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a b s t r a c t

We establish the exact multiplicity of positive solutions, and the global solution structure
for two classes of problems on circular domains. The first class involves non-autonomous
concave–convex problems on a ball in Rn, and the second one deals with concave–convex
problems on a ‘‘thin’’ annulus in Rn. We illustrate our results by numerical computations,
using a novel algorithm, which involves continuation in a global parameter.
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1. Introduction

In recent years bifurcation theory methods were applied to the study of the exact multiplicity of positive solutions, and
the global solution structure of Dirichlet problems

1u + λf (x, u) = 0 in D, u = 0 on ∂D, (1.1)
depending on a positive parameter λ. Let us briefly review the bifurcation theory approach, and more details can be found
in the author’s book [1], or in T. Ouyang and J. Shi [2]. If at some solution (λ0, u0) the corresponding linearized problem

1w + λfu(x, u)w = 0 in D, w = 0 on ∂D (1.2)
admits only the trivial solution, then we can continue the solutions of (1.1) in λ, by using the Implicit Function Theorem, see
e.g., L. Nirenberg [3]. If, on the other hand, the problem (1.2) has non-trivial solutions then the Implicit Function Theorem
cannot be used, instead one tries to show that the Crandall–Rabinowitz [4] bifurcation theoremapplies. The crucial condition
one needs to verify is

D
fuu(x, u)w3 dx ≠ 0. (1.3)

Then the Crandall–Rabinowitz theorem guarantees the existence of a solution curve through the critical point (λ0, u0), and
if a turn occurs at (λ0, u0), its direction is governed by the sign of (see e.g., the exposition in P. Korman [1], or in [5,2])

I =


D fuu(x, u0)w

3 dx
D f (x, u0)w dx

. (1.4)
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If I > 0 (I < 0) the direction of the turn is to the left (right) in the (λ, u) ‘‘plane’’. If one can show that a turn to the left
occurs at any critical point, then there is at most one critical point. Often, there is exactly one critical point, which provides
us with the exact shape of solution curve, and the exact multiplicity count for solutions.

Under some conditions, the sign of I can be computed with the help of a Picone’s identity, see the Theorem 2.1 below.
Thismethod turned out to be effective for non-autonomous equationswith concave–convex nonlinearities, i.e., when f (x, u)
is concave in u for 0 < u < u0, and convex in u for u > u0, for some u0. For example, on a unit ball B ∈ Rn consider the
problem

1u + λ

a(|x|)up

+ b(|x|)uq
= 0 in B, u = 0 on ∂B, (1.5)

with constants 0 < p < 1 < q < n+2
n−2 , and given positive functions a(r) and b(r). There has been a great interest in such

problems, following the publication of A. Ambrosetti, H. Brezis and G. Cerami [6]. In the case of constant a(r) and b(r), an
exact multiplicity result for positive solutions of (1.5) was given by P. Korman [7], and by M. Tang [8]. It turns out that the
solution curve here has only one turn to the left, similarly to the one in Fig. 1. This implies that for some λ0, the problem
(1.5) has exactly two positive solutions for λ ∈ (0, λ0), exactly one positive solution for λ = λ0, and no positive solutions
for λ > λ0. In one dimension, but for the case of p-Laplacian, similar results appeared in [9,10].

In this paper we obtain an exact multiplicity result for a class of non-autonomous equations on a ball in Rn, which
includes (1.5). A crucial step in order to apply the Theorem2.1was to show that any non-trivial solution of the corresponding
linearized problem does not change sign. We also make an application to a class of ‘‘thin’’ annular domains, for which the
above mentioned positivity property of the linearized problem we proved in [11]. We obtain a similar exact multiplicity
result.

We develop a numerical algorithm to illustrate our results. Instead of performing continuation in λ, which is a local
parameter, we continue in the maximum value of the solution, which often can be proved to be a global parameter. When
specified to the much easier autonomous case, this algorithm is faster and more stable than the standard shoot-and-scale
method (and the latter method is restricted to the autonomous case). This numerical algorithm is amajor part of the present
work.

2. The direction of bifurcation

We begin with a well-known Calculus formula, known as Picone’s identity. Here x ∈ Rn, and u = u(x), w = w(x). Its
proof is straightforward.

Lemma 2.1. Assume ξ(t) ∈ C1(R), u, w ∈ C2, and u(x) > 0. