d x_{0} . \tag{1.4}
\end{equation*}
$$

In the $x y$-plane, the solution $(x(t), y(t))$ defines a parametric curve, with time t being the parameter. The same curve is described by the implicit relation

$$
\begin{equation*}
a \ln y-b y+c \ln x-d x=C_{0} . \tag{1.5}
\end{equation*}
$$

This curve is just a level curve of the function $F(x, y)=a \ln y-b y+c \ln x-$ $d x$, introduced earlier $\left(F(x, y)=C_{0}\right)$. How does the graph of $z=F(x, y)$ look? Like a mountain with a single peak, because $F(x, y)$ is a sum of a function of $y, a \ln y-b y$, and of a function of $x, c \ln x-d x$, and both of these functions are concave (down). It is clear that all level lines of $F(x, y)$ are closed curves. Following these closed curves in Figure 6.1, one can see how dramatically the relative fortunes of sharks and tuna change, just as a result of their interaction, and not because of any external influences.

Figure 6.1: The integral curves of the Lotka-Volterra system

Properties of the Solutions

In Figure 6.1 we present a picture of three integral curves, computed by Mathematica in the case when $a=0.7, b=0.5, c=0.3$ and $d=0.2$. All solutions are closed curves, and there is a dot in the middle (corresponding to a rest point at $(1.5,1.4)$).

When $x_{0}=c / d$, and $y_{0}=a / b$, or when the starting point is $(c / d, a / b)$, we calculate from the Lotka-Volterra equations that $x^{\prime}(0)=0$, and $y^{\prime}(0)=$ 0 . The solution is then $x(t)=c / d$, and $y(t)=a / b$ for all t, as follows by the existence and uniqueness Theorem 6.1.1, which is reviewed at the end of this section. The point $(c / d, a / b)$ is called a rest point. (In the above example, the coordinates of the rest point were $x_{0}=c / d=1.5$, and $y_{0}=a / b=1.4$.) All other solutions $(x(t), y(t))$ are periodic, because they represent closed curves. For each trajectory, there is a number T, a period, so that $x(t+T)=x(t)$ and $y(t+T)=y(t)$. This period changes from curve to curve, and it is larger the further the solution curve is from the rest point. (This monotonicity property of the period was proved only around 1985 by Franz Rothe [26], and Jorg Waldvogel [34].) The motion along the integral curves is counterclockwise (at the points due east of the rest point, one has $x^{\prime}=0$, and $y^{\prime}>0$).

Divide the first of the Lotka-Volterra equations by the solution $x(t)$, and then integrate over its period T :

$$
\frac{x^{\prime}(t)}{x(t)}=a-b y(t)
$$

$$
\int_{0}^{T} \frac{x^{\prime}(t)}{x(t)} d t=a T-b \int_{0}^{T} y(t) d t
$$

But $\int_{0}^{T} \frac{x^{\prime}(t)}{x(t)} d t=\left.\ln x(t)\right|_{0} ^{T}=0$, because $x(T)=x(0)$, by periodicity. It follows that

$$
\frac{1}{T} \int_{0}^{T} y(t) d t=a / b
$$

Similarly, we derive

$$
\frac{1}{T} \int_{0}^{T} x(t) d t=c / d
$$

4 We have a remarkable fact: the averages of both $x(t)$ and $y(t)$ are the same for all solutions. Moreover, these averages are equal to the coordinates of the rest point.

The Effect of Fishing

Extensive fishing decreases the growth rate of both tuna and sharks. The new model is

$$
\begin{array}{r}
x^{\prime}(t)=(a-\alpha) x(t)-b x(t) y(t) \\
y^{\prime}(t)=-(c+\beta) y(t)+d x(t) y(t),
\end{array}
$$

where α and β are two more given positive constants, related to the intensity of fishing. (There are other ways to model fishing.) As before, we compute the average numbers of both tuna and sharks

$$
\frac{1}{T} \int_{0}^{T} x(t) d t=(c+\beta) / d, \quad \frac{1}{T} \int_{0}^{T} y(t) d t=(a-\alpha) / b
$$

We see an increase for the average number of tuna, and a decrease for the sharks, as a result of moderate amount of fishing (assuming that $\alpha<a$). Conversely, decreased fishing increases the average number of sharks, giving us an explanation of U. D'Ancona's data. This result is known as Volterra's principle. It applies also to insecticide treatments. If such a treatment destroys both the pests and their predators, it may be counter-productive, and produce an increase of the number of pests!

Biologists have questioned the validity of both the Lotka-Volterra model, and of the way we have accounted for fishing (perhaps, they cannot accept the idea of two simple differential equations ruling the oceans). In fact, it is more common to model fishing, using the system

$$
\begin{gathered}
x^{\prime}(t)=a x(t)-b x(t) y(t)-h_{1}(t) \\
y^{\prime}(t)=-c y(t)+d x(t) y(t)-h_{2}(t)
\end{gathered}
$$

with some given positive functions $h_{1}(t)$ and $h_{2}(t)$.

The Existence and Uniqueness Theorem for Systems
Similarly to the case of one equation, we can expect (under some mild conditions) that an initial value problem for a system of differential equations has a solution, and exactly one solution.

Theorem 6.1.1 Consider an initial value problem for the system

$$
\begin{aligned}
& x^{\prime}(t)=f(t, x(t), y(t)), \quad x\left(t_{0}\right)=x_{0} \\
& y^{\prime}(t)=g(t, x(t), y(t)), \quad y\left(t_{0}\right)=y_{0}
\end{aligned}
$$

with given numbers x_{0} and y_{0}. Assume that the functions $f(t, x, y), g(t, x, y)$, and their partial derivatives f_{x}, f_{y}, g_{x} and g_{y} are continuous in some threedimensional region containing the point $\left(t_{0}, x_{0}, y_{0}\right)$. Then this system has a unique solution $(x(t), y(t))$, defined on some interval $\left|t-t_{0}\right|<h$.

The statement is similar in case of n equations

$$
x_{i}^{\prime}=f_{i}\left(t, x_{1}, x_{2}, \ldots, x_{n}\right), x_{i}\left(t_{0}\right)=x_{i}^{0}, \quad i=1,2, \ldots, n
$$

where x_{i}^{0} are given numbers. If the functions f_{i}, and all of their partial derivatives $\frac{\partial f_{i}}{\partial x_{j}}$ are continuous in some $n+1$-dimensional region containing the initial point $\left(t_{0}, x_{1}^{0}, x_{2}^{0}, \ldots, x_{n}^{0}\right)$, then this system has a unique solution $\left(x_{1}(t), x_{2}(t), \ldots, x_{n}(t)\right)$, defined on some interval $\left|t-t_{0}\right|<h$.

One can find the proof in the book of D.W. Jordan and P. Smith [15].

6.2 Competing Species

Solution curves for the logistic model

$$
\begin{equation*}
x^{\prime}=g(x), \tag{2.2}
\end{equation*}
$$

with a differentiable function $g(x)$, if $g\left(x_{0}\right)=0$. It is stable (or attractive) if $g^{\prime}\left(x_{0}\right)<0$. The solutions of (2.2), with $x(0)$ near x_{0}, tend to x_{0} as $t \rightarrow \infty$. The rest point x_{0} is unstable (or repellent) if $g^{\prime}\left(x_{0}\right)>0$. The solutions of (2.2) move away from it. In case $g^{\prime}\left(x_{0}\right)=0$, further analysis is needed.

$$
\begin{equation*}
x(0)=\alpha, \quad y(0)=\beta \tag{2.4}
\end{equation*}
$$

The given initial numbers of the animals, $\alpha>0$ and $\beta>0$, determine the initial point (α, β) in the $x y$-plane. We claim that any solution of (2.3), (2.4) satisfies $x(t)>0$ and $y(t)>0$ for all $t>0$. Indeed, write the first equation in (2.3) as

$$
x^{\prime}=A(t) x, \quad \text { where } A(t)=a-x(t)-b y(t)
$$

Then $x(t)=\alpha e^{\int_{0}^{t} A(s) d s}>0$. One shows similarly that $y(t)>0$. We shall consider the system (2.3) only in the first quadrant of the $x y$-plane, where $x>0$ and $y>0$.

Similarly to the case of a single logistic equation, we look at the points where the right hand sides of (2.3) are zero:

$$
\begin{gather*}
a-x-b y=0 \tag{2.5}\\
d-c x-y=0
\end{gather*}
$$

These equations give us two straight lines, called the null-clines of the system (2.3). Both of these lines have negative slopes in the (x, y) plane. In the first quadrant these lines may intersect either once, or not at all, depending on
the values of a, b, c and d, and that will determine the long turn predictions. The point of intersection of null-clines is a rest point. It follows that there is at most one rest point in the first quadrant.

We shall denote by I the null-cline $a-x-b y=0$. Above this straight line, we have $a-x-b y<0$, which implies that $x^{\prime}(t)<0$, and the motion is to the left in the first quadrant. Below the null-cline I, the motion is to the right. We denote by II the null-cline $d-c x-y=0$. Above II, $y^{\prime}(t)<0$, and the motion is down, while below II the point $(x(t), y(t))$ moves up. (For example, if a point lies above both I and II, the motion is to the left and down, in the "southwest" direction. If a point is above I but below II, the motion is northwest, etc.) The system (2.3) has the trivial solution $(0,0)(x=0$, and $y=0)$, and two semi-trivial solutions $(a, 0)$ and $(0, d)$. The solution $(a, 0)$ corresponds to deer becoming extinct, while $(0, d)$ means there are no rabbits. Observe that the semi-trivial solution $(a, 0)$ is the x intercept of the null-cline I, while the second semi-trivial solution $(0, d)$ is the y-intercept of the null-cline II. The behavior of solutions, in the long turn, will depend on whether the null-clines intersect in the first quadrant or not. We consider the following cases.

Non-intersecting null-clines, with the semitrivial solutions circled
Case 1: The null-clines do not intersect (in the first quadrant). Assume first that the null-cline I lies above of II, so that $a / b>d$ and $a>d / c$. The null-clines divide the first quadrant into three regions. In the region 1 (above both clines), the motion is southwest, in the region 2 it is southeast, and in
the region 3 northeast. On the cline I, the motion is due south, and on the cline II due east. Regardless of the initial point (α, β), all trajectories tend to the semi-trivial solution $(a, 0)$, as $t \rightarrow \infty$. (The trajectories starting in the region 3 , will enter the region 2 , and then tend to $(a, 0)$. The trajectories starting in the region 2, will stay in that region and tend to $(a, 0)$. The trajectories starting in the region 1 , will tend to $(a, 0)$ by either staying in this region, or through the region 2.)

This case corresponds to the extinction of deer, and rabbits reaching their maximum sustainable number a.

In case the null cline II lies above of I, when $a / b<d$ and $a<d / c$, a similar analysis shows that all solutions tend to the semi-trivial solution $(0, d)$, as $t \rightarrow \infty$. So that the species, which has its null-cline on top, wins the competition, and drives the other one to extinction.

Case 2: The null-clines intersect (in the first quadrant). Their point of intersection $\left(\frac{a-b d}{1-b c}, \frac{d-a c}{1-b c}\right)$ is a solution of the system (2.5), a rest point. Its stability depends on which of the following sub-cases hold. Observe that the null clines intersect the x and y axes at four points, two of which correspond to the semi-trivial solutions.

Intersecting null-clines, with the semitrivial solutions on the inside (circled)
Sub-case (a): The semi-trivial solutions lie on the inside (relative to the other two points of intersection), so that $a<d / c$, and $d<a / b$. The null clines divide the first quadrant into four regions. In all four regions, the

2
motion is eventually toward the rest point. Solutions starting in the region 2, will always stay in this region. Indeed, on the boundary between the regions 1 and 2 , the motion is due south, and on the border between the regions 2 and 3 , the trajectories travel due east. So that solutions, starting in the region 2 , stay in this region, and they tend to the rest point $\left(\frac{a-b d}{1-b c}, \frac{d-a c}{1-b c}\right)$. Similarly, solutions starting in the region 4, never leave this region, and they tend to the same rest point, as $t \rightarrow \infty$. If a solution starts in the region 1 , it may stay in this region, and tend to the rest point, or it may enter either one of the regions 2 or 4 , and then tend to the rest point. Similarly, solutions which begin in the region 3 , will tend to the rest point $\left(\frac{a-b d}{1-b c}, \frac{d-a c}{1-b c}\right)$, either by staying in this region, or through the regions 2 or 4 (depending on the initial conditions).

This is the case of co-existence of the species. For any initial point (α, β), with $\alpha>0$ and $\beta>0$, we have $\lim _{t \rightarrow \infty} x(t)=\frac{a-b d}{1-b c}$, and $\lim _{t \rightarrow \infty} y(t)=\frac{d-a c}{1-b c}$.

Sub-case (b): The semi-trivial solutions are on the outside, so that $a>d / c$ and $d>a / b$. In the regions 2 and 4 , the motion is now away from the rest point. On the lower boundary of the region 2 , the motion is due north, and on the upper border, the motion is due west. So that the trajectories starting in the region 2 , stay in this region, and tend to the semitrivial solution $(0, d)$. Similarly, solutions starting in the region 4 , will stay in this region, and tend to the semitrivial solution $(a, 0)$. A typical solution starting in the region 1 , will either enter the region 2 and tend to $(0, d)$, or it will enter the region 4 and tend to $(a, 0)$ (this will depend on the initial conditions). The same conclusion holds for the region 3 . The result is that one of the species dies out, what is known as competitive exclusion of the species. (Linearizing the Lotka-Volterra system (2.3) at the rest point, one calculates that the rest point is a saddle, in view of the Hartman-Grobman theorem. Hence, there is a solution curve entering the rest point, while a typical trajectory tends to one of the semi-trivial solutions.)

What is the reason behind the drastic difference in the long time dynamics for the above sub-cases? The second equation in (2.3) tells us that the effective carrying capacity of the second species is $d-c x(t)<d$, so that $y(t)<d$ in the long run. For the first species, the effective carrying capacity is $a-b y(t)$, and in the sub-case (a) (when $b d<a$), we have

$$
a-b y(t)>a-b d>0
$$

so that the first species can survive even when the number of the second species is at its maximum sustainable level. Similarly, one checks that the second species can survive, assuming that the number of the first species is at its maximum sustainable level. In this sub-case, the competing species do not affect each other too strongly, and so they can co-exist.

Intersecting null-clines, with the semitrivial solutions on the outside (circled)

6.3 An Application to Epidemiology

Suppose that a group of people comes down with an infectious disease. Will the number of sick people grow and cause an epidemic? What measures should public health officials take? We shall analyze a way to model the spread of an infectious disease.

Let $I(t)$ be the number of infected people at time t that live in the community (sick people that are hospitalized, or otherwise removed from the community, do not count in $I(t)$). Let $S(t)$ be the number of susceptible people, the ones at risk of catching the disease. The following model was proposed in 1927 by W.O. Kermack and A.G. McKendrick

$$
\begin{equation*}
\frac{d S}{d t}=-r S I \tag{3.1}
\end{equation*}
$$

$$
\frac{d I}{d t}=r S I-\gamma I
$$

with some positive constants r and γ. The first equation reflects the fact that the number of susceptible people decreases, as some people catch the infection (and so they join the group of infected people). The rate of decrease of $S(t)$ is proportional to the number of "encounters" between the infected and susceptible people, which in turn is proportional to the product $S I$. The number $r>0$ gives the infection rate. The first term in the second equation tells us that the number of infected people would increase at exactly the same rate, if it was not for the second term. The second term, $-\gamma I$, is due to some infected people being removed from the population (people who died from the disease, people who have recovered and developed immunity, and sick people who are isolated from the community), which decreases the infection rate $d I / d t$. The coefficient γ is called the removal rate. To the equations (3.1) we add the initial conditions

$$
\begin{equation*}
S(0)=S_{0}, \quad I(0)=I_{0}, \tag{3.2}
\end{equation*}
$$

with given numbers S_{0} - the initial number of susceptible people, and I_{0} the initial number of infected people. Solving the equations (3.1) and (3.2), will give us a pair of functions $(S(t), I(t))$, which determines a parametric curve in the (S, I) plane. Alternatively, this curve can be described, if we express I as a function of S.

Express

$$
\frac{d I}{d S}=\frac{d I / d t}{d S / d t}=\frac{r S I-\gamma I}{-r S I}=-1+\frac{\gamma}{r} \frac{1}{S}=-1+\rho \frac{1}{S}
$$

denoting $\gamma / r=\rho$. Taking the antiderivative, and using the initial conditions (3.2), we obtain

$$
\begin{equation*}
I=-S+\rho \ln S+I_{0}+S_{0}-\rho \ln S_{0} \tag{3.3}
\end{equation*}
$$

Depending on the initial point (S_{0}, I_{0}), we get a different integral curve from (3.3). On all of these curves, the maximum value of I is achieved at $S=\rho$ $\left(\frac{d I}{d S}(\rho)=0\right)$. The motion on the integral curves is from right to left, because we see from the first equation in (3.1) that $S(t)$ is a decreasing function of time t. If the initial point $\left(S_{0}, I_{0}\right)$ satisfies $S_{0}>\rho$, then the function $I(t)$ grows at first, and then declines, see the picture. In this case we say that an epidemic occurs. If, on the other hand, the initial number of susceptible people is below ρ, then the number of infected people $I(t)$ declines and tends to zero, and we say that the initial outbreak has been successfully contained. The number ρ is called the threshold value.

To avoid an epidemic, public health officials should try to increase the threshold value ρ (to make it more likely that $S_{0}<\rho$), by increasing the removal rate γ (recall that $\rho=\gamma / r$), which is achieved by isolating sick people. Notice also the following harsh conclusion: if a disease kills people quickly, then the removal rate γ is high, and such a disease may be easier to contain.

In some cases it is easy to estimate the number of people, that will get sick during an epidemic. Assume that I_{0} is so small that we can take $I_{0}=0$, while S_{0} is a little larger than the threshold value ρ, so that $S_{0}=\rho+\nu$, where $\nu>0$ is a small value. As time t increases, $I(t)$ tends to zero, while $S(t)$ approaches some final number, call it S_{f} (look at the integral curves again). We conclude from (3.3) that

$$
\begin{equation*}
S_{f}-\rho \ln S_{f}=S_{0}-\rho \ln S_{0} \tag{3.4}
\end{equation*}
$$

The function $I(S)=S-\rho \ln S$ takes its global maximum at $S=\rho$. Such a function is almost symmetric with respect to ρ, for S close to ρ, as can be seen from the three term Taylor series expansion of $I(S)$ at $S=\rho$. It follows from (3.4) that the points S_{0} and S_{f} are approximately equidistant from ρ, so that $S_{f} \approx \rho-\nu$. The total number of people, who will get sick during an epidemic is then $S_{0}-S_{f} \approx 2 \nu$. (This fact is known as the Threshold Theorem of epidemiology, see for example M. Braun [5].)

$$
\begin{array}{ll}
x^{\prime}=f(x, y), & x(0)=\alpha \tag{4.1}\\
y^{\prime}=g(x, y), & y(0)=\beta,
\end{array}
$$

4 with some given differentiable functions $f(x, y)$ and $g(x, y)$, and the initial values α and β. By the existence and uniqueness Theorem 6.1.1, the problem (4.1) has a unique solution.

Recall that a point $\left(x_{0}, y_{0}\right)$ is called rest point if

$$
f\left(x_{0}, y_{0}\right)=g\left(x_{0}, y_{0}\right)=0 .
$$

B Clearly, the pair of constant functions $x(t)=x_{0}$ and $y(t)=y_{0}$ is a solution of (4.1). If we solve the system (4.1) with the initial data $x(0)=x_{0}$ and $y(0)=y_{0}$, then $x(t)=x_{0}$ and $y(t)=y_{0}$ for all t (by uniqueness of the solution), so that our system is at rest for all time. Now suppose that the initial conditions are perturbed from $\left(x_{0}, y_{0}\right)$. Will our system come back to rest at $\left(x_{0}, y_{0}\right)$?

A differentiable function $L(x, y)$ is called Lyapunov's function at $\left(x_{0}, y_{0}\right)$, if the following two conditions hold:

$$
\begin{gathered}
L\left(x_{0}, y_{0}\right)=0, \\
L(x, y)>0, \quad \text { for }(x, y) \text { in some neighborhood of }\left(x_{0}, y_{0}\right) .
\end{gathered}
$$

$$
\begin{equation*}
L(x, y)=c \tag{4.2}
\end{equation*}
$$

look, near the point $\left(x_{0}, y_{0}\right)$? If $c=0$, then (4.2) is satisfied only at $\left(x_{0}, y_{0}\right)$. If $c>0$, and small, the level lines are closed curves around $\left(x_{0}, y_{0}\right)$, and the smaller c is, the closer the level line is to $\left(x_{0}, y_{0}\right)$.

Along a solution $(x(t), y(t))$ of our system (4.1), Lyapunov's function is a function of $t: L(x(t), y(t))$. Now assume that for all solutions $(x(t), y(t))$ starting near $\left(x_{0}, y_{0}\right)$, we have

$$
\begin{equation*}
\frac{d}{d t} L(x(t), y(t))<0, \quad \text { for all } t>0 \tag{4.3}
\end{equation*}
$$

so that the function $L(x, y)$ is decreasing along the solutions. Then one expects that $(x(t), y(t)) \rightarrow\left(x_{0}, y_{0}\right)$, as $t \rightarrow \infty$, and we say that the rest
point $\left(x_{0}, y_{0}\right)$ is asymptotically stable. (As t increases, the solution point $(x(t), y(t))$ moves to the level lines that are closer and closer to $\left(x_{0}, y_{0}\right)$.) Using the chain rule and the equations (4.1), we rewrite (4.3) as

$$
\begin{equation*}
\frac{d}{d t} L(x(t), y(t))=L_{x} x^{\prime}+L_{y} y^{\prime}=L_{x} f(x, y)+L_{y} g(x, y)<0 \tag{4.4}
\end{equation*}
$$

4 The following Lyapunov's theorem is now intuitively clear (a proof can be 5 found in the book of M.W. Hirsh and S. Smale [13]).

6 Theorem 6.4.1 The rest point $\left(x_{0}, y_{0}\right)$ is asymptotically stable, provided

$$
\frac{d}{d t} L(x(t), y(t))=2 a x x^{\prime}+2 c y y^{\prime}=2 a x\left(-2 x+x y^{2}\right)+2 c y\left(-y-3 x^{2} y\right)
$$

$$
\begin{array}{r}
x^{\prime}=y-x^{3} \tag{4.5}\\
y^{\prime}=-x-y^{5},
\end{array}
$$

with a unique rest point at $(0,0)$, the resulting linear system

$$
\begin{gather*}
x^{\prime}=y \tag{4.6}\\
y^{\prime}=-x
\end{gather*}
$$

is equivalent to the harmonic oscillator $x^{\prime \prime}+x=0$, for which all solutions are periodic, and do not tend to zero. (The point $(0,0)$ is a center for (4.6).) It is the nonlinear terms that make the rest point $(0,0)$ asymptotically stable for the original system (4.5). Indeed, taking $L(x, y)=x^{2}+y^{2}$, we have

$$
\frac{d}{d t} L(x(t), y(t))=2 x x^{\prime}+2 y y^{\prime}=-2 x^{4}-2 y^{6}<0, \text { for all }(x, y) \neq(0,0)
$$

$$
\begin{gather*}
x^{\prime}=-y+y\left(x^{2}+y^{2}\right) \tag{4.7}\\
y^{\prime}=x-x\left(x^{2}+y^{2}\right)
\end{gather*}
$$

has a rest point $(0,0)$. Multiply the first equation by x, the second one by y, and add the results. Obtain:

$$
x x^{\prime}+y y^{\prime}=0
$$

$$
\begin{gathered}
\frac{d}{d t}\left(x^{2}+y^{2}\right)=0 \\
x^{2}+y^{2}=c^{2}
\end{gathered}
$$

The solution curves $(x(t), y(t))$ are circles around the origin. (If $x(0)=a$ and $y(0)=b$, then $x^{2}(t)+y^{2}(t)=a^{2}+b^{2}$.) If a solution starts near $(0,0)$, it stays near $(0,0)$, but it does not tend to $(0,0)$. In such a case, we say that the rest point $(0,0)$ is stable, although it is not asymptotically stable.

Here is a more formal definition: a rest point $\left(x_{0}, y_{0}\right)$ of (4.1) is called stable in the sense of Lyapunov if given any $\epsilon>0$ one can find $\delta>0$, so that the solution curve $(x(t), y(t))$ lies within the distance ϵ of $\left(x_{0}, y_{0}\right)$ for all $t>0$, provided that $(x(0), y(0))$ is within the distance δ of $\left(x_{0}, y_{0}\right)$. Otherwise, the rest point $\left(x_{0}, y_{0}\right)$ is called unstable. In addition to the rest point $(0,0)$, the system (4.7) has a whole circle $x^{2}+y^{2}=1$ of rest points. All of them are unstable, because the solutions on nearby circles move away from any point on $x^{2}+y^{2}=1$.

Example 5 The system

$$
\begin{gather*}
x^{\prime}=-y+x\left(x^{2}+y^{2}\right) \tag{4.8}\\
y^{\prime}=x+y\left(x^{2}+y^{2}\right)
\end{gather*}
$$

1 has a unique rest point $(0,0)$. Again, we multiply the first equation by x, the second one by y, and add the results. Obtain:

$$
x x^{\prime}+y y^{\prime}=\left(x^{2}+y^{2}\right)^{2} .
$$

Solutions do not remain near $(0,0)$, no matter how close to this point we start. In fact, solutions move infinitely far away from $(0,0)$, as $t \rightarrow \frac{1}{2 \rho_{0}}$. It follows that the rest point $(0,0)$ is unstable. It turns out that solutions of the system (4.8) spiral out of the rest point $(0,0)$.

To show that solutions move on spirals, we compute the derivative of the polar angle, $\theta=\tan ^{-1} \frac{y}{x}$, along the solution curves. Using the chain rule

$$
\frac{d \theta}{d t}=\theta_{x} x^{\prime}+\theta_{y} y^{\prime}=\frac{1}{1+\frac{y^{2}}{x^{2}}}\left(-\frac{y}{x^{2}}\right) x^{\prime}+\frac{1}{1+\frac{y^{2}}{x^{2}}}\left(\frac{1}{x}\right) y^{\prime}
$$

$$
=\frac{x y^{\prime}-y x^{\prime}}{x^{2}+y^{2}}=\frac{x\left(x+y\left(x^{2}+y^{2}\right)\right)-y\left(-y+x\left(x^{2}+y^{2}\right)\right)}{x^{2}+y^{2}}=1,
$$

so that $\theta=t+c$. It follows that $\theta \rightarrow-\infty$ as $t \rightarrow-\infty$, and the point $(x(t), y(t))$ moves on a spiral. We see that solutions of the system (4.8) spiral out (counterclockwise) of the rest point $(0,0)$ (corresponding to $t \rightarrow-\infty$), and tend to infinity, as $t \rightarrow \frac{1}{2 \rho_{0}}$.

Example 6 For the system with three variables

$$
\begin{gathered}
x^{\prime}=-3 x+y\left(x^{2}+z^{2}+1\right) \\
y^{\prime}=-y-2 x\left(x^{2}+z^{2}+1\right) \\
z^{\prime}=-z-x^{2} z^{3},
\end{gathered}
$$

1 one checks that $(0,0,0)$ is the only rest point. We search for a Lyapunov function in the form $L(x, y, z)=\frac{1}{2}\left(a x^{2}+b y^{2}+c z^{2}\right)$. Compute

$$
\frac{d L}{d t}=a x x^{\prime}+b y y^{\prime}+c z z^{\prime}=-3 a x^{2}+x y\left(x^{2}+z^{2}+1\right)(a-2 b)-b y^{2}-c x^{2} z^{4}-c z^{2} .
$$

We have $\frac{d L}{d t}<0$ for $(x, y, z) \neq(0,0,0)$, if $a=2 b$. In particular, we may select $b=1, a=2$, and $c=1$, to prove that $(0,0,0)$ is asymptotically stable. (Lyapunov's theorem holds for systems with three or more variables too. Solutions cut inside the level surfaces of $L(x, y, z)$.)

6.4.1 Stable Systems

An $n \times n$ matrix A is called a stable matrix, if all of its eigenvalues are either negative, or they are complex numbers with negative real parts (which can also be stated as $\operatorname{Re} \lambda_{i}<0$, for any eigenvalue of A). For a stable matrix A, all entries of $e^{A t}$ tend exponentially to zero as $t \rightarrow \infty$:

$$
\begin{equation*}
\left|\left(e^{A t}\right)_{i j}\right| \leq a e^{-b t} \tag{4.9}
\end{equation*}
$$

for some positive constants a and b, and for all i and j. (Here $\left(e^{A t}\right)_{i j}$ denotes the $i j$-element of $e^{A t}$.) Indeed, $x(t)=e^{A t} x(0)$ gives solution of the system

$$
\begin{equation*}
x^{\prime}=A x, \tag{4.10}
\end{equation*}
$$

so that $e^{A t}$ is the normalized fundamental solution matrix, and each column of $e^{A t}$ is a solution of (4.10). On the other hand, each solution of (4.10) contains factors of the type $e^{\operatorname{Re} \lambda_{i} t}$, as was developed in Chapter 5 , justifying (4.9). For a stable matrix A, all solutions of the system $x^{\prime}=A x$ tend to zero, as $t \rightarrow \infty$, exponentially fast. If a matrix A is stable, so is its transpose A^{T}, because the eigenvalues of A^{T} are the same as those of A, and so the estimate (4.9) holds for A^{T} too.

We now solve the following matrix equation: given a stable matrix A, find a positive definite matrix B so that

$$
\begin{equation*}
A^{T} B+B A=-I, \tag{4.11}
\end{equation*}
$$

where I is the identity matrix. We shall show that a solution of (4.11) is given by

$$
\begin{equation*}
B=\int_{0}^{\infty} e^{A^{T} t} e^{A t} d t \tag{4.12}
\end{equation*}
$$

By definition, to integrate a matrix, we integrate all of its entries. In view of the estimate (4.9), all of these integrals in (4.12) are convergent as $t \rightarrow \infty$. We have $B^{T}=B$ (using that $\left(e^{A t}\right)^{T}=e^{A^{T} t}$), and

$$
x^{T} B x=\int_{0}^{\infty} x^{T} e^{A^{T} t} e^{A t} x d t=\int_{0}^{\infty}\left(e^{A t} x\right)^{T} e^{A t} x d t=\int_{0}^{\infty}\left\|e^{A t} x\right\|^{2} d t>0,
$$

4 for any $x \neq 0$, proving that the matrix B is positive definite. (Recall that $\|y\|$ denotes the length of a vector y.) Express

$$
A^{T} B+B A=\int_{0}^{\infty}\left[A^{T} e^{A^{T} t} e^{A t}+e^{A^{T} t} e^{A t} A\right] d t
$$

$$
=\int_{0}^{\infty} \frac{d}{d t}\left[e^{A^{T} t} e^{A t}\right] d t=\left.e^{A^{T} t} e^{A t}\right|_{0} ^{\infty}=-I,
$$

as claimed (the upper limit vanishes by (4.9)).
We now consider a nonlinear system

$$
\begin{equation*}
x^{\prime}=A x+h(x), \tag{4.13}
\end{equation*}
$$

with a constant $n \times n$ matrix A, and a column vector function
$h(x)=\left[h_{1}(x) h_{2}(x) \ldots h_{n}(x)\right]^{T}$, where $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. (So that $h(x)$ is a given vector function of the variables $x_{1}, x_{2}, \ldots, x_{n}$.) We assume that $h(0)=0$, so that the system (4.13) has a trivial solution $x=0(x=0$ is a rest point). We shall denote by $\|x\|$ and $\|h(x)\|$, the length of the vectors x and $h(x)$ respectively.

Theorem 6.4.2 Assume that the matrix A is stable, $h(0)=0$, and

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{\|h(x)\|}{\|x\|}=0 . \tag{4.14}
\end{equation*}
$$

Then the trivial solution of (4.13), $x=0$, is asymptotically stable, so that any solution $x(t)$, with $\|x(0)\|$ small enough, satisfies $\lim _{t \rightarrow \infty} x(t)=0$.

Proof: Let the positive definite matrix B be given by (4.12), so that (4.11) holds. The quadratic form $L(x)=x^{T} B x$ is a Lyapunov function, because $L(0)=0$ and $L(x)>0$ for all $x \neq 0$. We shall show that $\frac{d}{d t} L(x(t))<0$, so that Lyapunov's theorem applies. Taking the transpose of the equation (4.13), obtain

$$
\left(x^{T}\right)^{\prime}=x^{T} A^{T}+h^{T} .
$$

6.5 Limit Cycles

8 We consider the system (with $x=x(t), y=y(t)$)

$$
\begin{align*}
& x^{\prime}=f(x, y), \quad x(0)=x_{0} \tag{5.1}\\
& y^{\prime}=g(x, y), \quad y(0)=y_{0}
\end{align*}
$$

Here $f(x, y)$ and $g(x, y)$ are given differentiable functions. Observe that these functions do not change with t (unlike $f(t, x, y)$ and $g(t, x, y)$). Systems like (5.1) are called autonomous. The initial point $\left(x_{0}, y_{0}\right)$ is also given. By the existence and uniqueness Theorem 6.1.1, this problem has a solution $(x(t), y(t))$, which defines a curve (a trajectory) in the (x, y) plane, parameterized by t. If this curve is closed, we call the solution a limit cycle. (The functions $x(t)$ and $y(t)$ are then periodic.) If $(x(t), y(t))$ is a solution of (5.1), the same is true for $(x(t-\alpha), y(t-\alpha))$, where α is any number. Indeed, $(x(t), y(t))$ satisfies the system (5.1) at any t, and in particular at $t-\alpha$.

Example 1 One verifies directly that the unit circle $x=\cos t, y=\sin t$ is a limit cycle for the system

$$
\begin{align*}
x^{\prime} & =-y+x\left(1-x^{2}-y^{2}\right) \tag{5.2}\\
y^{\prime} & =x+y\left(1-x^{2}-y^{2}\right)
\end{align*}
$$

To see the dynamical significance of this limit cycle, we multiply the first equation by x, the second one by y, add the results, and call $\rho=x^{2}+y^{2}>0$ (ρ is the square of the distance from the point (x, y) to the origin). Obtain

$$
\begin{equation*}
\frac{1}{2} \rho^{\prime}=\rho(1-\rho) \tag{5.3}
\end{equation*}
$$

The origin $(0,0)$ is a rest point of (5.2), corresponding to the rest point $\rho=0$ of (5.3). The equation (5.3) also has a rest point $\rho=1$, corresponding to the limit cycle $x=\cos t, y=\sin t$. When $0<\rho<1$, it follows from the equation (5.3) that $\rho^{\prime}(t)>0$ and $\rho(t)$ is increasing. When $\rho>1, \rho^{\prime}(t)<0$ and $\rho(t)$ is decreasing. It follows that $\rho(t) \rightarrow 1$ as $t \rightarrow \infty$ for all solutions of (5.3) (with $\rho(0)>0$). We conclude that all solutions of (5.2) tend to the limit cycle, which is called asymptotically orbitally stable. Notice that asymptotic orbital stability does not imply asymptotic stability (which means that all solutions, starting sufficiently close to some solution, tend to it as $t \rightarrow \infty)$. Indeed, a solution tending to the unit circle may tend to $x=\cos (t-\alpha)$, $y=\sin (t-\alpha)$ for some $0<\alpha<2 \pi$, instead of $x=\cos t, y=\sin t$.

The vector field $F(x, y)=(f(x, y), g(x, y))$ is tangent to the solution curves of (5.1), and so $F(x, y)$ gives the direction in which the solution curve travels at the point (x, y) (observe that $F(x, y)=\left(x^{\prime}, y^{\prime}\right)$, the velocity).

The following classical theorem gives conditions for the existence of a stable limit cycle.

Poincare-Bendixson Theorem Suppose that D is a region of the $x y-$ plane lying between two simple closed curves C_{1} and C_{2}. Assume that the system (5.1) has no rest points in D, and that at all points of C_{1} and C_{2} the vector field $F(x, y)$ points toward the interior of D. Then (5.1) has a limit cycle inside of D. Moreover, each trajectory of (5.1), originating in D, is either a limit cycle, or it tends to a limit cycle, which is contained in D.

A proof can be found in I.G. Petrovskii [22]. The region D is often called the trapping region.

For practice, let us apply the Poincare-Bendixson theorem to the system (5.2) (we already know that $x=\cos t, y=\sin t$ is a limit cycle). One checks that $(0,0)$ is the only rest point. (Setting the right hand sides of (5.2) to zero, one gets $y / x=-x / y$, so that $x=y=0$.) Let C_{1} be the circle of radius $1 / 2$ around the origin, C_{2} the circle of radius 2 around the origin, and D the region between them. On $C_{1}, F(x, y)=\left(-y+\frac{3}{4} x, x+\frac{3}{4} y\right)$. The scalar product of this vector with (x, y) is $\frac{3}{4} x^{2}+\frac{3}{4} y^{2}>0$. Hence, $F(x, y)$ points outside of C_{1}, and into D. On $C_{2}, F(x, y)=(-y-3 x, x-3 y)$. The scalar product of this vector with (x, y) is $-3 x^{2}-3 y^{2}<0$, and $F(x, y)$ points into D. We conclude that there is a limit cycle in D, confirming what we already know.

Example 2 To model oscillations connected to glycolysis (the process of cells breaking down sugar to obtain energy) the following model was proposed by E.E. Sel'kov [28]

$$
\begin{gather*}
x^{\prime}=-x+a y+x^{2} y \tag{5.4}\\
y^{\prime}=b-a y-x^{2} y .
\end{gather*}
$$

Here a and b are positive parameters. The unknown functions $x(t)$ and $y(t)$ represent some biological quantities, and are also assumed to be positive.

The trapping region $\bar{D} \backslash D_{1}$ (D_{1} is the disc inside C_{1})
To prove the existence of a limit cycle, we shall construct a trapping region. Consider the four-sided polygon \bar{D} in the $x y$-plane bounded by the part of x-axis, $0<x<b+\frac{b}{a}$, by the part of y-axis, $0<y<\frac{b}{a}$, by the horizontal line $y=\frac{b}{a}$, with $0<x<b$, and finally by the line $x+y=b+\frac{b}{a}$,
see the figure. We claim that the vector field of this system, $F(x, y)=$ $\left(-x+a x+x^{2} y, b-a y-x^{2} y\right)$, points inside of \bar{D}, on the boundary of \bar{D}. Indeed, $y^{\prime}>0$ when $y=0$ (on the lower side) and the trajectories go up, $y^{\prime}<0$ when $y=\frac{b}{a}$ (on the upper side) and the trajectories go down. On the left side, $x=0$, we have $x^{\prime}>0$, and the trajectories travel to the right. Turning to the right hand side, observe that by adding the equations in (5.4), we get

$$
(x+y)^{\prime}=b-x<0, \text { for } x>b
$$

Hence, the trajectories travel from the line $x+y=b+\frac{b}{a}$ (the right side) toward the lines $x+y=c$, with $c<b+\frac{b}{a}$, which corresponds to the interior of \bar{D}.

We now look for the rest points. Setting the right hand side of the first equation to zero, we get $y=\frac{x}{x^{2}+a}$. Similarly, from the second equation, $y=\frac{b}{x^{2}+a}$. We conclude that $x=b$, and $y=\frac{b}{b^{2}+a}<\frac{b}{a}$. The only rest point $\left(b, \frac{b}{b^{2}+a}\right)$ lies inside \bar{D}. To determine the stability of this rest point, we consider its linearized system, with the Jacobian matrix $A=\left[\begin{array}{ll}f_{x}(x, y) & f_{y}(x, y) \\ g_{x}(x, y) & g_{y}(x, y)\end{array}\right]$ evaluated at the rest point $\left(b, \frac{b}{b^{2}+a}\right):$

$$
A=\left.\left[\begin{array}{lr}
-1+2 x y & a+x^{2} \\
-2 x y & -a-x^{2}
\end{array}\right]\right|_{\left(b, \frac{b}{b^{2}+a}\right)}=\left[\begin{array}{lc}
-1+2 \frac{b^{2}}{b^{2}+a} & a+b^{2} \\
-2 \frac{b^{2}}{b^{2}+a} & -a-b^{2}
\end{array}\right] .
$$

The eigenvalues of A satisfy $\lambda_{1} \lambda_{2}=\operatorname{det} A=a+b^{2}>0, \lambda_{1}+\lambda_{2}=\operatorname{tr} A$. If

$$
\begin{equation*}
\operatorname{tr} A=-\frac{b^{4}+(2 a-1) b^{2}+a+a^{2}}{b^{2}+a}>0 \tag{5.5}
\end{equation*}
$$

then λ_{1} and λ_{2} are either both positive, or both are complex numbers with positive real parts. In the first case, the rest point $\left(b, \frac{b}{b^{2}+a}\right)$ is an unstable node, and in the second case it is an unstable spiral, for both the linearized system and for (5.3), in view of the Hartman-Grobman theorem. Hence, on a small circle C_{1} around the rest point, bounding the disc we call D_{1}, trajectories point out of D_{1} (outside of C_{1}). Let now D denote the region \bar{D}, with the disc D_{1} removed, $D=\bar{D} \backslash D_{1}$. Then, under the condition (5.5), D is a trapping region, and by the Poincare-Bendixson theorem there exists a stable limit cycle of (5.2), lying in D.

The condition (5.5) is equivalent to

$$
b^{2}-b^{4}-2 a b^{2}-a-a^{2}>0,
$$

Figure 6.2: The limit cycle of Sel'kov system (5.4) for $a=0.07, b=0.5$
which holds if b is small, and a is even smaller. Still this result is biologically significant. Computations show that the limit cycle is unique, and it attracts all trajectories originating in the first quadrant of the $x y$-plane. In Figure 6.2 we present Mathematica's computation of the limit cycle (thick) for Sel'kov system (5.4), with $a=0.07, b=0.5$. One sees that the trajectories both on the inside and on outside of the limit cycle converge quickly to it. The rest point at $(0.5,1.5625)$ is marked.

Sometimes one wishes to prove that limit cycles do not exist in some region. Recall that a region is called simply-connected if it has no holes.

Dulac-Bendixson Criterion Assume that $f(x, y), f_{x}(x, y)$ and $g_{y}(x, y)$ are continuous in some simply-connected region R of the xy-plane, and

$$
f_{x}(x, y)+g_{y}(x, y)
$$

does not change sign on R (it is either positive for all points in R, or negative everywhere on R). Then the system (5.1) has no closed trajectories inside R.

Proof: Any solution $(x(t), y(t))$ of (5.1), for $a \leq t \leq b$, determines a curve

$$
\int_{C}^{(5.6)} g(x, y) d x-f(x, y) d y=\int_{a}^{b}\left[g(x(t), y(t)) x^{\prime}(t)-f(x(t), y(t)) y^{\prime}(t)\right] d t=0,
$$

using the equations (5.1). If $(x(t), y(t))$ is a limit cycle inside R, then (5.6) holds, moreover the curve C is closed, and it encloses some region P inside R. By Green's formula, the line integral

$$
\int_{C} g(x, y) d x-f(x, y) d y=-\iint_{P}\left[f_{x}(x, y)+g_{y}(x, y)\right] d A
$$

5 is either positive or negative, contradicting (5.6).

$$
\begin{equation*}
\frac{\partial}{\partial x}[h(x, y) f(x, y)]+\frac{\partial}{\partial y}[h(x, y) g(x, y)] \tag{5.7}
\end{equation*}
$$

does not change sign on R. Then the system (5.1) has no closed trajectories inside R.

Example 3 The Lotka-Volterra model of two competing species

$$
\begin{gather*}
x^{\prime}=x(a-b x-c y) \tag{5.8}\\
y^{\prime}=y(d-e x-k y),
\end{gather*}
$$

with positive constants a, b, c, d, e and k, has no limit cycles in the first quadrant of the $x y$-plane. Indeed, select $h(x, y)=\frac{1}{x y}>0$ for $x, y>0$. Then the expression (5.7) becomes

$$
\frac{\partial}{\partial x}\left(\frac{a-b x-c y}{y}\right)+\frac{\partial}{\partial y}\left(\frac{d-e x-k y}{x}\right)=-\frac{b}{y}-\frac{k}{x}<0,
$$

for $x, y>0$. It follows that the system (5.8) has no limit cycles in the first quadrant of the $x y$-plane.
modeling the number of rabbits $x(t)$ at time t. We are only interested in positive solutions, $x(t)>0$ for all t. The given continuous functions $a(t)$ and $b(t)$ are assumed to be periodic, with the period p, so that $a(t+p)=a(t)$, and $b(t+p)=b(t)$ for all t. The periodicity of $a(t)$ and $b(t)$ can be attributed to seasonal variations. For example, the carrying capacity $a(t)$ is likely to be higher in summer, and lower, or even negative, in winter. We assume that the average value of $a(t)$ is positive, so that

$$
\begin{equation*}
\int_{0}^{p} a(s) d s>0 \tag{6.2}
\end{equation*}
$$

and that the self-limitation coefficient $b(t)$ satisfies

$$
\begin{equation*}
b(t)>0, \quad \text { for all } t \tag{6.3}
\end{equation*}
$$

This equation is of Bernoulli's type. We divide it by x^{2}

$$
\frac{x^{\prime}}{x^{2}}=\frac{a(t)}{x}-b(t)
$$

6 and set $y=\frac{1}{x}$. Then $y^{\prime}=-\frac{x^{\prime}}{x^{2}}$, and we obtain a linear equation

$$
\begin{equation*}
y^{\prime}+a(t) y=b(t) \tag{6.4}
\end{equation*}
$$

6.6 Periodic Population Models

Population models become much harder to analyze in case the coefficients vary with time t. However, if all coefficients are periodic functions of the same period, it is still possible to obtain detailed description of the solutions.

We begin by considering the logistic equation

$$
\begin{equation*}
x^{\prime}=x(a(t)-b(t) x), \tag{6.1}
\end{equation*}
$$

that is easy to analyze.
Lemma 6.6.1 The problem (6.4) has a positive solution of period p. This solution is unique, and it attracts all other solutions of (6.4), as $t \rightarrow \infty$.
Proof: With the integrating factor $\mu=e^{\int_{0}^{t} a(s) d s}$, the solution of (6.4), satisfying an initial condition $y(0)=y_{0}$, is found as follows

$$
\frac{d}{d t}[\mu(t) y(t)]=\mu(t) b(t)
$$

$$
y(t)=\frac{1}{\mu(t)} y_{0}+\frac{1}{\mu(t)} \int_{0}^{t} \mu(s) b(s) d s .
$$

This solution is periodic, provided that $y(p)=y(0)=y_{0}$ (as justified in Problems), implying that

$$
y_{0}=\frac{1}{\mu(p)} y_{0}+\frac{1}{\mu(p)} \int_{0}^{p} \mu(s) b(s) d s
$$

which we write as

$$
(\mu(p)-1) y_{0}=\int_{0}^{p} \mu(s) b(s) d s
$$

Since $\mu(p)>1$ (by the assumption (6.2)), we can solve this equation for y_{0}

$$
y_{0}=\frac{1}{\mu(p)-1} \int_{0}^{p} \mu(s) b(s) d s>0
$$

obtaining the initial value y_{0}, which leads to a positive solution $y(t)$ of period p.

If $z(t)$ is another solution of (6.4), the difference $w(t)=z(t)-y(t)$ satisfies

$$
w^{\prime}+a(t) w=0 .
$$

Integrating, $w(t)=e^{-\int_{0}^{t} a(s) d s} w(0) \rightarrow 0$, as $t \rightarrow \infty$ (by the assumption (6.2)), proving that all solutions tend to $y(t)$. In particular, this fact implies that the periodic solution $y(t)$ is unique.

This lemma makes possible the following complete description of the dynamics for the logistic equation.

Theorem 6.6.1 Assume that the continuous p-periodic functions $a(t), b(t)$ satisfy the conditions (6.2) and (6.3). Then the equation (6.1) has a positive solution of period p. This solution is unique, and it attracts all other positive solutions of (6.1), as $t \rightarrow \infty$.

Proof: By Lemma 6.6.1, there is a positive p-periodic solution $y(t)$ of (6.4). Then $x(t)=\frac{1}{y(t)}$ gives a positive p-periodic solution of (6.1). If $z(t)$ is another positive solution of (6.1), then the same lemma tells us that $\frac{1}{x(t)}-\frac{1}{z(t)} \rightarrow 0$ as $t \rightarrow \infty$, which implies that $x(t)-z(t) \rightarrow 0$ as $t \rightarrow \infty$. (Observe that $z(t)$ is bounded. Indeed, it follows from the equation (6.1) that $z(t)$ is decreasing for large enough z, so that $a(t)-b(t) z<0$, which
holds if $z>\frac{\max a(t)}{\min b(t)}$. Then $z \leq \frac{\max a(t)}{\min b(t)}$.) It follows that the p-periodic solution $x(t)$ attracts all other positive solutions of (6.1), and there is only one p-periodic solution.

The following corollary says that an increase in carrying capacity will increase the p-periodic solution of (6.1). This is natural, because the p periodic solution attracts all other solutions ("a rising tide lifts all boats").
Corollary 6.6.1 Let $x_{1}(t)$ be the positive p-periodic solution of

$$
x_{1}^{\prime}=x_{1}\left(a_{1}(t)-b(t) x_{1}\right),
$$

where the p-periodic function $a_{1}(t)$ satisfies $a_{1}(t)>a(t)$ for all t. Then $x_{1}(t)>x(t)$ for all $t(x(t)$ is the positive p-periodic solution of (6.1)). Moreover, if $a_{1}(t)$ is close to $a(t)$, then $x_{1}(t)$ is close to $x(t)$.
Proof: Set $y_{1}=\frac{1}{x_{1}}$, and $y=\frac{1}{x}$. As before, $y^{\prime}+a(t) y=b(t)$, and

$$
y_{1}^{\prime}+a_{1}(t) y_{1}=b(t)
$$

Let $z(t)=y(t)-y_{1}(t)$. Then $z(t)$ is a p-periodic solution of

$$
\begin{equation*}
z^{\prime}+a(t) z=\left(a_{1}(t)-a(t)\right) y_{1}(t)>0 . \tag{6.5}
\end{equation*}
$$

By Lemma 6.6.1, the periodic solution of this equation is positive, so that $z(t)>0$ for all t, and then $y(t)>y_{1}(t)$, which implies that $x(t)<x_{1}(t)$ for all t.

Turning to the second statement, we are now given that the right hand side of (6.5) is small. Going over the construction of the p-periodic solution in Lemma 6.6.1, we see that $z(t)$ is small as well.

We consider next another model for a population $x(t)>0$ of rabbits

$$
\begin{equation*}
x^{\prime}=x(x-a(t))(b(t)-x) . \tag{6.6}
\end{equation*}
$$

The given continuous functions $a(t)$ and $b(t)$ are assumed to be positive, periodic with period p, and satisfying $0<a(t)<b(t)$ for all t. If $0<x(t)<$ $a(t)$, it follows from the equation that $x^{\prime}(t)<0$, and $x(t)$ decreases. When $a(t)<x(t)<b(t)$, the population grows. So that $a(t)$ gives a threshold for population growth. (If the number of rabbits falls too low, they have a problem meeting the "significant others".)

Let us assume additionally that the maximum value of $a(t)$ lies below the minimum value of $b(t)$:

$$
\begin{equation*}
\max _{-\infty<t<\infty} a(t)<\min _{-\infty<t<\infty} b(t) . \tag{6.7}
\end{equation*}
$$

Theorem 6.6.2 If $a(t)$ and $b(t)$ are continuous p-periodic functions satisfying (6.7), then the equation (6.6) has exactly two positive solutions of period p.

Proof: We denote by $x\left(t, x_{0}\right)$ the solution of (6.6), satisfying the initial condition $x(0)=x_{0}$, so that $x\left(0, x_{0}\right)=x_{0}$. To prove the existence of two solutions, we define the Poincaré map $x_{0} \rightarrow T\left(x_{0}\right)$, by setting $T\left(x_{0}\right)=$ $x\left(p, x_{0}\right)$. The function $T\left(x_{0}\right)$ is continuous (by the continuous dependence of solutions, with respect to the initial condition). Define the numbers $A=$ $\min _{-\infty<t<\infty} b(t)-\epsilon, B=\max _{-\infty<t<\infty} b(t)+\epsilon$, and the interval $I=(A, B)$. If $\epsilon>0$ is chosen so small that $\max _{-\infty<t<\infty} a(t)<\min _{-\infty<t<\infty} b(t)-\epsilon$, then we claim that the map T takes the interval I into itself. Indeed, if $x_{0}=A$, then from the equation $x^{\prime}(0)>0$, and $x\left(t, x_{0}\right)$ is increasing, for small t. At future times, the solution curve cannot cross below x_{0}, because again we have $x^{\prime}(t)>0$, if $x(t)=x_{0}$. It follows that $x\left(p, x_{0}\right)>x_{0}$, or $T(A)>A$. Similarly, we show that $T(B)<B$. The continuous function $T(x)-x$ is positive at $x=A$, and negative at $x=B$. By the intermediate value theorem $T(x)-x$ has a root \bar{x} on the interval $I=(A, B)$, so that there is a fixed point \bar{x} such that $T(\bar{x})=\bar{x}$. Then $x(p, \bar{x})=\bar{x}$, which implies that $x(t, \bar{x})$ is a p-periodic solution.

The second periodic solution is obtained by considering the map T_{1}, defined by setting $T_{1}\left(x_{0}\right)=x\left(-p, x_{0}\right)$, corresponding to solving the equation (6.6) backward in time. As in the case of T, we see that T_{1} is a continuous map, taking the interval $T_{1}=\left(\min _{-\infty<t<\infty} a(t)-\epsilon, \max _{-\infty<t<\infty} a(t)+\epsilon\right)$ into itself (for small $\epsilon>0$). T_{1} has a fixed point on I_{1}, giving us the second p-periodic solution. So that the equation (6.6) has at least two positive p-periodic solutions.

To prove that there are at most two positive p-periodic solutions of (6.6), we need the following two lemmas, which are also of independent interest.

Lemma 6.6.2 Consider the equation (for $w(t)$)

$$
\begin{equation*}
w^{\prime}=c(t) w \tag{6.8}
\end{equation*}
$$

with a given continuous p-periodic function $c(t)$. This equation has a nonzero p-periodic solution, if and only if

$$
\int_{0}^{p} c(s) d s=0
$$

Proof: Integrating the equation (6.8), gives $w(t)=w(0) e e^{\int_{0}^{t} c(s) d s}$. Using the periodicity of $c(t)$, we see that

$$
\begin{gathered}
w(t+p)=w(0) e^{\int_{0}^{t+p} c(s) d s}=w(0) e^{\int_{0}^{t} c(s) d s+\int_{t}^{t+p} c(s) d s} \\
\quad=w(0) e^{\int_{0}^{t} c(s) d s} e^{\int_{0}^{p} c(s) d s}=w(0) e^{\int_{0}^{t} c(s) d s}=w(t),
\end{gathered}
$$

exactly when $\int_{0}^{p} c(s) d s=0$.
Lemma 6.6.3 Consider the nonlinear equation (with a continuous function $f(t, x)$, which is twice differentiable in x)

$$
\begin{equation*}
x^{\prime}=f(t, x) \text {. } \tag{6.9}
\end{equation*}
$$

Assume that the function $f(t, x)$ is p-periodic in t, and convex in x :

$$
f(t+p, x)=f(t, x), \quad \text { for all } t, \text { and } x>0
$$

$$
f_{x x}(t, x)>0, \quad \text { for all } t, \text { and } x>0 .
$$

Then the equation (6.9) has at most two positive p-periodic solutions.
Proof: Assume, on the contrary, that we have three positive p-periodic solutions: $x_{1}(t)<x_{2}(t)<x_{3}(t)$ (solutions of (6.9) do not intersect, by the existence and uniqueness theorem). Set $w_{1}=x_{2}-x_{1}$, and $w_{2}=x_{3}-x_{2}$. These functions are p-periodic, and they satisfy

$$
w_{1}^{\prime}=f\left(t, x_{2}\right)-f\left(t, x_{1}\right)=\int_{0}^{1} \frac{d}{d \theta} f\left(t, \theta x_{2}+(1-\theta) x_{1}\right) d \theta
$$

$$
=\int_{0}^{1} f_{x}\left(t, \theta x_{2}+(1-\theta) x_{1}\right) d \theta w_{1} \equiv c_{1}(t) w_{1}
$$

$$
w_{2}^{\prime}=f\left(t, x_{3}\right)-f\left(t, x_{2}\right)=\int_{0}^{1} \frac{d}{d \theta} f\left(t, \theta x_{3}+(1-\theta) x_{2}\right) d \theta
$$

$$
=\int_{0}^{1} f_{x}\left(t, \theta x_{3}+(1-\theta) x_{2}\right) d \theta w_{2} \equiv c_{2}(t) w_{2} .
$$

(We denoted by $c_{1}(t)$ and $c_{2}(t)$ the corresponding integrals.) The function f_{x} is increasing in x (because $f_{x x}>0$). It follows that $c_{2}(t)>c_{1}(t)$ for all t, and so $c_{1}(t)$ and $c_{2}(t)$ cannot both satisfy the condition of Lemma 6.6.2. We have a contradiction with Lemma 6.6.2. (Observe that $w_{1}(t)$ and $w_{2}(t)$ are p-periodic solutions of the equations $w_{1}^{\prime}=c_{1}(t) w_{1}$, and $w_{2}^{\prime}=c_{2}(t) w_{2}$.) \diamond

$$
\begin{equation*}
u^{\prime}=2-2(a(t)+b(t)) \sqrt{u}+2 a(t) b(t) u \tag{6.10}
\end{equation*}
$$

Returning to the proof of the theorem, we rewrite (6.6) as

$$
x^{\prime}=-x^{3}+(a(t)+b(t)) x^{2}-a(t) b(t) x .
$$

Divide by x^{3} :

$$
\frac{x^{\prime}}{x^{3}}=-1+\frac{(a(t)+b(t))}{x}-\frac{a(t) b(t)}{x^{2}} .
$$

We set here $u=\frac{1}{x^{2}}$, so that $u^{\prime}=-2 x^{-3} x^{\prime}$, and obtain

Clearly, the positive p-periodic solutions of the equations (6.6) and (6.10) are in one-to-one correspondence. But the right hand side in (6.10) is convex in u. By Lemma 6.6.3, both of the equations (6.10) and (6.6) have at most two positive p-periodic solutions. It follows that the equation (6.6) has exactly two positive p-periodic solutions.

Let $x_{1}(t)<x_{2}(t)$ denote the two positive p-periodic solutions of (6.6), provided by the above theorem, and let $x\left(t, x_{0}\right)$ denote again the solution of this equation, with the initial condition $x(0)=x_{0}$. It is not hard to show that $x\left(t, x_{0}\right) \rightarrow x_{2}(t)$ as $t \rightarrow \infty$, if x_{0} belongs to either one of the intervals $\left(x_{2}(0), \infty\right)$, or $\left(x_{1}(0), x_{2}(0)\right)$. On the other hand, $x\left(t, x_{0}\right) \rightarrow 0$ as $t \rightarrow \infty$, if $x_{0} \in\left(0, x_{1}(0)\right)$. So that the larger p-periodic solution $x_{2}(t)$ is asymptotically stable, while the smaller one $x_{1}(t)$ is unstable.

We consider next the case of two competing species, with the populations $x(t)$ and $y(t)$, satisfying the Lotka-Volterra system

$$
\begin{align*}
x^{\prime} & =x(a(t)-b x-c y) \tag{6.11}\\
y^{\prime} & =y(d(t)-e x-f y) .
\end{align*}
$$

The given functions $a(t)$ and $d(t)$ are assumed to be periodic, with the pe$\operatorname{riod} p$, so that $a(t+p)=a(t)$, and $d(t+p)=d(t)$ for all t. We do not assume $a(t)$ and $d(t)$ to be positive, but assume that they have positive averages over $(0, p)$. The positive numbers b, c, e and f are given. As before, the periodicity of $a(t)$ and $d(t)$ may be attributed to seasonal variations. The numbers c and e are called the interaction coefficients. They quantify how detrimental are the species for each other. It seems reasonable to assume that the self-limitation coefficients b and f, as well as the interaction coefficients c and e change less with the seasons than the carrying capacities, and so we assumed them to be constants in this model.

$$
\begin{equation*}
y^{\prime}=y(d(t)-f y) \tag{6.13}
\end{equation*}
$$

then $(0, Y(t))$ is the other semi-trivial solution.
The following theorem describes a case, when the dynamics of the LotkaVolterra system is similar to that of a single logistic equation.

Theorem 6.6.3 Denoting $A=\int_{0}^{p} a(t) d t, D=\int_{0}^{p} d(t) d t$, assume that $A>$ $0, D>0$, and

$$
\begin{equation*}
f A-c D>0, \text { and } b D-e A>0 \tag{6.14}
\end{equation*}
$$

Then the system (6.11) has a unique positive (in both components) p-periodic solution, to which all other positive solutions of (6.11) tend, as $t \rightarrow \infty$.

Proof: The largest possible periodic solutions $X(t)$ and $Y(t)$ (defined by (6.12) and (6.13)) occur when the competitor species is extinct. Denote by $\xi(t)$ the positive p-periodic solution of the logistic equation

$$
x^{\prime}=x(a(t)-b x-c Y(t))
$$

Here the first species is forced to compete with the maximal periodic solution for the second species. Similarly, we denote by $\eta(t)$ the positive p-periodic solution of the logistic equation

$$
y^{\prime}=y(d(t)-e X-f y)
$$

(To prove the existence of $\xi(t)$, we need to show that $\int_{0}^{p}(a(t)-c Y(t)) d t>$ 0. Dividing the equation $Y^{\prime}=Y(d(t)-f Y)$ by Y and integrating, we have $\int_{0}^{p} Y(t) d t=\frac{D}{f}$. Then $\int_{0}^{p}(a(t)-c Y(t)) d t=A-c \frac{D}{f}>0$, by the first condition in (6.14). The existence of $\eta(t)$ is proved similarly.)

$$
\begin{gather*}
x_{n+1}^{\prime}=x_{n+1}\left(a(t)-b x_{n+1}-c y_{n}\right) \tag{6.15}\\
y_{n+1}^{\prime}=y_{n+1}\left(d(t)-e x_{n+1}-f y_{n+1}\right) .
\end{gather*}
$$

By the same reasoning as above, we show that for all t

$$
\xi(t)<x_{n}(t)<\cdots<x_{2}(t)<x_{1}(t), \text { and } y_{1}(t)<y_{2}(t)<\cdots<y_{n}(t)<Y(t) .
$$

At each $t, x_{n}(t)$ is a monotone and bounded sequence of numbers, which has a limit. We denote $x_{p}(t)=\lim _{t \rightarrow \infty} x_{n}(t)$, and similarly $y_{p}(t)=\lim _{t \rightarrow \infty} y_{n}(t)$. Passing to the limit in the equations (6.15) (or rather in their integral versions), we see that $\left(x_{p}(t), y_{p}(t)\right)$ is a positive p-periodic solution of (6.11).

Next, we prove that there is only one positive p-periodic solution of (6.11). Let $(x(t), y(t))$ be any positive p-periodic solution of (6.11). We divide the first equation in (6.11) by $x(t)$, and integrate over $(0, p)$. By periodicity, $\int_{0}^{p} \frac{x^{\prime}(t)}{x(t)} d t=\left.\ln x(t)\right|_{0} ^{p}=0$. Then

$$
b \int_{0}^{p} x(t) d t+c \int_{0}^{p} y(t) d t=A
$$

$$
\begin{equation*}
\int_{0}^{p} x(t) d t=\frac{f A-c D}{b f-c e}>0, \quad \int_{0}^{p} y(t) d t=\frac{b D-e A}{b f-e c}>0 \tag{6.16}
\end{equation*}
$$

(Observe that our conditions (6.14) imply that $b f-e c>0$.) Let now $(\bar{x}(t), \bar{y}(t))$ be another positive p-periodic solution of (6.11). Clearly, $\bar{x}(t)<$ $x_{1}(t)=X(t), \bar{y}(t)>y_{1}(t)=\eta(t)$. We prove inductively that $\bar{x}(t)<x_{n}(t)$, and $\bar{y}(t)>y_{n}(t)$. Letting $n \rightarrow \infty$, we have $\bar{x}(t) \leq x_{p}(t)$, and $\bar{y}(t) \geq y_{p}(t)$. Since by (6.16),

$$
\int_{0}^{p} x_{p}(t) d t=\int_{0}^{p} \bar{x}(t) d t, \text { and } \int_{0}^{p} y_{p}(t) d t=\int_{0}^{p} \bar{y}(t) d t
$$

Similarly, from the second equation in (6.11)

$$
e \int_{0}^{p} x(t) d t+f \int_{0}^{p} y(t) d t=D
$$

Solving these two equations for the integrals, we get
we conclude that $\bar{x}(t)=x_{p}(t)$, and $\bar{y}(t)=y_{p}(t)$.
Turning to the stability of $\left(x_{p}(t), y_{p}(t)\right)$, we now define another sequence of iterates $\left(\hat{x}_{n}, \hat{y}_{n}\right)$. Beginning with $\hat{x}_{1}=\xi(t), \hat{y}_{1}=Y(t)$, once the iterate $\left(\hat{x}_{n}(t), \hat{y}_{n}(t)\right)$ is computed, we obtain $\left(\hat{x}_{n+1}(t), \hat{y}_{n+1}(t)\right)$ by calculating the p-periodic solutions of the following two logistic equations

$$
\begin{gathered}
\hat{y}_{n+1}^{\prime}=\hat{y}_{n+1}\left(d(t)-e \hat{x}_{n}-f \hat{y}_{n+1}\right) \\
\hat{x}_{n+1}^{\prime}=\hat{x}_{n+1}\left(a(t)-b \hat{x}_{n+1}-c \hat{y}_{n+1}\right) .
\end{gathered}
$$

(So that we compute $\hat{y}_{n+1}(t)$, and immediately use it to compute $\hat{x}_{n+1}(t)$.) By the same reasoning as above, we show that for all n

$$
\hat{x}_{1}<\hat{x}_{2}<\cdots<\hat{x}_{n}<x_{n}(t)<\cdots<x_{2}(t)<x_{1}(t)
$$

and

$$
y_{1}(t)<y_{2}(t)<\cdots<y_{n}(t)<\hat{y}_{n}(t)<\cdots<\hat{y}_{2}(t)<\hat{y}_{1}(t)
$$

As before, $\left(\hat{x}_{n}, \hat{y}_{n}\right)$ tends to a positive p-periodic solution of (6.11), which by the uniqueness must be $\left(x_{p}(t), y_{p}(t)\right)$. We conclude that the periodic solution is approximated from both below and above by the monotone sequences, $x_{p}(t)=\lim _{n \rightarrow \infty} x_{n}(t)=\lim _{n \rightarrow \infty} \hat{x}_{n}(t)$, and $y_{p}(t)=\lim _{n \rightarrow \infty} y_{n}(t)=\lim _{n \rightarrow \infty} \hat{y}_{n}(t)$.

Next, we sketch a proof that any positive solution, $(x(t), y(t))$ of (6.11), tends to the unique positive p-periodic solution $\left(x_{p}(t), y_{p}(t)\right)$, as $t \rightarrow \infty$. The idea is to show inductively that for any integer n, and any $\epsilon>0$

$$
\begin{equation*}
\hat{x}_{n}(t)-\epsilon<x(t)<x_{n}(t)+\epsilon, \text { and } y_{n}(t)-\epsilon<y(t)<\hat{y}_{n}(t)+\epsilon \tag{6.17}
\end{equation*}
$$

1

$$
\begin{equation*}
x^{\prime}=x\left(a(t)-b x-c y_{n}+c \epsilon\right), \tag{6.18}
\end{equation*}
$$

with the same initial condition. Any positive solution of (6.18) tends to the p-periodic solution of that equation, which, by the Corollary 6.6.1, is close to the p-periodic solution of

$$
x^{\prime}=x\left(a(t)-b x-c y_{n}\right),
$$

or close to x_{n+1}. So that the estimate of $y(t)$ from below in (6.17) leads to the estimate of $x(t)$ from above in (6.17), at $n+1$. This way we establish the inequalities (6.17) at the next value of n.

This theorem appeared first in the author's paper [17]. The idea to use monotone iterations, to prove that all positive solutions tend to the periodic one, is due to E.N. Dancer [7], who used it in another context.

6.6.1 Problems

I.

1. (i) Find and classify the rest points of

$$
x^{\prime}(t)=x(x+1)(x-2) .
$$

Hint: The sign of $x^{\prime}(t)$ changes at $x=-1, x=0$, and $x=2$.
Answer. The rest points are $x=-1$ (unstable), $x=0$ (stable), and $x=2$ (unstable).
(ii) Let $y(t)$ be the solution of

$$
y^{\prime}(t)=y(y+1)(y-2), \quad y(0)=3 .
$$

Find $\lim _{t \rightarrow \infty} y(t)$, and $\lim _{t \rightarrow-\infty} y(t)$.
Answer. ∞, and 2 .
(iii) What is the domain of attraction of the rest point $x=0$?

Answer. (-1, 2).

1
2. Consider a population model with a threshold for growth

$$
x^{\prime}=x(x-1)(5-x)
$$

(i) Find and classify the rest points.

Answer. The rest points are $x=0$ (stable), $x=1$ (unstable), and $x=5$ (stable).
(ii) Calculate $\lim _{t \rightarrow \infty} x(t)$ for the following cases:
(a) $x(0) \in(0,1),(b) x(0)>1$.

7 Answer. (a) $\lim _{t \rightarrow \infty} x(t)=0$, (b) $\lim _{t \rightarrow \infty} x(t)=5$.
8 3. (i) Find and classify the rest points of

$$
x^{\prime}=x^{2}(2-x)
$$

9 Answer. The rest points are $x=2$ (stable) and $x=0$ (neither stable or unstable).
(ii) Calculate $\lim _{t \rightarrow \infty} x(t)$ for the following cases:

12
13

14
(ii) Find the general solution of the corresponding linearized system

$$
\begin{aligned}
x_{1}^{\prime} & =-2 x_{1}+x_{2} \\
x_{2}^{\prime} & =x_{1}-2 x_{2}
\end{aligned}
$$

19 and discuss its behavior as $t \rightarrow \infty$.

$$
\begin{aligned}
& x^{\prime}=-y \\
& y^{\prime}=x^{3}
\end{aligned}
$$

12 Hint: Use $L(x, y)=\frac{1}{2} x^{4}+y^{2}$.
13

$$
\begin{gathered}
x^{\prime}=-5 y-x\left(x^{2}+y^{2}\right) \\
y^{\prime}=x-y\left(x^{2}+y^{2}\right),
\end{gathered}
$$

and its domain of attraction is the entire $x y$-plane.
Hint: Use $L(x, y)=\frac{1}{5} x^{2}+y^{2}$.
7. (i) The equation (for $y=y(t)$)

$$
y^{\prime}=y^{2}(1-y)
$$

Answer: $y=1$ is asymptotically stable, $y=0$ is unstable.
(ii) Find $\lim _{t \rightarrow \infty} y(t)$ in the following cases:
(a) $y(0)<0,($ b) $0<y(0)<1$, (c) $y(0)>1$.
9. (i) Convert the nonlinear equation

$$
y^{\prime \prime}+f(y) y^{\prime}+y=0
$$

into a system, by letting $y=x_{1}$, and $y^{\prime}=x_{2}$. Answer:

$$
\begin{gathered}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-x_{1}-f\left(x_{1}\right) x_{2} .
\end{gathered}
$$ equation?

Hint: Use $L=\frac{1}{2} x_{1}^{2}+\frac{1}{2} x_{2}^{2}$.
6. Show that the rest point $(0,0)$ is asymptotically stable for the system
has the rest points $y=0$ and $y=1$. Discuss their Lyapunov's stability.

Answer. (a) $\lim _{t \rightarrow \infty} y(t)=0$, (b) $\lim _{t \rightarrow \infty} y(t)=1$, (c) $\lim _{t \rightarrow \infty} y(t)=1$.
8. Show that the rest point $(0,0)$ is stable, but not asymptotically stable,
(ii) Show that the rest point $(0,0)$ of this system is asymptotically stable, provided that $f\left(x_{1}\right)>0$ for all $x_{1} \neq 0$. What does this imply for the original

1
10. Show that the rest point $(0,0)$ is asymptotically stable for the system

$$
\begin{gathered}
x_{1}^{\prime}=x_{2} \\
x_{2}^{\prime}=-g\left(x_{1}\right)-f\left(x_{1}\right) x_{2},
\end{gathered}
$$

provided that $f\left(x_{1}\right)>0$, and $x_{1} g\left(x_{1}\right)>0$, for all $x_{1} \neq 0$.
Hint: Use $L=\int_{0}^{x_{1}} g(s) d s+\frac{1}{2} x_{2}^{2}$. Observe that $L\left(x_{1}, x_{2}\right)>0$, for all $\left(x_{1}, x_{2}\right) \neq(0,0)$.
What conclusion can one draw for the equation

$$
y^{\prime \prime}+f(y) y^{\prime}+g(y)=0 ?
$$

6 11. Consider the system

$$
\begin{gathered}
x^{\prime}=-x^{3}+4 y\left(z^{2}+1\right) \\
y^{\prime}=-y^{5}-x\left(z^{2}+1\right) \\
z^{\prime}=-z-x^{4} z^{3} .
\end{gathered}
$$

(i) Show that $(0,0,0)$ is the only rest point, and it is asymptotically stable.

8
9 (ii) If we drop the nonlinear terms, we get a linear system

$$
\begin{gathered}
x^{\prime}=4 y \\
y^{\prime}=-x \\
z^{\prime}=-z
\end{gathered}
$$

Show that any solution of this system moves on an elliptic cylinder, and it tends to the $x y$-plane, as $t \rightarrow \infty$. Conclude that the rest point $(0,0,0)$ is not asymptotically stable. Is it stable?
12. (i) Show that the rest point $(0,0,0)$ is Lyapunov stable, but not asymptotically stable for the system

$$
\begin{gather*}
x_{1}^{\prime}=x_{2}+x_{3}+x_{2} x_{3} \tag{6.19}\\
x_{2}^{\prime}=-x_{1}+x_{3}-2 x_{1} x_{3} \\
x_{3}^{\prime}=-x_{1}-x_{2}+x_{1} x_{2} .
\end{gather*}
$$

Hint: Solutions of (6.19) lie on spheres $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=c\left(\right.$ where $c=x_{1}^{2}(0)+$ $\left.x_{2}^{2}(0)+x_{3}^{2}(0)\right)$.
(ii) Find all of the rest points of (6.19).

Consider the 3×3 algebraic system obtained by setting the right hand sides of (6.19) to zero. If one of the variables is zero, so are the other two. In case $x_{1} \neq 0, x_{2} \neq 0$, and $x_{3} \neq 0$, obtain a linear system with infinitely many solutions for $y_{1}=\frac{1}{x_{1}}, y_{2}=\frac{1}{x_{2}}, y_{3}=\frac{1}{x_{3}}$ dividing the first equation by $x_{2} x_{3}$, the second one by $x_{1} x_{3}$, and the third one by $x_{1} x_{2}$.
Answer. $\left(x_{1}, x_{2}, x_{3}\right)=\left(t, \frac{t}{t-1}, \frac{t}{1-2 t}\right)$, where t is arbitrary, but $t \neq 1, t \neq \frac{1}{2}$.
7 13. Show that the rest point $(1,1)$ is asymptotically stable for the system

$$
\begin{gathered}
x^{\prime}=-3 x-y+x y+3 \\
y^{\prime}=-2 x-y+x^{2}+2 .
\end{gathered}
$$

Hint: Set $x=X+1, y=X+1$, to get a system for (X, Y).
II.

1. Show that for any positive solution of the system

$$
\begin{aligned}
x^{\prime} & =x(5-x-2 y) \\
y^{\prime} & =y(2-3 x-y)
\end{aligned}
$$

we have $\lim _{t \rightarrow \infty}(x(t), y(t))=(5,0)$.
2. Show that for any positive solution of the system

$$
\begin{gathered}
x^{\prime}=x\left(2-x-\frac{1}{2} y\right) \\
y^{\prime}=y(3-x-y)
\end{gathered}
$$

we have $\lim _{t \rightarrow \infty}(x(t), y(t))=(1,2)$.
3. Find $\lim _{t \rightarrow \infty}(x(t), y(t))$ for the initial value problem

$$
\begin{array}{cl}
x^{\prime}=x(3-x-y), & x(0)=\frac{5}{2} \\
y^{\prime}=y(4-2 x-y), & y(0)=\frac{1}{4} .
\end{array}
$$

What if the initial conditions are $x(0)=0.1$ and $y(0)=3$?
Answer. $(3,0)$. For the other initial conditions: $(0,4)$.
4. Discuss the long term behavior (as $t \rightarrow \infty$) of positive solutions of the system

$$
\begin{gathered}
x^{\prime}=x(3-x-y) \\
y^{\prime}=y(4-2 x-y) .
\end{gathered}
$$

5. Show that any solution with $x(0)>0$ and $y(0)>0$ satisfies $x(t)>0$ and 2 $y(t)>0$ for all $t>0$, and then discuss the long term behavior of positive solutions of the system

$$
\begin{gathered}
x^{\prime}=x(6-3 x-2 y) \\
y^{\prime}=y\left(2-\frac{1}{8} x^{2}-y\right) .
\end{gathered}
$$

4 Hint: The second null-cline is a parabola, but the same analysis applies.
Answer. Any positive solution satisfies $\lim _{t \rightarrow \infty} x(t)=6-2 \sqrt{7}$, and $\lim _{t \rightarrow \infty} y(t)=$ $3 \sqrt{7}-6$.
III.

1. Show that the ellipse $x=2 \cos t, y=\sin t$ is a stable limit cycle for the system

$$
\begin{aligned}
& x^{\prime}=-2 y+x\left(1-\frac{1}{4} x^{2}-y^{2}\right) \\
& y^{\prime}=\frac{1}{2} x+y\left(1-\frac{1}{4} x^{2}-y^{2}\right) .
\end{aligned}
$$

$$
\begin{align*}
x_{1}^{\prime} & =-V_{x_{1}}\left(x_{1}, x_{2}\right) \tag{6.20}\\
x_{2}^{\prime} & =-V_{x_{2}}\left(x_{1}, x_{2}\right)
\end{align*}
$$

where $V\left(x_{1}, x_{2}\right)$ is a given twice differentiable function. (Denoting $x=$ $\left(x_{1}, x_{2}\right)$ and $V=V(x)$, one may write this system in the gradient form $x^{\prime}=-\nabla V(x)$.)
(i) Show that a point $P=\left(x_{1}^{0}, x_{2}^{0}\right)$ is a rest point of (6.20) if and only if P is a critical point of $V\left(x_{1}, x_{2}\right)$.
(ii) Show that $V\left(x_{1}(t), x_{2}(t)\right)$ is a strictly decreasing function of t for any solution $\left(x_{1}(t), x_{2}(t)\right)$, except if $\left(x_{1}(t), x_{2}(t)\right)$ is a rest point.
(iii) Show that no limit cycles are possible for gradient system (6.20).
(iv) Let (a, b) be a point of strict local minimum of $V\left(x_{1}, x_{2}\right)$. Show that (a, b) is asymptotically stable rest point of (6.20).

Hint: Use $L\left(x_{1}, x_{2}\right)=V\left(x_{1}, x_{2}\right)-V(a, b)$ as Lyapunov's function.
(v) Show that the existence and uniqueness Theorem 6.1.1 applies to (6.20).

$$
\begin{gathered}
x^{\prime}=x\left(2-x-y^{3}\right) \\
y^{\prime}=y\left(4 x-3 y-x^{2}\right)
\end{gathered}
$$

has no limit cycles in the positive quadrant $x, y>0$.
Hint: Use the Theorem 6.5.1, with $h(x, y)=\frac{1}{x y}$.
4. Show that the equation (for $x=x(t)$)

$$
x^{\prime \prime}+f(x) x^{\prime}+g(x)=0
$$

has no periodic solutions, provided that either $f(x)>0$, or $f(x)<0$, for all real x.

Hint: Periodic solutions would imply limit cycles for the corresponding system (for $x_{1}=x$ and $x_{2}=x^{\prime}$). Use the Dulac-Bendixson criterion.
5. Show that the condition (5.5) holds, provided that $a<\frac{1}{8}$, and b^{2} lies between the roots of the quadratic $x^{2}+(2 a-1) x+a+a^{2}$.
6. Consider a gradient system

$$
\begin{gather*}
x_{1}^{\prime}=V_{x_{1}}\left(x_{1}, x_{2}\right) \tag{6.21}\\
x_{2}^{\prime}=-V_{x_{2}}\left(x_{1}, x_{2}\right),
\end{gather*}
$$

2 where $V\left(x_{1}, x_{2}\right)$ is a given twice differentiable function.
3 (i) Show that

$$
V\left(x_{1}(t), x_{2}(t)\right)=\text { constant }
$$

4 for any solution $\left(x_{1}(t), x_{2}(t)\right)$.
(ii) Show that a point $P=\left(x_{1}^{0}, x_{2}^{0}\right)$ is a rest point of (6.21) if and only if P is a critical point of $V\left(x_{1}, x_{2}\right)$.
(iii) Show that no asymptotically stable rest points are possible for Hamiltonian system (6.21).
(iv) Let (a, b) be a point of strict local minimum or maximum of $V\left(x_{1}, x_{2}\right)$. Show that (a, b) is a center for (6.21).
(v) Show that the trajectories of (6.20) are orthogonal to the trajectories of (6.21), at all points $\left(x_{1}, x_{2}\right)$.
8. In the Lotka-Volterra predator-prey system (1.1) let $p=\ln x$, and $q=\ln y$. Show that for the new unknowns $p(t)$ and $q(t)$ one obtains a Hamiltonian system, with $V(p, q)=c p-d e^{p}+a q-b e^{q}$.
9. Consider the system $\left(x(t)\right.$ is a vector in $\left.R^{n}\right)$

$$
\begin{equation*}
x^{\prime}=[A+B(t)] x, \quad t>t_{0}, \tag{6.22}
\end{equation*}
$$

where A is an $n \times n$ matrix with constant entries, and the $n \times n$ matrix $B(t)$ satisfies $\int_{t_{0}}^{\infty}\|B(t)\| d t<\infty$. Assume that the eigenvalues of A are either negative or have negative real parts (recall that such matrices are called stable). Show that $\lim _{t \rightarrow \infty} x(t)=0$, for any solution of (6.22).

Hint: Treating the $B(t) x(t)$ term as known, one can regard (6.22) as a non-homogeneous system, and write its solution as

$$
x(t)=e^{A\left(t-t_{0}\right)} x\left(t_{0}\right)+\int_{t_{0}}^{t} e^{A(t-s)} B(s) x(s) d s .
$$

By (4.9), the norm $\left\|e^{A t}\right\| \leq a e^{-b t}$, for some constants $a>0$ and $b>0$, with $t>0$. Then

$$
\|x(t)\| \leq K e^{-b t}+a \int_{t_{0}}^{t} e^{-b(t-s)}\|B(s)\|\|x(s)\| d s
$$

$$
\begin{equation*}
x^{\prime}=a(t) x+b(t) \tag{6.23}
\end{equation*}
$$

$$
\begin{equation*}
x^{\prime}+a(t) x=1, \tag{6.24}
\end{equation*}
$$

with a p-periodic function $a(t)$.
(i) Assume that $\int_{0}^{p} a(t) d t=0$. Show that the problem (6.24) has no p periodic solution.

Hint: Let $z(t)>0$ be a p-periodic solution of

$$
z^{\prime}-a(t) z=0 .
$$

4 Combining this equation with (6.24), conclude that $\int_{0}^{p} z(t) d t=0$, which is 5 a contradiction.

6 (ii) Assume that $\int_{0}^{p} a(t) d t \neq 0$. Show that the problem (6.24) has a p 7 periodic solution, and moreover this solution satisfies $\int_{0}^{p} x(t) d t \neq 0$.
8 Hint: Solve (6.24), with initial condition $x(0)=\alpha$, and select α so that $x(p)=x(0)=\alpha$.
4. Consider the logistic model

$$
x^{\prime}=a(t) x-b(t) x^{2},
$$

with p-periodic functions $a(t)$ and $b(t)$. Assume that $\int_{0}^{p} a(t) d t=0$, and $b(t)>0$ for all t. Show that this equation has no non-trivial p-periodic solutions.

Hint: Any non-trivial solution satisfies either $x(t)>0$ or $x(t)<0$, for all t. Divide the equation by $x(t)$, and integrate over $(0, p)$.

Chapter 7

The Fourier Series and Boundary Value Problems

The central theme of this chapter involves various types of Fourier series, and the method of separation of variable, which is prominent in egineering and science. The three main equations of mathematical physics, the wave, the heat, and the Laplace equations, are derived and studied in detail. The Fourier transform method is developed, and applied to problems on infinite domains. Non-standard applications include studying temperatures inside the Earth, and the isoperimetric inequality.

7.1 The Fourier Series for Functions of an Arbitrary Period

Recall that in Chapter 2 we studied the Fourier series for functions of period 2π. Namely, if a function $g(t)$ has period 2π, it can be represented by the Fourier series

$$
g(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right),
$$

with the coefficients given by

$$
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(t) d t
$$

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \cos n t d t
$$

$$
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \sin n t d t
$$

Observe that the knowledge of a 2π-periodic function $g(t)$ over the interval $(-\pi, \pi]$ is sufficient to describe this function for all $t \in(-\infty, \infty)$.

Suppose now that $f(x)$ has a period $2 L$, where $L>0$ is any number. Consider an auxiliary function $g(t)=f\left(\frac{L}{\pi} t\right)$. Then $g(t)$ has period 2π, and we can represent it by the Fourier series

$$
f\left(\frac{L}{\pi} t\right)=g(t)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right)
$$

6 with the coefficients

$$
\begin{gathered}
a_{0}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} g(t) d t=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi} t\right) d t \\
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \cos n t d t=\frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi} t\right) \cos n t d t \\
b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} g(t) \sin n t d t=\frac{1}{\pi} \int_{-\pi}^{\pi} f\left(\frac{L}{\pi} t\right) \sin n t d t
\end{gathered}
$$

Set here

$$
x=\frac{L}{\pi} t, \quad \text { or } t=\frac{\pi}{L} x .
$$

10

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right) \tag{1.1}
\end{equation*}
$$

and making a change of variables $t \rightarrow x$, by setting $t=\frac{\pi}{L} x$ with $d t=\frac{\pi}{L} d x$,

The formula (1.1) gives the desired Fourier series for functions of period $2 L$. Its coefficients are computed using the formulas (1.2). Observe that one needs the values of $f(x)$ only on the interval $(-L, L)$, when computing the coefficients.

9

Restricting to the interval ($-3,3$), we have

$$
x=\sum_{n=1}^{\infty} \frac{6}{n \pi}(-1)^{n+1} \sin \frac{n \pi}{3} x, \quad \text { for }-3<x<3
$$

Suppose that a function $g(x)$ is defined on some interval $(-L, L)$. The function $G(x)$ is called the periodic extension of $g(x)$, provided that
(i) $G(x)=g(x)$, for $-L<x<L$
(ii) $G(x)$ is periodic with period $2 L$.

Observe that $G(x)$ is defined for all x, except for $x=n \pi$ with integer n.
Example Let $f(x)$ be the function of period 6 , which on the interval $(-3,3)$ is equal to x.
Here $L=3$, and $f(x)=x$ on the interval $(-3,3)$. The Fourier series has the form

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{3} x+b_{n} \sin \frac{n \pi}{3} x\right) .
$$

The functions x, and $x \cos \frac{n \pi}{3} x$ are odd, and so

$$
\begin{gathered}
a_{0}=\frac{1}{6} \int_{-3}^{3} x d x=0 \\
a_{n}=\frac{1}{3} \int_{-3}^{3} x \cos \frac{n \pi}{3} x d x=0
\end{gathered}
$$

The function $x \sin \frac{n \pi}{3} x$ is even, giving

$$
b_{n}=\frac{1}{3} \int_{-3}^{3} x \sin \frac{n \pi}{3} x d x=\frac{2}{3} \int_{0}^{3} x \sin \frac{n \pi}{3} x d x
$$

$$
=\left.\frac{2}{3}\left[-\frac{3}{n \pi} x \cos \frac{n \pi}{3} x+\frac{9}{n^{2} \pi^{2}} \sin \frac{n \pi}{3} x\right]\right|_{0} ^{3}=-\frac{6}{n \pi} \cos n \pi=\frac{6}{n \pi}(-1)^{n+1}
$$

because $\cos n \pi=(-1)^{n}$. We conclude that

$$
f(x)=\sum_{n=1}^{\infty} \frac{6}{n \pi}(-1)^{n+1} \sin \frac{n \pi}{3} x .
$$

Outside of the interval $(-3,3)$ this Fourier series converges not to x, but to the periodic extension of x, which is the function $f(x)$ that we started with.

We see that it is sufficient to know $f(x)$ on the interval $(-L, L)$, in order to compute its Fourier coefficients. If $f(x)$ is defined only on $(-L, L)$, it can still be represented the Fourier series (1.1). Outside of $(-L, L)$, this Fourier series converges to the $2 L$-periodic extension of $f(x)$.

7.1.1 Even and Odd Functions

Our computations in the preceding example were aided by the nice properties of even and odd functions, which we review next.

A function $f(x)$ is called even if

$$
f(-x)=f(x) \quad \text { for all } x
$$

Examples include $\cos x, x^{2}, x^{4}$, and in general $x^{2 n}$, for any even power $2 n$. The graph of an even function is symmetric with respect to the y axis. It follows that

$$
\int_{-L}^{L} f(x) d x=2 \int_{0}^{L} f(x) d x
$$

for any even function $f(x)$, and any constant L.
A function $f(x)$ is called odd if

$$
f(-x)=-f(x) \quad \text { for all } x \neq 0
$$

(This definition allows $f(x)$ to be discontinuous at $x=0$; but if $f(x)$ is continuous at $x=0$, then it implies that $f(0)=0$.) Examples include $\sin x$, $\tan x, x, x^{3}$, and in general $x^{2 n+1}$, for any odd power $2 n+1$. (The even functions "eat" minus, while the odd ones "pass it through.") The graph of an odd function is symmetric with respect to the origin. It follows that

$$
\int_{-L}^{L} f(x) d x=0
$$

for any odd function $f(x)$, and any constant L. Products of even and odd functions are either even or odd:

$$
\text { even } \cdot \text { even }=\text { even }, \quad \text { even } \cdot \text { odd }=\text { odd }, \quad \text { odd } \cdot \text { odd }=\text { even } .
$$

If $f(x)$ is even, then $b_{n}=0$ for all n (as integrals of odd functions), and the Fourier series (1.1) becomes

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{L} x
$$

1

2

3 If $f(x)$ is odd, then $a_{0}=0$ and $a_{n}=0$ for all n, and the Fourier series (1.1) 4 becomes

$$
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{L} x
$$

5
with

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x
$$

6

7

The periodic extension of $|x|$ as a function of period 2

8 Example Let $f(x)$ be a function of period 2, which on the interval $(-1,1)$ is equal to $|x|$.

10 Here $L=1$, and $f(x)=|x|$ on the interval $(-1,1)$. The function $f(x)$ is even, so that

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \pi x .
$$

Observing that $|x|=x$ on the interval $(0,1)$, we compute the coefficients

$$
a_{0}=\int_{0}^{1} x d x=\frac{1}{2},
$$

${ }^{13}$

$$
a_{n}=2 \int_{0}^{1} x \cos n \pi x d x=\left.2\left[\frac{x \sin n \pi x}{n \pi}+\frac{\cos n \pi x}{n^{2} \pi^{2}}\right]\right|_{0} ^{1}=\frac{2(-1)^{n}-2}{n^{2} \pi^{2}} .
$$

1 Restricting to the interval $(-1,1)$

$$
|x|=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{2(-1)^{n}-2}{n^{2} \pi^{2}} \cos n \pi x, \quad \text { for }-1<x<1 .
$$

2 Outside of the interval $(-1,1)$, this Fourier series converges to the periodic 3 extension of $|x|$, or to the function $f(x)$.

4 Observing that $a_{n}=0$ for even n, one can also write the answer as

$$
|x|=\frac{1}{2}-\sum_{k=0}^{\infty} \frac{4}{(2 k+1)^{2} \pi^{2}} \cos (2 k+1) \pi x, \quad \text { for }-1<x<1
$$

${ }_{5}$ (All odd n can be obtained in the form $n=2 k+1$, with $k=0,1,2, \ldots$..)

6 7.1.2 Further Examples and the Convergence Theorem

7 Even and odd functions are very special. A "general" function is neither even nor odd.

- Example 1 On the interval ($-2,2$), represent the function

$$
f(x)= \begin{cases}1 & \text { for }-2<x \leq 0 \\ x & \text { for } 0<x<2\end{cases}
$$ jump at $x=0$). Here $L=2$, and the Fourier series has the form

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{2} x+b_{n} \sin \frac{n \pi}{2} x\right)
$$

Compute

$$
a_{0}=\frac{1}{4} \int_{-2}^{0} 1 d x+\frac{1}{4} \int_{0}^{2} x d x=1,
$$

14 where we broke the interval of integration into two pieces, according to the
15

16

$$
a_{n}=\frac{1}{2} \int_{-2}^{0} \cos \frac{n \pi}{2} x+\frac{1}{2} \int_{0}^{2} x \cos \frac{n \pi}{2} x d x=\frac{2\left(-1+(-1)^{n}\right)}{n^{2} \pi^{2}},
$$

$$
b_{n}=\frac{1}{2} \int_{-2}^{0} \sin \frac{n \pi}{2} x+\frac{1}{2} \int_{0}^{2} x \sin \frac{n \pi}{2} x d x=\frac{\left(-1-(-1)^{n}\right)}{n \pi}
$$

$$
f(x)=1-\sum_{k=1}^{\infty}\left(\frac{4}{(2 k-1)^{2} \pi^{2}} \cos \frac{(2 k-1) \pi}{2} x+\frac{1}{k \pi} \sin k \pi x\right), \text { for }-2<x<2
$$

$$
f(x)=a_{0}+a_{1} \cos x+a_{2} \cos 2 x+a_{3} \cos 3 x+\cdots+b_{1} \sin x+b_{2} \sin 2 x+\cdots
$$

3 Using the trigonometric formula $\sin ^{2} x=\frac{1}{2}-\frac{1}{2} \cos 2 x$, write

$$
f(x)=\frac{1}{2}-\frac{1}{2} \cos 2 x+2 \sin x
$$

Outside of the interval $(-2,2)$, this series converges to the extension of $f(x)$, as a function of period 4 .

Example 2 Find the Fourier series of $f(x)=2 \sin x+\sin ^{2} x$, on the interval $(-\pi, \pi)$.
Here $L=\pi$, and the Fourier series takes the form

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)
$$

Let us spell out several terms of this series:

This is the desired Fourier series! Here $a_{0}=\frac{1}{2}, a_{2}=-\frac{1}{2}, b_{1}=2$, and all other coefficients are zero. In effect, this function is its own Fourier series.

Example 3 Find the Fourier series of $f(x)=2 \sin x+\sin ^{2} x$, on the interval $(-2 \pi, 2 \pi)$.
This time $L=2 \pi$, and the Fourier series has the form

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n}{2} x+b_{n} \sin \frac{n}{2} x\right)
$$

As before, we rewrite $f(x)$

$$
f(x)=\frac{1}{2}-\frac{1}{2} \cos 2 x+2 \sin x
$$

And again this is the desired Fourier series! This time $a_{0}=\frac{1}{2}, a_{4}=-\frac{1}{2}$, $b_{2}=2$, and all other coefficients are zero.

To discuss the convergence properties of Fourier series, we need the concept of piecewise smooth functions. These are functions that are continuous and differentiable, except for discontinuities at some isolated points. In case a discontinuity happens at some point x_{0}, we assume that the limit from the left $f\left(x_{0}-\right)$ exists, as well as the limit from the right $f\left(x_{0}+\right)$. (So that at a point of discontinuity either $f\left(x_{0}\right)$ is not defined, or $f\left(x_{0}-\right) \neq f\left(x_{0}+\right)$, or $f\left(x_{0}\right) \neq \lim _{x \rightarrow x_{0}} f(x)$.)

Theorem 7.1.1 Let $f(x)$ be a piecewise smooth function of period $2 L$. Then its Fourier series

$$
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)
$$

converges to $f(x)$ at any point x where $f(x)$ is continuous. If $f(x)$ has a discontinuity at x, the Fourier series converges to

$$
\frac{f(x-)+f(x+)}{2}
$$

The proof can be found in the book of H.F. Weinberger [36]. (At jump points, the Fourier series tries to be fair, and it converges to the average of the limits from the left and from the right.)

Let now $f(x)$ be defined on $[-L, L]$. Let us extend it as a function of period $2 L$. Unless it so happens that $f(-L)=f(L)$, the extended function will have jumps at $x=-L$ and $x=L$. Then this theorem implies the next one.

Theorem 7.1.2 Let $f(x)$ be a piecewise smooth function defined on $[-L, L]$. Let x be a point inside $(-L, L)$. Then its Fourier series

$$
a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right)
$$

converges to $f(x)$ at any point x where $f(x)$ is continuous. If $f(x)$ has a 2 discontinuity at x, the Fourier series converges to

$$
\frac{f(x-)+f(x+)}{2} .
$$

At both end points, $x=-L$ and $x=L$, the Fourier series converges to

$$
\frac{f(-L+)+f(L-)}{2} .
$$

(The average of the limits from the right and from the left, at $-L$ and L respectively.)

7.2 The Fourier Cosine and the Fourier Sine Series

Suppose a function $f(x)$ is defined on the interval $(0, L)$. How do we represent $f(x)$ by a Fourier series? We can compute Fourier series for functions defined on $(-L, L)$, but $f(x)$ "lives" only on $(0, L)$.

One possibility is to extend $f(x)$ as an arbitrary function on $(-L, 0)$ (by drawing randomly any graph on $(-L, 0)$). This gives us a function defined on $(-L, L)$, which we may represent by its Fourier series, and then use this series only on the interval $(0, L)$, where $f(x)$ lives. So that there are infinitely many ways to represent $f(x)$ by a Fourier series on the interval $(0, L)$. However, two of these Fourier series stand out, the ones when the extension produces either an even or an odd function.

Let $f(x)$ be defined on the interval $(0, L)$. We define its even extension to the interval $(-L, L)$, as follows

$$
f_{e}(x)=\left\{\begin{array}{ll}
f(x) & \text { for } 0<x<L \\
f(-x) & \text { for }-L<x<0
\end{array} .\right.
$$

(Observe that $f_{e}(0)$ is left undefined.) The graph of $f_{e}(x)$ is obtained by reflecting the graph of $f(x)$ with respect to the y-axis. The function $f_{e}(x)$ is even on $(-L, L)$, and so its Fourier series has the form

$$
\begin{equation*}
f_{e}(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{L} x, \tag{2.1}
\end{equation*}
$$

with the coefficients

$$
a_{0}=\frac{1}{L} \int_{0}^{L} f_{e}(x) d x=\frac{1}{L} \int_{0}^{L} f(x) d x,
$$

1

2

$$
a_{n}=\frac{2}{L} \int_{0}^{L} f_{e}(x) \cos \frac{n \pi}{L} x d x=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi}{L} x d x
$$

because $f_{e}(x)=f(x)$ on the interval of integration $(0, L)$. We now restrict the series (2.1) to the interval $(0, L)$, obtaining

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{L} x, \quad \text { for } 0<x<L \tag{2.2}
\end{equation*}
$$

4 with

$$
\begin{gather*}
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x \tag{2.3}\\
a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi}{L} x d x \tag{2.4}
\end{gather*}
$$

6 The series (2.2), with the coefficients computed using the formulas (2.3) and (2.4), is called the Fourier cosine series of $f(x)$.

Where is $f_{e}(x)$ now? It disappeared. We used it as an artifact of construction, like scaffolding.
Example 1 Find the Fourier cosine series of $f(x)=x+2$, on the interval $(0,3)$.
The series has the form

$$
f(x)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{3} x \quad \text { for } 0<x<3 .
$$

13

14

15

$$
x+2=\frac{7}{2}+\sum_{n=1}^{\infty} \frac{6\left(-1+(-1)^{n}\right)}{n^{2} \pi^{2}} \cos \frac{n \pi}{3} x=\frac{7}{2}-12 \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2} \pi^{2}} \cos \frac{(2 k-1) \pi}{3} x
$$

Compute

$$
a_{0}=\frac{1}{3} \int_{0}^{3}(x+2) d x=\frac{7}{2}
$$

$$
a_{n}=\frac{2}{3} \int_{0}^{3}(x+2) \cos \frac{n \pi}{3} x d x=\frac{6\left(-1+(-1)^{n}\right)}{n^{2} \pi^{2}}
$$

Answer:

Assume again that $f(x)$ is defined only on the interval $(0, L)$. We now define its odd extension to the interval $(-L, L)$, as follows

$$
f_{o}(x)= \begin{cases}f(x) & \text { for } 0<x<L \\ -f(-x) & \text { for }-L<x<0\end{cases}
$$

The graph of $f_{o}(x)$ is obtained by reflecting the graph of $f(x)$ with respect to the origin. Observe that $f_{o}(0)$ is not defined. (If $f(0)$ is defined, but $f(0) \neq 0$, this extension is still discontinuous at $x=0$.) The function $f_{o}(x)$ is odd on $(-L, L)$, and so its Fourier series has only the sine terms:

$$
\begin{equation*}
f_{o}(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{L} x \tag{2.5}
\end{equation*}
$$

with the coefficients

$$
b_{n}=\frac{2}{L} \int_{0}^{L} f_{o}(x) \sin \frac{n \pi}{L} x d x=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x,
$$

because on the interval of integration $(0, L), f_{o}(x)=f(x)$. We restrict the series (2.5) to the interval $(0, L)$, obtaining

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{L} x, \quad \text { for } 0<x<L \tag{2.6}
\end{equation*}
$$

8 with

$$
\begin{equation*}
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x \tag{2.7}
\end{equation*}
$$

The series (2.6), with the coefficients computed using the formula (2.7), is called the Fourier sine series of $f(x)$.
Example 2 Find the Fourier sine series of $f(x)=x+2$, on the interval $(0,3)$.
Compute

$$
b_{n}=\frac{2}{3} \int_{0}^{3}(x+2) \sin \frac{n \pi}{3} x d x=\frac{4-10(-1)^{n}}{n \pi}
$$

Clearly this series does not converge to $f(x)$ at the end points $x=0$ and $x=3$ of our interval $(0,3)$. But inside $(0,3)$, we do have convergence.

We now discuss the convergence issue. The Fourier sine and cosine series were developed by using the Fourier series on $(-L, L)$. It follows from the convergence Theorem 7.1.1 that inside of $(0, L)$, both of these series converge to $f(x)$ at points of continuity, and to $\frac{f(x-)+f(x+)}{2}$ if $f(x)$ is discontinuous at x. At both end points $x=0$ and $x=L$, the Fourier sine series converges to 0 (as can be seen directly from the series), while the Fourier cosine series converges to $f(0+)$ and $f(L-)$ respectively. (The extension of $f_{e}(x)$ as a function of period $2 L$ has no jumps at $x=0$ and $x=L$.)

7.3 Two Point Boundary Value Problems

We shall need to find non-trivial solutions $y=y(x)$ of the problem

$$
\begin{gather*}
y^{\prime \prime}+\lambda y=0, \quad 0<x<L \tag{3.1}\\
y(0)=y(L)=0
\end{gather*}
$$

on an interval $(0, L)$. Here λ is a real number. Unlike initial value problems, where the values of the solution and its derivative are prescribed at some point, here we prescribe that the solution vanishes at $x=0$ and at $x=L$, which are the end-points (the boundary points) of the interval $(0, L)$. The problem (3.1) is an example of a boundary value problem. Of course, $y(x)=0$ is a solution of our problem (3.1), which is called the trivial solution. We wish to find non-trivial solutions. What are the values of the parameter λ, for which non-trivial solutions are possible?

The form of the general solution depends on whether λ is positive, negative or zero, so that there are three cases to consider.
Case 1. $\lambda<0$. We may write $\lambda=-\omega^{2}$, with some $\omega>0(\omega=\sqrt{-\lambda})$, and our equation takes the form

$$
y^{\prime \prime}-\omega^{2} y=0
$$

Its general solution is $y=c_{1} e^{-\omega x}+c_{2} e^{\omega x}$. The boundary conditions

$$
\begin{gathered}
y(0)=c_{1}+c_{2}=0 \\
y(L)=e^{-\omega L} c_{1}+e^{\omega L} c_{2}=0
\end{gathered}
$$

give us two equations to determine c_{1} and c_{2}. From the first equation $c_{2}=$ $-c_{1}$, and then from the second equation $c_{1}=0$. So that $c_{1}=c_{2}=0$, and the only solution is $y=0$, the trivial solution.
Case 2. $\lambda=0$. The equation takes the form

$$
y^{\prime \prime}=0
$$

Its general solution is $y=c_{1}+c_{2} x$. The boundary conditions

$$
\begin{gathered}
y(0)=c_{1}=0 \\
y(L)=c_{1} L+c_{2}=0
\end{gathered}
$$

give us $c_{1}=c_{2}=0$, so that $y=0$. We struck out again in the search for a non-trivial solution.

Case 3. $\lambda>0$. We may write $\lambda=\omega^{2}$, with some $\omega>0(\omega=\sqrt{\lambda})$, and our equation takes the form

$$
y^{\prime \prime}+\omega^{2} y=0 .
$$

3 Its general solution is $y=c_{1} \cos \omega x+c_{2} \sin \omega x$. The first boundary condition,

$$
y(0)=c_{1}=0,
$$

tells us that $c_{1}=0$. We update the general solution: $y=c_{2} \sin \omega x$. The second boundary condition gives

$$
y(L)=c_{2} \sin \omega L=0 .
$$

- One possibility for this product to be zero, is $c_{2}=0$. That would lead again to the trivial solution. What saves us is that $\sin \omega L=0$, for some "lucky" ω 's, namely when $\omega L=n \pi$, or $\omega=\omega_{n}=\frac{n \pi}{L}$, and then $\lambda_{n}=\omega_{n}^{2}=\frac{n^{2} \pi^{2}}{L^{2}}$, $n=1,2,3, \ldots$. The corresponding solutions are $c_{2} \sin \frac{n \pi}{L} x$, or we can simply write them as $\sin \frac{n \pi}{L} x$, because a constant multiple of a solution is also a solution of (3.1).

To recapitulate, non-trivial solutions of the boundary value problem (3.1) occur at the infinite sequence of λ^{\prime} 's, $\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$, called the eigenvalues, and the corresponding solutions $y_{n}=\sin \frac{n \pi}{L} x$ are called the eigenfunctions.

Next, we search for non-trivial solutions of the problem

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0, \quad 0<x<L \\
y^{\prime}(0)=y^{\prime}(L)=0,
\end{gathered}
$$

in which the boundary conditions are different. As before, we see that in case $\lambda<0$, there are no non-trivial solutions. The case $\lambda=0$ turns out to be different: any non-zero constant is a non-trivial solution. So that $\lambda_{0}=0$ is an eigenvalue, and $y_{0}=1$ is the corresponding eigenfunction. In case $\lambda>0$, we get infinitely many eigenvalues $\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$, with the corresponding eigenfunctions $y_{n}=\cos \frac{n \pi}{L} x, n=1,2,3, \ldots$.

7.3.1 Problems

I. 1. Is the integral $\int_{-1}^{3 / 2} \tan ^{15} x d x$ positive or negative?

Hint: Consider first $\int_{-1}^{1} \tan ^{15} x d x$. Answer. Positive.
2. Show that any function can be written as a sum of an even function and an odd function.
Hint: $f(x)=\frac{f(x)+f(-x)}{2}+\frac{f(x)-f(-x)}{2}$.
3. Let $g(x)=x$ on the interval $[0,3)$.
(i) Find the even extension of $g(x)$. Answer. $g_{e}(x)=|x|$, defined on $(-3,3)$.
(ii) Find the odd extension of $g(x)$. Answer. $g_{o}(x)=x$, defined on $(-3,3)$.
4. Let $h(x)=-x^{3}$ on the interval $[0,5)$. Find its even and odd extensions, and state the interval on which they are defined.
Answer. $h_{e}(x)=-|x|^{3}$ and $h_{0}(x)=-x^{3}$, both defined on $(-5,5)$.
5. Let $f(x)=x^{2}$ on the interval $[0,1)$. Find its even and odd extensions, and state the interval on which they are defined.
Answer. $f_{o}(x)=x|x|$, defined on $(-1,1)$.
6. Differentiate the functions $f(x)=x|x|^{p-1}$ and $g(x)=|x|^{p}$, with $p>1$.

Hint: The function $f(x)$ is odd, so that $f^{\prime}(x)$ is even. Begin by computing $f^{\prime}(x)$ for $x>0$.
Answer. $f^{\prime}(x)=p|x|^{p-1}, g^{\prime}(x)=p x|x|^{p-2}$.
7. Assume that $f(x)$ has period 2π. Show that the function $\int_{0}^{x} f(t) d t$ is also 2π-periodic, if and only if $\int_{0}^{2 \pi} f(t) d t=0$.
8. Assume that $f(x)$ has period T. Show that for any constant a

$$
\int_{a}^{T+a} f^{\prime}(x) e^{f(x)} d x=0
$$

II. Find the Fourier series of a given function over the indicated interval.

1. $f(x)=\sin x \cos x+\cos ^{2} 2 x$ on $(-\pi, \pi)$.

Answer. $f(x)=\frac{1}{2}+\frac{1}{2} \cos 4 x+\frac{1}{2} \sin 2 x$.
2. $f(x)=\sin x \cos x+\cos ^{2} 2 x$ on $(-2 \pi, 2 \pi)$.

1. Answer. $f(x)=\frac{1}{2}+\frac{1}{2} \cos 4 x+\frac{1}{2} \sin 2 x$.
2. $f(x)=\sin x \cos x+\cos ^{2} 2 x$ on $(-\pi / 2, \pi / 2)$.

Answer. $f(x)=\frac{1}{2}+\frac{1}{2} \cos 4 x+\frac{1}{2} \sin 2 x$.
4. $f(x)=x+x^{2}$ on $(-\pi, \pi)$.

Answer. $f(x)=\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty}\left(\frac{4(-1)^{n}}{n^{2}} \cos n x+\frac{2(-1)^{n+1}}{n} \sin n x\right)$.
5. (i) $f(x)=\left\{\begin{array}{ll}1 & \text { for } 0<x<\pi \\ -1 & \text { for }-\pi<x<0\end{array}\right.$ on $(-\pi, \pi)$.

Answer. $f(x)=\frac{4}{\pi}\left(\sin x+\frac{1}{3} \sin 3 x+\frac{1}{5} \sin 5 x+\frac{1}{7} \sin 7 x+\cdots\right)$.
(ii) Set $x=\frac{\pi}{2}$ in the last series, to conclude that

$$
\frac{\pi}{4}=1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots .
$$

9. $f(x)=1-|x|$ on $(-2,2)$.

Answer. $f(x)=\sum_{n=1}^{\infty} \frac{4}{n^{2} \pi^{2}}\left(1-(-1)^{n}\right) \cos \frac{n \pi}{2} x$.
7. $f(x)=x|x|$ on $(-1,1)$.

Answer. $f(x)=\sum_{n=1}^{\infty} \frac{-2\left(n^{2} \pi^{2}-2\right)(-1)^{n}-4}{n^{3} \pi^{3}} \sin n \pi x$.
8. Let $f(x)=\left\{\begin{array}{ll}1 & \text { for }-1<x<0 \\ 0 & \text { for } 0<x<1\end{array}\right.$ on $(-1,1)$. Sketch the graphs of $f(x)$ and of its Fourier series. Then calculate the Fourier series of $f(x)$ on $(-1,1)$.

Answer. $f(x)=\frac{1}{2}-\sum_{k=1}^{\infty} \frac{2}{(2 k-1) \pi} \sin (2 k-1) \pi x$.
9. Let $f(x)=\left\{\begin{array}{ll}x & \text { for }-2<x<0 \\ -1 & \text { for } 0<x<2\end{array}\right.$ on ($-2,2$). Sketch the graphs of $f(x)$ and of its Fourier series. Then calculate the Fourier series of $f(x)$ on $(-2,2)$.
III. Find the Fourier cosine series of a given function over the indicated interval.

1
2 Answer. $f(x)=-\frac{1}{2}+\cos 3 x+\frac{1}{2} \cos 6 x$.
2. $f(x)=\cos 3 x-\sin ^{2} 3 x$ on $\left(0, \frac{\pi}{3}\right)$.

4 Answer. $f(x)=-\frac{1}{2}+\cos 3 x+\frac{1}{2} \cos 6 x$.
3. $f(x)=x$ on $(0,2)$.

6 Answer. $f(x)=1+\sum_{n=1}^{\infty} \frac{-4+4(-1)^{n}}{n^{2} \pi^{2}} \cos \frac{n \pi}{2} x$.
4. $f(x)=\sin x$ on $(0,2)$.

8 Hint: $\sin a x \cos b x=\frac{1}{2} \sin (a-b) x+\frac{1}{2} \sin (a+b) x$.
Answer. $f(x)=\frac{1}{2}(1-\cos 2)+\sum_{n=1}^{\infty} \frac{4\left((-1)^{n} \cos 2-1\right)}{n^{2} \pi^{2}-4} \cos \frac{n \pi}{2} x$
5. $f(x)=\sin ^{4} x$ on $\left(0, \frac{\pi}{2}\right)$.

Answer. $f(x)=\frac{3}{8}-\frac{1}{2} \cos 2 x+\frac{1}{8} \cos 4 x$
IV. Find the Fourier sine series of a given function over the indicated interval.

1. $f(x)=5 \sin x \cos x$ on $(0, \pi)$.

Answer. $f(x)=\frac{5}{2} \sin 2 x$.
2. $f(x)=1$ on $(0,3)$.

Answer. $f(x)=\sum_{n=1}^{\infty} \frac{2}{n \pi}\left(1-(-1)^{n}\right) \sin \frac{n \pi}{3} x$.
3. $f(x)=x$ on $(0,2)$.

Answer. $f(x)=\sum_{n=1}^{\infty} \frac{4}{n \pi}(-1)^{n+1} \sin \frac{n \pi}{2} x$
4. $f(x)=\sin x$ on $(0,2)$.

Hint: $\sin a x \sin b x=\frac{1}{2} \cos (a-b) x-\frac{1}{2} \cos (a+b) x$.
22 Answer. $f(x)=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{2 n \pi \sin 2}{n^{2} \pi^{2}-4} \sin \frac{n \pi}{2} x$.

1

4

5
3. Find the eigenvalues and the eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, y(x) \text { is a } 2 \pi \text { periodic function. }
$$

Answer. $\lambda_{0}=0$ with $y_{0}=1$, and $\lambda_{n}=n^{2}$ with $y_{n}=a_{n} \cos n x+b_{n} \sin n x$.
4. Find all non-trivial solutions of an integro-differential equation

$$
y^{\prime \prime}+\left(\int_{0}^{1} y^{2}(x) d x\right) y=0, \quad 0<x<1, \quad y(0)=y(1)=0 .
$$

18 Answer. $y= \pm \sqrt{2} n \sin n \pi x$, with integer $n \geq 1$.

1
5^{*}. Show that the fourth order problem (with $a>0$)

$$
y^{\prime \prime \prime \prime}-a^{4} y=0, \quad 0<x<1, \quad y(0)=y^{\prime}(0)=y(1)=y^{\prime}(1)=0
$$

has non-trivial solutions (eigenfunctions) if and only if a satisfies

$$
\cos a=\frac{1}{\cosh a} .
$$

Show graphically that there are infinitely many such a 's, and calculate the corresponding eigenfunctions.
Hint: The general solution is $y(x)=c_{1} \cos a x+c_{2} \sin a x+c_{3} \cosh a x+$ $c_{4} \sinh a x$. From the boundary conditions obtain two equation for c_{3} and c_{4}.

7.4 The Heat Equation and the Method of Separation of Variables

Heat flows in at $x+\Delta x$, and escapes at x

Suppose we have a rod of length L, so thin that we may assume it to be one dimensional, extending along the x-axis, for $0 \leq x \leq L$. Assume that the surface of the rod is insulated, so that heat can travel only to the left or to the right along the rod. We wish to determine the temperature $u=u(x, t)$ at any point x of the rod, and at any time $t>0$. Consider an element ($x, x+\Delta x$) of the rod, of length Δx. The amount of heat (in calories) that this element holds we approximate by

$$
c u(x, t) \Delta x .
$$

Indeed, the amount of heat ought to be proportional to the temperature $u=u(x, t)$, and to the length Δx. A physical constant $c>0$ reflects the rod's capacity to store heat (c also makes the physical units right, so that the product is in calories). The rate of change of the amount of heat is

$$
c u_{t}(x, t) \Delta x,
$$

where $u_{t}(x, t)$ denotes the partial derivative in t. The change in the amount of heat occurs because of the heat flow through the end-points of the interval $(x, x+\Delta x)$. The function $u(x, t)$ is likely to be monotone over the small interval $(x, x+\Delta x)$, so let us assume that $u(x, t)$ in increasing in x over $(x, x+\Delta x)$ (think of t as fixed). At the right end-point $x+\Delta x$, heat flows into our element, because to the right of this point the temperatures are higher. The heat flow per unit time (called the heat flux) is assumed to be

$$
c_{1} u_{x}(x+\Delta x, t),
$$

or proportional to the rate of temperature increase ($c_{1}>0$ is another physical constant). Similarly, at the left end-point x

$$
c_{1} u_{x}(x, t)
$$

calories of heat are lost per unit time. The equation of heat balance is then

$$
c u_{t}(x, t) \Delta x=c_{1} u_{x}(x+\Delta x, t)-c_{1} u_{x}(x, t) .
$$

Divide by $c \Delta x$, and call $\frac{c_{1}}{c}=k$

$$
u_{t}(x, t)=k \frac{u_{x}(x+\Delta x, t)-u_{x}(x, t)}{\Delta x}
$$

And finally, we let $\Delta x \rightarrow 0$, obtaining the heat equation

$$
u_{t}=k u_{x x} .
$$

It gives an example of a partial differential equation, or a PDE for short. (So far we studied ordinary differential equations, or ODE's, with unknown functions depending on only one variable.)

If $u_{1}(x, t)$ and $u_{2}(x, t)$ are two solutions of the heat equation, then so is $c_{1} u_{1}(x, t)+c_{2} u_{2}(x, t)$, for any constants c_{1} and c_{2}, as can be seen by a direct substitution. The situation is similar in case of three or more solutions. This superposition property of solutions could be taken as a definition of linear

Suppose now that initially, or at the time $t=0$, the temperatures inside the rod could be obtained from a given function $f(x)$, while the temperatures at the end-points, $x=0$ and $x=L$, are kept at 0 degree Celsius at all time t (think that the end-points are kept on ice). To determine the temperature $u(x, t)$ at all points $x \in(0, L)$, and all time $t>0$, we need to solve

$$
\begin{gather*}
u_{t}=k u_{x x} \quad \text { for } 0<x<L, \text { and } t>0 \tag{4.1}\\
u(x, 0)=f(x) \quad \text { for } 0<x<L \\
u(0, t)=u(L, t)=0 \quad \text { for } t>0
\end{gather*}
$$

Here the second line represents the initial condition, and the third line gives the boundary conditions.

Separation of Variables

We search for a solution of (4.1) in the form $u(x, t)=F(x) G(t)$, with the functions $F(x)$ and $G(t)$ to be determined. From the equation (4.1)

$$
F(x) G^{\prime}(t)=k F^{\prime \prime}(x) G(t) .
$$

Divide by $k F(x) G(t)$:

$$
\frac{G^{\prime}(t)}{k G(t)}=\frac{F^{\prime \prime}(x)}{F(x)}
$$

On the left we have a function of t only, while on the right we have a function of x only. In order for them to be the same, they must be both equal to the same constant, which we denote by $-\lambda$

$$
\frac{G^{\prime}(t)}{k G(t)}=\frac{F^{\prime \prime}(x)}{F(x)}=-\lambda .
$$

$$
\begin{equation*}
\frac{G^{\prime}(t)}{k G(t)}=-\lambda, \tag{4.2}
\end{equation*}
$$

and

$$
F^{\prime \prime}(x)+\lambda F(x)=0 .
$$

1
1 From the boundary condition at $x=0$,

$$
u(0, t)=F(0) G(t)=0
$$

2 This implies that $F(0)=0$ (setting $G(t)=0$, would give $u=0$, which does 3 not satisfy the initial condition in (4.1)). Similarly, we have $F(L)=0$, using 4 the other boundary condition. So that $F(x)$ satisfies

$$
\begin{equation*}
F^{\prime \prime}(x)+\lambda F(x)=0, \quad F(0)=F(L)=0 \tag{4.3}
\end{equation*}
$$

5
6 only at $\lambda=\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$. Corresponding solutions are

$$
F_{n}(x)=\sin \frac{n \pi}{L} x \quad(\text { and their multiples })
$$

${ }_{7}$ With $\lambda=\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$ the equation (4.2) becomes

$$
\begin{equation*}
\frac{G^{\prime}(t)}{G(t)}=-k \frac{n^{2} \pi^{2}}{L^{2}} \tag{4.4}
\end{equation*}
$$

9 where b_{n} 's are arbitrary constants. We have constructed infinitely many 10 functions

$$
u_{n}(x, t)=G_{n}(t) F_{n}(x)=b_{n} e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t} \sin \frac{n \pi}{L} x
$$

11 which satisfy the PDE in (4.1), and the boundary conditions. By linearity,

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} u_{n}(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t} \sin \frac{n \pi}{L} x \tag{4.5}
\end{equation*}
$$

${ }_{13}$ also satisfies the PDE in (4.1), and the boundary conditions. We now turn 14 to the initial condition:

$$
\begin{equation*}
u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{L} x=f(x) \tag{4.6}
\end{equation*}
$$

15 We need to represent $f(x)$ by its Fourier sine series, which requires

$$
\begin{equation*}
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x \tag{4.7}
\end{equation*}
$$

1 Conclusion: the series

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t} \sin \frac{n \pi}{L} x \tag{4.8}
\end{equation*}
$$

with b_{n} 's calculated using (4.7), gives the solution of our problem (4.1). Observe that going from the Fourier sine series of $f(x)$ to the solution of our problem (4.1) involves just putting in the additional factors $e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t}$. In practice, one should memorize the formula (4.8).
Example 1 Find the temperature $u(x, t)$ satisfying

$$
\begin{aligned}
& u_{t}=5 u_{x x} \quad \text { for } 0<x<2 \pi, \text { and } t>0 \\
& u(x, 0)=2 \sin x-3 \sin x \cos x \quad \text { for } 0<x<2 \pi \\
& u(0, t)=u(2 \pi, t)=0 \quad \text { for } t>0 .
\end{aligned}
$$

7 Here $k=5$, and $L=2 \pi$. The Fourier sine series on ($0,2 \pi$) has the form $8 \sum_{n=1}^{\infty} b_{n} \sin \frac{n}{2} x$. Writing the initial temperatures as

$$
2 \sin x-3 \sin x \cos x=2 \sin x-\frac{3}{2} \sin 2 x
$$

9 we see that this function is its own Fourier sine series, with $b_{2}=2, b_{4}=-\frac{3}{2}$, and all other coefficients equal to zero. According to (4.8), the solution is

$$
u(x, t)=2 e^{-5 \frac{2^{2} \pi^{2}}{(2 \pi)^{2}} t} \sin x-\frac{3}{2} e^{-5 \frac{4^{2} \pi^{2}}{(2 \pi)^{2}} t} \sin 2 x=2 e^{-5 t} \sin x-\frac{3}{2} e^{-20 t} \sin 2 x .
$$

with

$$
b_{n}=\frac{2}{3} \int_{0}^{3}(x-1) \sin \frac{n \pi}{3} x d x=-\frac{2+4(-1)^{n}}{n \pi} .
$$

Then, we put in the appropriate exponential factors, according to (4.8).
Solution:

$$
u(x, t)=-\sum_{n=1}^{\infty} \frac{2+4(-1)^{n}}{n \pi} e^{-2 \frac{n^{2} \pi^{2}}{9} t} \sin \frac{n \pi}{3} x
$$

What is the value of this solution? The initial temperatures, $u(x, 0)=$ $x-1$, are negative for $0<x<1$, and positive for $1<x<3$. Again, very quickly (by the time $t=1$), the first term $(n=1)$ dominates all others, and then

$$
u(x, t) \approx \frac{2}{\pi} e^{-\frac{2 \pi^{2}}{9} t} \sin \frac{\pi}{3} x
$$

so that the temperatures become positive at all points, because the first harmonic $\sin \frac{\pi}{3} x>0$, on the interval $(0,3)$. For large t, the temperatures tend exponentially to zero, while retaining the shape of the first harmonic.

Assume now that the rod is insulated at the end-points $x=0$ and $x=L$. Recall that the flux at $x=0$ (the amount of heat flowing per unit time) is proportional to $u_{x}(0, t)$. Since there is no heat flow at $x=0$ for all t, we have $u_{x}(0, t)=0$, and similarly $u_{x}(L, t)=0$. If the initial temperatures are prescribed by $f(x)$, one needs to solve

$$
\begin{gather*}
u_{t}=k u_{x x} \quad \text { for } 0<x<L, \text { and } t>0 \tag{4.9}\\
u(x, 0)=f(x) \quad \text { for } 0<x<L \\
u_{x}(0, t)=u_{x}(L, t)=0 \quad \text { for } t>0
\end{gather*}
$$

It is natural to expect that in the long run the temperatures inside the rod will average out, and be equal to the average of the initial temperatures, $\frac{1}{L} \int_{0}^{L} f(x) d x$.

Again, we search for a solution in the form $u(x, t)=F(x) G(t)$. Separation of variables shows that $G(t)$ still satisfies (4.4), while $F(x)$ needs to solve

$$
F^{\prime \prime}(x)+\lambda F(x)=0, \quad F^{\prime}(0)=F^{\prime}(L)=0 .
$$

Recall that nontrivial solutions of this problem occur only at $\lambda=\lambda_{0}=0$, and at $\lambda=\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$. The corresponding solutions are

$$
F_{0}(x)=1, \quad F_{n}(x)=\cos \frac{n \pi}{L} x \quad(\text { and their multiples }) .
$$

Solving (4.4) for $n=0$, and for all $n=1,2,3, \ldots$, gives

$$
G_{0}=a_{0}, \quad G_{n}(t)=a_{n} e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t},
$$

1 where a_{0} and a_{n} 's are arbitrary constants. We constructed infinitely many
2 functions
$u_{0}(x, t)=G_{0}(t) F_{0}(x)=a_{0}, u_{n}(x, t)=G_{n}(t) F_{n}(x)=a_{n} e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t} \cos \frac{n \pi}{L} x$,
3 satisfying the PDE in (4.9), and the boundary conditions. By linearity, their
4 sum

$$
\begin{equation*}
u(x, t)=u_{0}(x, t)+\sum_{n=1}^{\infty} u_{n}(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t} \cos \frac{n \pi}{L} x \tag{4.10}
\end{equation*}
$$

also satisfies the PDE in (4.9), and the boundary conditions. To satisfy the initial condition

$$
u(x, 0)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi}{L} x=f(x)
$$

7 one needs to represent $f(x)$ by its Fourier cosine series, for which we calculate

$$
\begin{equation*}
a_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x, a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi}{L} x d x \tag{4.11}
\end{equation*}
$$

8 Conclusion: the series

$$
\begin{equation*}
u(x, t)=a_{0}+\sum_{n=1}^{\infty} a_{n} e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t} \cos \frac{n \pi}{L} x, \tag{4.12}
\end{equation*}
$$

with a_{n} 's computed using (4.11), gives the solution of our problem (4.9). Observe that going from the Fourier cosine series of $f(x)$ to the solution of the problem (4.9) involves just putting in the additional factors $e^{-k \frac{n^{2} \pi^{2}}{L^{2}} t}$. As $t \rightarrow \infty, u(x, t) \rightarrow a_{0}$, which is equal to the average of the initial temperatures. The first term of the series dominates all others, and so $u(x, t) \approx a_{0}+a_{1} e^{-k \frac{\pi^{2}}{L^{2}} t} \cos \frac{\pi}{L} x$, for t not too small, say for $t>1$.
Example 3 Solve

$$
\begin{gathered}
u_{t}=3 u_{x x} \quad \text { for } 0<x<\pi / 2, \text { and } t>0 \\
u(x, 0)=2 \cos ^{2} x-3 \cos ^{2} 2 x \\
\text { for } 0<x<\pi / 2 \\
u_{x}(0, t)=u_{x}(\pi / 2, t)=0 \\
\text { for } t>0
\end{gathered}
$$

16 Here $k=3$, and $L=\pi / 2$. The Fourier cosine series has the form $a_{0}+$ ${ }_{17} \sum_{n=1}^{\infty} a_{n} \cos 2 n x$. Writing

$$
2 \cos ^{2} x-3 \cos ^{2} 2 x=-\frac{1}{2}+\cos 2 x-\frac{3}{2} \cos 4 x
$$

${ }^{1}$ we see that this function is its own Fourier cosine series, with $a_{0}=-\frac{1}{2}$, $a_{1}=1, a_{2}=-\frac{3}{2}$, and all other coefficients equal to zero. Putting in the exponential factors, according to (4.12), we arrive at the solution:

$$
u(x, t)=-\frac{1}{2}+e^{-12 t} \cos 2 x-\frac{3}{2} e^{-48 t} \cos 4 x
$$

$$
\begin{gather*}
v_{t}=3 v_{x x} \quad \text { for } 0<x<\pi, \text { and } t>0 \tag{4.13}\\
v(x, 0)=2 \cos x+x^{2} \quad \text { for } 0<x<\pi \\
v_{x}(0, t)=v_{x}(\pi, t)=0 \quad \text { for } t>0
\end{gather*}
$$

which we know how to handle. Because $2 \cos x$ is its own Fourier cosine series on the interval $(0, \pi)$, we expand x^{2} in the Fourier cosine series (and then add $2 \cos x)$. Obtain

$$
x^{2}=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n x
$$

18
where

$$
a_{0}=\frac{1}{\pi} \int_{0}^{\pi} x^{2} d x=\frac{\pi^{2}}{3}
$$

1

2 Then

$$
2 \cos x+x^{2}=2 \cos x+\frac{\pi^{2}}{3}+\sum_{n=1}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x=\frac{\pi^{2}}{3}-2 \cos x+\sum_{n=2}^{\infty} \frac{4(-1)^{n}}{n^{2}} \cos n x .
$$

Using (4.12), the solution of (4.13) is

$$
v(x, t)=\frac{\pi^{2}}{3}-2 e^{-3 t} \cos x+\sum_{n=2}^{\infty} \frac{4(-1)^{n}}{n^{2}} e^{-3 n^{2} t} \cos n x
$$

Answer: $u(x, t)=\frac{\pi^{2}}{3} e^{-a t}-2 e^{-(3+a) t} \cos x+\sum_{n=2}^{\infty} \frac{4(-1)^{n}}{n^{2}} e^{-\left(3 n^{2}+a\right) t} \cos n x$.

7.5 Laplace's Equation

We now study heat conduction in a thin two-dimensional rectangular plate: $0 \leq x \leq L, 0 \leq y \leq M$. Assume that both sides of the plate are insulated, so that heat travels only in the $x y$-plane. Let $u(x, y, t)$ denote the temperature at a point (x, y), and time $t>0$. It is natural to expect that the heat equation in two dimensions takes the form

$$
\begin{equation*}
u_{t}=k\left(u_{x x}+u_{y y}\right) . \tag{5.1}
\end{equation*}
$$

Indeed, one can derive (5.1) similarly to the way we have derived the onedimensional heat equation, see e.g., the book of L. Evans [9].

The boundary of our plate consists of four line segments. Let us assume that the side lying on the x-axis is kept at 1 degree Celsius, so that $u(x, 0)=$ 1 for $0 \leq x \leq L$, while the other three sides are kept at 0 degree Celsius (they are kept on ice), so that $u(x, M)=0$ for $0 \leq x \leq L$, and $u(0, y)=$ $u(L, y)=0$ for $0 \leq y \leq M$. The heat will flow from the warmer side toward the three sides on ice. While the heat will continue its flow indefinitely, eventually the temperatures will stabilize (we can expect temperatures to be close to 1 near the warm side, and close to 0 near the icy sides). Stable temperatures do not change with time, so that $u=u(x, y)$. Then $u_{t}=0$, and the equation (5.1) becomes Laplace's equation:

$$
\begin{equation*}
u_{x x}+u_{y y}=0 . \tag{5.2}
\end{equation*}
$$

one of the three main equations of mathematical physics (along with the heat and the wave equations). Mathematicians use the notation: $\Delta u=u_{x x}+u_{y y}$, while engineers seem to prefer $\nabla^{2} u=u_{x x}+u_{y y}$. The latter notation has to do with the fact that computing the divergence of the gradient of $u(x, y)$ gives $\nabla \cdot \nabla u=u_{x x}+u_{y y}$. Solutions of Laplace's equation are called harmonic functions.

To find the steady state temperatures $u=u(x, y)$ for our example, we need to solve the problem

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad \text { for } 0<x<L, \text { and } 0<y<M \\
u(x, 0)=1 \quad \text { for } 0<x<L \\
u(x, M)=0 \quad \text { for } 0<x<L \\
u(0, y)=u(L, y)=0 \quad \text { for } 0<y<M
\end{gathered}
$$

$$
\begin{gather*}
F^{\prime \prime}+\lambda F=0, \quad F(0)=F(L)=0, \tag{5.3}\\
G^{\prime \prime}-\lambda G=0, \quad G(M)=0 . \tag{5.4}
\end{gather*}
$$

Nontrivial solutions of (5.3) occur at $\lambda=\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$, and they are $F_{n}(x)=$ $B_{n} \sin \frac{n \pi}{L} x$, with arbitrary constants B_{n}. We solve the problem (5.4) with
The function on the left depends on x only, while the one the right depends only on y. In order for them to be the same, they must be both equal to the same constant, which we denote by $-\lambda$

$$
\frac{F^{\prime \prime}(x)}{F(x)}=-\frac{G^{\prime \prime}(y)}{G(y)}=-\lambda .
$$

Using the boundary conditions, we obtain
We apply the separation of variables technique, looking for a solution in the form

$$
u(x, y)=F(x) G(y),
$$

with the functions $F(x)$ and $G(y)$ to be determined. Substitution into the Laplace equation gives

$$
F^{\prime \prime}(x) G(y)=-F(x) G^{\prime \prime}(y) .
$$

Divide both sides by $F(x) G(y)$:

$$
\frac{F^{\prime \prime}(x)}{F(x)}=-\frac{G^{\prime \prime}(y)}{G(y)} .
$$

${ }_{1} \lambda=\frac{n^{2} \pi^{2}}{L^{2}}$, obtaining $G_{n}(y)=\sinh \frac{n \pi}{L}(y-M)$. (Recall that the general 2 solution of the equation in (5.4) may be taken in the form $G=c_{1} \sinh \frac{n \pi}{L}(y+$ $\left.{ }_{3} c_{2}\right)$.) We conclude that the functions

$$
u_{n}(x, y)=F_{n}(x) G_{n}(y)=B_{n} \sin \frac{n \pi}{L} x \sinh \frac{n \pi}{L}(y-M)
$$

4 satisfy Laplace's equation, and the three zero boundary conditions. The 5 same is true for their sum

$$
u(x, y)=\sum_{n=1}^{\infty} F_{n}(x) G_{n}(y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi}{L}(y-M) \sin \frac{n \pi}{L} x
$$

6 It remains to satisfy the boundary condition at the warm side:

$$
u(x, 0)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi}{L}(-M) \sin \frac{n \pi}{L} x=1
$$

We need to choose B_{n} 's, so that $B_{n} \sinh \frac{n \pi}{L}(-M)$ are the Fourier sine series coefficient of $f(x)=1$, i.e.,

$$
B_{n} \sinh \frac{n \pi}{L}(-M)=\frac{2}{L} \int_{0}^{L} \sin \frac{n \pi}{L} x d x=\frac{2\left(1-(-1)^{n}\right)}{n \pi}
$$

9 which gives

$$
B_{n}=-\frac{2\left(1-(-1)^{n}\right)}{n \pi \sinh \frac{n \pi M}{L}}
$$

Recall that the general solution of $(\omega$ is a constant, $y=y(x))$

$$
y^{\prime \prime}-\omega^{2} y=0
$$

12 can be written in three ways: $y=c_{1} e^{-\omega x}+c_{2} e^{\omega x}, y=c_{1} \cosh \omega x+c_{2} \sinh \omega x$, and $y=c_{1} \sinh \omega\left(x+c_{2}\right)$. We used the third form when solving for $G(y)$, while the second one is convenient if the initial conditions are prescribed at $x=0$.

1
Example Find the steady state temperatures

$$
\begin{array}{cc}
u_{x x}+u_{y y}=0 \quad \text { for } 0<x<1, \text { and } 0<y<2 \\
u(x, 0)=0 & \text { for } 0<x<1 \\
u(x, 2)=0 & \text { for } 0<x<1 \\
u(0, y)=0 & \text { for } 0<y<2 \\
u(1, y)=y & \text { for } 0<y<2 .
\end{array}
$$

(The warm side is now $x=1$.) Look for a solution in the form $u(x, y)=$ $F(x) G(y)$. After separating the variables, it is convenient to use λ (instead of $-\lambda$) to denote the common value of two functions

$$
\frac{F^{\prime \prime}(x)}{F(x)}=-\frac{G^{\prime \prime}(y)}{G(y)}=\lambda .
$$

5 Using the boundary conditions, obtain

$$
G^{\prime \prime}+\lambda G=0, \quad G(0)=G(2)=0,
$$

$$
F^{\prime \prime}-\lambda F=0, \quad F(0)=0 .
$$

The first problem has non-trivial solutions at $\lambda=\lambda_{n}=\frac{n^{2} \pi^{2}}{4}$, and they are $G_{n}(y)=B_{n} \sin \frac{n \pi}{2} y$. We then solve the second equation with $\lambda=\frac{n^{2} \pi^{2}}{4}$, obtaining $F_{n}(x)=\sinh \frac{n \pi}{2} x$. It follows that the functions

$$
u_{n}(x, y)=F_{n}(x) G_{n}(y)=B_{n} \sinh \frac{n \pi}{2} x \sin \frac{n \pi}{2} y
$$

satisfy the Laplace equation, and the three zero boundary conditions. The 1 same is true for their sum

$$
u(x, y)=\sum_{n=1}^{\infty} F_{n}(x) G_{n}(y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi}{2} x \sin \frac{n \pi}{2} y .
$$

It remains to satisfy the boundary condition at the fourth side:

$$
u(1, y)=\sum_{n=1}^{\infty} B_{n} \sinh \frac{n \pi}{2} \sin \frac{n \pi}{2} y=y .
$$

${ }_{13}$ We need to choose B_{n} 's, so that $B_{n} \sinh \frac{n \pi}{2}$ are the Fourier sine series coef14 ficient of y on the interval $(0,2)$:

$$
B_{n} \sinh \frac{n \pi}{2}=\int_{0}^{2} y \sin \frac{n \pi}{2} y d y=\frac{4(-1)^{n+1}}{n \pi}
$$

which gives

$$
B_{n}=\frac{4(-1)^{n+1}}{n \pi \sinh \frac{n \pi}{2}} .
$$

Answer: $u(x, y)=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n \pi \sinh \frac{n \pi}{2}} \sinh \frac{n \pi}{2} x \sin \frac{n \pi}{2} y$.
Our computations in the above examples were aided by the fact that ${ }_{4}$ three out of the four boundary conditions were zero (homogeneous). A 5 general boundary value problem has the form

$$
\begin{gather*}
u_{x x}+u_{y y}=0 \quad \text { for } 0<x<L, \text { and } 0<y<M \tag{5.5}\\
u(x, 0)=f_{1}(x) \\
\text { for } 0<x<L \\
u(x, M)=f_{2}(x) \\
u(0, y)=g_{1}(y) \quad \text { for } 0<x<L \\
u(L, y)=g_{2}(y) \quad \text { for } 0<y<M \\
u, M,
\end{gather*}
$$

6 with given functions $f_{1}(x), f_{2}(x), g_{1}(y)$ and $g_{2}(y)$. Because this problem is ${ }_{7}$ linear, we can break it into four sub-problems, each time keeping one of the 8 boundary conditions, and setting the other three to zero. Namely, we look for solution in the form

$$
u(x, y)=u_{1}(x, y)+u_{2}(x, y)+u_{3}(x, y)+u_{4}(x, y),
$$

where u_{1} is found by solving

$$
\begin{aligned}
& u_{x x}+u_{y y}=0 \quad \text { for } 0<x<L \text {, and } 0<y<M \\
& u(x, 0)=f_{1}(x) \quad \text { for } 0<x<L \\
& u(x, M)=0 \quad \text { for } 0<x<L \\
& u(0, y)=0 \quad \text { for } 0<y<M \\
& u(L, y)=0 \quad \text { for } 0<y<M,
\end{aligned}
$$

${ }_{11} u_{2}$ is computed from

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad \text { for } 0<x<L, \text { and } 0<y<M \\
u(x, 0)=0 \quad \text { for } 0<x<L \\
u(x, M)=f_{2}(x) \quad \text { for } 0<x<L \\
u(0, y)=0 \quad \text { for } 0<y<M \\
u(L, y)=0 \quad \text { for } 0<y<M,
\end{gathered}
$$

and u_{4} is obtained by solving

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad \text { for } 0<x<L, \text { and } 0<y<M \\
u(x, 0)=0 \\
u(x, M)=0 \\
\text { for } 0<x<L \\
u(0, y)=0 \\
\text { for } 0<x<L \\
u(L, y)=g_{2}(y) \\
\text { for } 0<y<M \\
\text { for } 0<y<M .
\end{gathered}
$$

We solve each of these four problems, using separation of variables, as in the examples considered previously.

7.6 The Wave Equation

We consider vibrations of a guitar string (or a similar elastic string). We assume that the motion of the string is transverse, so that it goes only up and down (and not sideways). Let $u(x, t)$ denote the displacement of the string at a point x and time t, and our goal is to calculate $u(x, t)$. The motion of an element of the string $(x, x+\Delta x)$ is governed by Newton's second law of motion

$$
\begin{equation*}
m a=f \tag{6.1}
\end{equation*}
$$

The acceleration $a=u_{t t}(x, t)$. If ρ denotes the density of the string, then the mass of the element is $m=\rho \Delta x$. (The string is assumed to be uniform, so that $\rho>0$ is a constant.) We also assume that the internal tension is the only force acting on this element, and that the magnitude of the tension T is constant throughout the string. Our final assumption is that the slope of the string $u_{x}(x, t)$ is small, for all x and t. Observe that $u_{x}(x, t)=\tan \theta$, the slope of the tangent line to the function $u=u(x)$, with t fixed. The vertical (acting) component of the force at the right end-point of our element is

$$
T \sin \theta \approx T \tan \theta=T u_{x}(x+\Delta x, t),
$$

1 because for small angles $\theta, \sin \theta \approx \tan \theta \approx \theta$. At the left end-point, the 2 vertical component of the force is $T u_{x}(x, t)$, and the equation (6.1) becomes

$$
\rho \Delta x u_{t t}(x, t)=T u_{x}(x+\Delta x, t)-T u_{x}(x, t) .
$$

${ }_{3}$ Divide both sides by $\rho \Delta x$, and denote $T / \rho=c^{2}$

$$
u_{t t}(x, t)=c^{2} \frac{u_{x}(x+\Delta x, t)-u_{x}(x, t)}{\Delta x} .
$$

4 Letting $\Delta x \rightarrow 0$, we obtain the wave equation

$$
u_{t t}(x, t)=c^{2} u_{x x}(x, t) .
$$

5

Forces acting on an element of a string

6 We consider now the vibrations of a string of length L, which is fixed at 7 the end-points $x=0$ and $x=L$, with given initial displacement $f(x)$, and 8 given initial velocity $g(x)$:

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x} \quad \text { for } 0<x<L, \text { and } t>0 \\
u(0, t)=u(L, t)=0 \quad \text { for } t>0 \\
u(x, 0)=f(x) \quad \text { for } 0<x<L \\
u_{t}(x, 0)=g(x) \quad \text { for } 0<x<L
\end{gathered}
$$

9 Perform separation of variables, by setting $u(x, t)=F(x) G(t)$, and obtaining

$$
F(x) G^{\prime \prime}(t)=c^{2} F^{\prime \prime}(x) G(t),
$$

1

4 Nontrivial solutions of the first problem occur at $\lambda=\lambda_{n}=\frac{n^{2} \pi^{2}}{L^{2}}$, and they 5 are $F_{n}(x)=\sin \frac{n \pi}{L} x$. The second equation then takes the form

$$
G^{\prime \prime}+\frac{n^{2} \pi^{2}}{L^{2}} c^{2} G=0
$$

6 Its general solution is

$$
G_{n}(t)=b_{n} \cos \frac{n \pi c}{L} t+B_{n} \sin \frac{n \pi c}{L} t
$$

${ }_{7}$ where b_{n} and B_{n} are arbitrary constants. The function

$$
u(x, t)=\sum_{n=1}^{\infty} F_{n}(x) G_{n}(t)=\sum_{n=1}^{\infty}\left(b_{n} \cos \frac{n \pi c}{L} t+B_{n} \sin \frac{n \pi c}{L} t\right) \sin \frac{n \pi}{L} x
$$

s satisfies the wave equation, and the boundary conditions. It remains to satisfy the initial conditions. Compute

$$
u(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi}{L} x=f(x)
$$

$$
\begin{equation*}
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi}{L} x d x \tag{6.2}
\end{equation*}
$$

and

$$
u_{t}(x, 0)=\sum_{n=1}^{\infty} B_{n} \frac{n \pi c}{L} \sin \frac{n \pi}{L} x=g(x),
$$

12. which implies that

$$
\begin{equation*}
B_{n}=\frac{2}{n \pi c} \int_{0}^{L} g(x) \sin \frac{n \pi}{L} x d x . \tag{6.3}
\end{equation*}
$$

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left(b_{n} \cos \frac{n \pi c}{L} t+B_{n} \sin \frac{n \pi c}{L} t\right) \sin \frac{n \pi}{L} x \tag{6.4}
\end{equation*}
$$

with b_{n} 's computed by (6.2), and B_{n} 's by (6.3).
The last formula shows that the motion of the string is periodic in time, similarly to the harmonic motion of a spring (the period is $\frac{2 \pi L}{\pi c}$). This is understandable, because we did not account for the dissipation of energy in our model of vibrating string.
Example Find the displacements $u=u(x, t)$

$$
\begin{gathered}
u_{t t}=9 u_{x x} \quad \text { for } 0<x<\pi, \text { and } t>0 \\
u(0, t)=u(\pi, t)=0 \quad \text { for } t>0 \\
u(x, 0)=2 \sin x \quad \text { for } 0<x<\pi \\
u_{t}(x, 0)=0 \quad \text { for } 0<x<\pi .
\end{gathered}
$$

Here $c=3$ and $L=\pi$. Because $g(x)=0$, all $B_{n}=0$, while b_{n} 's are the Fourier sine series coefficients of $2 \sin x$ on the interval $(0, \pi)$, so that $b_{1}=2$, and all other $b_{n}=0$. Using (6.4), gives the answer: $u(x, t)=2 \cos 3 t \sin x$.

To interpret this answer, we use a trigonometric identity to write

$$
u(x, t)=\sin (x-3 t)+\sin (x+3 t) .
$$

The graph of $y=\sin (x-3 t)$ in the $x y$-plane is obtained by translating the graph of $y=\sin x$ by $3 t$ units to the right. Drawing these graphs on the same screen, for different times t, we see a wave traveling to the right with speed 3 . Similarly, the graph of $\sin (x+3 t)$ is a wave traveling to the left with speed 3 . Our solution is the sum, or the superposition, of these two waves. For the general wave equation, the wave speed is given by c.

7.6.1 Non-Homogeneous Problems

Let us solve the following problem

$$
\begin{array}{cc}
u_{t t}-4 u_{x x}=x \quad \text { for } 0<x<3, \text { and } t>0 \\
u(0, t)=1 & \text { for } t>0 \\
u(3, t)=2 & \text { for } t>0 \\
u(x, 0)=0 & \text { for } 0<x<3 \\
u_{t}(x, 0)=1 & \text { for } 0<x<3 .
\end{array}
$$

This problem does not fit the pattern studied so far. Indeed, the x term on the right makes the equation non-homogeneous, and the boundary conditions are non-homogeneous (non-zero) too. We look for solution in the form

$$
u(x, t)=U(x)+v(x, t) .
$$

5 We ask of the function $U(x)$ to take care of all of our problems (to remove the non-homogeneous terms), and satisfy

$$
\begin{gathered}
-4 U^{\prime \prime}=x \\
U(0)=1, \quad U(3)=2 .
\end{gathered}
$$

Integrating twice, gives

$$
U(x)=-\frac{1}{24} x^{3}+\frac{17}{24} x+1
$$

8
Then the function $v(x, t)=u(x, t)-U(x)$ satisfies

$$
\begin{gathered}
v_{t t}-4 v_{x x}=0 \quad \text { for } 0<x<3, \text { and } t>0 \\
v(0, t)=0 \quad \text { for } t>0 \\
v(3, t)=0 \quad \text { for } t>0 \\
v(x, 0)=-U(x)=\frac{1}{24} x^{3}-\frac{17}{24} x-1 \quad \text { for } 0<x<3 \\
v_{t}(x, 0)=1 \quad \text { for } 0<x<3 .
\end{gathered}
$$

9
with

$$
b_{n}=\frac{2}{3} \int_{0}^{3}\left(\frac{1}{24} x^{3}-\frac{17}{24} x-1\right) \sin \frac{n \pi}{3} x d x=-\frac{2}{n \pi}+\frac{27+8 n^{2} \pi^{2}}{2 n^{3} \pi^{3}}(-1)^{n}
$$

$$
B_{n}=\frac{1}{n \pi} \int_{0}^{3} \sin \frac{n \pi}{3} x d x=\frac{3-3(-1)^{n}}{n^{2} \pi^{2}}
$$

14
This is a homogeneous problem, of the type considered in the preceding section! Here $c=2$ and $L=3$. Separation of variables (or the formula (6.4)) gives

$$
v(x, t)=\sum_{n=1}^{\infty}\left(b_{n} \cos \frac{2 n \pi}{3} t+B_{n} \sin \frac{2 n \pi}{3} t\right) \sin \frac{n \pi}{3} x
$$

Answer:

$$
u(x, t)=-\frac{1}{24} x^{3}+\frac{17}{24} x+1
$$

$+\sum_{n=1}^{\infty}\left[\left(-\frac{2}{n \pi}+\frac{27+8 n^{2} \pi^{2}}{2 n^{3} \pi^{3}}(-1)^{n}\right) \cos \frac{2 n \pi}{3} t+\frac{3-3(-1)^{n}}{n^{2} \pi^{2}} \sin \frac{2 n \pi}{3} t\right] \sin \frac{n \pi}{3} x$.
In the non-homogeneous wave equation

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=F(x, t) \tag{6.5}
\end{equation*}
$$

4 the term $F(x, t)$ represents the acceleration of an external force applied to the string. Indeed, the $m a=f$ equation for an element of a string, in the presence of an external force, takes the form

$$
\rho \Delta x u_{t t}=T\left[u_{x}(x+\Delta x, t)-u_{x}(x, t)\right]+\rho \Delta x F(x, t)
$$

Dividing by $\rho \Delta x$, and letting $\Delta x \rightarrow 0$ (as before), we obtain (6.5). It follows that the $\rho \Delta x F(x, t)$ term is an extra force, and $F(x, t)$ is its acceleration.

Non-homogeneous problems for the heat equation are solved similarly.
Example Let us solve the problem

$$
\begin{gathered}
u_{t}-2 u_{x x}=1 \quad \text { for } 0<x<1, \text { and } t>0 \\
u(x, 0)=x \quad \text { for } 0<x<1 \\
u(0, t)=0 \\
u(1, t)=3
\end{gathered} \text { for } t>0 \text { for } t>0
$$

${ }_{11}$ Again, look for solution in the form

$$
u(x, t)=U(x)+v(x, t)
$$

12 with $U(x)$ satisfying

$$
\begin{gathered}
-2 U^{\prime \prime}=1 \\
U(0)=0, \quad U(1)=3
\end{gathered}
$$

13 Integrating, we calculate

$$
U(x)=-\frac{1}{4} x^{2}+\frac{13}{4} x
$$

14 The function $v(x, t)=u(x, t)-U(x)$ satisfies

$$
\begin{gathered}
v_{t}-2 v_{x x}=0 \quad \text { for } 0<x<1, \text { and } t>0 \\
v(x, 0)=x-U(x)=\frac{1}{4} x^{2}-\frac{9}{4} x \quad \text { for } 0<x<1 \\
v(0, t)=v(1, t)=0 \quad \text { for } t>0
\end{gathered}
$$

1 To solve the last problem, we begin by expanding the initial temperature ${ }_{2} v(x, 0)$ in its Fourier sine series

$$
\frac{1}{4} x^{2}-\frac{9}{4} x=\sum_{n=1}^{\infty} b_{n} \sin n \pi x
$$

3 with

$$
b_{n}=2 \int_{0}^{1}\left(\frac{1}{4} x^{2}-\frac{9}{4} x\right) \sin n \pi x d x=\frac{-1+\left(1+4 n^{2} \pi^{2}\right)(-1)^{n}}{n^{3} \pi^{3}}
$$

4 Then, using (4.8),

$$
v(x, t)=\sum_{n=1}^{\infty} \frac{-1+\left(1+4 n^{2} \pi^{2}\right)(-1)^{n}}{n^{3} \pi^{3}} e^{-2 n^{2} \pi^{2} t} \sin n \pi x .
$$

5 Answer:

$$
u(x, t)=-\frac{1}{4} x^{2}+\frac{13}{4} x+\sum_{n=1}^{\infty} \frac{-1+\left(1+4 n^{2} \pi^{2}\right)(-1)^{n}}{n^{3} \pi^{3}} e^{-2 n^{2} \pi^{2} t} \sin n \pi x
$$

${ }_{6}$ 7.6.2 Problems
7 I. Solve the following problems, and explain their physical significance.
81 .

$$
\begin{gathered}
u_{t}=2 u_{x x} \quad \text { for } 0<x<\pi, \text { and } t>0 \\
u(x, 0)=\sin x-3 \sin x \cos x \quad \text { for } 0<x<\pi \\
u(0, t)=u(\pi, t)=0 \quad \text { for } t>0
\end{gathered}
$$

9 Answer. $u(x, t)=e^{-2 t} \sin x-\frac{3}{2} e^{-8 t} \sin 2 x$.
102.

$$
\begin{gathered}
u_{t}=2 u_{x x} \quad \text { for } 0<x<2 \pi, \text { and } t>0 \\
u(x, 0)=\sin x-3 \sin x \cos x \quad \text { for } 0<x<2 \pi \\
u(0, t)=u(2 \pi, t)=0 \quad \text { for } t>0
\end{gathered}
$$

${ }_{11}$ Answer. $u(x, t)=e^{-2 t} \sin x-\frac{3}{2} e^{-8 t} \sin 2 x$.
123.

$$
\begin{gathered}
u_{t}=5 u_{x x} \quad \text { for } 0<x<2, \text { and } t>0 \\
u(x, 0)=x \quad \text { for } 0<x<2 \\
u(0, t)=u(2, t)=0 \quad \text { for } t>0
\end{gathered}
$$

${ }^{1}$ Answer. $u(x, t)=\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n \pi} e^{-\frac{5 n^{2} \pi^{2}}{4} t} \sin \frac{n \pi}{2} x$.
24.

$$
\begin{gathered}
u_{t}=3 u_{x x} \quad \text { for } 0<x<\pi, \text { and } t>0 \\
u(x, 0)=\left\{\begin{array}{ll}
x & \text { for } 0<x<\frac{\pi}{2} \\
\pi-x & \text { for } \frac{\pi}{2}<x<\pi
\end{array} \quad \text { for } 0<x<\pi\right.
\end{gathered}, \quad \begin{aligned}
& \text { for } t>0 .
\end{aligned}
$$

3 Answer. $u(x, t)=\sum_{n=1}^{\infty} \frac{4}{\pi n^{2}} e^{-3 n^{2} t} \sin \frac{n \pi}{2} \sin n x$.
45
5.

$$
\begin{gathered}
u_{t}=u_{x x} \quad \text { for } 0<x<3, \text { and } t>0 \\
u(x, 0)=x+2 \quad \text { for } 0<x<3 \\
u(0, t)=u(3, t)=0 \quad \text { for } t>0
\end{gathered}
$$

${ }_{5}$ Answer. $u(x, t)=\sum_{n=1}^{\infty} \frac{4-10(-1)^{n}}{n \pi} e^{-\frac{n^{2} \pi^{2}}{9} t} \sin \frac{n \pi}{3} x$.
66.

$$
\begin{gathered}
u_{t}=u_{x x} \quad \text { for } 0<x<3, \text { and } t>0 \\
u(x, 0)=x+2 \quad \text { for } 0<x<3 \\
u_{x}(0, t)=u_{x}(3, t)=0 \quad \text { for } t>0
\end{gathered}
$$

7 Answer. $u(x, t)=\frac{7}{2}+\sum_{n=1}^{\infty} \frac{6\left(-1+(-1)^{n}\right)}{n^{2} \pi^{2}} e^{-\frac{n^{2} \pi^{2}}{9} t} \cos \frac{n \pi}{3} x$.
87.

$$
\begin{gathered}
u_{t}=2 u_{x x} \quad \text { for } 0<x<\pi, \text { and } t>0 \\
u(x, 0)=\cos ^{4} x \quad \text { for } 0<x<\pi \\
u_{x}(0, t)=u_{x}(\pi, t)=0 \quad \text { for } t>0
\end{gathered}
$$

, Answer. $u(x, t)=\frac{3}{8}+\frac{1}{2} e^{-8 t} \cos 2 x+\frac{1}{8} e^{-32 t} \cos 4 x$.
108.

$$
\begin{gathered}
u_{t}=3 u_{x x}+u \quad \text { for } 0<x<2, \text { and } t>0 \\
u(x, 0)=1-x \quad \text { for } 0<x<2 \\
u_{x}(0, t)=u_{x}(2, t)=0 \quad \text { for } t>0 .
\end{gathered}
$$

${ }_{11}$ Answer. $u(x, t)=\sum_{k=1}^{\infty} \frac{8}{\pi^{2}(2 k-1)^{2}} e^{\left(-\frac{3(2 k-1)^{2} \pi^{2}}{4}+1\right) t} \cos \frac{(2 k-1) \pi}{2} x$.
9. Show that the following functions are harmonic: $u(x, y)=a, v(x, y)=$ $\sin m x \sinh m y, w(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}(a$ and m are constants).
10. If $u(x, y)$ is a harmonic function, show that $v(x, y)=u\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)$ ${ }^{4}$ is also harmonic. (The map $(x, y) \rightarrow\left(\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right)$ is called the Kelvin 5 transform with respect to the unit circle.)

6
11

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad \text { for } 0<x<2, \text { and } 0<y<3 \\
u(x, 0)=u(x, 3)=5 \quad \text { for } 0<x<2 \\
u(0, y)=u(2, y)=5 \quad \text { for } 0<y<3
\end{gathered}
$$

7 Hint: Look for a simple solution.

$$
\begin{aligned}
& 12 . \\
& \qquad \begin{aligned}
& u_{x x}+u_{y y}=0 \quad \text { for } 0<x<2, \text { and } 0<y<3 \\
& u(x, 0)=5 \text { for } 0<x<2 \\
& u(x, 3)=0 \text { for } 0<x<2 \\
& u(0, y)=u(2, y)=0 \text { for } 0<y<3
\end{aligned}
\end{aligned}
$$

13. $u_{x x}+u_{y y}=0 \quad$ for $0<x<2$, and $0<y<1$

$$
u(x, 0)=u(x, 1)=0 \quad \text { for } 0<x<2
$$

$$
u(0, y)=y \quad \text { for } 0<y<1
$$

$$
u(2, y)=0 \quad \text { for } 0<y<1
$$

1
14

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad \text { for } 0<x<\pi, \text { and } 0<y<1 \\
u(x, 0)=0 \quad \text { for } 0<x<\pi \\
u(x, 1)=3 \sin 2 x \quad \text { for } 0<x<\pi \\
u(0, y)=u(\pi, y)=0 \quad \text { for } 0<y<1
\end{gathered}
$$

Answer. $u(x, y)=\frac{3}{\sinh 2} \sin 2 x \sinh 2 y$.
15. $u_{x x}+u_{y y}=0 \quad$ for $0<x<2 \pi$, and $0<y<2$
$u(x, 0)=\sin x \quad$ for $0<x<2 \pi$ $u(x, 2)=0 \quad$ for $0<x<2 \pi$
$u(0, y)=0 \quad$ for $0<y<2$
$u(2 \pi, y)=y \quad$ for $0<y<2$.
Answer. $u(x, y)=-\frac{1}{\sinh 2} \sinh (y-2) \sin x+\sum_{n=1}^{\infty} \frac{4(-1)^{n+1}}{n \pi \sinh n \pi^{2}} \sinh \frac{n \pi}{2} x \sin \frac{n \pi}{2} y$
16.

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad \text { for } 0<x<\pi, \text { and } t>0 \\
u(x, 0)=\sin 2 x \quad \text { for } 0<x<\pi \\
u_{t}(x, 0)=-4 \sin 2 x \quad \text { for } 0<x<\pi \\
u(0, t)=u(\pi, t)=0 \quad \text { for } t>0 .
\end{gathered}
$$

1 Answer. $u(x, t)=\cos 4 t \sin 2 x-\sin 4 t \sin 2 x$.
217.

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad \text { for } 0<x<1, \text { and } t>0 \\
u(x, 0)=0 \quad \text { for } 0<x<1 \\
u_{t}(x, 0)=x \quad \text { for } 0<x<1 \\
u(0, t)=u(1, t)=0 \quad \text { for } t>0
\end{gathered}
$$

Answer. $u(x, t)=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{2} \pi^{2}} \sin 2 n \pi t \sin n \pi x$.
418.

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad \text { for } 0<x<1, \text { and } t>0 \\
u(x, 0)=-3 \quad \text { for } 0<x<1 \\
u_{t}(x, 0)=x \quad \text { for } 0<x<1 \\
u(0, t)=u(1, t)=0 \quad \text { for } t>0 .
\end{gathered}
$$

${ }^{5}$ Answer. $u(x, t)=\sum_{n=1}^{\infty}\left[\frac{6}{n \pi}\left((-1)^{n}-1\right) \cos 2 n \pi t+\frac{(-1)^{n+1}}{n^{2} \pi^{2}} \sin 2 n \pi t\right] \sin n \pi x$.
19. Use separation of variables to obtain the solution of

$$
\begin{gathered}
u_{t t}-c^{2} u_{x x}=0 \quad \text { for } 0<x<L, \text { and } t>0 \\
u(x, 0)=f(x) \quad \text { for } 0<x<L \\
u_{t}(x, 0)=g(x) \quad \text { for } 0<x<L \\
u_{x}(0, t)=u_{x}(L, t)=0 \quad \text { for } t>0
\end{gathered}
$$

8 in the form $u(x, t)=a_{0}+A_{0} t+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi c}{L} t+A_{n} \sin \frac{n \pi c}{L} t\right) \cos \frac{n \pi}{L} x$, and express the coefficients as integrals.
20. Solve

$$
\begin{gathered}
u_{t t}-9 u_{x x}=0 \quad \text { for } 0<x<\pi, \text { and } t>0 \\
u(x, 0)=4 \quad \text { for } 0<x<\pi \\
u_{t}(x, 0)=\cos ^{2} x \quad \text { for } 0<x<\pi \\
u_{x}(0, t)=u_{x}(\pi, t)=0 \quad \text { for } t>0
\end{gathered}
$$

1 Answer. $u(x, t)=4+\frac{1}{2} t+\frac{1}{12} \sin 6 t \cos 2 x$.
2 II. Solve the following non-homogeneous problems. You may leave the com3 plicated integrals unevaluated.
41.

$$
\begin{gathered}
u_{t}=5 u_{x x}, \quad \text { for } 0<x<1, \text { and } t>0 \\
u(0, t)=0 \quad \text { for } t>0 \\
u(1, t)=1 \quad \text { for } t>0 \\
u(x, 0)=0 \quad \text { for } 0<x<1
\end{gathered}
$$

5 Answer. $u(x, t)=x+\sum_{n=1}^{\infty} \frac{2(-1)^{n}}{n \pi} e^{-5 n^{2} \pi^{2} t} \sin n \pi x$.
62.

$$
u_{t}=2 u_{x x} \quad \text { for } 0<x<\pi, \text { and } t>0
$$

$$
\begin{array}{cc}
u(x, 0)=\frac{x}{\pi} & \text { for } 0<x<\pi \\
u(0, t)=0 & \text { for } t>0 \\
u(\pi, t)=1 & \text { for } t>0
\end{array}
$$

7 Hint: $U(x)=\frac{x}{\pi}$.
$8 \quad 3 . \quad u_{t}=2 u_{x x}+4 x \quad$ for $0<x<1$, and $t>0$

$$
\begin{array}{cc}
u(x, 0)=0 & \text { for } 0<x<1 \\
u(0, t)=0 & \text { for } t>0 \\
u(1, t)=0 & \text { for } t>0
\end{array}
$$

9 Hint: $U(x)=\frac{1}{3}\left(x-x^{3}\right)$.
104.

$$
\begin{aligned}
& u_{t t}=4 u_{x x}+x \quad \text { for } 0<x<4, \text { and } t>0 \\
& u(x, 0)=x \quad \text { for } 0<x<4 \\
& u_{t}(x, 0)=0 \quad \text { for } 0<x<4 \\
& u(0, t)=1 \quad \text { for } t>0 \\
& u(4, t)=3 \quad \text { for } t>0 \text {. }
\end{aligned}
$$

${ }_{11}$ Hint: $U(x)=1+\frac{7}{6} x-\frac{1}{24} x^{3}$.
$12 \quad 5$.

$$
\begin{aligned}
& u_{t}=k u_{x x}+f(x, t) \quad \text { for } 0<x<\pi \text {, and } t>0 \\
& u(x, 0)=0 \quad \text { for } 0<x<\pi \\
& u(0, t)=0 \quad \text { for } t>0 \\
& u(\pi, t)=0 \quad \text { for } t>0 .
\end{aligned}
$$

${ }_{13}$ Here $f(x, t)$ is a given function, $k>0$ is a given number.

1 Hint: Expand $f(x, t)=\sum_{n=1}^{\infty} f_{n}(t) \sin n x$, with $f_{n}(t)=\frac{2}{\pi} \int_{0}^{\pi} f(x, t) \sin n x d x$.
2 Writing $u(x, t)=\sum_{n=1}^{\infty} u_{n}(t) \sin n x$, one has

$$
u_{n}^{\prime}+k n^{2} u_{n}=f_{n}(t), \quad u_{n}(0)=0
$$

3 6. Solve

$$
\begin{array}{cc}
u_{t}=u_{x x}+t \sin 3 x & \text { for } 0<x<\pi, \text { and } t>0 \\
u(x, 0)=0 & \text { for } 0<x<\pi \\
u(0, t)=0 & \text { for } t>0 \\
u(\pi, t)=0 & \text { for } t>0 .
\end{array}
$$

4 Answer. $u(x, t)=\left(\frac{t}{9}-\frac{1}{81}+\frac{1}{81} e^{-9 t}\right) \sin 3 x$.

7.7 Calculating Earth's Temperature and Queen Dido's Problem

7.7.1 The Complex Form of the Fourier Series

8 Recall that a real valued function $f(x)$, defined on $(-L, L)$, can be repre9 sented by the Fourier series

$$
\begin{equation*}
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos \frac{n \pi}{L} x+b_{n} \sin \frac{n \pi}{L} x\right) \tag{7.1}
\end{equation*}
$$

10 with
${ }^{11}$

$$
a_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x, \quad a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n \pi}{L} x d x
$$

$$
b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n \pi}{L} x d x
$$

12 Using Euler's formulas: $\cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2}$, and $\sin \theta=\frac{e^{i \theta}-e^{-i \theta}}{2 i}$, write (7.1) as

$$
f(x)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \frac{e^{i \frac{n \pi}{L} x}+e^{-i \frac{n \pi}{L} x}}{2}+b_{n} \frac{e^{i \frac{n \pi}{L} x}-e^{-i \frac{n \pi}{L} x}}{2 i}\right) .
$$

${ }_{13}$ Combining the similar terms, we rewrite this as

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \frac{n \pi}{L} x} \tag{7.2}
\end{equation*}
$$

$$
\begin{equation*}
c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i \frac{n \pi}{L} x} d x, \quad n=0, \pm 1, \pm 2, \ldots \tag{7.3}
\end{equation*}
$$

$$
\begin{equation*}
\int e^{i a x} d x=\frac{e^{i a x}}{a}+c \tag{7.4}
\end{equation*}
$$

as follows by Euler's formula.
Example Find the complex form of the Fourier series of the function

$$
f(x)=\left\{\begin{array}{cl}
-1 & \text { for }-2<x<0 \\
1 & \text { for } 0<x<2
\end{array}, \quad \text { defined on }(-2,2)\right.
$$

Here $L=2$. Calculate $c_{0}=\frac{1}{4} \int_{-2}^{2} f(x) d x=0$. Using (7.3), (7.4) and Euler's formula, calculate for $n \neq 0$

$$
c_{n}=\frac{1}{4}\left(\int_{-2}^{0}(-1) e^{-i \frac{n \pi}{2} x} d x+\int_{0}^{2} 1 e^{-i \frac{n \pi}{2} x} d x\right)=\frac{i}{n \pi}\left[-1+(-1)^{n}\right]
$$

so that (with the sum taken over $n \neq 0$)

$$
f(x)=\sum_{n=-\infty}^{\infty} \frac{i}{n \pi}\left[-1+(-1)^{n}\right] e^{i \frac{n \pi}{2} x}
$$

7.7.2 The Temperatures Inside the Earth and Wine Cellars

Suppose that the average daily temperature in some area, for the t-th day of the year, is given by the function $f(t), 0 \leq t \leq 365$. (So that $t=34$ corresponds to February 3.) We assume $f(t)$ to be periodic, with the period $T=365$. What is the temperature $x \mathrm{~cm}$ inside the Earth, for any $t ?$

The sideways heat equation
Assume that x is not too large, so that we may ignore the geothermal effects. Direct the x-axis downward, inside the Earth, with $x=0$ corresponding to Earth's surface. Direct the t-axis horizontally, and solve the heat equation for $u=u(x, t)$

$$
\begin{equation*}
u_{t}=k u_{x x}, \quad u(0, t)=f(t) \text { for } x>0, \text { and }-\infty<t<\infty \tag{7.5}
\end{equation*}
$$

Geologists tell us that $k=2 \cdot 10^{-3} \frac{\mathrm{~cm}^{2}}{\mathrm{sec}}$ (see [30]).
Observe that the "initial condition" is now prescribed along the t-axis, and the "evolution" happens along the x-axis. This is sometimes referred to as the sideways heat equation. We represent $f(t)$ by its complex Fourier series $\left(L=\frac{T}{2}\right.$, for T-periodic functions, corresponding to the interval $\left.\left(-\frac{T}{2}, \frac{T}{2}\right)\right)$

$$
f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \frac{2 n \pi}{T} t}
$$

Similarly, we expand the solution $u=u(x, t)$

$$
u(x, t)=\sum_{n=-\infty}^{\infty} u_{n}(x) e^{i \frac{2 n \pi}{T} t}
$$

The coefficients $u_{n}(x)$ are complex valued functions of x. Using this series in (7.5), gives for $n \neq 0$

$$
\begin{equation*}
u_{n}^{\prime \prime}=p_{n}^{2} u_{n}, \quad u_{n}(0)=c_{n}, \quad \text { with } p_{n}^{2}=\frac{2 i n \pi}{k T} \tag{7.6}
\end{equation*}
$$

1

$$
p_{n}=(1 \pm i) q_{n}, \quad \text { with } q_{n}=\sqrt{\frac{|n| \pi}{k T}}
$$

(It is plus in case $n>0$, and minus for $n<0$.) Solving the equation in (7.6), gives

$$
u_{n}(x)=a_{n} e^{(1 \pm i) q_{n} x}+b_{n} e^{-(1 \pm i) q_{n} x}
$$

5 We must set here $a_{n}=0$, to avoid solutions with complex modulus becoming infinite as $x \rightarrow \infty$. Then, using the initial condition in (7.6), for $n \neq 0$

$$
u_{n}(x)=c_{n} e^{-(1 \pm i) q_{n} x}
$$

In case $n=0$, the bounded solution of (7.6) is

$$
u_{0}(x)=c_{0}
$$

8 Obtain

$$
\begin{equation*}
u(x, t)=\sum_{n=-\infty}^{\infty} c_{n} e^{-q_{n} x} e^{i\left[\frac{2 n \pi}{T} t-(\pm) q_{n} x\right]} \tag{7.7}
\end{equation*}
$$

9 Write c_{n} in its polar form, for $n>0$,

$$
c_{n}=\left|c_{n}\right| e^{i \gamma_{n}}
$$

with some real numbers γ_{n}, and transform (7.7) as follows:

$$
\begin{aligned}
u(x, t) & =c_{0}+\sum_{n=1}^{\infty} e^{-q_{n} x}\left[c_{n} e^{i\left(\frac{2 n \pi}{T} t-q_{n} x\right)}+c_{-n} e^{-i\left(\frac{2 n \pi}{T} t-q_{n} x\right)}\right] \\
= & c_{0}+\sum_{n=1}^{\infty} e^{-q_{n} x}\left[c_{n} e^{i\left(\frac{2 n \pi}{T} t-q_{n} x\right)}+\overline{c_{n} e^{i\left(\frac{2 n \pi}{T} t-q_{n} x\right)}}\right] \\
& =c_{0}+\sum_{n=1}^{\infty} 2\left|c_{n}\right| e^{-q_{n} x} \cos \left(\frac{2 n \pi}{T} t+\gamma_{n}-q_{n} x\right)
\end{aligned}
$$

using that $\bar{c}_{n}=c_{-n}$, and that $z+\bar{z}=2 \operatorname{Re}(z)$.
We see that the amplitude $2\left|c_{n}\right| e^{-q_{n} x}$ of the n-th term is damped exponentially in x, and this damping is increasing with n, so that the first term is dominant, giving

$$
u(x, t) \approx c_{0}+2\left|c_{1}\right| e^{-q_{1} x} \cos \left(\frac{2 \pi}{T} t+\gamma_{1}-q_{1} x\right)
$$

When x changes, the cosine term is a shift of the function $\cos \frac{2 \pi}{T} t$, giving us a wave along the x-axis. If we select x so that $\gamma_{1}-q_{1} x=0$, we have a complete phase shift, so that the warmest temperatures at this depth occur in winter (when $t \approx 0$), and the coolest temperatures in summer (when $t \approx T / 2=182.5)$. This value of x is a good depth for a wine cellar. Not only the seasonal variations are very small, but they will also counteract any influence of air flow into the cellar.

The material of this section is based on the book of A. Sommerfeld [30], see p. 68. I became aware of this application through the wonderful lectures of Henry P. McKean at Courant Institute, NYU, in the late seventies.

7.7.3 The Isoperimetric Inequality

Complex Fourier series can be used to prove the following Wirtinger's inequality: any continuously differentiable function $x(s)$, which is periodic of period 2π, and has average zero, so that $\int_{0}^{2 \pi} x(s) d s=0$, satisfies

$$
\int_{0}^{2 \pi} x^{2}(s) d s \leq \int_{0}^{2 \pi} x^{\prime 2}(s) d s
$$

Indeed, we represent $x(s)$ by its complex Fourier series $x(s)=\sum_{n=-\infty}^{\infty} x_{n} e^{i n s}$ with the coefficients satisfying $x_{-n}=\bar{x}_{n}$ for $n \neq 0$, and

$$
x_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} x(s) d s=0
$$

Calculate:

$$
\int_{0}^{2 \pi} x^{2}(s) d s=\int_{0}^{2 \pi} \sum_{n=-\infty}^{\infty} x_{n} e^{i n s} \sum_{m=-\infty}^{\infty} x_{m} e^{i m s} d s
$$

$$
=\sum_{n, m=-\infty}^{\infty} x_{n} x_{m} \int_{0}^{2 \pi} e^{i(n+m) s} d s=2 \pi \sum_{n=-\infty}^{\infty} x_{n} x_{-n}=2 \pi \sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2}
$$

because the integral $\int_{0}^{2 \pi} e^{i k s} d s$ is zero for any integer $k \neq 0$, and is equal to 2π for $k=0$. (So that $\int_{0}^{2 \pi} e^{i(n+m) s} d s$ is equal to 2π if $m=-n$, and to zero for all other m.)

If we use the arc-length parameterization for any such curve $(x(s), y(s))$, then $x(s)$ and $y(s)$ are periodic functions of the period 2π (after traveling the distance 2π, we come back to the original point on the curve). Recall that for the arc-length parameterization, the tangent vector $\left(x^{\prime}(s), y^{\prime}(s)\right)$ is of unit length, so that ${x^{\prime}}^{2}(s)+y^{\prime 2}(s)=1$ for all s. Then
(7.8) $2 \pi=L=\int_{0}^{2 \pi} \sqrt{{x^{\prime}}^{2}(s)+{y^{\prime}}^{2}(s)} d s=\int_{0}^{2 \pi}\left[{x^{\prime}}^{2}(s)+y^{\prime 2}(s)\right] d s$.

20
21

$$
\begin{gathered}
\text { Since } x^{\prime}(s)=\sum_{n=-\infty}^{\infty} i n x_{n} e^{i n s}, \text { a similar computation gives } \\
\qquad \int_{0}^{2 \pi} x^{\prime 2}(s) d s=2 \pi \sum_{n=-\infty}^{\infty} n^{2}\left|x_{n}\right|^{2}
\end{gathered}
$$

and Wirtinger's inequality follows. (The term corresponding to $n=0$ is zero in both series.)

According to Virgil, the queen Dido of Carthage (circa 800 B.C.) had a long rope to enclose land, which would become hers. Dido used the rope to form a circle, which became the city of Carthage. We shall show that she made the optimal choice: among all closed curves of length L, circle encloses the largest area. If a circle has length L, then its radius is $r=\frac{L}{2 \pi}$, and its area is $\pi r^{2}=\frac{L^{2}}{4 \pi}$. We wish to show that the area A of any region enclosed by a rope of length L satisfies

$$
A \leq \frac{L^{2}}{4 \pi}
$$

This fact is known as the isoperimetric inequality.
We may assume that $L=2 \pi$, corresponding to $r=1$, by declaring $r=\frac{L}{2 \pi}$ to be the new unit of length. Then we need to show that the area A of any region enclosed by a closed curve of length $L=2 \pi$ satisfies

$$
A \leq \pi
$$

We may assume that $\gamma=\int_{0}^{2 \pi} x(s) d s=0$. (If not, consider the shifted curve $\left(x(s)-\frac{\gamma}{2 \pi}, y(s)\right)$, for which this condition holds.)

1
${ }_{2}(x(s), y(s))$ is given by the line integral $\int x d y$ over this curve, which eval3 uates to $\int_{0}^{2 \pi} x(s) y^{\prime}(s) d s$. Using the numerical inequality $a b \leq \frac{1}{2} a^{2}+\frac{1}{2} b^{2}$,
4 Wirtinger's inequality and (7.8), we conclude

$$
A=\int_{0}^{2 \pi} x(s) y^{\prime}(s) d s \leq \frac{1}{2} \int_{0}^{2 \pi}\left[x^{2}(s)+y^{\prime 2}(s)\right] d s
$$

$$
\leq \frac{1}{2} \int_{0}^{2 \pi}\left[x^{\prime 2}(s)+y^{\prime 2}(s)\right] d s=\pi
$$

justifying the isoperimetric inequality.

7.8 Laplace's Equation on Circular Domains

Polar coordinates (r, θ) will be appropriate for circular domains, and it turns out that the Laplacian in the polar coordinates is

$$
\begin{equation*}
\Delta u=u_{x x}+u_{y y}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta} \tag{8.1}
\end{equation*}
$$

1 with

$$
\begin{equation*}
r=r(x, y)=\sqrt{x^{2}+y^{2}}, \quad \theta=\theta(x, y)=\arctan \frac{y}{x} \tag{8.2}
\end{equation*}
$$

By the chain rule

$$
\begin{gathered}
u_{x}=u_{r} r_{x}+u_{\theta} \theta_{x} \\
u_{x x}=u_{r r} r_{x}^{2}+2 u_{r \theta} r_{x} \theta_{x}+u_{\theta \theta} \theta_{x}^{2}+u_{r} r_{x x}+u_{\theta} \theta_{x x}
\end{gathered}
$$

Similarly

$$
u_{y y}=u_{r r} r_{y}^{2}+2 u_{r \theta} r_{y} \theta_{y}+u_{\theta \theta} \theta_{y}^{2}+u_{r} r_{y y}+u_{\theta} \theta_{y y}
$$

and so

$$
\begin{gathered}
u_{x x}+u_{y y}=u_{r r}\left(r_{x}^{2}+r_{y}^{2}\right)+2 u_{r \theta}\left(r_{x} \theta_{x}+r_{y} \theta_{y}\right)+u_{\theta \theta}\left(\theta_{x}^{2}+\theta_{y}^{2}\right) \\
+u_{r}\left(r_{x x}+r_{y y}\right)+u_{\theta}\left(\theta_{x x}+\theta_{y y}\right)
\end{gathered}
$$

$$
\theta_{x}^{2}+\theta_{y}^{2}=\frac{1}{r^{2}}
$$

$$
r_{x x}+r_{y y}=\frac{1}{r}
$$

$$
\theta_{x x}+\theta_{y y}=0
$$

$$
\begin{gather*}
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad \text { for } r<R \tag{8.3}\\
u(R, \theta)=f(\theta) .
\end{gather*}
$$

5 Perform separation of variables, looking for solution in the form $u(r, \theta)=$ ${ }^{16} F(r) G(\theta)$. Substituting this $u(r, \theta)$ into the equation (8.3), gives

$$
F^{\prime \prime}(r) G(\theta)+\frac{1}{r} F^{\prime}(r) G(\theta)=-\frac{1}{r^{2}} F(r) G^{\prime \prime}(\theta) .
$$

Multiply both sides by r^{2}, and divide by $F(r) G(\theta)$:

$$
\frac{r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)}{F(r)}=-\frac{G^{\prime \prime}(\theta)}{G(\theta)}=\lambda .
$$

Straightforward differentiation, using (8.2), shows that

$$
r_{x}^{2}+r_{y}^{2}=1,
$$

$$
r_{x} \theta_{x}+r_{y} \theta_{y}=0,
$$

and the formula (8.1) follows.
We now consider a circular plate: $x^{2}+y^{2}<R^{2}$, or $r<R$ in polar coordinates ($R>0$ is its radius). The boundary of the plate consists of the points (R, θ), with $0 \leq \theta<2 \pi$. Assume that the temperatures $u(R, \theta)$ at the boundary points are prescribed by a given function $f(\theta)$, of period 2π. What are the steady state temperatures $u(r, \theta)$ inside the plate?

We are searching for the function $u(r, \theta)$ of period 2π in θ that solves what is known as the Dirichlet boundary value problem (when the value of the unknown function is prescribed on the boundary):

This gives

$$
\begin{gather*}
G^{\prime \prime}+\lambda G=0, \quad G(\theta) \text { is } 2 \pi \text { periodic, } \tag{8.4}\\
r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)-\lambda F(r)=0
\end{gather*}
$$

1 The first problem, of eigenvalue type, was considered in a problem set previously. It has non-trivial solutions when $\lambda=\lambda_{n}=n^{2}$ (n is a positive integer), and when $\lambda=\lambda_{0}=0$, and these solutions are

$$
G_{n}(\theta)=A_{n} \cos n \theta+B_{n} \sin n \theta, \quad G_{0}=A_{0},
$$

4 with arbitrary constants A_{0}, A_{n} and B_{n}. The second equation in (8.4), when ${ }_{5} \lambda=\lambda_{n}=n^{2}$, becomes

$$
r^{2} F^{\prime \prime}(r)+r F^{\prime}(r)-n^{2} F(r)=0
$$

6 This is Euler's equation! Its general solution is

$$
\begin{equation*}
F(r)=c_{1} r^{n}+c_{2} r^{-n} \tag{8.5}
\end{equation*}
$$

7
8

9
10

$$
\begin{equation*}
f(\theta)=a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right), \tag{8.6}
\end{equation*}
$$

$$
\begin{equation*}
a_{0}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\theta) d \theta, \quad a_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos n \theta d \theta \tag{8.7}
\end{equation*}
$$

$$
b_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin n \theta d \theta \quad(n \geq 1)
$$ and $B_{n} R^{n}=b_{n}$, so that $A_{n}=\frac{1}{R^{n}} a_{n}$ and $B_{n}=\frac{1}{R^{n}} b_{n}$. Conclusion: the so${ }_{4}$ lution of (8.3) is given by

$$
\begin{equation*}
u(r, \theta)=a_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right), \tag{8.8}
\end{equation*}
$$

5 with the coefficients calculated by (8.7).
6 We see that the solution of (8.3) can be obtained from the Fourier series of $f(\theta)$, by just putting in the additional factors, $\left(\frac{r}{R}\right)^{n}$. Observe also that $f(\theta)$ needs to be defined only on ($0,2 \pi$), according to (8.7), so that the requirement that $f(\theta)$ is 2π-periodic can now be removed.
Example 1 Solve

$$
\begin{array}{cc}
\Delta u=0 & \text { for } x^{2}+y^{2}<4 \\
u=x^{2}-3 y & \text { on } x^{2}+y^{2}=4 .
\end{array}
$$

$$
\begin{gather*}
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad \text { for } r>R \tag{8.9}\\
u(R, \theta)=f(\theta) .
\end{gather*}
$$

The last function is its own Fourier series, with $a_{0}=2, a_{2}=2, b_{1}=-6$, and all other coefficients are zero. The formula (8.8) gives the solution (here $R=2$):

$$
u(r, \theta)=2+2\left(\frac{r}{2}\right)^{2} \cos 2 \theta-6 \frac{r}{2} \sin \theta=2+\frac{1}{2} r^{2} \cos 2 \theta-3 r \sin \theta
$$

In Cartesian coordinates this solution is (using that $\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta$)

$$
u(x, y)=2+\frac{1}{2}\left(x^{2}-y^{2}\right)-3 y .
$$

Consider next the exterior problem

Physically, we have a plate with the disc $r<R$ removed. Outside of this disc, the plate is so large, that we can think that it extends to infinity.

Temperatures are prescribed by $f(\theta)$ on the boundary of the plate, and the solution of (8.9) will give the steady state temperatures.

Perform separation of variables, following the same steps as above, and in (8.5) this time select $c_{1}=0$, to avoid infinite temperatures as $r \rightarrow \infty$. Conclusion: the solution of the exterior problem (8.9) is given by

$$
u(r, \theta)=a_{0}+\sum_{n=1}^{\infty}\left(\frac{R}{r}\right)^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right)
$$

6 with the coefficients taken from the Fourier series of $f(\theta)$, as given in (8.7). 7 Again, going from the Fourier series of $f(\theta)$ to the solution of (8.9), involves just putting in the additional factors $\left(\frac{R}{r}\right)^{n}$.

9 Example 2 Solve the exterior problem $(R=3)$

$$
\begin{array}{cc}
\Delta u=0, & \text { for } x^{2}+y^{2}>9 \\
u=x^{2} & \text { on } x^{2}+y^{2}=9 .
\end{array}
$$

10 Writing $f(\theta)=x^{2}=(3 \cos \theta)^{2}=9 \cos ^{2} \theta=\frac{9}{2}+\frac{9}{2} \cos 2 \theta$, obtain

$$
u=\frac{9}{2}+\frac{9}{2}\left(\frac{3}{r}\right)^{2} \cos 2 \theta=\frac{9}{2}+\frac{81}{2} \frac{r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)}{r^{4}}=\frac{9}{2}+\frac{81}{2} \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} .
$$

Consider next the Neumann boundary value problem

$$
\begin{array}{cc}
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad \text { for } r<R \tag{8.10}\\
u_{r}(R, \theta)=f(\theta) .
\end{array}
$$

It describes the steady state temperatures inside the disc $r<R$, with the heat flux $f(\theta)$ prescribed on the boundary of the disc. By separation of variables, obtain as above

$$
\begin{equation*}
u(r, \theta)=A_{0}+\sum_{n=1}^{\infty} r^{n}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right) \tag{8.11}
\end{equation*}
$$

The boundary condition requires

$$
\begin{equation*}
u_{r}(R, \theta)=\sum_{n=1}^{\infty} n R^{n-1}\left(A_{n} \cos n \theta+B_{n} \sin n \theta\right)=f(\theta) . \tag{8.12}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{2 \pi} f(\theta) d \theta=0 \tag{8.13}
\end{equation*}
$$ series of $f(\theta)$, which implies that $n R^{n-1} B_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \sin n \theta d \theta$, while A_{0} is arbitrary.

7.9 Sturm-Liouville Problems

Let us recall the eigenvalue problem

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0, \quad 0<x<L \\
y(0)=y(L)=0
\end{gathered}
$$ $m \neq n$. Similarly, the eigenfunctions of

$$
\begin{gathered}
y^{\prime \prime}+\lambda y=0, \quad 0<x<L \\
y^{\prime}(0)=y^{\prime}(L)=0
\end{gathered}
$$ problems lead to their own types of Fourier series on $(0, L)$.

Recall that given a general linear second order equation

$$
P(x) y^{\prime \prime}+Q(x) y^{\prime}+R(x) y=0
$$

This is impossible to arrange, unless the constant term is zero in the Fourier
(Observe that the constant term is zero in the series on the left in (8.12). The same must be true for $f(\theta)$ on the right.) The condition (8.13) is a necessary condition for the Neumann problem to have solutions. If the condition (8.13) holds, we choose A_{n} and B_{n} to satisfy $n R^{n-1} A_{n}=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos n \theta d \theta$, and

To recapitulate, the Neumann problem (8.10) is solvable only if the condition (8.13) holds, otherwise it has no solutions. If the condition (8.13) holds, the formula (8.11) gives infinitely many solutions ("feast-or-famine").
on some interval $(0, L)$. Its eigenfunctions, $\sin \frac{n \pi}{L} x, n=1,2, \ldots$, are the building blocks of the Fourier sine series on $(0, L)$. These eigenfunctions are orthogonal on $(0, L)$, which means that $\int_{0}^{L} \sin \frac{n \pi}{L} x \sin \frac{m \pi}{L} x d x=0$ for any
which are: $1, \cos \frac{n \pi}{L} x, n=1,2, \ldots$, give rise to the Fourier cosine series on $(0, L)$. It turns out that under some conditions, solutions of other eigenvalue
with $P(x)>0$, one can divide this equation by $P(x)$, and then multiply by the integrating factor $p(x)=e^{\int \frac{Q(x)}{P(x)} d x}$, to put it into the self-adjoint form

$$
\left(p(x) y^{\prime}\right)^{\prime}+r(x) y=0
$$

with $r(x)=p(x) \frac{R(x)}{P(x)}$.
On an arbitrary interval (a, b), we consider an eigenvalue problem for equations in the self-adjoint form

$$
\begin{equation*}
\left(p(x) y^{\prime}\right)^{\prime}+\lambda r(x) y=0, \quad \text { for } a<x<b \tag{9.1}
\end{equation*}
$$

4 together with the homogeneous boundary conditions

$$
\begin{equation*}
\alpha y(a)+\beta y^{\prime}(a)=0, \quad \gamma y(b)+\delta y^{\prime}(b)=0 \tag{9.2}
\end{equation*}
$$

The differentiable function $p(x)$ and the continuous function $r(x)$ are given, and both are assumed to be positive on $[a, b]$. The boundary conditions in (9.2) are called separated boundary conditions, with the first one involving the values of the solution and its derivative only at $x=a$, and the other one uses the values only at the right end-point $x=b$. The constants α, β, γ and δ are given, however to prevent the possibility that both constants in the same boundary condition are zero, we assume that $\alpha^{2}+\beta^{2} \neq 0$, and $\gamma^{2}+\delta^{2} \neq 0$. By the eigenfunctions we mean non-trivial (non-zero) solutions of (9.1), satisfying the boundary conditions in (9.2), and the corresponding values of λ are called the eigenvalues.

Theorem 7.9.1 Assume that $y(x)$ is an eigenfunction of the problem (9.1), (9.2), corresponding to an eigenvalue λ, while $z(x)$ is an eigenfunction corresponding to an eigenvalue μ, and $\lambda \neq \mu$. Then $y(x)$ and $z(x)$ are orthogonal on (a, b) with weight $r(x)$, which means that

$$
\int_{a}^{b} y(x) z(x) r(x) d x=0
$$

$$
\begin{gather*}
\left(p(x) z^{\prime}\right)^{\prime}+\mu r(x) z=0 \tag{9.3}\\
\alpha z(a)+\beta z^{\prime}(a)=0, \quad \gamma z(b)+\delta z^{\prime}(b)=0
\end{gather*}
$$

20 Multiply the equation (9.1) by $z(x)$, and subtract from that the equation ${ }_{21}$ (9.3) multiplied by $y(x)$. Obtain

$$
\left(p(x) y^{\prime}\right)^{\prime} z(x)-\left(p(x) z^{\prime}\right)^{\prime} y(x)+(\lambda-\mu) r(x) y(x) z(x)=0
$$

22
Rewrite this as

$$
\left[p\left(y^{\prime} z-y z^{\prime}\right)\right]^{\prime}+(\lambda-\mu) r(x) y(x) z(x)=0
$$

$$
\begin{equation*}
\left.\left[p\left(y^{\prime} z-y z^{\prime}\right)\right]\right|_{a} ^{b}+(\lambda-\mu) \int_{a}^{b} y(x) z(x) r(x) d x=0 \tag{9.4}
\end{equation*}
$$

$$
\begin{equation*}
p(b)\left(y^{\prime}(b) z(b)-y(b) z^{\prime}(b)\right)=0 \tag{9.5}
\end{equation*}
$$

and

$$
\begin{equation*}
p(a)\left(y^{\prime}(a) z(a)-y(a) z^{\prime}(a)\right)=0 . \tag{9.6}
\end{equation*}
$$

4 Then the first term in (9.4) is zero. It follows that the second term in (9.4) is also zero, and therefore $\int_{a}^{b} y(x) z(x) r(x) d x=0$, because $\lambda-\mu \neq 0$.

We shall justify (9.5), while the proof of (9.6) is similar. Consider first the case when $\delta=0$. Then the corresponding boundary conditions simplify to read $y(b)=0, z(b)=0$, and (9.5) follows. In the other case, when $\delta \neq 0$, we express $y^{\prime}(b)=-\frac{\gamma}{\delta} y(b), z^{\prime}(b)=-\frac{\gamma}{\delta} z(b)$, and then

$$
y^{\prime}(b) z(b)-y(b) z^{\prime}(b)=-\frac{\gamma}{\delta} y(b) z(b)+\frac{\gamma}{\delta} y(b) z(b)=0,
$$

and (9.5) follows, which concludes the proof.

Theorem 7.9.2 The eigenvalues of the problem (9.1), (9.2) are real numbers.

Proof: Assume, on the contrary, that an eigenvalue λ is not real, so that $\bar{\lambda} \neq \lambda$, and the corresponding eigenfunction $y(x)$ is complex valued. Taking the complex conjugates of (9.1) and (9.2), gives

$$
\left(p(x) \bar{y}^{\prime}\right)^{\prime}+\bar{\lambda} r(x) \bar{y}=0
$$

$$
\alpha \bar{y}(a)+\beta \bar{y}^{\prime}(a)=0, \quad \gamma \bar{y}(b)+\delta \bar{y}^{\prime}(b)=0 .
$$

It follows that $\bar{\lambda}$ is also an eigenvalue, and \bar{y} is the corresponding eigenfunction. By the preceding Theorem 7.9.1

$$
\int_{a}^{b} y(x) \bar{y}(x) r(x) d x=\int_{a}^{b}|y(x)|^{2} r(x) d x=0 .
$$

The second integral involves a non-negative function, and it can be zero only if $y(x)=0$, for all x. But an eigenfunction cannot be zero function. We
have a contradiction, which was caused by the assumption that λ is not real. It follows that only real eigenvalues are possible.

Example On the interval $(0, \pi)$, we consider the eigenvalue problem

$$
\begin{gather*}
y^{\prime \prime}+\lambda y=0, \quad 0<x<\pi \tag{9.7}\\
y(0)=0, \quad y^{\prime}(\pi)-y(\pi)=0
\end{gather*}
$$

and calculate its eigenvalues and the corresponding eigenvectors.
The general solution depends on the sign of λ.
Case 1. $\lambda<0$. We may write $\lambda=-k^{2}$, with $k>0$. The general solution is then $y=c_{1} e^{-k x}+c_{2} e^{k x}$. Using the boundary conditions, compute $c_{1}=$ $c_{2}=0$, so that $y=0$, and there are no negative eigenvalues.
Case 2. $\lambda=0$. The general solution is $y=c_{1} x+c_{2}$. Again, calculate $c_{1}=c_{2}=0$, and $\lambda=0$ is not an eigenvalue.
Case 3. $\lambda>0$. We may write $\lambda=k^{2}$, with $k>0$. The general solution is then $y=c_{1} \cos k x+c_{2} \sin k x$, and $c_{1}=0$ by the first boundary condition. The second boundary condition implies that

$$
c_{2}(k \cos k \pi-\sin k \pi)=0
$$

We need $c_{2} \neq 0$, to get a non-trivial solution, therefore the quantity in the bracket must be zero, which implies that

$$
\begin{equation*}
\tan k \pi=k \tag{9.8}
\end{equation*}
$$

This equation has infinitely many solutions, $0<k_{1}<k_{2}<k_{3}<\ldots$, as can be seen by drawing the graphs of $y=k$ and $y=\tan k \pi$ in the $k y$-plane. We obtain infinitely many eigenvalues $\lambda_{i}=k_{i}^{2}$, and the corresponding eigenfunctions $y_{i}=\sin k_{i} x, i=1,2,3, \ldots$ (Observe that $-k_{i}$'s are also solutions of (9.8), but they lead to the same eigenvalues and eigenfunctions.) Using that $\tan k_{i} \pi=k_{i}$, or $\sin k_{i} \pi=k_{i} \cos k_{i} \pi$, and recalling two trigonometric identities, we verify that for all $i \neq j$

$$
\int_{0}^{\pi} \sin k_{i} x \sin k_{j} x d x=\frac{1}{2} \int_{0}^{\pi}\left[\cos \left(k_{i}-k_{j}\right) x-\cos \left(k_{i}+k_{j}\right) x\right] d x
$$

$$
=\frac{\sin \left(k_{i}-k_{j}\right) \pi}{2\left(k_{i}-k_{j}\right)}-\frac{\sin \left(k_{i}+k_{j}\right) \pi}{2\left(k_{i}+k_{j}\right)}
$$

$$
=\frac{1}{k_{i}^{2}-k_{j}^{2}}\left(k_{j} \cos k_{j} \pi \sin k_{i} \pi-k_{i} \cos k_{i} \pi \sin k_{j} \pi\right)=0
$$

proving directly that the eigenfunctions are orthogonal, which serves to illustrate the Theorem 7.9.1 above.

It is known that the problem (9.1), (9.2) has infinitely many eigenvalues, and the corresponding eigenfunctions $y_{j}(x)$ allow us to do Fourier series. This means that we can represent on the interval (a, b) any $f(x)$, for which $\int_{a}^{b} f^{2}(x) r(x) d x$ is finite, as

$$
\begin{equation*}
f(x)=\sum_{j=1}^{\infty} c_{j} y_{j}(x), \quad \text { for } a<x<b . \tag{9.9}
\end{equation*}
$$

7

$$
\begin{equation*}
c_{i}=\frac{\int_{a}^{b} f(x) y_{i}(x) r(x) d x}{\int_{a}^{b} y_{i}^{2}(x) r(x) d x} . \tag{9.10}
\end{equation*}
$$

For the example (9.7) considered above, the corresponding Fourier series takes the form

$$
f(x)=\sum_{j=1}^{\infty} c_{i} \sin k_{i} x, \quad \text { for } 0<x<\pi
$$

One says that the eigenfunctions $y_{j}(x)$ form a complete set. To find the coefficients, multiply both sides by $y_{i}(x) r(x)$, and integrate over (a, b)

$$
\int_{a}^{b} f(x) y_{i}(x) r(x) d x=\sum_{j=1}^{\infty} c_{j} \int_{a}^{b} y_{j}(x) y_{i}(x) r(x) d x
$$

By the Theorem 7.9.1, for all $j \neq i$, the integrals on the right are zero. So that the sum on the right is equal to $c_{i} \int_{a}^{b} y_{i}^{2}(x) r(x) d x$. Therefore

Using a symbolic software, like Mathematica, it is easy to compute approximately k_{i} 's, and the integrals for c_{i} 's. The book of H. Weinberger [36] has more information on the validity of the expansion (9.9).

7.9.1 The Fourier-Bessel Series

Consider the following eigenvalue problem: on the interval $(0, R)$ determine non-trivial solutions $F=F(r)$ of

$$
\begin{gather*}
F^{\prime \prime}+\frac{1}{r} F^{\prime}+\lambda F=0 \tag{9.11}\\
F^{\prime}(0)=0, \quad F(R)=0 .
\end{gather*}
$$

Then, by the Theorem 7.9.1, any two eigenfunctions of (9.11), corresponding to different eigenvalues, are orthogonal on $(0, R)$ with weight r.

We shall reduce the equation in (9.11) to Bessel's equation of order zero. To this end, make a change of variables $r \rightarrow x$, by letting $r=\frac{1}{\sqrt{\lambda}} x$. By the chain rule

$$
F_{r}=F_{x} \sqrt{\lambda}, \quad F_{r r}=F_{x x} \lambda .
$$

Then the problem (9.11) becomes

$$
\begin{gathered}
\lambda F_{x x}+\frac{1}{\frac{1}{\sqrt{\lambda}} x} \sqrt{\lambda} F_{x}+\lambda F=0 \\
F_{x}(0)=0, \quad F(\sqrt{\lambda} R)=0 .
\end{gathered}
$$

Divide by λ, and use primes again to denote the derivatives in x

$$
\begin{gathered}
F^{\prime \prime}+\frac{1}{x} F_{x}+F=0 \\
F^{\prime}(0)=0, \quad F(\sqrt{\lambda} R)=0 .
\end{gathered}
$$

This equation is Bessel's equation of order zero. The Bessel function $J_{0}(x)$, which was considered in Chapter 3, satisfies this equation, as well as the condition $F^{\prime}(0)=0$. Recall that the function $J_{0}(x)$ has infinitely many positive roots $r_{1}<r_{2}<r_{3}<\cdots$. In order to satisfy the second boundary condition, we need

$$
\sqrt{\lambda} R=r_{i}, \quad i=1,2,3, \ldots,
$$

so that $\lambda=\lambda_{i}=\frac{r_{i}^{2}}{R^{2}}$. Returning to the original variable r (observe that $F(x)=F(\sqrt{\lambda} r)$), gives us the eigenvalues and the corresponding eigenfunctions of the problem (9.11):

$$
\lambda_{i}=\frac{r_{i}^{2}}{R^{2}}, \quad F_{i}(r)=J_{0}\left(\frac{r_{i}}{R} r\right), \quad i=1,2,3, \ldots
$$

The Fourier-Bessel series is then the following expansion, using the eigenfunctions $J_{0}\left(\frac{r_{i}}{R} r\right)$,

$$
\begin{equation*}
f(r)=\sum_{j=1}^{\infty} c_{i} J_{0}\left(\frac{r_{i}}{R} r\right), \quad \text { for } 0<r<R \tag{9.12}
\end{equation*}
$$

$$
\begin{equation*}
c_{i}=\frac{\int_{0}^{R} f(r) J_{0}\left(\frac{r_{i}}{R} r\right) r d r}{\int_{0}^{R} J_{0}^{2}\left(\frac{r_{i}}{R} r\right) r d r} . \tag{9.13}
\end{equation*}
$$

This expansion is valid for any $f(r)$, with $\int_{0}^{R} f^{2}(r) r d r$ finite. Using Mathematica, it is easy to compute c_{i} 's numerically, and to work with the expansion (9.12).

7.9.2 Cooling of a Cylindrical Tank

It is known that the heat equation in three spacial dimensions is (see e.g., the book of H. Weinberger [36])

$$
u_{t}=k\left(u_{x x}+u_{y y}+u_{z z}\right), \quad k>0 \text { is a constant } .
$$

Suppose that we have a cylindrical $\operatorname{tank} x^{2}+y^{2} \leq R^{2}, 0 \leq z \leq H$, and the temperatures inside it are independent of z, so that $u=u(x, y, t)$. The heat equation then becomes

$$
u_{t}=k\left(u_{x x}+u_{y y}\right) .
$$

Assume also that the boundary of the cylinder is kept at zero temperature, while the initial temperatures, $u(x, y, 0)$, are prescribed to be $f(r)$, where r is the polar radius. Because the initial temperatures do not depend on the polar angle θ, it is natural to expect that $u=u(x, y, t)$ is independent of θ too, so that $u=u(r, t)$. Then the Laplacian becomes

$$
u_{x x}+u_{y y}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=u_{r r}+\frac{1}{r} u_{r} .
$$

Under these assumptions, we need to solve the following problem

$$
\begin{gather*}
u_{t}=k\left(u_{r r}+\frac{1}{r} u_{r}\right) \quad \text { for } 0<r<R, \text { and } t>0 \tag{9.14}\\
u_{r}(0, t)=0, u(R, t)=0 \quad \text { for } t>0 \\
u(r, 0)=f(r)
\end{gather*}
$$

with a given function $f(r)$. The condition $u_{r}(0, t)=0$ was added, because we expect the temperatures to have a critical point in the middle of the tank, for all time t.

Use separation variables, writing $u(r, t)=F(r) G(t)$. Substitute this product into our equation, then divide both sides by $k F(r) G(t)$:

$$
\left.F(r) G^{\prime}(t)=k\left(F^{\prime \prime}(r)\right)+\frac{1}{r} F^{\prime}(r)\right) G(t)
$$

1

$$
\frac{G^{\prime}(t)}{k G(t)}=\frac{\left.F^{\prime \prime}(r)\right)+\frac{1}{r} F^{\prime}(r)}{F(r)}=-\lambda
$$

2 which gives

$$
\begin{gather*}
F^{\prime \prime}+\frac{1}{r} F^{\prime}+\lambda F=0 \tag{9.15}\\
F^{\prime}(0)=0, \quad F(R)=0
\end{gather*}
$$

3 and

$$
\begin{equation*}
\frac{G^{\prime}(t)}{k G(t)}=-\lambda \tag{9.16}
\end{equation*}
$$

4 The eigenvalue problem (9.15) for $F(r)$ was solved in the preceding section,
${ }_{5}$ giving the eigenvalues $\lambda_{i}=\frac{r_{i}^{2}}{R^{2}}$ and the corresponding eigenfunctions $F_{i}(r)=$
${ }^{6} J_{0}\left(\frac{r_{i}}{R} r\right)$. Using $\lambda=\lambda_{i}=\frac{r_{i}^{2}}{R^{2}}$ in (9.16), compute

$$
G_{i}(t)=c_{i} e^{-k \frac{r_{i}^{2}}{R^{2}} t}
$$

7 The function

$$
\begin{equation*}
u(r, t)=\sum_{i=1}^{\infty} c_{i} e^{-k \frac{r_{i}^{2}}{R^{2}} t} J_{0}\left(\frac{r_{i}}{R} r\right) \tag{9.17}
\end{equation*}
$$

8 satisfies our equation, and the boundary conditions. The initial condition

$$
u(r, 0)=\sum_{i=1}^{\infty} c_{i} J_{0}\left(\frac{r_{i}}{R} r\right)=f(r)
$$

9 will hold, if we choose c_{i} 's to be the coefficients of the Fourier-Bessel series, given by (9.13). Conclusion: the series in (9.17), with c_{i} 's computed by (9.13), gives the solution to our problem.

7.9.3 Cooling of a Rectangular Bar

Consider a function of two variables $f(x, y)$ defined on a rectangle $0<x<L$, $0<y<M$. Regarding x as a primary variable, we may represent $f(x, y)$ by the Fourier sine series on $(0, L)$

$$
\begin{equation*}
f(x, y)=\sum_{n=1}^{\infty} f_{n} \sin \frac{n \pi}{L} x \tag{9.18}
\end{equation*}
$$

$$
\begin{equation*}
f_{n}(y)=\sum_{m=1}^{\infty} b_{n m} \sin \frac{m \pi}{M} y \tag{9.19}
\end{equation*}
$$

6 where

$$
\begin{equation*}
b_{n m}=\frac{4}{L M} \int_{0}^{M} \int_{0}^{L} f(x, y) \sin \frac{n \pi}{L} x \sin \frac{m \pi}{M} y d x d y \tag{9.20}
\end{equation*}
$$

Similarly one could develop the double cosine series, or mixed "sinecosine" series.

Next, we solve the problem (for $u=u(x, y, t)$)

$$
\begin{gathered}
u_{t}=k\left(u_{x x}+u_{y y}\right), \quad 0<x<L, 0<y<M \\
u(x, 0, t)=u(x, M, t)=0, \quad 0<x<L \\
u(0, y, t)=u(L, y, t)=0, \quad 0<y<M \\
u(x, y, 0)=f(x, y),
\end{gathered}
$$

describing cooling of a rectangular plate, with all four sides kept on ice (temperature zero), and with the initial temperatures prescribed by a given function $f(x, y)$.

Use separation of variables, setting $u(x, y, t)=F(x) G(y) H(t)$ in our equation, and then divide by $k F(x) G(y) H(t)$:

$$
\begin{equation*}
\frac{H^{\prime}(t)}{k H(t)}=\frac{F^{\prime \prime}(x)}{F(x)}+\frac{G^{\prime \prime}(y)}{G(y)}=-\lambda \tag{9.21}
\end{equation*}
$$

1

$$
\begin{equation*}
\frac{H^{\prime}(t)}{k H(t)}=-\lambda \tag{9.22}
\end{equation*}
$$

2 In the second one, $\frac{F^{\prime \prime}(x)}{F(x)}+\frac{G^{\prime \prime}(y)}{G(y)}=-\lambda$, we separate the variables further

$$
\frac{F^{\prime \prime}(x)}{F(x)}=-\lambda-\frac{G^{\prime \prime}(y)}{G(y)}=-\mu,
$$

$$
\begin{gather*}
\left(p(x) y^{\prime}\right)^{\prime}+r(x) y=f(x), \quad a<x<b \tag{10.1}\\
y(a)=0, \quad y(b)=0
\end{gather*}
$$

where the equation is written in self-adjoint form. Here $p(x), r(x)$ and $f(x)$ are given differentiable functions, and we assume that $p(x)>0$, and $r(x)>0$ on $[a, b]$. We shall also consider the corresponding homogeneous equation

$$
\begin{equation*}
\left(p(x) y^{\prime}\right)^{\prime}+r(x) y=0 \tag{10.2}
\end{equation*}
$$

14 and the corresponding homogeneous boundary value problem

$$
\begin{gather*}
\left(p(x) y^{\prime}\right)^{\prime}+r(x) y=0 \tag{10.3}\\
y(a)=0, \quad y(b)=0
\end{gather*}
$$

1 Recall the concept of the Wronskian determinant of two functions $y_{1}(x)$ and $y_{2}(x)$, or the Wronskian, for short:

$$
W(x)=\left|\begin{array}{cc}
y_{1}(x) & y_{2}(x) \\
y_{1}^{\prime}(x) & y_{2}^{\prime}(x)
\end{array}\right|=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x) .
$$

Lemma 7.10.1 Let $y_{1}(x)$ and $y_{2}(x)$ be any two solutions of the homogeneous equation (10.2). Then $p(x) W(x)$ is a constant.

Proof: We need to show that $(p(x) W(x))^{\prime}=0$. Compute

$$
\begin{aligned}
& (p(x) W(x))^{\prime}=y_{1}^{\prime} p(x) y_{2}^{\prime}+y_{1}\left(p(x) y_{2}^{\prime}\right)^{\prime}-p(x) y_{1}^{\prime} y_{2}^{\prime}-\left(p(x) y_{1}^{\prime}\right)^{\prime} y_{2} \\
& \quad=y_{1}\left(p(x) y_{2}^{\prime}\right)^{\prime}-\left(p(x) y_{1}^{\prime}\right)^{\prime} y_{2}=-r(x) y_{1} y_{2}+r(x) y_{1} y_{2}=0 .
\end{aligned}
$$

6 On the last step we expressed $\left(p(x) y_{1}^{\prime}\right)^{\prime}=-r(x) y_{1}$, and $\left(p(x) y_{2}^{\prime}\right)^{\prime}=-r(x) y_{2}$, by using the equation (10.2), which both y_{1} and y_{2} satisfy.

We make the following fundamental assumption: the homogeneous boundary value problem (10.3) has only the trivial solution $y=0$. Define $y_{1}(x)$ to be a non-trivial solution of the homogeneous equation (10.2), together with the condition $y(a)=0$ (which can be computed e.g., by adding a second initial condition $\left.y^{\prime}(a)=1\right)$. By our fundamental assumption, $y_{1}(b) \neq 0$. Similarly, we define $y_{2}(x)$ to be a non-trivial solution of the homogeneous equation (10.2) together with the condition $y(b)=0$. By the fundamental assumption, $y_{2}(a) \neq 0$. The functions $y_{1}(x)$ and $y_{2}(x)$ form a fundamental set of the homogeneous equation (10.2) (they are not constant multiples of one another). To find a solution of the non-homogeneous equation (10.1), we use the variation of parameters method, and look for solution in the form

$$
\begin{equation*}
y(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x), \tag{10.4}
\end{equation*}
$$

with the functions $u_{1}(x)$ and $u_{2}(x)$ satisfying the formulas (10.6) and (10.7) below. We shall additionally require that these functions satisfy

$$
\begin{equation*}
u_{1}(b)=0, \quad u_{2}(a)=0 . \tag{10.5}
\end{equation*}
$$

Then $y(x)$ in (10.4) satisfies our boundary conditions $y(a)=y(b)=0$, and gives the desired solution of the problem (10.1).

We put the equation (10.1) into the form considered in Chapter 2

$$
y^{\prime \prime}+\frac{p^{\prime}(x)}{p(x)} y^{\prime}+\frac{r(x)}{p(x)} y=\frac{f(x)}{p(x)} .
$$

1 Then by the formulas (8.5) in Chapter 2, we have

$$
\begin{equation*}
u_{1}^{\prime}(x)=-\frac{y_{2}(x) f(x)}{p(x) W(x)}=-\frac{y_{2}(x) f(x)}{K}, \tag{10.6}
\end{equation*}
$$

2

$$
\begin{equation*}
u_{2}^{\prime}(x)=\frac{y_{1}(x) f(x)}{p(x) W(x)}=\frac{y_{1}(x) f(x)}{K} \tag{10.7}
\end{equation*}
$$

3 where W is the Wronskian of $y_{1}(x)$ and $y_{2}(x)$, and by K we denote the 4 constant that $p(x) W(x)$ is equal to, by Lemma 7.10.1.

5 Integrating (10.7), and using the condition $u_{2}(a)=0$, we get

$$
u_{2}(x)=\int_{a}^{x} \frac{y_{1}(\xi) f(\xi)}{K} d \xi
$$

${ }_{6}$ Similarly, integrating (10.6), and using the condition $u_{1}(b)=0$, gives

$$
u_{1}(x)=\int_{x}^{b} \frac{y_{2}(\xi) f(\xi)}{K} d \xi .
$$

7 Using these functions in (10.4), we get the solution of our problem (10.1)

$$
\begin{equation*}
y(x)=y_{1}(x) \int_{x}^{b} \frac{y_{2}(\xi) f(\xi)}{K} d \xi+y_{2}(x) \int_{a}^{x} \frac{y_{1}(\xi) f(\xi)}{K} d \xi \tag{10.8}
\end{equation*}
$$

8 It is customary to define Green's function

$$
G(x, \xi)= \begin{cases}\frac{y_{1}(x) y_{2}(\xi)}{K} & \text { for } a \leq x \leq \xi \tag{10.9}\\ \frac{y_{2}(x) y_{1}(\xi)}{K} & \text { for } \xi \leq x \leq b,\end{cases}
$$

9 so that the solution (10.8) can be written as

$$
\begin{equation*}
y(x)=\int_{a}^{b} G(x, \xi) f(\xi) d \xi . \tag{10.10}
\end{equation*}
$$

10 (Break this integral as $\int_{a}^{b}=\int_{a}^{x}+\int_{x}^{b}$. In the first integral, $\xi \leq x$, so that ${ }_{11} G(x, \xi)$ is given by the second formula in (10.9).)
${ }_{12}$ Example 1 Find Green's function, and the solution of the problem

$$
\begin{gathered}
y^{\prime \prime}+y=f(x), \quad \text { for } 0<x<1 \\
y(0)=0, \quad y(1)=0 .
\end{gathered}
$$

1 The function $\sin (x-a)$ solves the corresponding homogeneous equation $y^{\prime \prime}+y=0$, for any constant a. Therefore, we may take $y_{1}(x)=\sin x$, and $y_{2}(x)=\sin (x-1)$ (giving $\left.y_{1}(0)=y_{2}(1)=0\right)$. Compute

$$
W=y_{1}(x) y_{2}^{\prime}(x)-y_{1}^{\prime}(x) y_{2}(x)=\sin x \cos (x-1)-\cos x \sin (x-1)=\sin 1,
$$

4 which follows by using that $\cos (x-1)=\cos x \cos 1+\sin x \sin 1$, and $\sin (x-$ $\left.{ }_{5} 1\right)=\sin x \cos 1-\cos x \sin 1$. Then

$$
G(x, \xi)= \begin{cases}\frac{\sin x \sin (\xi-1)}{\sin 1} & \text { for } 0 \leq x \leq \xi \\ \frac{\sin (x-1) \sin \xi}{\sin 1} & \text { for } \xi \leq x \leq 1\end{cases}
$$

6
and the solution is

$$
y(x)=\int_{0}^{1} G(x, \xi) f(\xi) d \xi
$$

7 Example 2 Find Green's function, and the solution of the problem

$$
\begin{gathered}
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=f(x), \quad \text { for } 1<x<2 \\
y(1)=0, \quad y(2)=0
\end{gathered}
$$

8

9
${ }^{1}$ Here $p(x)=\frac{1}{x^{2}}$, and $K=p(x) W(x)=1$. Then

$$
G(x, \xi)=\left\{\begin{array}{cl}
\left(x-x^{2}\right)\left(2 \xi-\xi^{2}\right) & \text { for } 1 \leq x \leq \xi \\
\left(2 x-x^{2}\right)\left(\xi-\xi^{2}\right) & \text { for } \xi \leq x \leq 2
\end{array}\right.
$$

2 and the solution is

$$
y(x)=\int_{1}^{2} G(x, \xi) \frac{f(\xi)}{\xi^{4}} d \xi .
$$

Finally, we observe that the same construction works for general sepa4 rated boundary conditions (9.2). If $y_{1}(x)$ and $y_{2}(x)$ are the solutions of the corresponding homogeneous equation, satisfying the boundary conditions at $x=a$ and at $x=b$ respectively, then the formula (10.9) gives Green's function.

8 7.10.1 Problems

I. Find the complex form of the Fourier series for the following functions on the given interval.

1. $f(x)=x$ on $(-2,2)$.

Answer. $x=\sum_{n=-\infty}^{\infty} \frac{2 i(-1)^{n}}{n \pi} e^{i \frac{n \pi}{2} x}$.
2. $f(x)=e^{x}$ on $(-1,1)$.

Answer. $e^{x}=\sum_{n=-\infty}^{\infty}(-1)^{n} \frac{(1+i n \pi)\left(e-\frac{1}{e}\right)}{2\left(1+n^{2} \pi^{2}\right)} e^{i n \pi x}$.
3. $f(x)=\sin ^{2} x$ on $(-\pi, \pi)$.

Answer. $-\frac{1}{4} e^{-i 2 x}+\frac{1}{2}-\frac{1}{4} e^{i 2 x}$.
4. $f(x)=\sin 2 x \cos 2 x$ on $(-\pi / 2, \pi / 2)$.

Answer. $\frac{i}{4} e^{-i 4 x}-\frac{i}{4} e^{i 4 x}$.
5. Suppose a real valued function $f(x)$ is represented by its complex Fourier series on $(-L, L)$

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \frac{n \pi}{L} x} .
$$

21 (i) By taking the complex conjugates of both sides, show that $\bar{c}_{n}=c_{-n}$ for all n.
(ii) Multiply both sides by $e^{-i \frac{m \pi}{L} x}$, and integrate over $(-L, L)$, to conclude that

$$
c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(x) e^{-i \frac{n \pi}{L} x} d x, \quad n=0, \pm 1, \pm 2, \ldots
$$

6. Let $u(t)$ be a differentiable function of period T, satisfying $\int_{0}^{T} u(t) d t=0$.

4 Prove the following Poincare's inequality

$$
|u(t)| \leq \frac{\sqrt{T}}{2 \sqrt{3}}\left(\int_{0}^{T} u^{\prime 2}(t) d t\right)^{\frac{1}{2}} \quad \text { for all } t
$$

5 Hint: Represent $u(t)$ by its complex Fourier series: $u(t)=\sum_{n \neq 0} c_{n} e^{i \frac{2 \pi}{T} n t}$ (with $c_{0}=0$ by our condition). Then $u^{\prime}(t)=\sum_{n \neq 0} i \frac{2 \pi}{T} n c_{n} e^{i \frac{2 \pi}{T} n t}$, and $\int_{0}^{T} u^{\prime 2}(t) d t=\frac{4 \pi^{2}}{T} \sum_{n \neq 0} n^{2}\left|c_{n}\right|^{2}$. We have (using that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$)

$$
|u(t)| \leq \sum_{n \neq 0}\left|c_{n}\right| \leq\left(\sum_{n \neq 0} \frac{1}{n^{2}}\right)^{\frac{1}{2}}\left(\sum_{n \neq 0} n^{2}\left|c_{n}\right|^{2}\right)^{\frac{1}{2}}=\frac{\pi}{\sqrt{3}} \frac{\sqrt{T}}{2 \pi}\left(\int_{0}^{T} u^{\prime 2}(t) d t\right)^{\frac{1}{2}}
$$

1.

$$
\begin{gathered}
\Delta u=0, \quad r<3 \\
u(3, \theta)=4 \cos ^{2} \theta .
\end{gathered}
$$

Answer. $u=2+\frac{2}{9} r^{2} \cos 2 \theta=2+\frac{2}{9}\left(x^{2}-y^{2}\right)$.
2.

$$
\begin{gathered}
\Delta u=0, \quad r>3 \\
u(3, \theta)=4 \cos ^{2} \theta .
\end{gathered}
$$

Answer. $u=2+\frac{18}{r^{2}} \cos 2 \theta=2+18 \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$.
3.

$$
\begin{gathered}
\Delta u=0, \quad r<2 \\
u(2, \theta)=y^{2}
\end{gathered}
$$

. Answer. $u=2-\frac{1}{2}\left(x^{2}-y^{2}\right)$.
4.

$$
\begin{gathered}
\Delta u=0, \quad r>2 \\
u(2, \theta)=y^{2} .
\end{gathered}
$$

Answer. $u=2-8 \frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}$.
5.

$$
\begin{gathered}
\Delta u=0, \quad r<1 \\
u(1, \theta)=\cos ^{4} \theta .
\end{gathered}
$$

Hint: $\cos ^{4} \theta=\left(\frac{1+\cos 2 \theta}{2}\right)^{2}$.
56.

$$
\begin{gathered}
\Delta u=0, \quad r<1 \\
u(1, \theta)=\theta .
\end{gathered}
$$

${ }_{6}$ Hint: Extend $f(\theta)=\theta$ as a 2π periodic function, equal to θ on $[0,2 \pi]$. Then

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(\theta) \cos n \theta d \theta=\frac{1}{\pi} \int_{0}^{2 \pi} f(\theta) \cos n \theta d \theta=\frac{1}{\pi} \int_{0}^{2 \pi} \theta \cos n \theta d \theta
$$

7 and compute similarly a_{0}, and b_{n} 's.
8 Answer. $u=\pi-\sum_{n=1}^{\infty} \frac{2}{n} r^{n} \sin n \theta$.
9
7. Solve the exterior problem

$$
\begin{aligned}
& \Delta u=0, \quad r>3 \\
& u(3, \theta)=\theta+2 .
\end{aligned}
$$

10
Answer. $u=\pi+2-2 \sum_{n=1}^{\infty} \frac{3^{n}}{n} r^{-n} \sin n \theta$.

11
8. Solve the problem, and write the answer in the Cartesian coordinates

$$
\begin{array}{cl}
u_{x x}+u_{y y}=0 & \text { inside } r<2 \\
u=x^{2}-y & \text { on } r=2
\end{array}
$$

Answer. $u(x, y)=1+\frac{1}{4}\left(x^{2}-y^{2}\right)+y$.
13 9. Find the steady state temperatures inside the disc $x^{2}+y^{2}<9$, if the 14 temperatures on its boundary are prescribed by the function $y^{2}-x$.
15 Answer. $u(x, y)=\frac{9}{2}-x-\frac{1}{2}\left(x^{2}-y^{2}\right)$.

1
2. Identify graphically the eigenvalues, and find the eigenfunctions of

$$
y^{\prime \prime}+\lambda y=0, \quad y(0)+y^{\prime}(0)=0, \quad y(\pi)=0 .
$$

9 3. (i) Find the eigenvalues and the eigenfunctions of (a is a constant)

$$
y^{\prime \prime}+a y^{\prime}+\lambda y=0, \quad y(0)=y(L)=0 .
$$

Answer. $\lambda_{n}=\frac{a^{2}}{4}+\frac{n^{2} \pi^{2}}{L^{2}}, y_{n}(x)=e^{-\frac{a}{2} x} \sin \frac{n \pi}{L} x$.
(ii) Use separation of variables to solve

$$
\begin{gathered}
u_{t}=u_{x x}+a u_{x}, \quad 0<x<L \\
u(0, t)=u(L, t)=0 \\
u(x, 0)=f(x) .
\end{gathered}
$$

12
Answer. $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\left(\frac{a^{2}}{4}+\frac{n^{2} \pi^{2}}{L^{2}}\right) t} e^{-\frac{a}{2} x} \sin \frac{n \pi}{L} x, b_{n}=\frac{\int_{0}^{L} f(x) y_{n}(x) d x}{\int_{0}^{L} y_{n}^{2}(x) d x}$.
4. (i) Find the eigenvalues and the eigenfunctions of

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}+\lambda y=0, \quad y(1)=y(e)=0 .
$$

1 Answer. $\lambda_{n}=1+n^{2} \pi^{2}, y_{n}(x)=x^{-1} \sin (n \pi \ln x)$.
(ii) Put this equation into the self-adjoint form $\left(p(x) y^{\prime}\right)^{\prime}+\lambda r(x) y=0$, and verify that the eigenfunctions are orthogonal with weight $r(x)$.

Hint: Divide the equation by x^{2}, and verify that x^{3} is the integrating factor, so that $p(x)=x^{3}$ and $r(x)=x$.
(iii) Use separation of variables to solve

$$
\begin{gathered}
u_{t}=x^{2} u_{x x}+3 x u_{x}, \quad 1<x<e \\
u(1, t)=u(e, t)=0 \\
u(x, 0)=f(x) .
\end{gathered}
$$

7 Answer. $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\lambda_{n} t} y_{n}(x), b_{n}=\frac{\int_{1}^{e} f(x) y_{n}(x) x d x}{\int_{1}^{e} y_{n}^{2}(x) x d x}$.
5. Show that the eigenfunctions of

$$
y^{\prime \prime \prime \prime}+\lambda y=0, \quad y(0)=y^{\prime}(0)=y(L)=y^{\prime}(L)=0
$$

corresponding to different eigenvalues, are orthogonal on $(0, L)$.
Hint:

$$
y^{\prime \prime \prime \prime} z-y z^{\prime \prime \prime \prime}=\frac{d}{d x}\left(y^{\prime \prime \prime} z-y^{\prime \prime} z^{\prime}+y^{\prime} z^{\prime \prime}-y z^{\prime \prime \prime}\right) .
$$

Assume that the given functions $p(x)$ and $r(x)$ are positive, while α and β are non-zero constants of different sign, and γ and δ are non-zero constants of the same sign. Show that all eigenvalues are positive.

Hint: Multiply the equation by $y(x)$ and integrate over $(0, \pi)$. Perform an integration by parts.
7. Find the eigenvalues and the eigenfunctions of $(u=u(r))$

$$
u^{\prime \prime}(r)+\frac{2}{r} u^{\prime}(r)+\lambda u(r)=0, \quad 0<r<\pi, \quad u^{\prime}(0)=u(\pi)=0 .
$$

Hint: Write the equation in the form $(r u)^{\prime \prime}+\lambda(r u)=0$.
Answer. $\lambda_{m}=m^{2}, y_{m}=\frac{\sin m r}{r}, m=1,2,3, \ldots$.

1
11. (i) Solve

$$
\begin{gathered}
u_{t}=u_{x x}+u_{y y}, \quad 0<x<3,0<y<2 \\
u(x, 0, t)=u(x, 2, t)=0, \quad 0<x<3 \\
u(0, y, t)=u(3, y, t)=0, \quad 0<y<2 \\
u(x, y, 0)=x y-y
\end{gathered}
$$

Answer.

$$
u(x, y, t)=\sum_{n, m=1}^{\infty} \frac{8(-1)^{m}+16(-1)^{n+m}}{n m \pi^{2}} e^{-\left(\frac{n^{2} \pi^{2}}{9}+\frac{m^{2} \pi^{2}}{4}\right) t} \sin \frac{n \pi}{3} x \sin \frac{m \pi}{2} y
$$

8. Find the eigenvalues and the eigenfunctions of

$$
u^{\prime \prime}(r)+\frac{n-1}{r} u^{\prime}(r)+\lambda u(r)=0, \quad 0<r<1, \quad u^{\prime}(0)=u(1)=0
$$

where n is a positive integer.
Hint: The change of variables $u(r)=r^{\frac{2-n}{2}} v(r)$ transforms this equation into Bessel's equation of order $\frac{n-2}{2}$, with solution $v(r)=J_{\frac{n-2}{2}}(\sqrt{\lambda} r)$.
Answer. $u_{m}(r)=r^{\frac{2-n}{2}} J_{\frac{n-2}{2}}\left(\lambda_{\frac{n-2}{2}, m} r\right), \lambda_{m}=\lambda_{\frac{n-2}{2}, m}^{2}, m=1,2,3, \ldots$, where $\lambda_{\frac{n-2}{2}, m}$ denotes the m-th root of $J_{\frac{n-2}{2}}(r)$.
9. Find the eigenvalues and the eigenfunctions of $(F=F(t), \alpha$ is a constant $)$

$$
F^{\prime \prime}+\frac{1}{t} F^{\prime}+\lambda t^{2 \alpha} F=0, \quad 0<t<1, \quad F^{\prime}(0)=F(1)=0
$$

Hint: Show that the change of variables $r=\frac{t^{\alpha+1}}{\alpha+1}$ transforms this problem into (9.11), with $R=\frac{1}{\alpha+1}$.
Answer. $\lambda_{i}=(\alpha+1)^{2} r_{i}, F_{i}=J_{0}\left(r_{i} t^{\alpha+1}\right)$, where r_{i} are the roots of J_{0}.
10. Solve

$$
\begin{gathered}
u_{t}=3\left(u_{x x}+u_{y y}\right), \quad 0<x<\pi, 0<y<\pi \\
u(x, 0, t)=u(x, \pi, t)=0, \quad 0<x<\pi \\
u(0, y, t)=u(\pi, y, t)=0, \quad 0<y<\pi \\
u(x, y, 0)=\sin x \cos x \sin y
\end{gathered}
$$

Answer. $u(x, y, t)=\frac{1}{2} e^{-15 t} \sin 2 x \sin y$.
(ii) Find the eigenvalues and the corresponding eigenfunctions of the Laplacian on the rectangle $(0,3) \times(0,2)$

$$
\begin{gathered}
u_{x x}+u_{y y}+\lambda u=0, \quad 0<x<3,0<y<2 \\
u(x, 0, t)=u(x, 2, t)=0, \quad 0<x<3 \\
u(0, y, t)=u(3, y, t)=0, \quad 0<y<2 .
\end{gathered}
$$

Answer. $\lambda_{m n}=\frac{n^{2} \pi^{2}}{9}+\frac{m^{2} \pi^{2}}{4}, u_{n m}(x, y)=\sin \frac{n \pi}{3} x \sin \frac{m \pi}{2} y(m, n=1,2, \ldots)$.
IV. Find Green's function and the solution of the following problems.
51.

$$
\begin{gathered}
y^{\prime \prime}+y=f(x) \quad a<x<b \\
y(a)=0, \quad y(b)=0 .
\end{gathered}
$$

Answer. $G(x, \xi)= \begin{cases}\frac{\sin (x-a) \sin (\xi-b)}{\sin (b-a)} & \text { for } a \leq x \leq \xi \\ \frac{\sin (x-b) \sin (\xi-a)}{\sin (b-a)} & \text { for } \xi \leq x \leq b .\end{cases}$
2.

$$
\begin{aligned}
& y^{\prime \prime}+y=f(x) \quad 0<x<2 \\
& y(0)=0, \quad y^{\prime}(2)+y(2)=0 .
\end{aligned}
$$

Hint: $y_{1}(x)=\sin x, y_{2}(x)=-\sin (x-2)+\cos (x-2)$.
3.

$$
\begin{gathered}
x^{2} y^{\prime \prime}+4 x y+2 y=f(x) \quad 1<x<2 \\
y(1)=0, \quad y(2)=0 .
\end{gathered}
$$

Answer. $G(x, \xi)=\left\{\begin{array}{cc}\left(x^{-1}-x^{-2}\right)\left(\xi^{-1}-2 \xi^{-2}\right) & \text { for } 1 \leq x \leq \xi \\ \left(\xi^{-1}-\xi^{-2}\right)\left(x^{-1}-2 x^{-2}\right) & \text { for } \xi \leq x \leq 2,\end{array}\right.$ $y(x)=\int_{1}^{2} G(x, \xi) \xi^{2} f(\xi) d \xi$.

7.11 The Fourier Transform

This section develops the concept of the Fourier Transform, a very important tool for both theoretical and applied PDE. Applications are made to physically significant problems on infinite domains.

Recall the complex form of the Fourier series. A function $f(x)$, defined on ($-L, L$), can be represented by the series

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i \frac{n \pi}{L} x} \tag{11.1}
\end{equation*}
$$

1 with the coefficients

$$
\begin{equation*}
c_{n}=\frac{1}{2 L} \int_{-L}^{L} f(\xi) e^{-i \frac{n \pi}{L} \xi} d \xi, \quad n=0, \pm 1, \pm 2, \ldots \tag{11.2}
\end{equation*}
$$

2 We substitute (11.2) into (11.1):

$$
\begin{equation*}
f(x)=\sum_{n=-\infty}^{\infty} \frac{1}{2 L} \int_{-L}^{L} f(\xi) e^{i \frac{n \pi}{L}(x-\xi)} d \xi \tag{11.3}
\end{equation*}
$$

3 Now assume that the interval $(-\infty, \infty)$ along some axis, which we call the ${ }^{4} s$-axis, is subdivided into pieces, using the subdivision points $s_{n}=\frac{n \pi}{L}$. The 5 length of each interval is $\Delta s=\frac{\pi}{L}$. We rewrite (11.3) as

$$
\begin{equation*}
f(x)=\frac{1}{2 \pi} \sum_{n=-\infty}^{\infty} \int_{-L}^{L} f(\xi) e^{i s_{n}(x-\xi)} d \xi \Delta s \tag{11.4}
\end{equation*}
$$

6 so that we can regard $f(x)$ as a Riemann sum of a certain function of s, over the interval $(-\infty, \infty)$. Let now $L \rightarrow \infty$. Then $\Delta s \rightarrow 0$, and the Riemann sum in (11.4) converges to

$$
f(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(\xi) e^{i s(x-\xi)} d \xi d s
$$

$$
\begin{equation*}
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x}\left(\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(\xi) e^{-i s \xi} d \xi\right) d s \tag{11.5}
\end{equation*}
$$

$$
F(s)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(\xi) e^{-i s \xi} d \xi
$$

12 The inverse Fourier transform is then

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x} F(s) d s
$$

As with the Laplace transform, we use capital letters to denote the Fourier transforms. We shall also use the operator notation $\mathcal{F}(f(x))=F(s)$.
Example Let $f(x)= \begin{cases}1 & \text { for }|x| \leq a \\ 0 & \text { for }|x|>a .\end{cases}$

1 Using Euler's formula, we compute the Fourier transform:

$$
F(s)=\frac{1}{\sqrt{2 \pi}} \int_{-a}^{a} e^{-i s \xi} d \xi=\frac{2}{\sqrt{2 \pi}} \frac{e^{i a s}-e^{-i a s}}{2 i s}=\sqrt{\frac{2}{\pi}} \frac{\sin a s}{s} .
$$

Assume that $f(x) \rightarrow 0$, as $x \rightarrow \pm \infty$. Integrating by parts

$$
\mathcal{F}\left(f^{\prime}(x)\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f^{\prime}(\xi) e^{-i s \xi} d \xi=\frac{i s}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(\xi) e^{-i s \xi} d \xi=i s F(s)
$$

4 (The boundary term $\left.\frac{1}{\sqrt{2 \pi}} f(\xi) e^{-i s \xi}\right|_{-\infty} ^{\infty}$ is zero, because $\left|e^{-i s \xi}\right|=1$.) It 5 follows that

$$
\begin{equation*}
\mathcal{F}\left(f^{\prime \prime}(x)\right)=i s \mathcal{F}\left(f^{\prime}(x)\right)=-s^{2} F(s) \tag{11.6}
\end{equation*}
$$

6 These formulas for $\mathcal{F}\left(f^{\prime}(x)\right)$ and $\mathcal{F}\left(f^{\prime \prime}(x)\right)$ are similar to the corresponding 7 formulas for the Laplace transform.

8

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} e^{-x^{2}} d x=\sqrt{\pi} \tag{12.1}
\end{equation*}
$$

$$
\begin{equation*}
y(x) \equiv \int_{0}^{\infty} e^{-z^{2}} \cos x z d z=\frac{\sqrt{\pi}}{2} e^{-\frac{x^{2}}{4}} . \tag{12.2}
\end{equation*}
$$

$$
y^{\prime}(x)=\int_{0}^{\infty} e^{-z^{2}}(-z \sin x z) d z=\frac{1}{2} \int_{0}^{\infty} \sin x z d\left(e^{-z^{2}}\right)
$$

1
which implies that

$$
\begin{equation*}
y^{\prime}(x)=-\frac{x}{2} y(x) . \tag{12.3}
\end{equation*}
$$

3 By (12.1)

$$
\begin{equation*}
y(0)=\frac{\sqrt{\pi}}{2} . \tag{12.4}
\end{equation*}
$$

4 Solving the differential equation (12.3), together with the initial condition 5 (12.4), justifies the formula (12.2).

$$
\begin{equation*}
\int_{0}^{\infty} e^{-s y} \cos a s d s=\frac{y}{y^{2}+a^{2}} \tag{12.5}
\end{equation*}
$$

7.12.2 The Heat Equation for $-\infty<x<\infty$

$$
\begin{gather*}
u_{t}=k u_{x x} \quad-\infty<x<\infty, \quad t>0 \tag{12.6}\\
u(x, 0)=f(x) \quad-\infty<x<\infty
\end{gather*}
$$

Here $u(x, t)$ gives the temperature at a point x, and time t, for an infinite bar. (The bar is very long, so that we assume it to be infinite.) The initial temperatures are prescribed by the given function $f(x)$, and $k>0$ is a given constant.

The Fourier transform of the solution

$$
\begin{equation*}
\mathcal{F}(u(x, t))=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(x, t) e^{-i s x} d x=U(s, t) \tag{12.7}
\end{equation*}
$$

depends on s and also on t, which we may regard as a parameter, at the moment. Observe that $\mathcal{F}\left(u_{t}(x, t)\right)=U_{t}(s, t)$, as follows by differentiating (12.7) in t. Applying the Fourier transform to the problem (12.6), and using (11.6), obtain

$$
\begin{gathered}
U_{t}=-k s^{2} U \\
U(s, 0)=\mathcal{F}(u(x, 0))=\mathcal{F}(f(x))=F(s),
\end{gathered}
$$

where $F(s)$ is the Fourier transform of $f(x)$. Integrating this initial value problem for U as a function of t (we now regard s as a parameter)

$$
U(s, t)=F(s) e^{-k s^{2} t}
$$

3 To obtain the solution of (12.6), we apply the inverse Fourier transform, and get

$$
\begin{gathered}
u(x, t)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x} F(s) e^{-k s^{2} t} d s=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{i s(x-\xi)-k s^{2} t} f(\xi) d \xi d s \\
=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\int_{-\infty}^{\infty} e^{i s(x-\xi)-k s^{2} t} d s\right) f(\xi) d \xi
\end{gathered}
$$

$$
K=\int_{-\infty}^{\infty}[\cos s(x-\xi)+i \sin s(x-\xi)] e^{-k s^{2} t} d s=2 \int_{0}^{\infty} \cos s(x-\xi) e^{-k s^{2} t} d s
$$

because $\cos s(x-\xi)$ is an even function of s, and $\sin s(x-\xi)$ is an odd function of s. To evaluate the last integral, we make a change of variables $s \rightarrow z$, by setting

$$
\sqrt{k t} s=z,
$$

and then use the integral in (12.2):

$$
K=\frac{2}{\sqrt{k t}} \int_{0}^{\infty} e^{-z^{2}} \cos \left(\frac{x-\xi}{\sqrt{k t}} z\right) d z=\frac{\sqrt{\pi}}{\sqrt{k t}} e^{-\frac{(x-\xi)^{2}}{4 k t}}
$$

With K evaluated, we get the solution of (12.6):

$$
\begin{equation*}
u(x, t)=\frac{1}{2 \sqrt{\pi k t}} \int_{-\infty}^{\infty} e^{-\frac{(x-\xi)^{2}}{4 k t}} f(\xi) d \xi \tag{12.8}
\end{equation*}
$$

This formula is important for both PDE's and Probability Theory. The function $K(x, t)=\frac{1}{2 \sqrt{\pi k t}} e^{-\frac{x^{2}}{4 k t}}$ is known as the heat kernel. (Recall from Chapter 4 that one may write $u(x, t)=K(x, t) * f(x)$, with $\lim _{t \rightarrow 0} K(x, t)=$ $\delta(x)$, and $\lim _{t \rightarrow 0} u(x, t)=f(x)$, where $*$ denotes the convolution.)

Assume now that the function $f(x)$, giving the initial temperatures, is positive on some small interval $(-\epsilon, \epsilon)$, and is zero outside of this interval. Then $u(x, t)>0$ for all $x \in(-\infty, \infty)$ and $t>0$. Not only the temperatures become positive far from the heat source, this happens practically instantaneously! This is known as the infinite propagation speed, which points to an imperfection of our model. Observe, however, that for this $f(x)$, the temperatures given by (12.8) are negligible for large $|x|$.

7.12.3 Steady State Temperatures for the Upper Half Plane

We shall solve the boundary value problem

$$
\begin{gather*}
u_{x x}+u_{y y}=0 \quad-\infty<x<\infty, \quad y>0 \tag{12.9}\\
u(x, 0)=f(x) \quad-\infty<x<\infty .
\end{gather*}
$$

Here $u(x, y)$ will provide the steady state temperature, at a point (x, y) of an infinite plate, occupying the upper half of the $x y$-plane. The given function $f(x)$ prescribes the temperatures at the boundary $y=0$ of the plate. We looking for the solution that is bounded, as $y \rightarrow \infty$. (Without this assumption the solution is not unique: if $u(x, y)$ is a solution of (12.9), then so is $u(x, y)+c y$, for any constant c.)

Applying the Fourier transform in $x, U(s, y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} u(\xi, y) e^{-i s \xi} d \xi$, gives (observe that $\left.\mathcal{F}\left(u_{y y}(x, t)\right)=U_{y y}(s, t)\right)$

$$
\begin{gather*}
U_{y y}-s^{2} U=0 \tag{12.10}\\
U(s, 0)=F(s) .
\end{gather*}
$$

The general solution of the equation in (12.10) is

$$
U(s, y)=c_{1} e^{-s y}+c_{2} e^{s y} .
$$

When $s>0$, we select $c_{2}=0$, so that U (and therefore u) is bounded as $y \rightarrow \infty$. Then $c_{1}=F(s)$, from the initial condition in (12.10), giving us

$$
U(s, y)=F(s) e^{-s y}, \text { when } s>0 .
$$

When $s<0$, we select $c_{1}=0$, to get a bounded solution. Then $c_{2}=F(s)$, giving us

$$
U(s, y)=F(s) e^{s y}, \quad \text { when } s<0 .
$$

Combining both cases, we conclude that the bounded solution of (12.10) is

$$
U(s, y)=F(s) e^{-|s| y}
$$

It remains to compute the inverse Fourier transform
$u(x, y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{i s x-|s| y} F(s) d s=\frac{1}{2 \pi} \int_{-\infty}^{\infty} f(\xi)\left(\int_{-\infty}^{\infty} e^{i s(x-\xi)-|s| y} d s\right) d \xi$, after switching the order of integration. We evaluate the integral in the brackets by using Euler's formula, the fact that $\cos s(x-\xi)$ is even in s, and $\sin s(x-\xi)$ is odd in s, and (on the last step) the formula (12.5):

$$
\int_{-\infty}^{\infty} e^{i s(x-\xi)-|s| y} d s=2 \int_{0}^{\infty} e^{-s y} \cos s(x-\xi) d s=\frac{2 y}{(x-\xi)^{2}+y^{2}}
$$

1 The solution of (12.9), known as Poisson's formula, is then

$$
u(x, y)=\frac{y}{\pi} \int_{-\infty}^{\infty} \frac{f(\xi) d \xi}{(x-\xi)^{2}+y^{2}}
$$

This integral converges, provided that $f(\xi)$ does not grow too fast as $\xi \rightarrow \pm \infty$.

4 7.12.4 Using the Laplace Transform for a Semi-Infinite String

Imagine a string extending for $0<x<\infty$, which is initially at rest. Its left end-point, $x=0$, undergoes periodic vibrations, with the displacements given by $A \sin \omega t$, where A and ω are constants. We wish to find the displacements $u(x, t)$ at any point $x>0$ and time $t>0$, assuming that the displacements are bounded.

We need to solve the following initial-boundary value problem for the wave equation, with a given $c>0$,

$$
\begin{gathered}
u_{t t}=c^{2} u_{x x}, \quad x>0 \\
u(x, 0)=u_{t}(x, 0)=0, \quad x>0 \\
u(0, t)=A \sin \omega t, \quad t>0 .
\end{gathered}
$$

Take the Laplace transform of the equation in the variable t, denoting ${ }_{3} \quad U(x, s)=\mathcal{L}(u(x, t))$. Using the initial and boundary conditions, we get

$$
\begin{align*}
s^{2} U & =c^{2} U_{x x} \tag{12.11}\\
U(0, s) & =\frac{A \omega}{s^{2}+\omega^{2}} .
\end{align*}
$$

The general solution of the equation in (12.11) is

$$
U(x, s)=c_{1} e^{\frac{s}{c} x}+c_{2} e^{-\frac{s}{c} x} .
$$

${ }^{16}$ To get a solution bounded as $x \rightarrow+\infty$, we select $c_{1}=0$. Then $c_{2}=\frac{A \omega}{s^{2}+\omega^{2}}$ by the initial condition in (12.11), giving

$$
U(x, s)=e^{-\frac{x}{c} s} \frac{A \omega}{s^{2}+\omega^{2}} .
$$

18 Taking the inverse Laplace transform, and using the formula (2.5) from 19 Chapter 4, gives the solution

$$
u(x, t)=A u_{x / c}(t) \sin \omega(t-x / c)
$$

where $u_{x / c}(t)$ is the Heaviside step function. This formula shows that at any point $x>0$, the solution is zero for $0<t<x / c$ (the time it takes for the signal to travel from 0 to x). For $t>x / c$, the motion of the string at x is identical with the motion at $x=0$, but is delayed in time, by the value of x / c.

6 7.12.5 Problems

1. Find the Fourier transform of the function $f(x)=\left\{\begin{array}{ll}1-|x| & \text { for }|x| \leq 1 \\ 0 & \text { for }|x|>1\end{array}\right.$.

Answer. $F(s)=\sqrt{\frac{2}{\pi}} \frac{1}{s^{2}}(1-\cos s)$.
2. Find the Fourier transform of $f(x)=e^{-|x|}$.

Answer. $F(s)=\sqrt{\frac{2}{\pi}} \frac{1}{s^{2}+1}$.
3. Find the Fourier transform of $f(x)=e^{-\frac{x^{2}}{2}}$.

Answer. $F(s)=e^{-\frac{s^{2}}{2}}$. (Hint: Use the formula (12.2).)
4. Find the Fourier transform of $f(x)=e^{-a x^{2}}$, where $a>0$ is a constant.

Answer. $F(s)=\frac{1}{\sqrt{2 a}} e^{-\frac{s^{2}}{4 a}}$.
5. Solve the heat conduction problem

$$
\begin{gathered}
u_{t}-u_{x x}=0 \quad-\infty<x<\infty, \quad t>0 \\
u(x, 0)=e^{-x^{2}} \quad-\infty<x<\infty .
\end{gathered}
$$

Answer. $u(x, t)=\frac{1}{\sqrt{1+4 t}} e^{-\frac{x^{2}}{1+4 t}}$.
6. Show that for any constant a
(i) $\mathcal{F}\left(f(x) e^{i a x}\right)=F(s-a)$.
(ii) $\mathcal{F}(f(a x))=\frac{1}{a} F\left(\frac{s}{a}\right) \quad(a \neq 0)$.
7. Find a non-trivial solution of the boundary value problem

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad-\infty<x<\infty, \quad y>0 \\
u(x, 0)=0 \quad-\infty<x<\infty .
\end{gathered}
$$

1 Hint: Assume that u depends only on y.
2 This example shows that our physical intuition may fail for unbounded do3 mains.

4 8. Use Poisson's formula to solve

$$
\begin{gathered}
u_{x x}+u_{y y}=0 \quad-\infty<x<\infty, \quad y>0 \\
u(x, 0)=f(x) \quad-\infty<x<\infty,
\end{gathered}
$$

5 where $f(x)=\left\{\begin{array}{ll}1 & \text { for }|x| \leq 1 \\ 0 & \text { for }|x|>1\end{array}\right.$.
${ }^{6}$ Answer. $u(x, y)=\frac{1}{\pi}\left(\tan ^{-1} \frac{x+1}{y}-\tan ^{-1} \frac{x-1}{y}\right)$.
7 9. The famous Black-Scholes equation for the price of a stock option is (here
8 $V=V(S, t))$

$$
V_{t}+a S^{2} V_{S S}+b S V_{S}-r V=0,
$$

9 where a, b and r are positive constants. By a change of variables, reduce this equation to the heat equation.

11 Hint: If the V_{t} term was not present, we would have Euler's equation. This 12 suggests to set $x=\ln s$. Then let $\tau=-a t$. Obtain:

$$
V_{\tau}=V_{x x}+2 \alpha V_{x}-\frac{r}{a} V,
$$

13 where we denoted $2 \alpha=b / a-1$. Multiply the last equation by $e^{\alpha x}$, and 14 denote $w=e^{\alpha x} V$. Obtain:

$$
w_{\tau}=w_{x x}-\left(\alpha^{2}+\frac{r}{a}\right) w .
$$

Finally, multiply this equation by the integrating factor $e^{\left(\alpha^{2}+\frac{r}{a}\right) \tau}$, and denote $z=e^{\left(\alpha^{2}+\frac{r}{a}\right) \tau} w$. Conclude:

$$
z_{\tau}=z_{x x}
$$

Chapter 8

Elementary Theory of PDE

This chapter continues the study of the three main equations of mathematical physics: wave, heat and Laplace's equations. We now deal with the theoretical aspects: propagation and reflection of waves, maximum principles, harmonic functions, Poisson's integral formulas, variational approach. Classification theory is presented, and it shows that the three main equations are representative of all linear second order equations. First order PDE's are solved by reducing them to ODE's along the characteristic lines.

8.1 Wave Equation: Vibrations of an Infinite String

Waves

The graph of $y=(x-1)^{2}$ is a translation of the parabola $y=x^{2}$, by one unit to the right. The graph of $y=(x-t)^{2}$ is a translation of the same parabola by t units. If we think of t as time, and draw these translations on the same screen, we get a wave of speed one, traveling to the right. Similarly, $y=(x-c t)^{2}$ is a wave of speed c. The same reasoning applies for other functions. So that $y=f(x-c t)$ is a wave of speed c traveling to the right, while $y=f(x+c t)$ describes a wave of speed c traveling to the left.

Transverse Vibrations of a Guitar String: d'Alembert's Formula

Assume that an elastic string extends along the x-axis, for $-\infty<x<\infty$, and we wish to find its transverse displacements $u=u(x, t)$, as a function of the position x and the time t. As in Chapter 7, we need to solve the wave equation, together with the initial conditions:

$$
\begin{equation*}
u_{t t}-c^{2} u_{x x}=0 \quad \text { for }-\infty<x<\infty, \text { and } t>0 \tag{1.1}
\end{equation*}
$$

$$
\begin{aligned}
u(x, 0)=f(x) & \text { for }-\infty<x<\infty \\
u_{t}(x, 0)=g(x) & \text { for }-\infty<x<\infty .
\end{aligned}
$$

Here $f(x)$ is given initial displacement, $g(x)$ is given initial velocity, and $c>0$ is a given constant.

We look for classical solutions, which means that $u(x, t)$ has two continuous derivatives in x and $t\left(u_{x}, u_{t}, u_{x x}, u_{x t}\right.$, and $u_{t t}$ are continuous). We perform a change of variables $(x, t) \rightarrow(\xi, \eta)$, with the new variables (ξ, η) given by

$$
\begin{aligned}
\xi & =x-c t \\
\eta & =x+c t .
\end{aligned}
$$

Compute the partial derivatives: $\xi_{x}=1, \eta_{x}=1, \xi_{t}=-c$, and $\eta_{t}=c$. We may think of solution as $u(x, t)=u(\xi(x, t), \eta(x, t))$. Using the chain rule, we express

$$
u_{x}=u_{\xi} \xi_{x}+u_{\eta} \eta_{x}=u_{\xi}+u_{\eta},
$$

$u_{x x}=\left(u_{x}\right)_{x}=\left(u_{\xi}+u_{\eta}\right)_{\xi}+\left(u_{\xi}+u_{\eta}\right)_{\eta}=u_{\xi \xi}+u_{\xi \eta}+u_{\eta \xi}+u_{\eta \eta}=u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta}$ (using that $u_{\eta \xi}=u_{\xi \eta}$). Similarly

$$
\begin{gathered}
u_{t}=u_{\xi} \xi_{t}+u_{\eta} \eta_{t}=-c u_{\xi}+c u_{\eta}, \\
u_{t t}=-c\left(-c u_{\xi \xi}+c u_{\eta \xi}\right)+c\left(-c u_{\xi \eta}+c u_{\eta \eta}\right)=c^{2}\left(u_{\xi \xi}-2 u_{\xi \eta}+u_{\eta \eta}\right) .
\end{gathered}
$$

Substituting these expressions of $u_{t t}$ and $u_{x x}$ into the wave equation, and simplifying, we get

$$
u_{\xi \eta}=0 .
$$

Since $\left(u_{\xi}\right)_{\eta}=0$, integration in η gives

$$
u_{\xi}=F(\xi),
$$

where $F(\xi)$ is an arbitrary function. Integrating once more

$$
u(\xi, \eta)=\int F(\xi) d \xi+G(\eta)=F(\xi)+G(\eta)
$$

Here $G(\eta)$ is an arbitrary function of η. The antiderivative of $F(\xi)$ is an arbitrary function, which we again denote by $F(\xi)$. Returning to the original variables, we have the general solution

$$
\begin{equation*}
u(x, t)=F(x-c t)+G(x+c t) . \tag{1.2}
\end{equation*}
$$

8.1. WAVE EQUATION: VIBRATIONS OF AN INFINITE STRING 387

1 Observe that the wave equation has an overwhelmingly large number of solutions, because its general solution depends on two arbitrary functions.

Turning to the initial conditions, compute

$$
u_{t}(x, t)=-c F^{\prime}(x-c t)+c G^{\prime}(x+c t) .
$$

4 We have

$$
\begin{gather*}
u(x, 0)=F(x)+G(x)=f(x) \tag{1.3}\\
u_{t}(x, 0)=-c F^{\prime}(x)+c G^{\prime}(x)=g(x) .
\end{gather*}
$$

Integrating the second equation in (1.3) gives

$$
-c F(x)+c G(x)=\int_{\gamma}^{x} g(\tau) d \tau
$$

6 where γ is any constant. Adding to this formula the first equation in (1.3), multiplied by c, produces

$$
G(x)=\frac{1}{2} f(x)+\frac{1}{2 c} \int_{\gamma}^{x} g(\tau) d \tau .
$$

9 Using these expressions in (1.2), we get

$$
u(x, t)=\frac{1}{2} f(x-c t)-\frac{1}{2} \int_{\gamma}^{x-c t} g(\tau) d \tau+\frac{1}{2} f(x+c t)+\frac{1}{2 c} \int_{\gamma}^{x+c t} g(\tau) d \tau
$$

10 Writing $-\int_{\gamma}^{x-c t} g(\tau) d \tau=\int_{x-c t}^{\gamma} g(\tau) d \tau$, we combine both integrals into one:

$$
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\tau) d \tau .
$$ Wikipedia article).

In case $g(x)=0$, this formula gives

$$
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}
$$

1 which is a superposition (sum) of a wave traveling to the right and a wave 2 traveling to the left, both of speed c. (The same conclusion is true for general ${ }_{3} g(x)$, just look at the formula (1.2).)

Snapshots of $u(x, t)$ in case of pinched string

5 Example: Pinched String. We solve

$$
\begin{gather*}
u_{t t}-u_{x x}=0 \quad \text { for }-\infty<x<\infty, \text { and } t>0 \tag{1.4}\\
u(x, 0)=f(x) \quad \text { for }-\infty<x<\infty \\
u_{t}(x, 0)=0 \quad \text { for }-\infty<x<\infty
\end{gather*}
$$

8.1. WAVE EQUATION: VIBRATIONS OF AN INFINITE STRING 389

where

$$
f(x)= \begin{cases}x+1 & \text { if }-1 \leq x \leq 0 \\ 1-x & \text { if } 0 \leq x \leq 1 \\ 0 & \text { if }|x|>1\end{cases}
$$

The initial displacement $f(x)$ resembles a "pinch" (see the snapshot at $t=$ 0), while the initial velocity is zero. By d'Alembert's formula

$$
u(x, t)=\frac{1}{2} f(x-t)+\frac{1}{2} f(x+t)
$$

This expression implies that the initial "pinch" breaks into two pinches of similar shape, but half of the original magnitude, with one of them traveling to the right, and the other one to the left, both with speed 1 . We present the snapshots of $u(x, t)$ at $t=0$ (the initial pinch), $t=\frac{1}{2}, t=1$, and $t=\frac{3}{2}$.

The domain of dependence (thick) of the point $\left(x_{0}, t_{0}\right)$

We now define the important concept of characteristic lines. A family of parallel straight lines in the (x, t) plane (with $t>0$, and α a constant)

$$
x-c t=\alpha
$$

are called the left characteristic lines, or the left characteristics for short. They all have the slope $\frac{1}{c}>0$, and varying the constant α produces a specific line, parallel to all others. Given any point $\left(x_{0}, t_{0}\right)$ (with $t_{0}>0$), we can select a left characteristic, passing through it, namely

$$
x-c t=x_{0}-c t_{0}
$$

Let us follow this line for decreasing t until it intersects the x-axis. This happens at $x=x_{0}-c t_{0}$. Similarly, a family of parallel straight lines in the (x, t) plane, given by $x+c t=\alpha$, are called the right characteristics. They all have the slope $-\frac{1}{c}<0$. The right characteristic passing through $\left(x_{0}, t_{0}\right)$ is

$$
x+c t=x_{0}+c t_{0} .
$$

It intersects the x-axis at $x=x_{0}+c t_{0}$. The string's displacement at any point $\left(x_{0}, t_{0}\right)$ is (according to d'Alembert's formula)

$$
u\left(x_{0}, t_{0}\right)=\frac{f\left(x_{0}-c t_{0}\right)+f\left(x_{0}+c t_{0}\right)}{2}+\frac{1}{2 c} \int_{x_{0}-c t_{0}}^{x_{0}+c t_{0}} g(\tau) d \tau .
$$

Geometrically, $u\left(x_{0}, t_{0}\right)$ is equal to the average of the values of $f(x)$ at the points where the characteristics, passing through $\left(x_{0}, y_{0}\right)$, intersect the x axis, plus $\frac{1}{2 c}$ times the integral of $g(x)$ between these points. One calls the interval $\left[x_{0}-c t_{0}, x_{0}+c t_{0}\right]$ the domain of dependence of the point $\left(x_{0}, t_{0}\right)$.

Given a point $\left(x_{0}, 0\right)$ on the x-axis, the characteristics passing through it are $x+c t=x_{0}$ and $x-c t=x_{0}$. The region between these characteristics is called the region of influence of the point $\left(x_{0}, 0\right)$. If a point (x, t) lies outside of this region, the value of the solution $u(x, t)$ is not influenced by the values of $f(x)$ and $g(x)$ at (or near) x_{0}.

We say that a function $f(x)$ has compact support, if $f(x)$ is identically zero outside of some bounded interval $[a, b]$. In such a case, it is customary to say that $f(x)$ lives on $[a, b]$.

Lemma 8.1.1 Assume that the initial data $f(x)$ and $g(x)$ are of compact support. Then the solution $u(x, t)$ of the problem (1.1) is of compact support, for any fixed t.

Proof: If $f(x)$ and $g(x)$ live on $[a, b]$, then $u(x, t)$ lives on $[a-c t, b+c t]$, for any fixed t, as follows by d'Alembert's formula (just draw the regions of influence of $(a, 0)$, and of $(b, 0)$).

The region of influence of the point $\left(x_{0}, 0\right)$

We define the energy of a string to be

$$
E(t)=\frac{1}{2} \int_{-\infty}^{\infty}\left[u_{t}^{2}(x, t)+c^{2} u_{x}^{2}(x, t)\right] d x
$$

Theorem 8.1.1 Assume that the initial data $f(x)$ and $g(x)$ are of compact support. Then the energy of a string is constant, for any solution $u(x, t)$ of the wave equation in (1.1).

Proof: We shall show that $E^{\prime}(t)=0$ for all t. Indeed,

$$
E^{\prime}(t)=\int_{-\infty}^{\infty}\left[u_{t} u_{t t}+c^{2} u_{x} u_{x t}\right] d x=\int_{-\infty}^{\infty}\left[u_{t} u_{t t}-c^{2} u_{x x} u_{t}\right] d x
$$

$$
=\int_{-\infty}^{\infty} u_{t}\left(u_{t t}-c^{2} u_{x x}\right) d x=0 .
$$

On the second step we performed integration by parts, with the boundary terms vanishing by the Lemma 8.1.1. On the last step we used that $u(x, t)$ satisfies the wave equation.

This theorem implies that for all t

$$
E(t)=E(0)=\frac{1}{2} \int_{-\infty}^{\infty}\left[u_{t}^{2}(x, 0)+c^{2} u_{x}^{2}(x, 0)\right]
$$

$$
=\frac{1}{2} \int_{-\infty}^{\infty}\left[g^{2}(x)+c^{2} f^{\prime 2}(x)\right] d x
$$

Theorem 8.1.2 The problem (1.1) has a unique solution.
Proof: Assume that $v(x, t)$ is another solution of (1.1), in addition to the solution $u(x, t)$ given by d'Alembert's formula. Call $w(x, t)=u(x, t)-$ $v(x, t)$. Then $w(x, t)$ satisfies the wave equation (1.1) with zero initial data $\left(w(x, 0)=w_{t}(x, 0)=0\right)$. By (1.5)

$$
E(t)=\int_{-\infty}^{\infty}\left[w_{t}^{2}(x, t)+c^{2} w_{x}^{2}(x, t)\right] d x=E(0)=0
$$

for all t. It follows that $w_{t}(x, t)=0$, and $w_{x}(x, t)=0$ for all x and t, so that $w(x, t)=$ constant. Setting $t=0$, we see that this constant is zero. We conclude that $w(x, t)=0$ for all x and t, which means that $v(x, t)$ is identical to $u(x, t)$.

1

$$
\begin{array}{cl}
u_{t t}-c^{2} u_{x x}=0 \quad \text { for } 0<x<\infty, \text { and } t>0 \tag{2.1}\\
u(x, 0)=f(x) & \text { for } 0<x<\infty \\
u_{t}(x, 0)=g(x) & \text { for } 0<x<\infty \\
u(0, t)=0 & \text { for } t>0
\end{array}
$$

with given initial displacement $f(x)$, and initial velocity $g(x)$.
Recall the concept of the odd extension. If $f(x)$ is defined on $(0, \infty)$, then its odd extension

$$
f_{o}(x)= \begin{cases}f(x) & \text { for } x>0 \\ -f(-x) & \text { for } x<0\end{cases}
$$

is defined for all $x \neq 0$. Geometrically, this amounts to reflecting the graph of $f(x)$ with respect to the origin. $\left(f_{o}(x)\right.$ is left undefined at $x=0$.) The resulting function $f_{o}(x)$ is odd, satisfying $f_{o}(-x)=-f_{o}(x)$ for all $x \neq 0$.

If $f_{o}(x)$ and $g_{o}(x)$ are the odd extensions of the functions $f(x)$ and $g(x)$ respectively, then we claim that the solution of the problem (2.1) is

$$
\begin{equation*}
u(x, t)=\frac{f_{o}(x-c t)+f_{o}(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g_{o}(\tau) d \tau \tag{2.2}
\end{equation*}
$$

5 Indeed, we already know that this formula gives a solution of the wave equation, and that $u(x, 0)=f_{o}(x)=f(x)$, and $u_{t}(x, 0)=g_{o}(x)=g(x)$, for $x>0$. As for the boundary condition, we have

$$
u(0, t)=\frac{f_{o}(-c t)+f_{o}(c t)}{2}+\frac{1}{2 c} \int_{-c t}^{c t} g_{o}(\tau) d \tau=0
$$

$$
\begin{aligned}
& u_{t t}-u_{x x}=0 \quad \text { for } 0<x<\infty \text {, and } t>0 \\
& u(x, 0)=x \quad \text { for } 0<x<\infty \\
& u_{t}(x, 0)=x^{2} \quad \text { for } 0<x<\infty \\
& u(0, t)=0 \quad \text { for } t>0 .
\end{aligned}
$$

1

$$
\begin{equation*}
u(x, t)=\frac{f_{o}(x-t)+f_{o}(x+t)}{2}+\frac{1}{2} \int_{x-t}^{x+t} g_{o}(\tau) d \tau \tag{2.3}
\end{equation*}
$$

with $f_{o}(x)=x$, and $g_{o}(x)=\left\{\begin{array}{ll}x^{2} & \text { for } x \geq 0 \\ -x^{2} & \text { for } x<0\end{array}\right.$.
3 Case 1. $t \leq x$. Then $x-t \geq 0$, and

$$
u(x, t)=\frac{x-t+x+t}{2}+\frac{1}{2} \int_{x-t}^{x+t} \tau^{2} d \tau=x+x^{2} t+\frac{1}{3} t^{3}
$$

4
5

$$
\begin{equation*}
u(x, t)=\frac{-f(-x+c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{-x+c t}^{x+c t} g(\tau) d \tau \tag{2.4}
\end{equation*}
$$

1 Indeed, observe that $-x+c t=-(x-c t)>0$, and $\int_{x-c t}^{-x+c t} g_{o}(\tau) d \tau=0$. Then

$$
\int_{x-c t}^{x+c t} g_{o}(\tau) d \tau=\int_{x-c t}^{-x+c t} g_{o}(\tau) d \tau+\int_{-x+c t}^{x+c t} g_{o}(\tau) d \tau=\int_{-x+c t}^{x+c t} g(\tau) d \tau
$$

$$
\begin{equation*}
u\left(x_{0}, t_{0}\right)=\frac{-f\left(-x_{0}+c t_{0}\right)+f\left(x_{0}+c t_{0}\right)}{2} \tag{2.5}
\end{equation*}
$$

so that instead of computing $f(x)$ at $x_{0}-c t_{0}$, we compute $f(x)$ at the point symmetric with respect to $x=0$. We say that the left characteristic got

1 reflected when it hit the t-axis, and the opposite sign is the way to account 2 (or the "price to pay") for a reflected wave.

3

Reflection at the boundary point $x=0$

4 Example 2 Pinched string. We solve

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \quad \text { for } 0<x<\infty, \text { and } t>0 \\
u(x, 0)=f(x) \quad \text { for } 0<x<\infty \\
u_{t}(x, 0)=0 \quad \text { for } 0<x<\infty \\
u(0, t)=0 \quad \text { for } t>0
\end{gathered}
$$

5 where

$$
f(x)= \begin{cases}x-1 & \text { if } 1 \leq x \leq 2 \tag{2.6}\\ -x+3 & \text { if } 2 \leq x \leq 3 \\ 0 & \text { for all other } x\end{cases}
$$

${ }_{6}$ (This is the pinch considered earlier, shifted two units to the right, and 7 centered at $x=2$.) Using the odd extension $f_{o}(x)$, we write the solution of 8 this problem on $(-\infty, \infty)$:

$$
\begin{equation*}
u(x, t)=\frac{f_{o}(x-t)+f_{o}(x+t)}{2} \tag{2.7}
\end{equation*}
$$

9 On the interval $(-\infty, \infty)$, the graph of $f_{o}(x)$ includes the original positive pinch on the interval $(1,3)$, and a negative pinch of the same shape over $(-3,-1)\left(f_{o}(x)\right.$ is zero for other $\left.x\right)$. By (2.7), each pinch breaks into two

1 half-pinches, and the four half-pinches set in motion, as above. We then 2 translate our results to the original (physical) interval $(0, \infty)$.

Conclusion: the original "pinch" $f(x)$ breaks into two pinches of similar 4 shape, but half of the magnitude, with one of them traveling to the right, and the other one moving to the left, both with speed 1 . At the time $t=1$, the left half-pinch reaches the $x=0$ end-point. By the time $t=3$, it completely reflects and becomes negative, of the same triangle shape. Then both half-pinches (one of them is positive, and the other one negative) travel to the right, for all $t>3$.

$$
\begin{gather*}
u_{t t}-c^{2} u_{x x}=0 \quad \text { for } 0<x<L, \text { and } t>0 \tag{3.1}\\
u(x, 0)=f(x) \quad \text { for } 0<x<L \\
u_{t}(x, 0)=g(x) \quad \text { for } 0<x<L \\
u(0, t)=u(L, t)=0 \quad \text { for } t>0
\end{gather*}
$$

with given initial displacement $f(x)$, and the initial velocity $g(x)$.
Let $f_{o}(x)$ be the odd extension of $f(x)$ from $(0, L)$ to $(-L, L)$, and then we extend $f_{o}(x)$ to $(-\infty, \infty)$ as a function of period $2 L$. We call this new extended function $\bar{f}(x)$. Similarly, we define the extension $\bar{g}(x)$ of $g(x)$. On the original interval $(0, L)$ these extensions agree with $f(x)$ and $g(x)$ respectively. Clearly, $\bar{f}(x)$ and $\bar{g}(x)$ are odd on $(-\infty, \infty)$. In addition, both of these functions are odd with respect to L, which means that

$$
\bar{f}(L+x)=-\bar{f}(L-x), \text { and } \bar{g}(L+x)=-\bar{g}(L-x), \text { for all } x .
$$

It turns out that the solution of (3.1) is

$$
\begin{equation*}
u(x, t)=\frac{\bar{f}(x-c t)+\bar{f}(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} \bar{g}(\tau) d \tau \tag{3.2}
\end{equation*}
$$

8.3 Bounded String: Multiple Reflections

Assume that the string is finite, extending over some interval $0<x<L$, and at both end-points the displacement is zero for all time. We need to solve
because $\bar{f}(x)$ and $\bar{g}(x)$ are odd with respect to L.
Consider now the case $g(x)=0$. Then

$$
\begin{equation*}
u(x, t)=\frac{\bar{f}(x-c t)+\bar{f}(x+c t)}{2} . \tag{3.3}
\end{equation*}
$$

Similarly to the above, we reflect the characteristics when they reach either the t-axis, or the line $x=L$. This time, when we continue the characteristics backward in time, multiple reflections are possible, from both the t-axis (the line $x=0$), and from the line $x=L$, before the x-axis is reached. By examining the graph of $\bar{f}(x)$, one can see that the formula (3.3) implies that the result (or the "price") of each reflection is change of sign. So, if after 3 reflections the left characteristic arrives at a point A inside $(0, L)$, then its contribution is $\bar{f}(x-c t)=-f(A)$. If it took 10 reflections for the right characteristic to arrive at a point $B \in(0, L)$, then we have $\bar{f}(x+c t)=f(B)$.

Example 1 Find $u(1 / 4,1), u(1 / 4,2)$ and $u(1 / 4,3)$ for the problem

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \quad \text { for } 0<x<2, \text { and } t>0 \\
u(x, 0)=f(x)=x^{2} \quad \text { for } 0<x<2 \\
u_{t}(x, 0)=0 \quad \text { for } 0<x<2 \\
u(0, t)=u(2, t)=0 \quad \text { for } t>0
\end{gathered}
$$

Here $c=1$, so that the left characteristics have slope 1 , and the right ones have slope -1 . When finding the solution at $(1 / 4,1)$, the left characteristic is reflected once, coming down at $x=3 / 4$, while the right one is not reflected, coming down at $x=5 / 4$, giving

$$
u(1 / 4,1)=-\frac{1}{2} f(3 / 4)+\frac{1}{2} f(5 / 4)=\frac{1}{2} .
$$

To find the solution at $(1 / 4,2)$, both characteristics are reflected once, and both are coming down at the same point $x=7 / 4$, giving

$$
u(1 / 4,2)=-\frac{1}{2} f(7 / 4)-\frac{1}{2} f(7 / 4)=-\frac{49}{16} .
$$

When computing $u(1 / 4,3)$, the left characteristic is reflected twice, coming down at $x=5 / 4$. The right characteristic is reflected once, coming down at $x=3 / 4$, giving

$$
u(1 / 4,3)=\frac{1}{2} f(5 / 4)-\frac{1}{2} f(3 / 4)=\frac{1}{2} .
$$

Example 2 Pinched string. We solve

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \quad \text { for } 0<x<8, \text { and } t>0 \\
u(x, 0)=f(x) \quad \text { for } 0<x<8 \\
u_{t}(x, 0)=0 \quad \text { for } 0<x<8 \\
u(0, t)=u(8, t)=0 \quad \text { for } t>0
\end{gathered}
$$

1 with the initial displacement

$$
f(x)=\left\{\begin{array}{ll}
x-3 & \text { if } 3 \leq x \leq 4 \\
-x+5 & \text { if } 4 \leq x \leq 5 \\
0 & \text { for all other } x \in[0,8]
\end{array} .\right.
$$

2

Snapshots of a bounded pinched string
3 The same pinch we considered above is now centered at $x=4$ (see the 4 snapshot at $t=0$). Reasoning as in the case of semi-infinite string, the 5 formula (3.3) implies that the initial "pinch" breaks into two pinches of 6 similar shape, but half of the magnitude, with one of them traveling to the 7 right, and the other one to the left, both with speed 1 . When the left halfpinch reaches the $x=0$ end-point, at the time $t=3$, it gradually reflects and at $t=5$ becomes negative, of the same shape. When the right half-pinch
reaches the $x=8$ end-point, at the same time $t=3$, it also reflects and becomes negative, of the same shape. Then both half-pinches travel toward each other, turning at $t=8$ into the exact negative of the original pinch. Then the negative pinch splits up into two halves, traveling to the left and to the right, and becoming positive after the next round of reflections. Then both half-pinches travel toward each other, turning at $t=16$ into exactly the original pinch. Then everything is repeated. The result is periodic in time motion (of the period 16), consistent with the formulas obtained previously by separation of variables.

8.4 Neumann Boundary Conditions

We consider again a semi-infinite string, $0<x<\infty$. Assume that at the $x=0$ end-point, the string is allowed to slide freely up and down, but it is attached to a clamp, which makes its slope zero. So that the condition $u_{x}(0, t)=0$ is prescribed at the boundary point $x=0$, which is referred to as the Neumann boundary condition. We are led to solve the problem

$$
\begin{gather*}
u_{t t}-c^{2} u_{x x}=0 \quad \text { for } 0<x<\infty, \text { and } t>0 \tag{4.1}\\
u(x, 0)=f(x) \\
u_{t}(x, 0)=g(x) \\
\text { for } 0<x<\infty \\
u_{x}(0, t)=0 \\
\text { for } 0<x<\infty \\
\text { for } t>0,
\end{gather*}
$$

with given initial displacement $f(x)$, and the initial velocity $g(x)$.
Define $f_{e}(x)$, the even extension of $f(x)$, by

$$
f_{e}(x)=\left\{\begin{array}{ll}
f(x) & \text { for } x>0 \\
f(-x) & \text { for } x<0
\end{array} .\right.
$$

The function $f_{e}(x)$ is even, defined for all $x \neq 0$. The graph of $f_{e}(x)$ can be obtained by reflecting the graph of $f(x)$ with respect to the y-axis. $\left(f_{e}(x)\right.$ is left undefined at $x=0$.) Similarly, define $g_{e}(x)$ to be the even extension of $g(x)$. We claim that the solution of (4.1) is given by

$$
u(x, t)=\frac{f_{e}(x-c t)+f_{e}(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g_{e}(\tau) d \tau .
$$

Indeed, we know (comparing with d'Alembert's solution) that this formula gives a solution of the wave equation, and that $u(x, 0)=f_{e}(x)=f(x)$, and
$1 u_{t}(x, 0)=g_{e}(x)=g(x)$, for $x>0$. Turning to the boundary condition, 2 compute

$$
u_{x}(x, t)=\frac{f_{e}^{\prime}(x-c t)+f_{e}^{\prime}(x+c t)}{2}+\frac{1}{2 c}\left[g_{e}(x+c t)-g_{e}(x-c t)\right]
$$

3 and therefore

$$
u_{x}(0, t)=\frac{f_{e}^{\prime}(-c t)+f_{e}^{\prime}(c t)}{2}+\frac{1}{2 c}\left[g_{e}(c t)-g_{e}(-c t)\right]=0,
$$

4 using that the derivative of an even function is an odd function.
5 Example 1 Solve

$$
\begin{array}{cc}
u_{t t}-4 u_{x x}=0 \quad \text { for } 0<x<\infty, \text { and } t>0 \\
u(x, 0)=x^{2} & \text { for } 0<x<\infty \\
u_{t}(x, 0)=x & \text { for } 0<x<\infty \\
u_{x}(0, t)=0 & \text { for } t>0
\end{array}
$$

${ }_{6}$ We have $\left(x^{2}\right)_{e}=x^{2}$ and $(x)_{e}=|x|$. The solution is

$$
u(x, t)=\frac{(x-2 t)^{2}+(x+2 t)^{2}}{2}+\frac{1}{4} \int_{x-2 t}^{x+2 t}|\tau| d \tau
$$

${ }_{7}$ Considering two cases, depending on the sign of $x-2 t$, we calculate

$$
u(x, t)= \begin{cases}x^{2}+4 t^{2}+x t & \text { for } x-2 t \geq 0 \\ \frac{5}{4} x^{2}+5 t^{2} & \text { for } x-2 t<0\end{cases}
$$

In case $g(x)=0$, the solution of (4.1) is

$$
u(x, t)= \begin{cases}\frac{f(x-c t)+f(x+c t)}{2} & \text { for } x \geq c t \\ \frac{f(-x+c t)+f(x+c t)}{2} & \text { for } x<c t\end{cases}
$$

9 If a wave is reflected, we evaluate $f(x)$ at the point where the reflected wave

Only a small adjustment is required for bounded strings:

$$
\begin{gather*}
u_{t t}-c^{2} u_{x x}=0 \quad \text { for } 0<x<L, \text { and } t>0 \tag{4.2}\\
u(x, 0)=f(x) \quad \text { for } 0<x<L \\
u_{t}(x, 0)=g(x) \quad \text { for } 0<x<L \\
u_{x}(0, t)=u_{x}(L, t)=0 \quad \text { for } t>0
\end{gather*}
$$

${ }_{1}$ Let $f_{e}(x)$ be the even extension of $f(x)$ from $(0, L)$ to $(-L, L)$, and then 2 we extend $f_{e}(x)$ to $(-\infty, \infty)$ as a function of period $2 L$. We call this new 3 extended function $\hat{f}(x)$. Similarly, we define the extension $\hat{g}(x)$ of $g(x)$. 4 On the original interval $(0, L)$ these extensions agree with $f(x)$ and $g(x)$ 5 respectively. Clearly, $\hat{f}(x)$ and $\hat{g}(x)$ are even functions on $(-\infty, \infty)$. In 6 addition, both of these functions are even with respect to L, which means 7 that

$$
\hat{f}(L+x)=\hat{f}(L-x), \text { and } \hat{g}(L+x)=\hat{g}(L-x), \text { for all } x .
$$

8

Semi-infinite pinched string with the Neumann condition

9 It is straightforward to verify that the solution of (4.2) is given by

$$
\begin{equation*}
u(x, t)=\frac{\hat{f}(x-c t)+\hat{f}(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} \hat{g}(\tau) d \tau . \tag{4.3}
\end{equation*}
$$

1 It is now a simple exercise to draw pictures for a pinched string, for both 2 semi-infinite and bounded strings (at end-points, the reflected half-pinch 3 keeps the same sign).

Using the formula (4.3) (here $\hat{g}(x)=0$) we conclude that the original "pinch" $f(x)$ breaks into two pinches of similar shape, but half of the magnitude, with one of them traveling to the right, and the other one moving to the left, both with speed 1. At the time $t=1$, the left half-pinch reaches the $x=0$ end-point. By the time $t=3$, it completely bounces off the left endpoint and stays positive, of the same triangle shape. Then both positive half-pinches travel to the right, for all $t>3$.

8.5 Non-Homogeneous Wave Equation

Let us recall Green's formula from calculus. If a closed curve C encloses a region D in the $x t$-plane, then for continuously differentiable functions $P(x, t)$ and $Q(x, t)$ we have

$$
\int_{C} P(x, t) d x+Q(x, t) d t=\iint_{D}\left[Q_{x}(x, t)-P_{t}(x, t)\right] d x d t .
$$

We now consider non-homogeneous equations

$$
\begin{gather*}
u_{t t}-c^{2} u_{x x}=F(x, t) \quad \text { for }-\infty<x<\infty, \text { and } t>0 \tag{5.1}\\
u(x, 0)=f(x) \quad \text { for }-\infty<x<\infty \\
u_{t}(x, 0)=g(x) \quad \text { for }-\infty<x<\infty
\end{gather*}
$$

Here $F(x, t)$ is given acceleration of the external force acting on the string, as was explained in Chapter 7. The initial displacement $f(x)$, and the initial velocity $g(x)$ are also given.

$$
\begin{equation*}
\int_{\Gamma} u_{t} d x+c^{2} u_{x} d t=-\iint_{D}\left(u_{t t}-c^{2} u_{x x}\right) d x d t=-\iint_{\Delta} F(x, t) d x d t . \tag{5.2}
\end{equation*}
$$

The characteristic triangle Δ

We now calculate the line integral on the left, by breaking the boundary Γ into three pieces Γ_{1}, Γ_{2} and Γ_{3}, which are the line segments joining the vertices of Δ. The integral over Γ is the sum of the integrals over Γ_{1}, Γ_{2} and Γ_{3}. Along Γ_{1}, we have $t=0$ and $d t=0$. Then

$$
\int_{\Gamma_{1}} u_{t} d x+c^{2} u_{x} d t=\int_{\Gamma_{1}} u_{t}(x, 0) d x=\int_{x-c t_{0}}^{x_{0}+c t_{0}} g(\tau) d \tau .
$$

The equation of Γ_{2} is $x+c t=x_{0}+c t_{0}$, and so $d x+c d t=0$. We replace $d x=-c d t$, and $d t=-\frac{1}{c} d x$, obtaining

$$
\begin{aligned}
& \int_{\Gamma_{2}} u_{t} d x+c^{2} u_{x} d t=-c \int_{\Gamma_{2}} u_{x} d x+u_{t} d t=-c \int_{\Gamma_{2}} d u \\
&=-c\left[u\left(x_{0}, t_{0}\right)-u\left(x_{0}+c t_{0}, 0\right)\right]=-c\left[u\left(x_{0}, t_{0}\right)-f\left(x_{0}+c t_{0}\right)\right] .
\end{aligned}
$$

The equation of Γ_{3} is $x-c t=x_{0}-c t_{0}$, and so $d x-c d t=0$. We replace $d x=c d t$, and $d t=\frac{1}{c} d x$, obtaining

$$
\int_{\Gamma_{3}} u_{t} d x+c^{2} u_{x} d t=c \int_{\Gamma_{3}} u_{x} d x+u_{t} d t=c \int_{\Gamma_{3}} d u=c\left[f\left(x_{0}-c t_{0}\right)-u\left(x_{0}, t_{0}\right)\right] .
$$

1 Using these three integrals in (5.2), we express

$$
u\left(x_{0}, t_{0}\right)=\frac{f\left(x_{0}-c t_{0}\right)+f\left(x_{0}+c t_{0}\right)}{2}+\frac{1}{2 c} \int_{x_{0}-c t_{0}}^{x_{0}+c t_{0}} g(\tau) d \tau+\frac{1}{2 c} \iint_{\Delta} F(x, t) d x d t
$$

Finally, we replace $\left(x_{0}, t_{0}\right) \rightarrow(x, t)$, and in the double integral rename the dummy variables $(x, t) \rightarrow(\xi, \eta)$, obtaining the solution

$$
\begin{gather*}
u(x, t)=\frac{f(x-c t)+f(x+c t)}{2}+\frac{1}{2 c} \int_{x-c t}^{x+c t} g(\tau) d \tau \tag{5.3}\\
+\frac{1}{2 c} \iint_{\Delta} F(\xi, \eta) d \xi d \eta .
\end{gather*}
$$

This formula reduces to d'Alembert's formula in case $F(x, t)=0$. Observe also that the characteristic triangle Δ depends on x and t.

Example Solve

$$
\begin{array}{cc}
u_{t t}-9 u_{x x}=x & \text { for }-\infty<x<\infty, \text { and } t>0 \\
u(x, 0)=0 & \text { for }-\infty<x<\infty \\
u_{t}(x, 0)=x^{2} & \text { for }-\infty<x<\infty .
\end{array}
$$

8 By (5.3):

$$
u\left(x_{0}, t_{0}\right)=\frac{1}{6} \int_{x_{0}-3 t_{0}}^{x_{0}+3 t_{0}} \tau^{2} d \tau+\frac{1}{6} \iint_{\Delta} x d x d t
$$

, The first integral is equal to $\frac{1}{18}\left[\left(x_{0}+3 t_{0}\right)^{3}-\left(x_{0}-3 t_{0}\right)^{3}\right]=x_{0}^{2} t_{0}+3 t_{0}^{3}$. The double integral is evaluated as follows:

$$
\iint_{\Delta} x d x d t=\int_{0}^{t_{0}}\left(\int_{3 t+x_{0}-3 t_{0}}^{-3 t+x_{0}+3 t_{0}} x d x\right) d t
$$

$$
=\frac{1}{2} \int_{0}^{t_{0}}\left[\left(-3 t+x_{0}+3 t_{0}\right)^{2}-\left(3 t+x_{0}-3 t_{0}\right)^{2}\right] d t
$$

$$
=-\left.\frac{1}{18}\left(-3 t+x_{0}+3 t_{0}\right)^{3}\right|_{0} ^{t_{0}}-\left.\frac{1}{18}\left(3 t+x_{0}-3 t_{0}\right)^{3}\right|_{0} ^{t_{0}}=3 x_{0} t_{0}^{2} .
$$

So that $u\left(x_{0}, t_{0}\right)=x_{0}^{2} t_{0}+3 t_{0}^{3}+\frac{1}{2} x_{0} t_{0}^{2}$. Replacing $\left(x_{0}, t_{0}\right) \rightarrow(x, t)$, we conclude

$$
u(x, t)=x^{2} t+3 t^{3}+\frac{1}{2} x t^{2} .
$$ is

Duhamel's Principle

Consider the problem

$$
\begin{aligned}
u_{t t}-c^{2} u_{x x}=F(x, t) & \text { for }-\infty<x<\infty, \text { and } t>0 \\
u(x, 0)=0 & \text { for }-\infty<x<\infty \\
u_{t}(x, 0)=0 & \text { for }-\infty<x<\infty
\end{aligned}
$$

with homogeneous (zero) initial conditions. Its solution at a point $\left(x_{0}, t_{0}\right)$, written as a repeated integral, is

$$
\begin{gathered}
u\left(x_{0}, t_{0}\right)=\frac{1}{2 c} \iint_{\Delta} F(x, t) d x d t=\frac{1}{2 c} \int_{0}^{t_{0}}\left(\int_{c t+x_{0}-c t_{0}}^{-c t+x_{0}+c t_{0}} F(x, t) d x\right) d t \\
=\int_{0}^{t_{0}}\left(\frac{1}{2 c} \int_{c \eta+x_{0}-c t_{0}}^{-c \eta+x_{0}+c t_{0}} F(x, \eta) d x\right) d \eta
\end{gathered}
$$

On the last step we changed the "dummy" variable t to η. We now consider a family of problems, depending on a parameter η : find $U(x, t)$ solving

$$
\begin{gathered}
U_{t t}-c^{2} U_{x x}=0 \quad \text { for }-\infty<x<\infty, \text { and } t>\eta \\
U(x, \eta)=0 \quad \text { for }-\infty<x<\infty \\
U_{t}(x, \eta)=F(x, \eta) \quad \text { for }-\infty<x<\infty .
\end{gathered}
$$

Here the initial conditions are prescribed at the time moment $t=\eta$, and the force term $F(x, t)$ now acts as the initial velocity. The solution U depends also on the parameter η, so that $U=U(x, t, \eta)$. By adjusting d'Alembert's formula (the initial time is now $t=\eta$), the solution of (5.5) at a point $\left(x_{0}, t_{0}\right)$

$$
U\left(x_{0}, t_{0}, \eta\right)=\frac{1}{2 c} \int_{c \eta+x_{0}-c t_{0}}^{-c \eta+x_{0}+c t_{0}} F(x, \eta) d x .
$$

(The left and the right characteristics are continued backward from the point (x_{0}, t_{0}) until they intersect the line $t=\eta$.) The solution of the original problem (5.4) is then

$$
u\left(x_{0}, t_{0}\right)=\int_{0}^{t_{0}} U\left(x_{0}, t_{0}, \eta\right) d \eta
$$

We see that the force term $F(x, t)$ is being distributed as the initial velocities at times $\eta\left(0<\eta<t_{0}\right)$, and at the time t_{0} we integrate (sum up) the effects of these initial velocities.

Similar approach works for many other evolution equations, which are equations involving the "time" variable.

8.5.1 Problems

1. Solve the initial value problem, and describe its physical significance. Here $u=u(x, t)$. Simplify your answer.

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad-\infty<x<\infty, \quad t \geq 0 \\
u(x, 0)=x \quad-\infty<x<\infty \\
u_{t}(x, 0)=\cos x \quad-\infty<x<\infty
\end{gathered}
$$

4 Answer. $u(x, t)=x+\frac{1}{2} \cos x \sin 2 t$.
5 2. Find the values of the solution $u(3,1)$ and $u(1,3)$ for the following problem

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \quad 0<x<\infty, \quad t \geq 0 \\
u(x, 0)=x^{2} \quad 0<x<\infty \\
u_{t}(x, 0)=x \quad 0<x<\infty, \\
u(0, t)=0 \quad t \geq 0
\end{gathered}
$$

6 Answer. $u(3,1)=13, u(1,3)=9$.
${ }_{7}$ 3. Solve the initial-boundary value problem, and describe its physical sig8 nificance

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad 0<x<\infty, \quad t \geq 0 \\
u(x, 0)=x \quad 0<x<\infty \\
u_{t}(x, 0)=\cos x \quad 0<x<\infty \\
u_{x}(0, t)=0 \quad t \geq 0
\end{gathered}
$$

9 Answer. $u(x, t)=\frac{|x-2 t|+|x+2 t|}{2}+\frac{1}{2} \cos x \sin 2 t$.
10 4. Solve the non-homogeneous boundary value problem, and describe its 11 physical significance. Simplify your answer.

$$
\begin{gathered}
u_{t t}-4 u_{x x}=x \quad-\infty<x<\infty, \quad t \geq 0 \\
u(x, 0)=0 \quad-\infty<x<\infty, \\
u_{t}(x, 0)=0 \quad-\infty<x<\infty .
\end{gathered}
$$

12
Answer. $u(x, t)=\frac{1}{2} x t^{2}$.
5. Solve the non-homogeneous boundary value problem

$$
\begin{gathered}
u_{t t}-4 u_{x x}=x+3 t \quad-\infty<x<\infty, \quad t \geq 0 \\
u(x, 0)=0 \quad-\infty<x<\infty, \\
u_{t}(x, 0)=\cos x \quad-\infty<x<\infty .
\end{gathered}
$$

1 Answer. $u(x, t)=\frac{1}{2}\left(x t^{2}+t^{3}+\cos x \sin 2 t\right)$.
2 6. Solve the initial-boundary value problem, and describe its physical sig-
3 nificance

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad 0<x<\infty, \quad t \geq 0 \\
u(x, 0)=x \quad 0<x<\infty \\
u_{t}(x, 0)=\sin x \quad 0<x<\infty \\
u(0, t)=0 \quad t \geq 0
\end{gathered}
$$

4 Answer. $u(x, t)=x+\frac{1}{2} \sin x \sin 2 t$.
5 7. Solve the following initial-boundary value problem, and describe its phys-
6 ical significance

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad 0<x<\infty, \quad t \geq 0 \\
u(x, 0)=x^{2} \quad 0<x<\infty \\
u_{t}(x, 0)=\cos x \quad 0<x<\infty \\
u(0, t)=0 \quad t \geq 0
\end{gathered}
$$

${ }_{7}$ 8. Find $u(3,1)$ and $u(1,3)$ for the solution of the following problem

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad 0<x<\infty, \quad t \geq 0 \\
u(x, 0)=x+1 \quad 0<x<\infty \\
u_{t}(x, 0)=0 \quad 0<x<\infty \\
u(0, t)=0
\end{gathered}
$$

8 Answer. $u(3,1)=4$, and $u(1,3)=1$.
9 9. Solve

$$
\begin{gathered}
u_{t t}=u_{x x}, \quad 0<x<\infty, \quad t>0 \\
u(x, 0)=x^{2} \\
u_{t}(x, 0)=x \\
u(0, t)=0
\end{gathered}
$$

10 Answer. $u(x, t)=\left\{\begin{array}{ll}x^{2}+x t+t^{2} & \text { for } t \leq x \\ 3 x t & \text { for } t>x\end{array}\right.$.

1
10. Find $u(3,1)$ and $u(1,3)$ for the solution of the following problem

$$
\begin{gathered}
u_{t t}-4 u_{x x}=0 \quad 0<x<\infty, \quad t \geq 0 \\
u(x, 0)=x+1 \quad 0<x<\infty \\
u_{t}(x, 0)=0 \quad 0<x<\infty \\
u_{x}(0, t)=0 .
\end{gathered}
$$

2 Answer. $u(3,1)=4$, and $u(1,3)=7$.
3 11. Find $u(1 / 2,2)$ and $u(1 / 3,3)$ for the following problem

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \quad 0<x<2, \quad t \geq 0 \\
u(x, 0)=x \quad 0<x<2 \\
u_{t}(x, 0)=0 \quad 0<x<2 \\
u(0, t)=u(2, t)=0 \quad t \geq 0
\end{gathered}
$$

4 Answer. $u(1 / 2,2)=-\frac{3}{2}, u(1 / 3,3)=\frac{1}{3}$.
12. Find $u(1 / 2,2)$ and $u(1 / 3,3)$ for the following problem

$$
\begin{gathered}
u_{t t}-u_{x x}=0 \quad 0<x<2, \quad t \geq 0 \\
u(x, 0)=x \quad 0<x<2 \\
u_{t}(x, 0)=0 \quad 0<x<2 \\
u_{x}(0, t)=u_{x}(2, t)=0 \quad t \geq 0
\end{gathered}
$$

6 Answer. $u(1 / 2,2)=\frac{3}{2}, u(1 / 3,3)=1$.
7 13. Consider a wave equation with a lower order term ($a>0$ is a constant)

$$
u_{t t}-4 u_{x x}+a u_{t}=0 \quad-\infty<x<\infty, \quad t \geq 0
$$

Assume that the solution $u(x, t)$ is of compact support. Show that the energy $E(t)=\frac{1}{2} \int_{-\infty}^{\infty}\left(u_{t}^{2}+4 u_{x}^{2}\right) d x$ is a decreasing function.
14. (Equipartition of energy). For the initial value problem

$$
\begin{gathered}
u_{t t}-c^{2} u_{x x}=0 \quad \text { for }-\infty<x<\infty, \text { and } t>0 \\
u(x, 0)=f(x), \quad u_{t}(x, 0)=g(x), \quad \text { for }-\infty<x<\infty
\end{gathered}
$$

11 assume that $f(x)$ and $g(x)$ are of compact support. Define the kinetic energy
${ }_{12} k(t)=\frac{1}{2} \int_{-\infty}^{\infty} u_{t}^{2}(x, t) d x$, and the potential energy $p(t)=\frac{1}{2} \int_{-\infty}^{\infty} c^{2} u_{x}^{2}(x, t) d x$
13 (so that $E(t)=k(t)+p(t)$ is the total energy, considered before). Show that

$$
k(t)=p(t), \quad \text { for large enough time } t .
$$

1

2

$$
u_{t}=\frac{-c f^{\prime}(x-c t)+c f^{\prime}(x+c t)}{2}+\frac{g(x+c t)+g(x-c t)}{2} .
$$

3 Then

$$
\begin{gathered}
u_{t}^{2}-c^{2} u_{x}^{2}=\left(u_{t}-c u_{x}\right)\left(u_{t}+c u_{x}\right) \\
=\left(g(x-c t)-c f^{\prime}(x-c t)\right)\left(c f^{\prime}(x+c t)+g(x+c t)\right)=0
\end{gathered}
$$

4 for large t, because both $x-c t$ and $x+c t$ will leave the intervals on which ${ }_{5} f(x)$ and $g(x)$ live.
14. Let $u(x, t)$ be a solution of the heat equation

$$
\begin{aligned}
& u_{t}=5 u_{x x} \quad 0<x<1, t>0 \\
& u(0, t)=u(1, t)=0
\end{aligned}
$$

7 Show that $E(t)=\int_{0}^{1} u^{2}(x, t) d x$ is a decreasing function.
Hint: From d'Alembert's formula

$$
u_{x}=\frac{f^{\prime}(x-c t)+f^{\prime}(x+c t)}{2}+\frac{g(x+c t)-g(x-c t)}{2 c}
$$

15. Show that $u(x, t)=0$ is the only solution of the nonlinear equation

$$
\begin{gathered}
u_{t}=5 u_{x x}-u^{3}+u u_{x} \quad 0<x<1, t>0 \\
u(0, t)=u(1, t)=0 \quad t>0 \\
u(x, 0)=0 \quad 0<x<1
\end{gathered}
$$

Hint: Show that $E(t)=\int_{0}^{1} u^{2}(x, t) d x$ is a decreasing function.
16. Think of some function. Then write down two solutions of the wave equation

$$
u_{t t}-9 u_{x x}=0
$$

connected to that function.
Hint: I thought of $f(z)=\frac{z}{\sin 5 z}$, and obtained two solutions
$u_{1}(x, t)=\frac{x-3 t}{\sin 5(x-3 t)}$, and $u_{2}(x, t)=\frac{x+3 t}{\sin 5(x+3 t)}$.
17. Let $v(x, t)$ be a complex-valued solution of a nonlinear Schroedinger's equation $(i=\sqrt{-1})$

$$
i v_{t}+v_{x x}+2 v|v|^{2}=0
$$

where $|v|$ denotes the complex modulus of $v(x, t)$. Find the standing wave solution in the form $v(x, t)=e^{i m t} u(x)$, with a real valued $u(x)$, and a constant $m>0$.
Hint: Recall that $u(x)=\frac{\sqrt{m}}{\cosh \sqrt{m}(x-c)}$ are homoclinic solutions of

$$
u^{\prime \prime}-m u+2 u^{3}=0
$$

Answer. $v(x, t)=e^{i m t} \frac{\sqrt{m}}{\cosh \sqrt{\bar{m}}(x-c)}$, with arbitrary constant c. (Other solutions of Schroedinger's equation are also possible.)

8.6 First Order Linear Equations

Recall that curves in the $x y$-plane can be described by parametric equations $x=x(s)$ and $y=y(s)$, where s is a parameter, $a \leq s \leq b$. Along such a curve, any function $u=u(x, y)$ becomes a function of $s, u=u(x(s), y(s))$, and by the chain rule

$$
\frac{d}{d s} u(x(s), y(s))=u_{x}(x(s), y(s)) x^{\prime}(s)+u_{y}(x(s), y(s)) y^{\prime}(s) .
$$

We wish to find $u=u(x, y)$, solving the first order equation

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}+c(x, y) u=f(x, y), \tag{6.1}
\end{equation*}
$$

where continuously differentiable functions $a(x, y)$ and $b(x, y)$, and continuous functions $c(x, y)$ and $f(x, y)$ are given.
Consider a system of two ODE's

$$
\begin{equation*}
\frac{d x}{d s}=a(x, y) \tag{6.2}
\end{equation*}
$$

$$
\frac{d y}{d s}=b(x, y)
$$

depending on some parameter s, with the initial conditions

$$
\begin{equation*}
x(0)=x_{0}, \quad y(0)=y_{0} . \tag{6.3}
\end{equation*}
$$

By the existence and uniqueness Theorem 6.1.1, there exists a unique solution (at least locally near the initial point $\left.\left(x_{0}, y_{0}\right)\right) x=x(s)$ and $y=y(s)$, which defines a curve, called the characteristic curve or the characteristic,

1 for short. So that we can find a characteristic, passing through any point 2 (x_{0}, y_{0}). Along the characteristic curve, our equation (6.1) becomes

$$
\frac{d u}{d s}+c(x(s), y(s)) u=f(x(s), y(s))
$$

$$
\begin{equation*}
\frac{d y}{d x}=\frac{d y / d s}{d x / d s}=\frac{b(x, y)}{a(x, y)} \tag{6.4}
\end{equation*}
$$

${ }_{7}$ Dividing (6.1) by $a(x, y)$, we rewrite it as (we assume that $a(x, y) \neq 0$)

$$
\frac{d u}{d x}+\frac{c(x, y)}{a(x, y)} u=\frac{f(x, y)}{a(x, y)} .
$$

8 Then we solve this ODE along the characteristics, beginning at a point where 9 $u(x, y)$ is prescribed. (Here $y=y(x)$, and we solve for $u=u(x)$.)

$$
\begin{gather*}
u_{x}+u_{y}=1 \tag{6.5}\\
u(x, 0)=e^{x}
\end{gather*}
$$

The original PDE becomes an ODE along the characteristic curve!
One often chooses either x or y as the parameter on characteristics. Observe that from (6.2)

If x is chosen as the parameter on the characteristics, then $y=y(x)$, and

$$
\frac{d}{d x} u(x, y)=u_{x}+u_{y} \frac{d y}{d x}=u_{x}+u_{y} \frac{b(x, y)}{a(x, y)} .
$$

If y is chosen as the parameter, then $x=x(y)$, and by (6.4)

$$
\frac{d}{d y} u(x, y)=u_{x} \frac{d x}{d y}+u_{y}=u_{x} \frac{a(x, y)}{b(x, y)}+u_{y} .
$$

Dividing (6.1) by $b(x, y)$, we rewrite it as (assuming that $b(x, y) \neq 0$)

$$
\frac{d u}{d y}+\frac{c(x, y)}{b(x, y)} u=\frac{f(x, y)}{b(x, y)}
$$

giving an ODE for $u=u(y)$.
Example 1 Find $u=u(x, y)$, solving

Here the solution (or the "data") is prescribed along the x-axis. By (6.4), the equation to find the characteristics is

$$
\frac{d y}{d x}=1
$$

1 The characteristics are the straight lines $y=x+c$. The one passing through 2 a point $\left(x_{0}, y_{0}\right)$ is

$$
y=x+y_{0}-x_{0} .
$$

Integrating along the characteristic line
4 It intersects the x axis at $x=x_{0}-y_{0}$. Choosing x as the parameter, the 5 equation in (6.5) becomes

$$
\frac{d u}{d x}=1
$$

${ }_{6}$ We integrate this equation along the characteristic line, between the points $\left(x_{0}-y_{0}, 0\right)$ and $\left(x_{0}, y_{0}\right)$, or between the parameter values of $x=x_{0}-y_{0}$ $8 \quad($ where $y=0)$ and $x=x_{0}$ (where $y=y_{0}$)

$$
\int_{x_{0}-y_{0}}^{x_{0}} \frac{d u}{d x} d x=\int_{x_{0}-y_{0}}^{x_{0}} d x
$$

9

10

$$
u\left(x_{0}, y_{0}\right)=u\left(x_{0}-y_{0}, 0\right)+y_{0}=e^{x_{0}-y_{0}}+y_{0} .
$$

(The data in the second line of (6.5) was used on the last step.) Finally, replace the arbitrary point $\left(x_{0}, y_{0}\right)$ by (x, y). Answer: $u(x, y)=e^{x-y}+y$.
${ }_{13}$ Example 2 Find $u=u(x, y)$, solving

$$
\begin{gather*}
u_{x}+\cos x u_{y}=\sin x \tag{6.6}\\
u(0, y)=\sin y .
\end{gather*}
$$

Figure 8.1: A characteristic line for the equation (6.6)

1 This time the data is given along the y-axis. The characteristics are solutions 2 of

$$
\frac{d y}{d x}=\cos x
$$

${ }_{3}$ which are $y=\sin x+c$. The one passing through the point $\left(x_{0}, y_{0}\right)$ is (see
4 Figure 8.1)

$$
y=\sin x+y_{0}-\sin x_{0} .
$$

5 It intersects the y-axis at $y=y_{0}-\sin x_{0}$. Choosing x as the parameter, the 6 original equation becomes (along the characteristics)

$$
\frac{d u}{d x}=\sin x .
$$

7 We integrate along the characteristic curve, between the point $\left(0, y_{0}-\sin x_{0}\right)$
8 on the y-axis, where the data is given, and the target point $\left(x_{0}, y_{0}\right)$

$$
\int_{0}^{x_{0}} \frac{d u}{d x} d x=\int_{0}^{x_{0}} \sin x d x
$$

9

$$
u\left(x_{0}, y_{0}\right)-u\left(0, y_{0}-\sin x_{0}\right)=-\cos x_{0}+1
$$

$$
u\left(x_{0}, y_{0}\right)=u\left(0, y_{0}-\sin x_{0}\right)-\cos x_{0}+1=\sin \left(y_{0}-\sin x_{0}\right)-\cos x_{0}+1 .
$$

Answer: $u(x, y)=\sin (y-\sin x)-\cos x+1$.
${ }_{12}$ Example 3 Find $u=u(x, y)$, solving (here $f(x)$ is a given function)

$$
\begin{gather*}
\sin y u_{x}+u_{y}=e^{y} \tag{6.7}\\
u(x, 0)=f(x) .
\end{gather*}
$$

Figure 8.2: A characteristic line for the equation (6.7)

1 The data $f(x)$ is given along the x-axis. The characteristics are solutions of

$$
\frac{d x}{d y}=\sin y
$$

2 which are $x=-\cos y+c$. The one passing through the point $\left(x_{0}, y_{0}\right)$ is

$$
\begin{equation*}
x=-\cos y+x_{0}+\cos y_{0} . \tag{6.8}
\end{equation*}
$$

3 It intersects the x-axis at $x=-1+x_{0}+\cos y_{0}$. We shall use y as the 4 parameter. (One cannot use x as the parameter, because solving (6.8) for $5 y=y(x)$ produces multiple answers.) The original equation becomes (along 6 the characteristics)

$$
\frac{d u}{d y}=e^{y} .
$$

7 We integrate along the characteristic curve, between the points $\left(-1+x_{0}+\right.$ $\left.8 \cos y_{0}, 0\right)$ and $\left(x_{0}, y_{0}\right)$, or between the parameter values of $y=0$ (where $\left.9 \quad x=-1+x_{0}+\cos y_{0}\right)$ and $y=y_{0}\left(\right.$ where $\left.x=x_{0}\right)$

$$
\int_{0}^{y_{0}} \frac{d u}{d y} d y=\int_{0}^{y_{0}} e^{y} d y,
$$

$$
\begin{gather*}
x u_{x}-y u_{y}+u=x \tag{6.9}\\
u=1 \text { on } y=x
\end{gather*}
$$

7 The data is given along the line $y=x$. The characteristics are the solutions

$$
\frac{d y}{d x}=-\frac{y}{x}
$$

which are the hyperbolas $y=\frac{c}{x}$. The one passing through the point $\left(x_{0}, y_{0}\right)$ is

$$
\begin{equation*}
y=\frac{x_{0} y_{0}}{x} \tag{6.10}
\end{equation*}
$$

11 Let us begin by assuming that the point $\left(x_{0}, y_{0}\right)$ lies in the first quadrant of
12 the $x y$-plane, so that $x_{0}>0$ and $y_{0}>0$. The characteristic (6.10) intersects
13 the line $y=x$ at the point $\left(\sqrt{x_{0} y_{0}}, \sqrt{x_{0} y_{0}}\right)$. Taking x as the parameter, our 14 PDE becomes (after dividing by x)

$$
\frac{d u}{d x}+\frac{1}{x} u=1
$$

15 or

$$
\frac{d}{d x}(x u)=x
$$

16 We integrate along the characteristic curve, between the points $\left(\sqrt{x_{0} y_{0}}, \sqrt{x_{0} y_{0}}\right)$ 17 and $\left(x_{0}, y_{0}\right)$, or between $x=\sqrt{x_{0} y_{0}}$ (where $y=\sqrt{x_{0} y_{0}}$) and $x=x_{0}$ (where ${ }_{18} y=y_{0}$), obtaining

$$
\int_{\sqrt{x_{0} y_{0}}}^{x_{0}} \frac{d}{d x}(x u) d x=\int_{\sqrt{x_{0} y_{0}}}^{x_{0}} x d x
$$

19

$$
x_{0} u\left(x_{0}, y_{0}\right)-\sqrt{x_{0} y_{0}} u\left(\sqrt{x_{0} y_{0}}, \sqrt{x_{0} y_{0}}\right)=\frac{1}{2} x_{0}^{2}-\frac{1}{2} x_{0} y_{0}
$$

(It does not matter which of the limits of integration is larger, $\sqrt{x_{0} y_{0}}$ or x_{0}.) By the initial condition, $u\left(\sqrt{x_{0} y_{0}}, \sqrt{x_{0} y_{0}}\right)=1$, and then

$$
u\left(x_{0}, y_{0}\right)=\sqrt{\frac{y_{0}}{x_{0}}}+\frac{1}{2} x_{0}-\frac{1}{2} y_{0} .
$$

In case the point $\left(x_{0}, y_{0}\right)$ lies in the third quadrant, we obtain the same result. In case the point $\left(x_{0}, y_{0}\right)$ lies in either the second or the fourth quadrants, our method does not apply, because the characteristic hyperbolas do not intersect the line $y=x$.

Answer: $u(x, y)=\sqrt{\frac{y}{x}}+\frac{1}{2} x-\frac{1}{2} y$, in case the point (x, y) lies in either the first or the third quadrants, and no solution exists if the point (x, y) lies in either the second or the fourth quadrants.

Integrating along the characteristic hyperbola
We conclude by observing that the curve, on which the data is prescribed, cannot be a characteristic (or have a part, which is a characteristic). Indeed, if solution is known at some point on a characteristic, it can be computed at all other points along the same characteristic line, and therefore solution cannot be arbitrary prescribed on this characteristic line.

8.6.1 Problems

1. Solve the problem

$$
\begin{gathered}
u_{x}+u_{y}=1 \\
u(x, 0)=e^{x}
\end{gathered}
$$

by using y as a parameter.

1
2. Solve the problem

$$
\begin{gathered}
x u_{x}-y u_{y}+u=x \\
u=1 \text { on } y=x,
\end{gathered}
$$

3 Answer. $u(x, y)=\sqrt{\frac{y}{x}}+\frac{1}{2} x-\frac{1}{2} y$.
4 3. Solve for $u=u(x, y)$

$$
\begin{gathered}
x u_{x}+y u_{y}+u=x, \\
u=1 \text { on the line } x+y=1 .
\end{gathered}
$$

Answer. $u(x, y)=\frac{1}{x+y}+\frac{x}{2}-\frac{x}{2(x+y)^{2}}$.
6 4. Find $u=u(x, y)$, solving

$$
\begin{gathered}
\sin y u_{x}+u_{y}=x \\
u(x, 0)=x^{2} .
\end{gathered}
$$

7 Hint: Use y as a parameter. Express x as a function of y, when integrating along the characteristic curve.

Answer. $u(x, y)=(x+\cos y-1)^{2}-\sin y+y \cos y+x y$.
5. Find the general solution of

$$
2 u_{x}+u_{y}=x .
$$

Hint: Denote by $f(x)$ the values of $u(x, y)$ on the x-axis.
12 Answer. $u(x, y)=f(x-2 y)+x y-y^{2}$, where f is an arbitrary function.
13 6. Show that the following problem has no solution

$$
\begin{gathered}
2 u_{x}+u_{y}=x \\
u\left(x, \frac{1}{2} x\right)=x^{2} .
\end{gathered}
$$

14 Hint: Compare the data line and the characteristics.
15 7. (i) Find the general solution of

$$
x u_{x}-y u_{y}+u=x,
$$

1 which is valid in the second quadrant of the $x y$-plane.
2 Hint: Let $u=f(x)$ on $y=-x$, where $f(x)$ is an arbitrary function.
3 Answer. $u(x, y)=\sqrt{-\frac{y}{x}} f(-\sqrt{-x y})+\frac{1}{2} x+\frac{1}{2} y$.
4 (ii) Show that the problem (6.9) above has no solution in the second quad5 rant.

6 8. Solve the problem (here $f(y)$ is an arbitrary function)

$$
\begin{gathered}
x u_{x}+2 y u_{y}+\frac{y}{x} u=0 \\
u=f(y) \text { on the line } x=1 .
\end{gathered}
$$

Answer. $u(x, y)=e^{\left(\frac{y}{x^{2}}-\frac{y}{x}\right)} f\left(\frac{y}{x^{2}}\right)$.

8.7 Laplace's Equation: Poisson's Integral Formula

A Trigonometric Sum

Let ρ and α be two real numbers, with $0<\rho<1$. We claim that

$$
\begin{equation*}
\frac{1}{2}+\sum_{n=1}^{\infty} \rho^{n} \cos n \alpha=\frac{1-\rho^{2}}{2\left(1-2 \rho \cos \alpha+\rho^{2}\right)} . \tag{7.1}
\end{equation*}
$$

We begin the proof by recalling the geometric series: for any complex number z, with the modulus $|z|<1$, one has

$$
\sum_{n=0}^{\infty} z^{n}=\frac{1}{1-z} .
$$

${ }_{3}$ Consider a complex number $z=\rho e^{i \alpha}$. Then $|z|=\rho<1$, and by Euler's formula

$$
z^{n}=\rho^{n} e^{i n \alpha}=\rho^{n}(\cos n \alpha+i \sin n \alpha) .
$$

It follows that

$$
\operatorname{Re} z^{n}=\rho^{n} \cos n \alpha
$$

$$
\begin{aligned}
& \frac{1}{2}+\sum_{n=1}^{\infty} \rho^{n} \cos n \alpha=\operatorname{Re}\left[\frac{1}{2}+\sum_{n=1}^{\infty} z^{n}\right]=\operatorname{Re}\left[\frac{1}{2}+\frac{1}{1-z}-1\right]=\operatorname{Re}\left[\frac{1+z}{2(1-z)}\right] \\
& =\frac{1}{2} \operatorname{Re}\left[\frac{1+\rho e^{i \alpha}}{1-\rho e^{i \alpha}}\right]=\frac{1}{2} \operatorname{Re}\left[\frac{1+\rho \cos \alpha+i \rho \sin \alpha}{1-\rho \cos \alpha-i \rho \sin \alpha}\right]=\frac{1-\rho^{2}}{2\left(1-2 \rho \cos \alpha+\rho^{2}\right)}
\end{aligned}
$$

18 On the last step we multiplied both the numerator and the denominator by 19

$$
\begin{gather*}
\Delta u=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}=0, \quad \text { for } r<R, 0 \leq \theta<2 \pi \tag{7.2}\\
u(R, \theta)=f(\theta), \quad \text { for } 0 \leq \theta<2 \pi
\end{gather*}
$$

4 we begin by expanding the given piecewise smooth function $f(\theta)$ into its
5 Fourier series

$$
f(\theta)=a_{0}+\sum_{n=1}^{\infty} a_{n} \cos n \theta+b_{n} \sin n \theta
$$

$$
\begin{equation*}
u(r, \theta)=a_{0}+\sum_{n=1}^{\infty}\left(\frac{r}{R}\right)^{n}\left(a_{n} \cos n \theta+b_{n} \sin n \theta\right) \tag{7.3}
\end{equation*}
$$

Recall that this solution represents the steady state temperatures inside the disc $x^{2}+y^{2}<R^{2}$, provided that the temperatures on the boundary circle $x^{2}+y^{2}=R^{2}$ are prescribed by the function $f(\theta)$.

We now substitute the integral formulas for a_{n} 's and b_{n} 's into (7.3), and denote $\rho=\frac{r}{R}$, obtaining

$$
u(r, \theta)=\frac{1}{\pi} \int_{0}^{2 \pi}\left[\frac{1}{2}+\sum_{n=1}^{\infty} \rho^{n}(\cos n \phi \cos n \theta+\sin n \phi \sin n \theta)\right] f(\phi) d \phi
$$

5 Observing that $\cos n \phi \cos n \theta+\sin n \phi \sin n \theta=\cos n(\theta-\phi)$, and using the formula (7.1), the sum in the square bracket becomes

$$
\frac{1}{2}+\sum_{n=1}^{\infty} \rho^{n} \cos n(\theta-\phi)=\frac{1-\rho^{2}}{2\left(1-2 \rho \cos (\theta-\phi)+\rho^{2}\right)}=\frac{R^{2}-r^{2}}{2\left(R^{2}-2 R r \cos (\theta-\phi)+r^{2}\right)}
$$

$$
\begin{equation*}
u(r, \theta)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} f(\phi) d \phi \tag{7.4}
\end{equation*}
$$

which gives the solution of the boundary value problem (7.2). The function $\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos \theta+r^{2}}$ is called Poisson's kernel.

Recall that solutions of the Laplace equation

$$
\Delta u=u_{x x}+u_{y y}=0
$$

are called harmonic functions. Poisson's integral formula implies that one can find a harmonic function inside of any disc $x^{2}+y^{2}<R^{2}$, with arbitrarily prescribed values on the boundary of the disc. Poisson's integral formula is suitable for numerical computations.

Throughout this chapter we consider only the classical solutions, which means that $u(x, y)$ has all derivatives in x and y of first and second order, which are continuous functions.

8.8 Some Properties of Harmonic Functions

Setting $r=0$ in Poisson's formula gives the solution at the origin:

$$
u(0,0)=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(\phi) d \phi=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(R, \phi) d \phi
$$

So that $u(0,0)$ is equal to the average of the values of u on the circle of any radius R around $(0,0)$. Any point in the $x y$-plane may be declared to be the origin. We therefore conclude the mean value property: the value of a harmonic function at any point $\left(x_{0}, y_{0}\right)$ is equal to the average of the values of $u(x, y)$ on a circle of any radius R around the point $\left(x_{0}, y_{0}\right)$.

If a closed curve C encloses a bounded domain D, then we denote $\bar{D}=D \cup C . \quad \bar{D}$ is called the closure of D. One often writes ∂D to denote the boundary curve C. It is known from calculus that a continuous on \bar{D} function $u(x, y)$ takes on its maximum and minimum values. This means that at some point $\left(x_{1}, y_{1}\right) \in \bar{D}, u\left(x_{1}, y_{1}\right)=\max _{\bar{D}} u(x, y)$, and $u\left(x_{2}, y_{2}\right)=\min _{\bar{D}} u(x, y)$, at a point $\left(x_{2}, y_{2}\right) \in \bar{D}$.

Theorem 8.8.1 (Strong maximum principle) A function $u(x, y)$ which is harmonic in a domain D cannot take on its maximum value at points inside D, unless $u(x, y)$ is a constant.

Proof: Denote $M=\max _{\bar{D}} u(x, y)$, and assume that $u\left(x_{0}, y_{0}\right)=M$ at some point $\left(x_{0}, y_{0}\right) \in D$. We shall show that $u(x, y)=M$ for all points $(x, y) \in D$. Let the number $R>0$ be so small that the circle of radius R around the point $\left(x_{0}, y_{0}\right)$ lies inside D. The values of $u(x, y)$ on that circle are $\leq M$, and in fact they have to be equal to M, because otherwise their average would be less than M, but that average is equal to $u\left(x_{0}, y_{0}\right)=M$. We conclude that $u(x, y)=M$, at all points inside of any circle around $\left(x_{0}, y_{0}\right)$, which lies inside D. Let now $\left(x_{1}, y_{1}\right)$ be any other point in D. Join $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$ by any path, and cover that path by small overlapping circles, each lying inside D. Repeating the same argument for all circles, we conclude that $u\left(x_{1}, y_{1}\right)=M$.

Overlapping circles joining $\left(x_{0}, y_{0}\right)$ to $\left(x_{1}, y_{1}\right)$ inside D

The strong maximum principle has the following physical interpretation: for steady state temperatures (which harmonic functions represent), one cannot have a point in D which is hotter than all of its neighbors.

Similarly, one has the strong minimum principle: a function $u(x, y)$, which is harmonic in a domain D, cannot take on its minimum value inside
D, unless $u(x, y)$ is a constant. So where do harmonic functions assume their maximum and minimum values? On the boundary ∂D. A function harmonic in the entire plane, like $u(x, y)=x^{2}-y^{2}$, has no points of local maximum and of local minimum in the entire plane, but if you restrict this function to, say, a unit disc $x^{2}+y^{2} \leq 1$, then it takes on its maximum and minimum values on the boundary $x^{2}+y^{2}=1$.

We shall need the following estimate of the Poisson kernel:

$$
\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} \leq \frac{R^{2}-r^{2}}{R^{2}-2 R r+r^{2}}=\frac{(R-r)(R+r)}{(R-r)^{2}}=\frac{R+r}{R-r}
$$

which is obtained by estimating $-\cos (\theta-\phi) \geq-1$, then simplifying. Similarly,

$$
\frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} \geq \frac{R^{2}-r^{2}}{R^{2}+2 R r+r^{2}}=\frac{R-r}{R+r}
$$

which is obtained by estimating $-\cos (\theta-\phi) \leq 1$, and simplifying. Combin-

$$
\begin{equation*}
\frac{R-r}{R+r} u(0,0) \leq u(r, \theta) \leq \frac{R+r}{R-r} u(0,0) \tag{8.1}
\end{equation*}
$$

(The assumption that $u(r, \theta) \geq 0$ was needed to assure that $f(\phi)=u(R, \phi) \geq$

Theorem 8.8.2 (Liouville's Theorem) If a function $u(x, y) \geq 0$ is harmonic in the entire plane, then $u(x, y)=$ constant.

Proof: The estimates (8.1) hold for all R. (Observe that $f(\phi)=u(R, \phi) \geq$ 0 .) Keeping (r, θ) fixed, we let $R \rightarrow \infty$ in (8.1). Then

$$
u(r, \theta)=u(0,0)=\text { constant }, \text { for any }(r, \theta)
$$

Suppose now that a function $u(x, y)$ is harmonic and non-negative, defined on the disc $B_{R}: x^{2}+y^{2} \leq R^{2}$. We also consider the disc $r \leq R / 2$ (or $x^{2}+y^{2} \leq R^{2} / 4$), which we denote by $B_{R / 2}$. Using (8.1), we estimate

$$
\max _{B_{R / 2}} u(x, y) \leq \frac{R+\frac{1}{2} R}{R-\frac{1}{2} R} u(0,0)=3 u(0,0) .
$$

$$
\min _{B_{R / 2}} u(x, y) \geq \frac{R-\frac{1}{2} R}{R+\frac{1}{2} R} u(0,0)=\frac{1}{3} u(0,0) .
$$

We conclude that

$$
\frac{\max _{B_{R / 2}} u(x, y)}{\min _{B_{R / 2}} u(x, y)} \leq 9
$$

for any non-negative harmonic function, defined on the disc $x^{2}+y^{2} \leq R^{2}$. This fact reflects the strong averaging property of harmonic functions. (More generally, for each bounded domain there is a bound on the ratio of the maximum value over the minimum value for any non-negative harmonic function defined on some larger domain.)

8.9 The Maximum Principle

In this section we consider two important classes of functions that include harmonic functions. Not all of these functions satisfy the strong maximum principle. We now describe a substitute property. Recall that D denotes a bounded domain, with the boundary C, and $\bar{D}=D \cup C$.

Theorem 8.9.1 (Maximum principle) Assume that

$$
\begin{equation*}
\Delta u(x, y) \geq 0 \quad \text { for all }(x, y) \in D \tag{9.1}
\end{equation*}
$$

Then $u(x, y)$ takes on its maximum value on the boundary, so that

$$
\begin{equation*}
\max _{\bar{D}} u(x, y)=\max _{C} u(x, y) . \tag{9.2}
\end{equation*}
$$

Functions satisfying the inequality (9.1) are called subharmonic in D. This theorem asserts that subharmonic functions take on their maximum values at the boundary of the domain. (The possibility that the maximum value is also taken on at points inside D, is not excluded here.)

$$
\begin{equation*}
\Delta u(x, y)>0 \quad \text { for all }(x, y) \in D \tag{9.3}
\end{equation*}
$$

We claim that $u(x, y)$ cannot have points of local maximum inside D. Indeed, if $\left(x_{0}, y_{0}\right) \in D$ was a point of local maximum, then $u_{x x}\left(x_{0}, y_{0}\right) \leq 0$ and $u_{y y}\left(x_{0}, y_{0}\right) \leq 0$, and therefore

$$
\Delta u\left(x_{0}, y_{0}\right)=u_{x x}\left(x_{0}, y_{0}\right)+u_{y y}\left(x_{0}, y_{0}\right) \leq 0
$$

contradicting (9.3). It follows that the maximum of $u(x, y)$ on \bar{D} is achieved on the boundary curve C, so that (9.2) holds, and moreover

$$
u(x, y)<\max _{C} u(x, y) \quad \text { for all }(x, y) \in D
$$

Turning to the general case, consider the function $v(x, y)=u(x, y)+$ $\epsilon\left(x^{2}+y^{2}\right)$, with some $\epsilon>0$. Then

$$
\Delta v(x, y)=\Delta u(x, y)+4 \epsilon>0
$$

and by the easy case, considered above,

$$
u(x, y)<v(x, y)<\max _{C} v(x, y) \leq \max _{C} u(x, y)+\epsilon K \quad \text { for all }(x, y) \in D
$$

where K is any constant exceeding $x^{2}+y^{2}$ on the bounded closed curve C. Letting $\epsilon \rightarrow 0$, we conclude that

$$
u(x, y) \leq \max _{C} u(x, y) \quad \text { for all }(x, y) \in D
$$

which implies (9.2).
The following minimum principle holds for the superharmonic functions, defined as the functions satisfying $\Delta u(x, y) \leq 0$ on D.

Theorem 8.9.2 Assume that

$$
\Delta u(x, y) \leq 0 \quad \text { for all }(x, y) \in D
$$

Then $u(x, y)$ takes on its minimum on the boundary, so that

$$
\min _{\bar{D}} u(x, y)=\min _{C} u(x, y) .
$$

Harmonic functions are both subharmonic and superharmonic, and so they assume their minimum and maximum values on the boundary C. If a harmonic function is zero on C, it has to be zero on D. (This fact also follows from the strong maximum principle.) It follows that the Dirichlet problem for Poisson's equation

$$
\begin{gathered}
\Delta u=f(x, y) \quad \text { for }(x, y) \in D \\
u=g(x, y) \quad \text { for }(x, y) \in C
\end{gathered}
$$

has at most one solution, for any given functions $f(x, y)$ and $g(x, y)$. Indeed, if $u(x, y)$ and $v(x, y)$ are two solutions, then their difference $u(x, y)-v(x, y)$ is harmonic in D function, which is zero on C. It follows that $u(x, y)-v(x, y)=$ 0 , so that $u(x, y)=v(x, y)$ for all $(x, y) \in D$.

Occasionally one can use the maximum principle to find the maximum value of a function on a bounded domain.

Example Find the maximum value of $u(x, y)=2 x^{4}-3 x y^{2}+y^{6}+x^{2}+x-2 y$ on the closed square $[0,1] \times[0,1]$, where $0 \leq x, y \leq 1$.

Setting the partials u_{x} and u_{y} to zero, would lead to an intractable 2×2 nonlinear system. Instead, we calculate

$$
\Delta u(x, y)=24 x^{2}+2-6 x+30 y^{4} \geq 24 x^{2}-6 x+2>0, \text { for all }(x, y)
$$

By the maximum principle, the maximum value of $u(x, y)$ occurs at the boundary of the square. The boundary of the square consists of four line segments, and on each segment $u(x, y)$ is a simple function of one variable. Examining these line segments in turn, one sees that the maximum value of $u(x, y)$ is equal to 4 , and it occurs at the point $x=1, y=0$.

The reasoning behind the maximum principle may be used to analyze some nonlinear equations. Consider, for example, the Dirichlet problem

$$
\begin{array}{cc}
\Delta u=u^{3} & \text { for }(x, y) \in D \\
u=0 & \text { for }(x, y) \in C
\end{array}
$$

This problem has the trivial solution $u(x, y)=0$. It turns out that there are no other solutions. Indeed, if a solution $u(x, y)$ was positive at some points in D, it would have a point of global maximum $\left(x_{0}, y_{0}\right) \in D$, with $u\left(x_{0}, y_{0}\right)>0$. At that point, $\Delta u\left(x_{0}, y_{0}\right) \leq 0$, while $u^{3}\left(x_{0}, y_{0}\right)>0$. We have a contradiction with our equation, at the point $\left(x_{0}, y_{0}\right)$, which implies that $u(x, y)$ cannot take on positive values. Similarly, one shows that $u(x, y)$ cannot take on negative values. It follows that $u(x, y)=0$ is the only solution.

Maximum and minimum principles also hold in the presence of lower order terms (derivatives of the first order).

Theorem 8.9.3 Assume that for all $(x, y) \in D$ we have

$$
\begin{equation*}
\Delta u(x, y)+a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y) \geq 0 \tag{9.4}
\end{equation*}
$$

where $a(x, y)$ and $b(x, y)$ are given continuous functions. Then $u(x, y)$ takes on its maximum value on the boundary C, so that

$$
\max _{\bar{D}} u(x, y)=\max _{C} u(x, y)
$$

Proof: Assume, first, that the inequality in (9.4) is strict. If there was a point of maximum $\left(x_{0}, y_{0}\right)$ inside D, then $u_{x}\left(x_{0}, y_{0}\right)=u_{y}\left(x_{0}, y_{0}\right)=0$, and $u_{x x}\left(x_{0}, y_{0}\right) \leq 0, u_{y y}\left(x_{0}, y_{0}\right) \leq 0$. Evaluating the strict inequality (9.4) at $\left(x_{0}, y_{0}\right)$, we would have a contradiction, proving the theorem in this case. The proof of the general case is similar to that for the Theorem 8.9.1.

8.10 The Maximum Principle for the Heat Equation

Recall from Chapter 7 that in case of a bounded interval $(0, L)$, a typical problem involving the heat equation is

$$
\begin{gather*}
u_{t}-k u_{x x}=F(x, t) \quad 0<x<L, \quad 0<t \leq T \tag{10.1}\\
u(x, 0)=f(x) \\
u(0, t)=a(t) \quad 0<x<L \\
u(L, t)=b(t) \quad 0<t \leq T \\
u
\end{gather*}
$$

with given continuous functions (called the data) $F(x, t), a(t), b(t)$ and $f(x)$, and a given constant $k>0$. We assume that the final time $T<\infty$. The data is prescribed on the parabolic boundary Γ, which is defined to be consisting of the lines $x=0, x=L$ (for $0<t \leq T$), and the segment $0 \leq x \leq L$ of the x-axis. The solution must be determined in the parabolic domain $D=(0, L) \times(0, T]$, where $0<x<L$ and $0<t \leq T$. We shall denote $\bar{D}=D \cup \Gamma$.

Recall from calculus that if a differentiable function $v(t)$, defined on some interval $[0, T]$, has a local maximum at some $t_{0} \in(0, T)$ then $v^{\prime}\left(t_{0}\right)=0$, while if a local maximum (relative to $[0, T]$) occurs at T, then $v^{\prime}(T) \geq 0$.

$$
\begin{equation*}
\max _{\bar{D}} u(x, t)=\max _{\Gamma} u(x, t) . \tag{10.3}
\end{equation*}
$$

${ }_{4}$ (In particular, if $u(x, t) \leq 0$ on Γ, then $u(x, t) \leq 0$ on D.)
Proof: Again, we consider first the case of strict inequality

$$
\begin{equation*}
u_{t}-k u_{x x}<0, \quad \text { for all }(x, t) \in D \tag{10.4}
\end{equation*}
$$

$$
\begin{equation*}
u(x, t)<\max _{\Gamma} u(x, t), \quad \text { for all }(x, t) \in D \tag{10.5}
\end{equation*}
$$

which implies (10.3).
Turning to the general case, we denote $M=\max _{\Gamma} u(x, t)$, and let $v(x, t)=$ $u(x, t)+\epsilon x^{2}$, with a constant $\epsilon>0$. Then

$$
v_{t}-k v_{x x}=u_{t}-k u_{x x}-2 k \epsilon<0
$$

so that strict inequality holds for $v(x, t)$, and then by (10.5)

$$
u(x, t)<v(x, t)<\max _{\Gamma} v(x, t) \leq M+\epsilon L^{2} \quad \text { for all }(x, t) \in D
$$

Letting $\epsilon \rightarrow 0$, we conclude that

$$
u(x, t) \leq M, \quad \text { for all }(x, t) \in D
$$

which implies (10.3).
Similarly, one establishes the following minimum principle.

1 Theorem 8.10.2 Assume that $F(x, t) \geq 0$ for all $(x, t) \in D$, or in other words,

$$
u_{t}-k u_{x x} \geq 0 \quad \text { for all }(x, t) \in D
$$

Then $u(x, t)$ takes on its minimum value on the parabolic boundary, and

$$
\min _{\bar{D}} u(x, t)=\min _{\Gamma} u(x, t) .
$$

4 (In particular, if $u(x, t) \geq 0$ on Γ, then $u(x, t) \geq 0$ on D.)

For the homogeneous heat equation, where $F(x, t)=0$, both minimum and maximum principles apply. As a consequence, the problem (10.1) has at most one solution (one shows that the difference of any two solutions is zero).

We have the following comparison theorem.
Theorem 8.10.3 Assume we have two functions $u(x, t)$ and $v(x, t)$, such that

$$
u_{t}-k u_{x x} \geq v_{t}-k v_{x x} \text { in } D, \quad \text { and } u \geq v \text { on } \Gamma .
$$

$12 \quad$ Then $u(x, t) \geq v(x, t)$ in D.
${ }_{13}$ Proof: The function $w(x, t)=u(x, t)-v(x, t)$ satisfies $w_{t}-k w_{x x} \geq 0$ in

We begin with discussion of a remarkable function

$$
g(t)= \begin{cases}e^{-\frac{1}{t^{2}}} & \text { for } t \neq 0 \\ 0 & \text { for } t=0\end{cases}
$$

This function is positive for $t \neq 0$, however $g(0)=0$, and $g^{\prime}(0)=g^{\prime \prime}(0)=$ $g^{\prime \prime \prime}(0)=\cdots=0$, so that all derivatives at $t=0$ are zero. Indeed,

$$
g^{\prime}(0)=\lim _{t \rightarrow 0} \frac{g(t)-g(0)}{t}=\lim _{t \rightarrow 0} \frac{e^{-\frac{1}{t^{2}}}}{t} .
$$

Letting $\frac{1}{t}=u$, we evaluate this limit by using L'Hospital's rule:

$$
\lim _{t \rightarrow 0} \frac{e^{-\frac{1}{t^{2}}}}{t}=\lim _{u \rightarrow \infty} u e^{-u^{2}}=\lim _{u \rightarrow \infty} \frac{u}{e^{u^{2}}}=\lim _{u \rightarrow \infty} \frac{1}{2 u e^{u^{2}}}=0 .
$$

It follows that

$$
g^{\prime}(t)= \begin{cases}\frac{2}{t^{3}} e^{-\frac{1}{t^{2}}} & \text { for } t \neq 0 \\ 0 & \text { for } t=0\end{cases}
$$

$$
\begin{gather*}
u_{t}-u_{x x}=0 \quad \text { for }-\infty<x<\infty, t>0 \tag{10.6}\\
u(x, 0)=0 \quad \text { for }-\infty<x<\infty
\end{gather*}
$$

has the trivial solution $u(x, t)=0$. Surprisingly, this problem also has non6 trivial solutions! Here is one of them:

$$
\begin{equation*}
u(x, t)=\sum_{k=0}^{\infty} \frac{g^{(k)}(t)}{(2 k)!} x^{2 k} \tag{10.7}
\end{equation*}
$$

7 where $g(t)$ is the function just defined. (It is not hard to show that this series s converges for all x, and all $t>0$.) Clearly $u(x, 0)=0$, because $g^{(k)}(0)=0$ for any derivative k. Compute

$$
u_{x x}=\sum_{k=1}^{\infty} \frac{g^{(k)}(t)}{(2 k-2)!} x^{2 k-2}=\sum_{i=0}^{\infty} \frac{g^{(i+1)}(t)}{(2 i)!} x^{2 i}=u_{t}
$$

where we shifted the index of summation, $k \rightarrow i$, by letting $k-1=i$.
It follows that the problem

$$
\begin{gather*}
u_{t}-u_{x x}=F(x, t) \quad \text { for }-\infty<x<\infty, t>0 \tag{10.8}\\
u(x, 0)=g(x) \quad \text { for }-\infty<x<\infty
\end{gather*}
$$

12 has infinitely many solutions, provided that it has one solution. Indeed, to any solution one may add a constant multiple of the function in (10.7), to get other solutions.

The function $g(t)$ appears in other counterexamples, or the examples that challenge our intuition. For example, the Maclauren series for $g(t)$ is a sum of zeroes, and it converges to zero, not to $g(t)$.

$$
\begin{gather*}
u_{t}-k u_{x x}=0 \quad \text { for }-\infty<x<\infty, t>0 \tag{10.9}\\
u(x, 0)=0 \quad \text { for }-\infty<x<\infty
\end{gather*}
$$

6 which is a bounded (for all x and t) function. Then $u(x, t)=0$, for all x and t.

Proof: We are given that $|u(x, t)| \leq M$ for some $M>0$, and all x and t (or $-M \leq u(x, t) \leq M)$. In the region $D:-L<x<L, 0<t \leq T$, with some positive constants L and T, we consider the comparison function

$$
v(x, t)=\frac{2 M}{L^{2}}\left(\frac{1}{2} x^{2}+k t\right)
$$

11
We shall show that the problem (10.8) has at most one bounded solution, which means that $|u(x, t)|<M$ for some constant $M>0$, and all $-\infty<$ $x<\infty$, and $t>0$. This fact will follow immediately from the following theorem.

Theorem 8.10.4 Assume that we have a solution $u(x, t)$ of the problem
calculates

$$
v_{t}-k v_{x x}=0 .
$$

On the parabolic boundary of the region D we have

$$
v(x, 0)=\frac{M}{L^{2}} x^{2} \geq 0=u(x, 0)
$$

$$
v(\pm L, t)=M+\frac{2 M k}{L^{2}} t \geq M \geq u(\pm L, t)
$$

By the comparison Theorem 8.10.3

$$
u(x, t) \leq v(x, t) \text { in } D
$$

The function $-v(x, t)$ satisfies

$$
(-v)_{t}-k(-v)_{x x}=0,
$$

$$
-v(x, 0)=-\frac{M}{L^{2}} x^{2} \leq 0=u(x, 0),
$$

$$
-v(\pm L, t)=-M-\frac{2 M k}{L^{2}} t \leq-M \leq u(\pm L, t)
$$

$$
\begin{equation*}
\operatorname{div}(\nabla w)=w_{x x}+w_{y y}+w_{z z}=\Delta w . \tag{11.10}
\end{equation*}
$$

Using the comparison Theorem 8.10.3 again, we conclude that

$$
-v(x, t) \leq u(x, t) \leq v(x, t) \text { in } D,
$$

which gives

$$
|u(x, t)| \leq v(x, t)=\frac{2 M}{L^{2}}\left(\frac{1}{2} x^{2}+k t\right) .
$$

Letting here $L \rightarrow \infty$, we conclude that $u(x, t)=0$ for any fixed x and t.

As a consequence, we have the following uniqueness theorem.
Theorem 8.10.5 For any given functions $F(x, t)$ and $f(x)$, the problem

$$
\begin{gathered}
u_{t}-k u_{x x}=F(x, t) \quad \text { for }-\infty<x<\infty, t>0 \\
u(x, 0)=f(x) \quad \text { for }-\infty<x<\infty
\end{gathered}
$$

has at most one bounded solution.
Proof: The difference of any two bounded solutions would be a bounded solution of the problem (10.9), which is zero by the preceding theorem.

8.11 Dirichlet's Principle

Recall the concept of divergence a vector field $\mathbf{F}=(P(x, y, z), Q(x, y, z), R(x, y, z))$

$$
\operatorname{div} \mathbf{F}=\nabla \cdot \mathbf{F}=P_{x}(x, y, z)+Q_{y}(x, y, z)+R_{z}(x, y, z) .
$$

An example of a vector field is given by the gradient of any function $w(x, y, z)$, namely $\nabla w=\left(w_{x}(x, y, z), w_{y}(x, y, z), w_{z}(x, y, z)\right)$. One calculates

Suppose that a bounded domain D in (x, y, z) space, is bounded by a closed and smooth surface S. The divergence theorem reads:

$$
\int_{D} \operatorname{div} \mathbf{F} d V=\int_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

Here \int_{D} denotes the triple integral over D, \int_{S} is the surface (double) integral over S, \mathbf{n} is the unit normal vector pointing outside of D (\mathbf{n} is changing from point to point on S), $\mathbf{F} \cdot \mathbf{n}$ denotes the scalar product of two vectors, and
$d V=d x d y d z$ is the volume element. Applying the divergence theorem to (11.10) gives

$$
\int_{D} \Delta w d V=\int_{S} \nabla w \cdot \mathbf{n} d S=\int_{S} \frac{\partial w}{\partial n} d S
$$

where $\frac{\partial w}{\partial n}$ denotes the directional derivative in the direction of \mathbf{n}.
Given two functions $u(x, y, z)$ and $v(x, y, z)$, one calculates

$$
\operatorname{div}(v \nabla u)=\Delta u v+\nabla u \cdot \nabla v .
$$

6 or

$$
\begin{equation*}
\int_{D} \Delta u v d V=-\int_{D} \nabla u \cdot \nabla v d V+\int_{S} \frac{\partial u}{\partial n} v d S . \tag{11.11}
\end{equation*}
$$

This formula is called Green's identity; it extends the integration by parts formula to higher dimensions.

We now apply Green's identity to give another proof of the uniqueness of solution of the Dirichlet problem for Poisson's equation.

Theorem 8.11.1 Given any $f(x, y, z)$ and $g(x, y, z)$, there exists at most one solution of the boundary value problem

$$
\begin{array}{lr}
\Delta u=f(x, y, z) & \text { in } D \tag{11.12}\\
u=g(x, y, z) & \text { on } S .
\end{array}
$$

${ }_{13}$ Proof: Assume that there are two solutions $u(x, y, z)$ and $v(x, y, z)$. Their difference $w=u-v$ satisfies

$$
\Delta w=0 \text { in } D, w=0 \text { on } S .
$$

We multiply the last equation by w, and integrate over D. In view of (11.11)

$$
0=\int_{D} w \Delta w d V=-\int_{D} \nabla w \cdot \nabla w d V+\int_{S} w \frac{\partial w}{\partial n} d S=-\int_{D}|\nabla w|^{2} d V .
$$

(We used that $\int_{S} w \frac{\partial w}{\partial n} d S=0$, because $w=0$ on $S ;|\nabla w|$ denotes the length of the gradient vector.) It follows that $\nabla w=0$, so that $w(x, y, z)$ is a constant. This constant is zero, because of the boundary condition. So that $w=u-v \equiv 0$, and then $u \equiv v$ in D.

$$
\begin{equation*}
J(u)=\min _{w} J(w), \text { where } w=g(x, y, z) \text { on } S \tag{11.13}
\end{equation*}
$$

6 Conversely, if $u(x, y, z)$ satisfies (11.13), then it is a solution of the boundary value problem (11.12).

Proof: Part 1. If u is a solution of (11.12), then $u-w=0$ on S. Multiply the equation in (11.12) by $u-w$, integrate over D, and use Green's identity

$$
0=\int_{D}[\Delta u(u-w)-f(u-w)] d V=\int_{D}[-\nabla u \cdot \nabla(u-w)-f(u-w)] d V
$$

Dirichlet's principle says that the solution of the boundary value problem (11.12) minimizes the following energy functional

$$
J(u)=\int_{D}\left[\frac{1}{2}|\nabla u|^{2}+u f\right] d V
$$

among all functions satisfying the boundary condition in (11.12). (Here $|\nabla u|$ denotes the length of the gradient vector, $|\nabla u|^{2}=\nabla u \cdot \nabla u$.)

Theorem 8.11.2 Assume that $u(x, y, z)$ is a solution of (11.12). Then (Observe that $\int_{S} \frac{\partial u}{\partial n}(u-w) d S=0$.) It follows that

$$
\begin{equation*}
\int_{D}\left[|\nabla u|^{2}+u f\right] d V=\int_{D}[\nabla u \cdot \nabla w+w f] d V \tag{11.14}
\end{equation*}
$$

$$
\leq \frac{1}{2} \int_{D}|\nabla u|^{2} d V+\int_{D}\left[\frac{1}{2}|\nabla w|^{2}+w f\right] d V
$$

On the last step we used the Cauchy-Schwarz inequality for vectors ∇u. $\nabla w \leq|\nabla u||\nabla w|$, followed by the numerical inequality $a b \leq \frac{1}{2} a^{2}+\frac{1}{2} b^{2}$. Rearranging the terms in (11.14), we conclude that $J(u) \leq J(w)$ for any w, satisfying $w=g$ on S.

Part 2. Conversely, assume that u minimizes $J(u)$ among the functions w, satisfying $w=g$ on S. Fix any $v(x, y, z)$, satisfying $v=0$ on S. Then for any number ϵ the function $u+\epsilon v$ is equal to g on S, and therefore $J(u) \leq J(u+\epsilon v)$. It follows that the function $j(\epsilon)=J(u+\epsilon v)$ has a minimum at $\epsilon=0$, and therefore $j^{\prime}(0)=0$. Calculate

$$
\begin{aligned}
& j(\epsilon)=J(u+\epsilon v)=\int_{D}\left[\frac{1}{2}(\nabla u+\epsilon \nabla v) \cdot(\nabla u+\epsilon \nabla v)+(u+\epsilon v) f\right] d V \\
& =\frac{\epsilon^{2}}{2} \int_{D}|\nabla v|^{2} d V+\epsilon \int_{D}(\nabla u \cdot \nabla v+v f) d V+\int_{D}\left(\frac{1}{2}|\nabla u|^{2}+u f\right) d V
\end{aligned}
$$

$$
\begin{equation*}
a(x, y) z_{x}^{2}+b(x, y) z_{x} z_{y}+c(x, y) z_{y}^{2}=0 \tag{12.17}
\end{equation*}
$$

with given continuous functions $a(x, y), b(x, y)$ and $c(x, y)$. Similarly to linear first order equations, one needs to solve an ODE.

Lemma 8.12.1 Assume that the function $y(x)$, which is implicitly defined by $\varphi(x, y)=c$, solves the equation

$$
\begin{equation*}
a(x, y) y^{\prime 2}-b(x, y) y^{\prime}+c(x, y)=0 \tag{12.18}
\end{equation*}
$$

and $\varphi_{y}(x, y) \neq 0$ for all x and y. Then $z=\varphi(x, y)$ is a solution of (12.17).

Proof: Substituting $y^{\prime}(x)=-\frac{\varphi_{x}}{\varphi_{y}}$ into (12.18), and then clearing the denominators gives

$$
a(x, y) \varphi_{x}^{2}+b(x, y) \varphi_{x} \varphi_{y}+c(x, y) \varphi_{y}^{2}=0
$$

3 so that $\varphi(x, y)$ is a solution of (12.17).
The equation (12.18) is just a quadratic equation for $y^{\prime}(x)$. Its solutions are

$$
\begin{equation*}
y^{\prime}(x)=\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a} . \tag{12.19}
\end{equation*}
$$

${ }_{6}$ One finds $y(x)$ by integration, in case $b^{2}-4 a c \geq 0$.
7 Example 1 Find two solutions of

$$
\begin{equation*}
x z_{x}^{2}+(x+y) z_{x} z_{y}+y z_{y}^{2}=0 . \tag{12.20}
\end{equation*}
$$

The solution of this equation is $y=c x$, or $\frac{y}{x}=c$ in implicit form. The second solution is $z_{2}(x, y)=\frac{y}{x}$. There are other solutions of the equation (12.20), for example $z_{3}(x, y)=c$, or the negatives of $z_{1}(x, y)$ and $z_{2}(x, y)$.

Recall that the wave equation was solved by introducing new variables ξ and η, which reduced it to a simpler form. We consider now more general equations
(12.21) $a(x, y) u_{x x}+b(x, y) u_{x y}+c(x, y) u_{y y}+d(x, y) u_{x}+e(x, y) u_{y}=0$,
with given continuous coefficient functions $a(x, y), b(x, y), c(x, y), d(x, y)$ and $e(x, y)$, and the unknown function $u=u(x, y)$. We make a change of
variables $\xi=\xi(x, y)$ and $\eta=\eta(x, y)$, and look for the twice differentiable functions $\xi(x, y)$ and $\eta(x, y)$, which will make this equation simpler. We assume that the change of variables is non-singular, meaning that one can solve for x and y as functions of ξ and η, so that we can go back to the original variables after solving the equation in the new variables ξ and η. This is known to be the case, provided that the Jacobian (or Jacobian determinant)

$$
\begin{equation*}
J=\xi_{x} \eta_{y}-\xi_{y} \eta_{x} \neq 0, \tag{12.22}
\end{equation*}
$$

a condition we shall assume to hold.
Writing

$$
u(x, y)=u(\xi(x, y), \eta(x, y)),
$$

we use the chain rule to calculate the derivatives:

$$
\begin{gathered}
u_{x}=u_{\xi} \xi_{x}+u_{\eta} \eta_{x} \\
u_{x x}=u_{\xi \xi} \xi_{x}^{2}+2 u_{\xi \eta} \xi_{x} \eta_{x}+u_{\eta \eta} \eta_{x}^{2}+u_{\xi} \xi_{x x}+u_{\eta} \eta_{x x}
\end{gathered}
$$

Similarly

$$
\begin{gathered}
u_{x y}=u_{\xi \xi} \xi_{x} \xi_{y}+u_{\xi \eta}\left(\xi_{x} \eta_{y}+\eta_{x} \xi_{y}\right)+u_{\eta \eta} \eta_{x} \eta_{y}+u_{\xi} \xi_{x y}+u_{\eta} \eta_{x y} \\
u_{y y}=u_{\xi \xi} \xi_{y}^{2}+2 u_{\xi \eta} \xi_{y} \eta_{y}+u_{\eta \eta} \eta_{y}^{2}+u_{\xi} \xi_{y y}+u_{\eta} \eta_{y y}
\end{gathered}
$$

We use these expressions in (12.21) to obtain

$$
\begin{equation*}
A u_{\xi \xi}+B u_{\xi \eta}+C u_{\eta \eta}+\cdots=0 \tag{12.23}
\end{equation*}
$$

with the new coefficient functions

$$
\begin{gather*}
A=a \xi_{x}^{2}+b \xi_{x} \xi_{y}+c \xi_{y}^{2}, \tag{12.24}\\
B=2 a \xi_{x} \eta_{x}+b\left(\xi_{x} \eta_{y}+\xi_{y} \eta_{x}\right)+2 c \xi_{y} \eta_{y}, \\
C=a \eta_{x}^{2}+b \eta_{x} \eta_{y}+c \eta_{y}^{2},
\end{gather*}
$$

and where the terms not shown in (12.23) involve the first derivatives u_{ξ} and u_{η}, the lower order terms.

The equation (12.23) will be simpler if one chooses $\xi(x, y)$ and $\eta(x, y)$ to be the solutions of (12.17), called the characteristic functions (or characteristics, for short). The number of real valued characteristic functions depends on the sign of $b^{2}(x, y)-4 a(x, y) c(x, y)$ (see (12.19)). The equation (12.21) is called

$$
\begin{equation*}
b^{2}-4 a c=0 \tag{12.25}
\end{equation*}
$$

there is only one characteristic function $\xi(x, y)$. Choosing $\xi=\xi(x, y)$, we make $A=0$, eliminating one term in (12.23). We choose $\eta=\bar{\eta}(x, y)$, where the function $\bar{\eta}(x, y)$ is almost arbitrary, with the only requirement being that the Jacobian J (defined in (12.22)) is non-zero. Comparing (12.19) with (12.16), and using (12.25)

$$
\frac{b}{2 a}=-\frac{\xi_{x}}{\xi_{y}}
$$

.
or

$$
2 a \xi_{x}+b \xi_{y}=0
$$

Then

$$
B=\eta_{x}\left(2 a \xi_{x}+b \xi_{y}\right)+\eta_{y}\left(2 c \xi_{y}+b \xi_{x}\right)=\eta_{y} \xi_{y}\left(2 c+b \frac{\xi_{x}}{\xi_{y}}\right)
$$

$$
=\eta_{y} \xi_{y}\left(2 c-\frac{b^{2}}{2 a}\right)=\frac{\eta_{y} \xi_{y}\left(4 a c-b^{2}\right)}{2 a}=0
$$

The result is the canonical form of parabolic equations

$$
u_{\eta \eta}+\cdots=0
$$

$$
\begin{equation*}
u_{\xi \eta}+\cdots=0 \tag{12.26}
\end{equation*}
$$

$$
\begin{equation*}
u_{\alpha \alpha}+u_{\beta \beta}+\cdots=0 \tag{12.27}
\end{equation*}
$$

The resulting change of variables $(x, y) \rightarrow(\alpha, \beta)$ is real valued, and so the lower terms in (12.27) have real valued coefficients.

Example 2 Let us find the canonical form of the equation

$$
\begin{equation*}
x^{2} u_{x x}-y^{2} u_{y y}-2 y u_{y}=0 . \tag{12.28}
\end{equation*}
$$

12 Here $b^{2}-4 a c=4 x^{2} y^{2}$, so that the equation is hyperbolic at all points of the $x y$-plane, except for the coordinate axes. The equation (12.19) takes the form

$$
y^{\prime}=\frac{ \pm \sqrt{4 x^{2} y^{2}}}{2 x^{2}}= \pm \frac{y}{x}
$$

assuming that $x y>0$. The solution of $y^{\prime}=\frac{y}{x}$ is $y=c x$ or $\frac{y}{x}=c$. So that $\xi=\frac{y}{x}$. The solution of $y^{\prime}=-\frac{y}{x}$ is $y=\frac{c}{x}$ or $x y=c$. So that $\eta=x y$. The change of variables

$$
\xi=\frac{y}{x}, \quad \eta=x y
$$

produces the canonical form of our equation

$$
u_{\xi \eta}+\frac{1}{2 \xi} u_{\eta}=0
$$

One can now solve the original equation (12.28). Setting $v=u_{\eta}$, we obtain an ODE

$$
v_{\xi}=-\frac{1}{2 \xi} v
$$

with the solution $v=\xi^{-\frac{1}{2}} F(\eta)$, where $F(\eta)$ is an arbitrary function. So that $u_{\eta}=\xi^{-\frac{1}{2}} F(\eta)$. Another integration in η gives $u=\xi^{-\frac{1}{2}} F(\eta)+G(\xi)$, where $G(\xi)$ is an arbitrary function. Returning to the original variables, one concludes that $u(x, y)=\sqrt{\frac{x}{y}} F(x y)+G\left(\frac{y}{x}\right)$ is the general solution of (12.28).

Example 3 The equation

$$
x^{2} u_{x x}-2 x y u_{x y}+y^{2} u_{y y}+x u_{x}+y u_{y}=0 .
$$

is of parabolic type for all x and y. The equation (12.19) becomes

$$
y^{\prime}=-\frac{y}{x},
$$

with the general solution $y=\frac{c}{x}$. This leads to $\xi=x y$, and we choose arbitrarily $\eta=y$. (The Jacobian $J=\xi_{x} \eta_{y}-\xi_{y} \eta_{x}=y \neq 0$, under the assumption that $y \neq 0$.) This change of variables produces the canonical form

$$
\eta u_{\eta \eta}+u_{\eta}=0 .
$$

Writing the last equation in the form $\left(\eta u_{\eta}\right)_{\eta}=0$, and integrating twice in η, we obtain its general solution

$$
u=F(\xi) \log |\eta|+G(\xi),
$$

with arbitrary functions $F(\xi)$ and $G(\xi)$. The general solution of the original equation is then

$$
u(x, y)=F(x y) \log |y|+G(x y), \quad \text { for } y \neq 0 .
$$

Example 4 Tricomi's equation

$$
u_{x x}+x u_{y y}=0
$$

changes type: it is elliptic for $x>0$, parabolic for $x=0$, and hyperbolic for $x<0$. Let us find its canonical form in the elliptic case $x>0$. The equation (12.19) gives

$$
y^{\prime}= \pm i \sqrt{x},
$$

or $y= \pm \frac{2}{3} i x^{\frac{3}{2}}+c$. The complex-valued characteristics are $\xi=y+\frac{2}{3} i x^{\frac{3}{2}}$ and $\bar{\xi}=y-\frac{2}{3} i x^{\frac{3}{2}}$. Then $\alpha=\frac{\xi-\eta}{2 i}=\frac{2}{3} x^{\frac{3}{2}}$, and $\beta=\frac{\xi+\eta}{2}=y$. We have $u_{x}=u_{\alpha} \alpha_{x}$, $u_{x x}=u_{\alpha \alpha} \alpha_{x}^{2}+u_{\alpha} \alpha_{x x}=u_{\alpha \alpha} x+u_{\alpha} \frac{1}{2} x^{-\frac{1}{2}}$, and $u_{y y}=u_{\beta \beta}$. The equation transforms as

$$
x\left(u_{\alpha \alpha}+u_{\beta \beta}\right)+\frac{1}{2} x^{-\frac{1}{2}} u_{\alpha}=0
$$

which leads to the canonical form

$$
u_{\alpha \alpha}+u_{\beta \beta}+\frac{1}{3 \alpha} u_{\alpha}=0
$$

The wave equation is the main example of hyperbolic equations, the heat equation is the best known parabolic equation, and Laplace's equation is an example, as well as the canonical form, for elliptic equations. Our study of these three main equations suggests what to expect of other equations of the same type: sharp signals and finite propagation speed for hyperbolic equations, diffusion and infinite propagation speed for parabolic equations, maximum principles and smooth solutions for elliptic equations. These facts are justified in more advanced PDE books, see e.g., L. Evans [9].

8.12.1 Problems

I. 1. Assume that the function $u(x, y)$ is harmonic in the entire plane, and $u(x, y)>-12$ for all (x, y). Show that $u(x, y)$ is a constant.

Hint: Consider $v(x, y)=u(x, y)+12$.
2. Assume that the function $u(x, y)$ is harmonic in the entire plane, and $u(x, y)<0$ for all (x, y). Show that $u(x, y)$ is a constant.

Hint: Consider $v(x, y)=-u(x, y)$.
3. Prove that a harmonic in the entire plane function cannot be bounded from below, or from above, unless it is a constant.
4. Assume that the function $u(x, y)$ is harmonic in D, and $u(x, y)=5$ on ∂D. Show that $u(x, y)=5$ in D.
5. Calculate the integral $\int_{0}^{2 \pi} \frac{R^{2}-r^{2}}{R^{2}-2 R r \cos (\theta-\phi)+r^{2}} d \phi$, where R, r and θ are parameters.
Hint: Identify this integral with the solution of a certain Dirichlet problem, given by Poisson's integral formula.
6. Let D be the square: $-1<x<1,-1<y<1$. Assume that $u(x, y)$ satisfies

$$
\Delta u=-1 \text { in } D, u=0 \text { on } \partial D .
$$

Show that $\frac{1}{4} \leq u(0,0) \leq \frac{1}{2}$.
Hint: Consider $v(x, y)=u(x, y)+\frac{1}{4}\left(x^{2}+y^{2}\right)$, and Δv.
7. Show that any solution of the nonlinear problem

$$
\Delta u+u^{2}(1-u)=0 \text { in } D, u=0 \text { on } \partial D
$$

satisfies $0 \leq u \leq 1$.
Hint: Show that $u(x, y)$ cannot take on a maximum value, which is greater than 1 , and a negative minimum value.
8. Let $a(x, y)>0$ be a given positive function. Show that the problem

$$
\begin{gathered}
\Delta u-a(x) u=0 \quad \text { in } D \\
u=0 \quad \text { on } \partial D
\end{gathered}
$$

has only the trivial solution $u(x)=0$.
9. Find the absolute maximum of $u(x, y)=y^{4}+2 x^{2} y^{2}+x^{4}-x^{2}+y^{2}$ on the disc $x^{2}+y^{2} \leq 4$.
10. Show that the nonlinear problem

$$
\Delta u(x, y)+y u_{x}(x, y)-2 x u_{y}(x, y)-u^{5}(x, y)=0 \text { in } D, u=0 \text { on } \partial D
$$

has no non-trivial solutions.
11. Show that the solution of

$$
\begin{gathered}
u_{t}-5 u_{x x}=x^{2}+t^{2}-t+1 \quad 0<x<4, \quad t>0 \\
u(x, 0)=0 \quad 0<x<4 \\
u(0, t)=1 \quad t>0 \\
u(4, t)=\sin t \quad t>0
\end{gathered}
$$

is positive for $0<x<4,0<t<\pi$.
12. Assume that the function $u(x, y)$ is harmonic, satisfying $u(0,0)=0$ and $u(1,0)=3$. Show that $u(x, y)$ cannot be non-negative for all (x, y) satisfying $x^{2}+y^{2} \leq 4$.
Hint: Use the mean value property.
13. Assume that the function $u(x, y)$ is harmonic, satisfying $u(0,0)=1$ and $u(0,1)=10$. Show that $u(x, y)$ cannot be non-negative for all (x, y) satisfying $x^{2}+y^{2} \leq 4$.
Hint: Use Harnack's inequality, or (8.1).

$$
v_{t}-v_{x x}+(\alpha+c(x, t)) v \geq 0
$$

15. Show that there is at most one solution of the nonlinear problem

$$
u_{t}-u_{x x}+u^{2}=0 \quad \text { for }(x, t) \in D=(0, L) \times(0, T]
$$

Hint: A convex function lies above any of its tangent lines, so that for any p and q

$$
f(q) \geq f(p)+f^{\prime}(p)(q-p)
$$

16
Set here $q=u(x)$ and $p=\int_{a}^{b} u(x) \varphi(x) d x$

$$
f(u(x)) \geq f\left(\int_{a}^{b} u(x) \varphi(x) d x\right)+f^{\prime}(p)\left[u(x)-\int_{a}^{b} u(x) \varphi(x) d x\right]
$$

17 Multiply both sides by $\varphi(x)$, and integrate over (a, b).
18 (ii) Consider a nonlinear heat equation

$$
\begin{gathered}
u_{t}=u_{x x}+f(u), \quad 0<x<\pi, t>0 \\
u(0, t)=u(\pi, t)=0 \\
u(x, 0)=u_{0}(x)
\end{gathered}
$$

Assume that $f(u)$ is a convex function for all $u \in R$. Assume there is an \bar{u}, so that $f(u)-u>0$ for $u>\bar{u}$, and $\int_{\bar{u}}^{\infty} \frac{d u}{f(u)-u}<\infty$. Assume finally that $\frac{1}{2} \int_{0}^{\pi} u_{0}(x) \sin x d x>\bar{u}$. Show that the solution blows up in finite time.
4 Hint: Multiply the equation by $\varphi(x)=\frac{1}{2} \sin x$ and integrate over $(0, \pi)$. 5 Denote $v(t)=\frac{1}{2} \int_{0}^{\pi} u(x, t) \sin x d x$. Integrating by parts twice, we express $\frac{1}{2} \int_{0}^{\pi} u_{x x}(x, t) \sin x d x=-\frac{1}{2} \int_{0}^{\pi} u(x, t) \sin x d x=-v(t)$. Applying Jensen's inequality gives

$$
\frac{d v}{d t} \geq-v+f(v)
$$

or $\frac{d v}{-v+f(v)} \geq d t$. It follows that $v(t)$ becomes infinite by the time $t=$ $\int_{\bar{u}}^{\infty} \frac{d v}{f(v)-v}<\infty$.
(iii) Let $f(u)=u^{2}, u_{0}(x)=4 \sin x$. Show that the solution becomes unbounded by the time $t=\ln \frac{\pi}{\pi-1}$.
Hint: Here $\frac{d v}{d t} \geq-v+v^{2}$ and $v(0)=\pi$.
II. 1. Find two solutions of

$$
z_{x}^{2}-y z_{y}^{2}=0 .
$$

Answer. $z=2 \sqrt{y}-x$, and $z=2 \sqrt{y}+x$. (Also, $z=-2 \sqrt{y}+x$, and $z=-2 \sqrt{y}-x$.)
2. Show that the change of variables $\xi=\xi(x, y), \eta=\eta(x, y)$ takes the equation

$$
a(x, y) u_{x x}+b(x, y) u_{x y}+c(x, y) u_{y y}+d(x, y) u_{x}+e(x, y) u_{y}=0
$$

into

$$
A u_{\xi \xi}+B u_{\xi \eta}+C u_{\eta \eta}+D u_{\xi}+E u_{\eta}=0,
$$

with A, B and C given by (12.24), and

$$
D=a \xi_{x x}+b \xi_{x y}+c \xi_{y y}+d \xi_{x}+f \xi_{y}
$$

$$
E=a \eta_{x x}+b \eta_{x y}+c \eta_{y y}+d \eta_{x}+f \eta_{y} .
$$

3. Find the canonical form for the equation

$$
u_{x x}-y u_{y y}-\frac{1}{2} u_{y}=0
$$

in the upper half plane $y>0$, and then find the general solution.

Answer. $\xi=2 \sqrt{y}-x$, and $\eta=2 \sqrt{y}+x$ leads to $u_{\xi \eta}=0$, and then $u(x, y)=F(2 \sqrt{y}-x)+G(2 \sqrt{y}+x)$.
4. Show that Tricomi's equation

$$
u_{x x}+x u_{y y}=0
$$

4 is of a different type for $x<0, x=0$, and $x>0$. For each type find the corresponding canonical form.

6 Answer. In case $x<0$, this equation is of hyperbolic type, and its canonical 7 form is

$$
u_{\xi \eta}+\frac{1}{6(\xi-\eta)}\left(u_{\xi}-u_{\eta}\right)=0 .
$$

85 . Find the canonical form for the equation

$$
x^{2} u_{x x}+2 x y u_{x y}+y^{2} u_{y y}+x u_{x}+y u_{y}=0 .
$$

9 Hint: The equation is of parabolic type, for all x and y. Calculate $\xi=x y$, 10 and choose $\eta=x$ (arbitrarily).
${ }_{11}$ 6. (i) Let us re-visit the first order equation

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}+c(x, y) u=f(x, y) . \tag{12.29}
\end{equation*}
$$

12 Assume that the function $y(x)$, which is implicitly defined by $\varphi(x, y)=c$,
13 satisfies the equation

$$
\frac{d y}{d x}=\frac{b(x, y)}{a(x, y)} .
$$

14 Show that the change of variables $(x, y) \rightarrow(\xi, \eta)$, given by $\xi=\varphi(x, y)$ and
${ }_{15} \quad \eta=y$ (chosen arbitrarily) transforms the equation (12.29) into

$$
b u_{\eta}+c u=d
$$

16 (ii) Find the general solution of

$$
a u_{x}+b u_{y}=0, \quad a \text { and } b \text { are non-zero constants. }
$$

17 Answer. $u(x, y)=f(b x-a y)$, where f is an arbitrary function.
18 (iii) Find the general solution of

$$
-x u_{x}+y u_{y}+u=x .
$$

Answer. $u(x, y)=\frac{y}{2}+\frac{f(x y)}{y}$, where f is an arbitrary function.
III. 1. Show that the Neumann problem

$$
\Delta u=f(x, y, z) \text { in } D, \frac{\partial u}{\partial n}=0 \text { on } S
$$

has no solution if $\int_{D} f(x, y, z) d V \neq 0$. (Here and in the problems that follow, we denote $S=\partial D$.)
2. Show that the difference of any two solutions of the Neumann problem

$$
\Delta u=f(x, y, z) \text { in } D, \frac{\partial u}{\partial n}=g(x, y, z) \text { on } S
$$

is a constant.
3. Let D be a domain in (x, y, z) space, bounded by a closed and smooth surface S, and let $\mathbf{n}=\left(n_{1}, n_{2}, n_{3}\right)$ denote the unit normal vector on S pointing outside of $D\left(\mathbf{n}\right.$ as well as its components n_{1}, n_{2} and n_{3} are functions of $(x, y, z))$. Consider a vector field $\mathbf{F}=(u(x, y, z), 0,0)$, with a continuously differentiable function $u(x, y, z)$.
(i) Use the divergence theorem to show that

$$
\int_{D} u_{x} d V=\int_{S} u n_{1} d S
$$

Derive similar formulas for $\int_{D} u_{y} d V$, and for $\int_{D} u_{z} d V$.
(ii) Show that the nonlinear Dirichlet problem

$$
\Delta u+u u_{x}=0 \text { in } D, u=0 \text { on } S
$$

has only the trivial solution $u=0$.
Hint: Multiply the equation by u, and write $u^{2} u_{x}=\frac{1}{3} \frac{\partial}{\partial x} u^{3}$. Then integrate over D.
(iii) Let $v(x, y, z)$ be another continuously differentiable function. Derive the integration by parts formula

$$
\int_{D} u_{x} v d V=-\int_{D} u_{x} v d V+\int_{S} u v n_{1} d S
$$

Derive similar formulas for $\int_{D} u_{y} v d V$, and for $\int_{D} u_{z} v d V$.

1 (iv) Show that the nonlinear Dirichlet problem

$$
\Delta u+x u^{2} u_{x}=0 \text { in } D, u=0 \text { on } S
$$

has only the trivial solution $u=0$.
Hint: Multiply the equation by u, and write $u^{3} u_{x}=\frac{1}{4} \frac{\partial}{\partial x} u^{4}$. Then integrate over D.
4. Consider a nonlinear boundary value problem

$$
\begin{gathered}
\Delta u=f(u) \text { in } D \\
u=g(x, y, z) \text { on } S,
\end{gathered}
$$

with an increasing function $f(u)$. Show that there is at most one solution.
${ }_{7}$ Hint: Let v be another solution. Then

$$
\Delta(u-v)=f(u)-f(v) \text { in } D, u-v=0 \text { on } S .
$$

8 Multiply by $u-v$, and integrate over D

$$
\int_{D}|\nabla(u-v)|^{2} d V=-\int_{D}[f(u)-f(v)](u-v) d V \leq 0 .
$$

5. (i) Let D be a three-dimensional domain, bounded by a closed and smooth surface S. Derive the second Green's identity

$$
\int_{D}(\Delta u v-\Delta v u) d V=\int_{S}\left(\frac{\partial u}{\partial n} v-\frac{\partial v}{\partial n} u\right) d S
$$

Hint: Interchange u and v in (11.11), then subtract the formulas.
(ii) Consider the nonlinear Dirichlet problem

$$
\Delta u=f(u) \text { in } D, u=0 \text { on } S .
$$

Assume that $\frac{f(u)}{u}$ is increasing for all $u>0$. Show that it is impossible to have two solutions of this problem satisfying $u(x)>v(x)>0$ for all $x \in D$.

Hint: Integrate the identity: $\Delta u v-\Delta v u=u v\left(\frac{f(u)}{u}-\frac{f(v)}{v}\right)$.
6. Assume that the functions $u(x)=u\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $w(x)=w\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ are twice continuously differentiable, with $u(x)>0$. Let $\xi(t)$ be a continuously differentiable function. Derive the following Picone's identity $\operatorname{div}\left[\xi\left(\frac{w}{u}\right)(u \nabla w-w \nabla u)\right]=\xi\left(\frac{w}{u}\right)(u \Delta w-w \Delta u)+\xi^{\prime}\left(\frac{w}{u}\right) u^{2}\left|\nabla\left(\frac{w}{u}\right)\right|^{2}$.

Numerical Computations

3 Easy to use software packages, like Mathematica, provide an effective tool for 4 solving differential equations. In this chapter some computational methods are described in general, and not too much tied to Mathematica, as there are other excellent software choices. (However, the author is a Mathematica enthusiast, and hopefully the readers will share in the excitement.) Initial value problems (including the case of systems), and boundary value problems, both linear and nonlinear, are discussed. The chapter concludes with the topic of direction fields.

9.1 The Capabilities of Software Systems, Like Mathematica

Mathematica uses the command DSolve to solve differential equations analytically (by a formula). This is not always possible, but Mathematica does seem to know the solution methods that we studied in Chapters 1 and 2. For example, to solve the equation

$$
\begin{equation*}
y^{\prime}=2 y-\sin ^{2} x, \quad y(0)=0.3, \tag{1.1}
\end{equation*}
$$

we enter the commands
sol = DSolve $\left[\left\{y^{\prime}[\mathrm{x}]=2 \mathrm{y}[\mathrm{x}]-\operatorname{Sin}[\mathrm{x}] \wedge 2, \mathrm{y}[0]==.3\right\}, \mathrm{y}[\mathrm{x}], \mathrm{x}\right]$
$z\left[x_{-}\right]=y[x] / . \operatorname{sol}[[1]]$
Plot[z[x], \{x, 0, 1\}]
Mathematica returns the solution, $y(x)=-0.125 \cos 2 x+0.175 e^{2 x}+0.125 \sin 2 x+$ 0.25, and plots its graph, which is given in Figure 9.1.

Figure 9.1: The solution of the equation (1.1)

If you are new to Mathematica, do not worry about its syntax now. Try to solve other equations by making the obvious modifications to the above commands.

If one needs the general solution of this equation, the command is

$$
\text { DSolve }\left[\mathbf{y}^{\prime}[\mathrm{x}]=\mathbf{=} \mathbf{y}[\mathrm{x}]-\operatorname{Sin}[\mathrm{x}]^{\wedge} 2, \mathrm{y}[\mathrm{x}], \mathrm{x}\right]
$$

Mathematica returns:

$$
y(x) \rightarrow e^{2 x} c[1]+\frac{1}{8}(-\operatorname{Cos}[2 x]+\operatorname{Sin}[2 x]+2) .
$$

Observe that $c[1]$ is Mathematica's way to write an arbitrary constant c, and that the answer is returned as a "replacement rule" (and that was the reason for an extra command in the preceding example). Equations of second (and higher) order are solved similarly. To solve the following resonant problem

$$
y^{\prime \prime}+4 y=8 \sin 2 t, \quad y(0)=0, \quad y^{\prime}(0)=-2,
$$

we enter

DSolve $\left[\left\{y^{\prime \prime}[t]+4 y[t]==8 \operatorname{Sin}[2 t], y[0]==0, y^{\prime}[0]==-2\right\}, y[t], t\right]$ // Simplify

and Mathematica returns the solution $y(t)=-2 t \cos 2 t$, which involves unbounded oscillations.

When we try to use the DSolve command to solve the nonlinear equation

$$
y^{\prime}=2 y^{3}-\sin ^{2} x,
$$

Mathematica thinks for a while, and then it throws this equation back at us. It cannot solve it, and most likely, nobody can. However, we can use Euler's method to compute a numerical approximation of the solution if an initial condition is provided; for example, we can find a numerical solution of

$$
\begin{equation*}
y^{\prime}=2 y^{3}-\sin ^{2} x, \quad y(0)=0.3 \tag{1.2}
\end{equation*}
$$

Mathematica can also compute the numerical approximation of this solution. Instead of Euler's method it uses a much more sophisticated method. The command is NDSolve. We enter the following commands:

```
sol = NDSolve [{y'[x] == 2 y[x]^ 3-Sin[x]^2, y[0] == . 3}, y, {x, 0, 3}]
z[x_] = y[x] /. sol[[1]]
Plot[z[x], {x, 0, 1}, AxesLabel }->\mathrm{ {"x", "y"}]
```

Mathematica produced the graph of the solution, which is given in Figure 9.2. Mathematica returns the solution as an interpolation function, which means that after computing the values of the solution at a sequence of points, it joins the points on the graph by a smooth curve. The solution function (it is $z(x)$ in our implementation), and its derivatives, can be evaluated at any point. The computed solution is practically indistinguishable from the exact solution. When one uses the NDSolve command to solve the problem (1.1), and then plots the solution, the resulting graph is practically identical to the graph of the exact solution given in Figure 9.1.

Figure 9.2: The solution curve of the equation (1.2)

The NDSolve command can also be used for systems of differential equa-
In[21]:= Clear["`*"]
sol =

Out[22] $=\{\{x \rightarrow$ InterpolatingFunction $[\{\{0 ., 20\}\},.<>], y \rightarrow \operatorname{InterpolatingFunction~}[\{\{0 ., 20\}\},.<>]\}\}$
$\ln [24]:=\operatorname{ParametricPlot}[\{x[t] / . \operatorname{sol}[[1,1]], y[t] / . \operatorname{sol}[[1,2]]\},\{t, 0,20\}]$

Figure 9.3: The solution of the system (1.3)

1
tions. For example, let $x=x(t)$ and $y=y(t)$ be solutions of

$$
\begin{gather*}
x^{\prime}=-y+y^{2}, \quad x(0)=0.2 \tag{1.3}\\
y^{\prime}=x, \quad y(0)=0.3 .
\end{gather*}
$$

2 Once the solution is computed, the solution components $x=x(t), y=y(t)$, define a parametric curve in the $x y$-plane, which we draw. The commands, and the output, are given in Figure 9.3. (The first command tells Mathemat$i c a$: "forget everything." This is a good practice with heavy usage.) If you play with other initial conditions, in which $|x(0)|$ and $|y(0)|$ are small, you will discover that the rest point $(0,0)$ is a center, meaning that the solutions near $(0,0)$ are closed loops.

$$
\begin{gather*}
y^{\prime \prime}+a(x) y=f(x), \quad a<x<b \tag{2.1}\\
y(a)=y(b)=0 .
\end{gather*}
$$

4 The general solution of the equation in (2.1) is, of course,

$$
\begin{equation*}
y(x)=Y(x)+c_{1} y_{1}(x)+c_{2} y_{2}(x), \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
y^{\prime \prime}+a(x) y=0 \tag{2.3}
\end{equation*}
$$

7 which are not constant multiples of one another. To compute $y_{1}(x)$, we use the NDSolve command to solve the homogeneous equation (2.3), with the initial conditions

$$
\begin{equation*}
y_{1}(a)=0, \quad y_{1}^{\prime}(a)=1 \tag{2.4}
\end{equation*}
$$

To compute $y_{2}(x)$, we solve (2.3), with the initial conditions

$$
\begin{equation*}
y_{2}(b)=0, \quad y_{2}^{\prime}(b)=-1 \tag{2.5}
\end{equation*}
$$

(Mathematica has no problem solving differential equations "backward" on (a, b).) Observe that the values of $y_{1}^{\prime}(a)$ and $y_{2}^{\prime}(b)$ could have been replaced by any other non-zero numbers. To find a particular solution $Y(x)$, we may solve the equation in (2.1), with any initial conditions, say $Y(a)=0$, $Y^{\prime}(a)=1$. We have computed the general solution (2.2). It remains to pick the constants c_{1} and c_{2} to satisfy the boundary conditions. Using (2.4),

$$
y(a)=Y(a)+c_{1} y_{1}(a)+c_{2} y_{2}(a)=Y(a)+c_{2} y_{2}(a)=0,
$$

so that $c_{2}=-\frac{Y(a)}{y_{2}(a)}$. We assume here that $y_{2}(a) \neq 0$, otherwise our problem (2.1) is not solvable for general $f(x)$. Similarly, using (2.5),

$$
y(b)=Y(b)+c_{1} y_{1}(b)+c_{2} y_{2}(b)=Y(b)+c_{1} y_{1}(b)=0,
$$

giving $c_{1}=-\frac{Y(b)}{y_{1}(b)}$, assuming that $y_{1}(b) \neq 0$. The solution of our problem (2.1) is then

$$
y(x)=Y(x)-\frac{Y(b)}{y_{1}(b)} y_{1}(x)-\frac{Y(a)}{y_{2}(a)} y_{2}(x) .
$$

```
Clear["`*"]
lin:=
Module[{s1, s2, s3, y1, y2, Y},
    s1 = NDSolve[{ y''[x] +a[x] y[x] == 0, y[0] == 0, y'[0] == 1}, y, {x, 0, 1}];
    s2 = NDSolve[{y''[x] +a[x] y[x] == 0, y[1] == 0, y'[1] == -1}, y, {x, 0, 1}];
    s3 = NDSolve[{y''[x] +a[x] y[x] == f[x], y[0] == 0, y'[0] == 1}, y, {x, 0, 1}];
y1[x_] = y[x] /. s1[[1]];
    y2[x_] = y[x] /. s2[[1]];
    Y[x_] = y[x] /. s3[[1]];
```



```
]
```

Figure 9.4: The solution module for the problem (2.1)

```
a[x_] = © © (x;
f[x_] = - 3 x + 1;
lin
Plot[z[x], {x, 0, 1}, AxesLabel }->\mathrm{ {"x", "z"}]
```

Figure 9.5: Solving the problem (2.6)

1 Mathematica's subroutine, or module, to produce this solution, called lin, is 2 given in Figure 9.4. We took $a=0$, and $b=1$.

For example, entering the commands in Figure 9.5, produces the graph 4 of the solution for the boundary value problem

$$
\begin{equation*}
y^{\prime \prime}+e^{x} y=-3 x+1, \quad 0<x<1, \quad y(0)=y(1)=0 \tag{2.6}
\end{equation*}
$$

5 which is given in Figure 9.6.

6 9.3 Solving Nonlinear Boundary Value Problems

${ }_{7}$ Review of Newton's Method
8 Suppose that we wish to solve the equation

$$
\begin{equation*}
f(x)=0, \tag{3.1}
\end{equation*}
$$

Figure 9.6: Solution of the problem (2.6)
with a given function $f(x)$. For example, in case $f(x)=e^{2 x}-x-2$, the equation

$$
e^{2 x}-x-2=0
$$

has a solution on the interval $(0,1)$ (because $f(0)=-1<0$, and $f(1)=$ $e^{2}-1>0$), but this solution cannot be expressed by a formula. Newton's method produces a sequence of iterates $\left\{x_{n}\right\}$ to approximate a solution of (3.1). If the iterate x_{n} is already computed, we use the linear approximation

$$
f(x) \approx f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right), \text { for } x \text { close to } x_{n} .
$$

7 Then we replace the equation (3.1) by

$$
f\left(x_{n}\right)+f^{\prime}\left(x_{n}\right)\left(x-x_{n}\right)=0,
$$

solve this linear equation for x, and declare its solution x to be our next approximation, so that

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, n=1,2, \ldots, \text { beginning with some } x_{0} .
$$

Newton's method does not always converge, but when it does, the convergence is usually super fast. To explain that, let us denote by x^{*} the (true) solution of (3.1). Then $\left|x_{n}-x^{*}\right|$ gives the error of the approximation on the n-th step. Under some mild conditions on $f(x)$, it can be shown that

$$
\left|x_{n+1}-x^{*}\right|<c\left|x_{n}-x^{*}\right|^{2},
$$

with some constant $c>0$. Let us suppose that $c=1$ and $\left|x_{0}-x^{*}\right|=0.1$. Then the errors of approximation are estimated as follows: $\left|x_{1}-x^{*}\right|<$ $\left|x_{0}-x^{*}\right|^{2}=0.1^{2}=0.01,\left|x_{2}-x^{*}\right|<\left|x_{1}-x^{*}\right|^{2}<0.01^{2}=0.0001,\left|x_{3}-x^{*}\right|<$ $\left|x_{2}-x^{*}\right|^{2}<0.0001^{2}=0.00000001$. We see that x_{3} is practically the exact solution!

2 We wish to solve the nonlinear boundary value problem

$$
\begin{gather*}
y^{\prime \prime}+g(y)=e(x), \quad a<x<b \tag{3.2}\\
y(a)=y(b)=0,
\end{gather*}
$$

with given functions $g(y)$ and $e(x)$.
We shall use Newton's method to produce a sequence of iterates $\left\{y_{n}(x)\right\}$ to approximate one of the solutions of (3.2). (The problem (3.2) may have multiple solutions.) We begin with some initial guess $y_{0}(x)$. If the iterate $y_{n}(x)$ is already computed, we use the linear approximation

$$
g(y) \approx g\left(y_{n}\right)+g^{\prime}\left(y_{n}\right)\left(y-y_{n}\right),
$$

and replace (3.2) with the linear problem

$$
\begin{gather*}
y^{\prime \prime}+g\left(y_{n}(x)\right)+g^{\prime}\left(y_{n}(x)\right)\left(y-y_{n}(x)\right)=e(x), \quad a<x<b \tag{3.3}\\
y(a)=y(b)=0 .
\end{gather*}
$$

The solution of this problem we declare to be our next approximation, $y_{n+1}(x)$. We rewrite (3.3) as

$$
\begin{gathered}
y^{\prime \prime}+a(x) y=f(x), \quad a<x<b \\
y(a)=y(b)=0
\end{gathered}
$$

The commands are given in Figure 9.7. (The procedure lin has been executed before these commands.) We started with $y_{0}(x)=1(\operatorname{yold}[\mathrm{x}]=1$
in Mathematica's code). We did five iterations of Newton's method. The 2 solution (the function $\mathrm{z}[\mathrm{x}]$) is plotted in Figure 9.8.

The resulting solution is very accurate, and we verified it by the following independent calculation. We used Mathematica to calculate the slope of this solution at zero, $\mathrm{z}^{\prime}[0] \approx 0.00756827$, and then we solved the equation in (3.4), together with the initial conditions $y(0)=0, y^{\prime}(0)=0.00756827$ (using the NDSolve command). The graph of this solution $y(x)$ is identical to the one in Figure 9.8.

```
e[x_] = 2 Sin[4\pix]-x;
yold[x_] = 1;
g[y_] = y^3;
st = 5;
For[i=1, i <st, i++,
    a[x_] = g'[yold[x]];
    f[x_] = e[x] - g[yold[x]] + g'[yold[x]] yold[x];
    lin;
    yold[x_] = z[x];
]
```

Figure 9.7: Solving the problem (3.4)

$$
\begin{equation*}
y^{\prime}=\cos 2 y+2 \sin 2 x \tag{4.1}
\end{equation*}
$$

cannot be solved analytically (like most equations). If we add an initial condition, we can find the corresponding solution, by using the NDSolve command. But this is just one solution. Can we visualize a bigger picture?

The right hand side of the equation (4.1) gives us the slope of the solution passing through the point (x, y) (for example, if $\cos 2 y+2 \sin 2 x>0$, then the solution $y(x)$ is increasing at $(x, y))$. The vector $<1, \cos 2 y+2 \sin 2 x>$ is called the direction vector. If the solution is increasing at (x, y), this vector points up, and the faster is the rate of increase, the larger is the amplitude of the direction vector. If we plot the direction vectors at many points, the

Figure 9.8: Solution of the nonlinear problem (3.4)
result is called the direction field, which can tell us at a glance how various solutions are behaving. In Figure 9.9, the direction field for the equation (4.1) is plotted using Mathematica's command

$$
\operatorname{Vector} \operatorname{Plot}[\{1, \operatorname{Cos}[2 \mathrm{y}]+2 \operatorname{Sin}[2 \mathrm{x}]\},\{\mathrm{x}, 0,6.5\},\{\mathrm{y}, 0,5\}] .
$$

4 The reader should also try Mathematica's command

$$
\text { StreamPlot }[\{1, \operatorname{Cos}[2 \mathrm{y}]+2 \operatorname{Sin}[2 \mathrm{x}]\},\{\mathrm{x}, 0,6.5\},\{\mathrm{y}, 0,5\}],
$$

which draws a number of solution curves of (4.1).
How will the solution of (4.1), with the initial condition $y(0)=1$, behave? Imagine a particle placed at the initial point $(0,1)$ (see Figure 9.9). The direction field, or the "wind," will take it a little down, but soon the direction of motion will be up. After a while, a strong downdraft will take the particle much lower, but eventually it will be going up again. In Figure 9.10, we give the actual solution of

$$
\begin{equation*}
y^{\prime}=\cos 2 y+2 \sin 2 x, \quad y(0)=1 \tag{4.2}
\end{equation*}
$$

produced using the NDSolve command. It confirms the behavior suggested by the direction field.

Figure 9.9: The direction field for the equation (4.1)

Figure 9.10: The solution of the initial value problem (4.2)

Bibliography

[1] S. Ahmad and M. Rama Mohana Rao, Theory of Ordinary Differential Equations. With applications in biology and engineering. Affiliated East-West Press Pvt. Ltd., New Delhi, 1999.
[2] R. Bellman, Stability Theory of Differential Equations. McGraw-Hill Book Company, Inc., New York-Toronto-London, 1953.
[3] F. Bowman, Introduction to Bessel Functions. Dover Publications Inc., New York 1958.
[4] W.E. Boyce and R.C. DiPrima, Elementary Differential Equations and Boundary Value Problems. John Wiley and Sons, Inc., New York-London-Sydney 1965.
[5] M.W. Braun, Differential Equations and their Applications. An introduction to applied mathematics. Fourth edition. Texts in Applied Mathematics, 11. Springer-Verlag, New York, 1993.
[6] C.K. Chui and G. Chen, Linear Systems and Optimal Control. Springer Series in Information Sciences, 18. Springer-Verlag, Berlin, 1989.
[7] E.N. Dancer, On the existence and uniqueness of positive solutions for competing species model with diffusion, Trans. Amer. Math. Soc. 326, 829-859 (1991).
[8] B.P. Demidovič, Lectures on the Mathematical Theory of Stability (in Russian) Izdat. Nauka, Moscow 1967.
[9] L. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 19. American Mathematical Society, Providence, RI, 1998.
[10] A.F. Filippov, A Collection of Problems in Differential Equations (in Russian), Izdat. Nauka, Moscow 1970.
[11] J.K. Hale, Ordinary Differential Equations. Second edition. Robert E. Krieger Publishing Co., Inc., Huntington, N.Y., 1980.
[12] S.P. Hastings and J.B. McLeod, Classical Methods in Ordinary Differential Equations. With applications to boundary value problems. Graduate Studies in Mathematics, 129. American Mathematical Society, Providence, RI, 2012.
[13] M.W. Hirsch and S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra. Pure and Applied Mathematics, Vol. 60. Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974.
[14] J.R. Goodstein, The Volterra Chronicles. The life and times of an extraordinary mathematician 1860-1940. History of Mathematics, 31. American Mathematical Society, Providence, RI; London Mathematical Society, London, 2007.
[15] D.W. Jordan and P. Smith, Nonlinear Ordinary Differential Equations. Second edition. Oxford Applied Mathematics and Computing Science Series. The Clarendon Press, Oxford University Press, New York, 1987.
[16] P. Korman, Computation of radial solutions of semilinear equations, Electron. J. Qual. Theory Differ. Equ., No. 13, 14 pp. (electronic) (2007).
[17] P. Korman, Some new results on the periodic competition model, J. Math. Anal. Appl. 171, no. 1, 131-138 (1992).
[18] R.C. McOwen, Partial Differential Equations. Second Edition. Pearson Education, New Jersey, 2003.
[19] K.R. Meyer, G.R. Hall and D. Offin, Introduction to Hamiltonian Dynamical Systems and the N-body Problem. Second edition. Applied Mathematical Sciences, 90. Springer, New York, 2009.
[20] P. Murthy, Periodic solutions of two-dimensional forced systems: the Massera theorem and its extension, J. Dynam. Differential Equations 10, no. 2, 275-302 (1998).
[21] Yu.S. Ochan, Collection of Problems in Mathematical Physics (in Russian), Moscow, 1973.
[22] I.G. Petrovskii, Ordinary Differential Equations. Revised English edition. Translated from the Russian and edited by Richard A. Silverman. Prentice-Hall, Inc., Englewood Cliffs, N.J. 1966.
[23] Y. Pinchover and J. Rubinstein, An Introduction to Partial Differential Equations. Cambridge University Press, Cambridge, 2005.
[24] M.H. Protter and H.F. Weinberger, Maximum Principles in Differential Equations. Corrected reprint of the 1967 original. Springer-Verlag, New York, 1984.
[25] M. Renardy and R.C. Rogers, An Introduction to Partial Differential Equations. Second edition. Texts in Applied Mathematics, 13. SpringerVerlag, New York, 2004.
[26] F. Rothe, The periods of the Volterra-Lotka system, J. Reine Angew. Math. 355, 129-138 (1985).
[27] D.A. Sánchez, Ordinary Differential Equations. A brief eclectic tour. Classroom Resource Materials Series. Mathematical Association of America, Washington, DC, 2002.
[28] E.E. Sel’kov, Self-Oscillations in Glycolysis, European J. Biochem. 4, 79-86 (1968).
[29] A. Sommerfeld, Mechanics. Lecture Notes On Theoretical Physics, Vol. I, Academic Press, New York-London, 1964.
[30] A. Sommerfeld, Partial Differential Equations in Physics. Translated by Ernst G. Straus. Academic Press, Inc., New York, N. Y., 1949.
[31] W.W. Stepanow, Lehrbuch der Differentialgleichungen. Fifth German edition. Translated from the sixth Russian edition. Hochschulbücher für Mathematik [University Books for Mathematics], 20. VEB Deutscher Verlag der Wissenschaften, Berlin, 1982.
[32] G. Strang, Linear Algebra and Its Applications, 4th ed. Brooks/Cole, Cengage Learning, 2008.
[33] S.H. Strogatz, Nonlinear Dynamics and Chaos, With Applications to Physics, Biology, Chemistry and Engineering. Westview Press 1994.
[34] J. Waldvogel, The period in the Lotka-Volterra system is monotonic, J. Math. Anal. Appl. 114, no. 1, 178-184 (1986).
[35] P. Waltman, A Second Course in Elementary Differential Equations, Academic Press, New York-London, 1986.
[36] H.F. Weinberger, A First Course in Partial Differential Equations with Complex Variables and Transform Methods. Blaisdell Publishing Co. Ginn and Co., New York-Toronto-London, 1965.
[37] E.C. Young, Partial Differential Equations. An introduction. Allyn and Bacon, Inc., Boston, Mass., 1972.

. 1 The Chain Rule and Its Descendants

The chain rule

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

allows us to differentiate the composition of two functions $f(x)$ and $g(x)$. In particular, if $f(x)=x^{r}$ with a constant r, then $f^{\prime}(x)=r x^{r-1}$, and we conclude

$$
\begin{equation*}
\frac{d}{d x}[g(x)]^{r}=r[g(x)]^{r-1} g^{\prime}(x), \tag{1.3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{d}{d x} e^{g(x)}=e^{g(x)} g^{\prime}(x) \tag{1.4}
\end{equation*}
$$

7 In case $f(x)=\ln x$, we get

$$
\begin{equation*}
\frac{d}{d x} \ln g(x)=\frac{g^{\prime}(x)}{g(x)} \tag{1.5}
\end{equation*}
$$

This grandchild of the chain rule should be also memorized separately. For example, $\frac{d}{d x} e^{-x}=-e^{-x}$.

The chain rule also lets us justify the following integration formulas (a and b are constants):

$$
\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c
$$

$$
\int \frac{d x}{a x+b}=\frac{1}{a} \ln |a x+b|+c
$$

$$
\int \frac{g^{\prime}(x)}{g(x)} d x=\ln |g(x)|+c
$$

The situation is similar for functions of two or more variables. If $u=$ $u(x, y)$, while $x=x(t)$ and $y=y(t)$, then u is really a function of t and

$$
\begin{equation*}
\frac{d u}{d t}=u_{x} \frac{d x}{d t}+u_{y} \frac{d y}{d t} \tag{1.6}
\end{equation*}
$$

which gives the formula for implicit differentiation:

$$
\frac{d y}{d x}=-\frac{u_{x}(x, y)}{u_{y}(x, y)}
$$

If $u=u(\xi, \eta)$, while $\xi=\xi(x, y)$ and $\eta=\eta(x, y)$, then (1.6) is adjusted to give

$$
\frac{\partial u}{\partial x}=u_{\xi} \frac{\partial \xi}{\partial x}+u_{\eta} \frac{\partial \eta}{\partial x}, \quad \frac{\partial u}{\partial y}=u_{\xi} \frac{\partial \xi}{\partial y}+u_{\eta} \frac{\partial \eta}{\partial y} .
$$

7

For example, if $u(t, s)=f(t-2 s)$, where f is some function of one variable, then $u_{t}=f^{\prime}(t-2 s), u_{t t}=f^{\prime \prime}(t-2 s)$. $u_{s}=-2 f^{\prime}(t-2 s), u_{s s}=4 f^{\prime \prime}(t-2 s)$, so that $u(t, s)$ satisfies the following wave equation

$$
u_{t t}-4 u_{s s}=0 .
$$

. 2 Partial Fractions

This method is needed for both computing integrals, and inverse Laplace transforms. We have

$$
\frac{x+1}{x^{2}+x-2}=\frac{x+1}{(x-1)(x+2)}=\frac{A}{x-1}+\frac{B}{x+2}
$$

16 Adding the fractions on the right, we need

$$
\frac{x+1}{(x-1)(x+2)}=\frac{A(x+2)+B(x-1)}{(x-1)(x+2)}
$$

1 Both fractions have the same denominator. We need to arrange for the numerators to be the same:

$$
\begin{aligned}
A(x+2)+B(x-1) & =x+1 \\
(A+B) x+2 A-B & =x+1
\end{aligned}
$$

Equating the coefficients of the two linear polynomials, gives

$$
\begin{gathered}
A+B=1 \\
2 A-B=1 .
\end{gathered}
$$

We calculate $A=\frac{2}{3}, B=\frac{1}{3}$. Conclusion:

$$
\frac{x+1}{x^{2}+x-2}=\frac{2 / 3}{x-1}+\frac{1 / 3}{x+2} .
$$

Our next example

$$
\frac{s^{2}-1}{s^{3}+s^{2}+s}=\frac{s^{2}-1}{s\left(s^{2}+s+1\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+s+1}
$$

involves a quadratic factor in the denominator that cannot be factored (an irreducible quadratic). Adding the fractions on the right, we need

$$
A\left(s^{2}+s+1\right)+s(B s+C)=s^{2}-1
$$

Equating the coefficients of the two quadratic polynomials, we get

$$
\begin{gathered}
A+B=1 \\
A+\quad C=0 \\
A=-1,
\end{gathered}
$$

so that $A=-1, B=2, C=1$. Conclusion:

$$
\frac{s^{2}-1}{s^{3}+s^{2}+s}=-\frac{1}{s}+\frac{2 s+1}{s^{2}+s+1} .
$$

The denominator of the next example, $\frac{s-1}{(s+3)^{2}\left(s^{2}+3\right)}$ involves a product of a square of a linear factor and an irreducible quadratic. The way to proceed is:

$$
\frac{s-1}{(s+3)^{2}\left(s^{2}+3\right)}=\frac{A}{s+3}+\frac{B}{(s+3)^{2}}+\frac{C s+D}{s^{2}+3} .
$$

As before, we calculate $A=-\frac{1}{12}, B=-\frac{1}{3}, C=D=\frac{1}{12}$. Conclusion:

$$
\frac{s-1}{(s+3)^{2}\left(s^{2}+3\right)}=-\frac{1}{12(s+3)}-\frac{1}{3(s+3)^{2}}+\frac{s+1}{12\left(s^{2}+3\right)} .
$$

. 3 Eigenvalues and Eigenvectors

${ }_{2}$ The vector $z=\left[\begin{array}{r}1 \\ -1\end{array}\right]$ is very special for the matrix $B=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$. We have

$$
B z=\left[\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right]\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=\left[\begin{array}{r}
2 \\
-2
\end{array}\right]=2\left[\begin{array}{r}
1 \\
-1
\end{array}\right]=2 z,
$$

$$
\begin{equation*}
A x=\lambda x . \tag{3.7}
\end{equation*}
$$

, If A is 2×2, then in components an eigenvector must satisfy $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right] \neq$ $8\left[\begin{array}{l}0 \\ 0\end{array}\right]$. In case A is 3×3, then we need $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \neq\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$. which implies that $c x$ is also an eigenvector of the matrix A, corresponding to the eigenvalue λ. In particular, $c\left[\begin{array}{r}1 \\ -1\end{array}\right]$ gives us the eigenvectors of the matrix B above, corresponding to the eigenvalue $\lambda=2$.

We now rewrite (3.7) in the form

$$
\begin{equation*}
(A-\lambda I) x=0, \tag{3.8}
\end{equation*}
$$

where I is the identity matrix. This is a homogeneous system of linear equations. To have non-zero solutions, its determinant must be zero:

$$
\begin{equation*}
|A-\lambda I|=0 . \tag{3.9}
\end{equation*}
$$

This is a polynomial equation for λ, called the characteristic equation. If the matrix A is 2×2, this is a quadratic equation, and it has two roots λ_{1} and λ_{2}. In case A is 3×3, this is a cubic equation, and it has three roots λ_{1}, λ_{2} and λ_{3}, and so on for larger A. To calculate the eigenvectors corresponding to λ_{1}, we solve the system

$$
\left(A-\lambda_{1} I\right) x=0,
$$

2 Example 1 Consider $B=\left[\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right]$. $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$, which is factor

$$
|B-\lambda I|=\left|\begin{array}{ll}
3-\lambda & 1 \\
1 & 3-\lambda
\end{array}\right|=(3-\lambda)^{2}-1=0
$$

has the roots $\lambda_{1}=2$ and $\lambda_{2}=4$. (Because: $3-\lambda= \pm 1, \lambda=3 \pm 1$.) We already know that $c\left[\begin{array}{r}1 \\ -1\end{array}\right]$ are the eigenvectors for $\lambda_{1}=2$, so let us compute the eigenvectors for $\lambda_{2}=4$. We need to solve the system $(A-4 I) x=0$ for
is a cubic equation, so we need to guess a root. $\lambda_{1}=1$ is a root. We then

$$
\lambda^{3}-6 \lambda^{2}+9 \lambda-4=(\lambda-1)\left(\lambda^{2}-5 \lambda+4\right)
$$

1 Setting the second factor to zero, we find the other two roots $\lambda_{2}=1$ and
${ }_{2} \lambda_{3}=4$. Turning to the eigenvectors, let us begin with the simple eigenvalue
${ }^{3} \quad \lambda_{3}=4$. We need to solve the system $(A-4 I) x=0$ for $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$, or

$$
-2 x_{1}+x_{2}+x_{3}=0
$$

$$
x_{1}-2 x_{2}+x_{3}=0
$$

$$
x_{1}+x_{2}-2 x_{3}=0 .
$$

6 The third equation is superfluous, because adding the first two equations gives the negative of the third. We are left with

$$
-2 x_{1}+x_{2}+x_{3}=0
$$

$$
x_{1}-2 x_{2}+x_{3}=0 .
$$

9 There are more variables to play with, than equations to satisfy. We are free to set $x_{3}=1$, and then solve the system for x_{1} and x_{2}, obtaining $x_{1}=1$ and $x_{2}=1$. Conclusion: $c\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ are the eigenvectors corresponding to $\lambda_{3}=4$.

To find the eigenvectors of the double eigenvalue $\lambda_{1}=1$, one needs to solve the system $(A-I) x=0$, or

$$
x_{1}+x_{2}+x_{3}=0
$$

$$
x_{1}+x_{2}+x_{3}=0
$$

$$
x_{1}+x_{2}+x_{3}=0 .
$$

Discarding both the second and the third equations, we are left with

$$
x_{1}+x_{2}+x_{3}=0 .
$$

${ }_{1} x_{2}=1$, gives $x_{1}=-1$, so that $\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right]$ is an eigenvector. Conclusion: the 2 linear combination, or the span, of these eigenvectors

$$
c_{1}\left[\begin{array}{r}
-1 \\
0 \\
1
\end{array}\right]+c_{2}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]
$$

with arbitrary constants c_{1} and c_{2}, gives us all eigenvectors, corresponding to $\lambda_{1}=1$, or the eigenspace of $\lambda_{1}=1$.

For the matrix $A=\left[\begin{array}{rr}1 & 4 \\ -4 & -7\end{array}\right]$, the eigenvalues are equal $\lambda_{1}=\lambda_{2}=$ 6 -3 , but there is only one linearly independent eigenvector: $c\left[\begin{array}{r}-1 \\ 1\end{array}\right]$.

. 4 Matrix Functions and the Norm

8 If $A(t)$ is an $m \times n$ matrix with the entries $a_{i j}, i=1,2, \ldots m, j=1,2, \ldots n$, with the entries depending on t, it is customary to write $A(t)=\left[a_{i j}(t)\right]$. The transpose matrix is then $A^{T}(t)=\left[a_{j i}\right]$. The derivative matrix $A^{\prime}(t)=$ $\lim _{h \rightarrow 0} \frac{A(t+h)-A(t)}{h}=\left[\lim _{h \rightarrow 0} \frac{a_{i j}(t+h)-a_{i j}(t)}{h}\right]=\left[a_{i j}^{\prime}\right]$ is computed by differentiating all of the entries. Correspondingly, $\int A(t) d t=\left[\int a_{i j}(t) d t\right]$. Clearly

$$
\frac{d}{d t} A^{T}(t)=\left(A^{\prime}(t)\right)^{T}
$$

If it is admissible to multiply the matrices $A(t)$ and $B(t)$, then using the product rule from calculus, one justifies the product rule for matrices

$$
\frac{d}{d t}[A(t) B(t)]=A^{\prime}(t) B(t)+A(t) B^{\prime}(t)
$$

15
$1 \quad$ If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ and $y=\left(y_{1}, y_{2}, \ldots, y_{n}\right)^{T}$ are two n-dimensional 2 vectors, then the scalar (inner) product is defined as

$$
(x, y)=x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}=\sum_{i=1}^{n} x_{i} y_{i}
$$

3 The norm (length) of an n-dimensional vector x is defined by

$$
\|x\|^{2}=(x, x)=\sum_{i=1}^{n} x_{i}^{2} .
$$

4 The Cauchy-Schwartz inequality states:

$$
(x, y) \leq\|x\|\|y\| .
$$

5 If A is an $n \times n$ matrix, then

$$
(A x, y)=\left(x, A^{T} y\right)
$$

${ }_{6}$ Let A be an $n \times n$ matrix, given by its columns $A=\left[C_{1} C_{2} \ldots C_{n}\right]$. (C_{1} is 7 the first column of A, etc.) Define the norm $\|A\|$ of A, as follows

$$
\|A\|^{2}=\sum_{i=1}^{n}\left\|C_{i}\right\|^{2}=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}
$$

8 Clearly

$$
\begin{equation*}
\left|a_{i j}\right| \leq\|A\|, \text { for all } i \text { and } j \tag{4.10}
\end{equation*}
$$

9 If $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$, we claim that

$$
\begin{equation*}
\|A x\| \leq\|A\|\|x\| . \tag{4.11}
\end{equation*}
$$

Indeed, using the Cauchy-Schwartz inequality

$$
\begin{gathered}
\|A x\|^{2}=\sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j} x_{j}\right)^{2} \leq \sum_{i=1}^{n}\left(\sum_{j=1}^{n} a_{i j}^{2} \sum_{j=1}^{n} x_{j}^{2}\right) \\
=\|x\|^{2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}=\|A\|^{2}\|x\|^{2}
\end{gathered}
$$

Let B be an $n \times n$ matrix, given by its columns $A=\left[K_{1} K_{2} \ldots K_{n}\right]$. Recall that $A B=\left[A K_{1} A K_{2} \ldots A K_{n}\right] . \quad\left(A K_{1}\right.$ is the first column of the product $A B$, etc.) Then, using (4.11),

$$
\|A B\|^{2}=\sum_{i=1}^{n}\left\|A K_{i}\right\|^{2} \leq\|A\|^{2} \sum_{i=1}^{n}\left\|K_{i}\right\|^{2}=\|A\|^{2}\|B\|^{2},
$$

1 which implies that

$$
\|A B\| \leq\|A\|\|B\| .
$$

2 Similar inequalities hold for arbitrary number of matrices, which are not nec3 essarily square matrices. For example, if a product $A B C$ of three matrices is defined, then

$$
\|A B C\| \leq\|A\|\|B\|\|C\| .
$$

Similarly one proves the inequalities like

$$
\begin{equation*}
\|A+B+C\| \leq\|A\|+\|B\|+\|C\|, \tag{4.12}
\end{equation*}
$$

6 for an arbitrary number of matrices of the same type. The inequalities (4.10)
and (4.12) imply that the exponential of any square matrix A

$$
e^{A}=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}
$$

8 is convergent (in each component). Since integral of a matrix function $B(t)$
9 is the limit of its Riemann sum, it follows that

$$
\left\|\int_{t_{1}}^{t_{2}} B(t) d t\right\| \leq \int_{t_{1}}^{t_{2}}\|B(t)\| d t
$$

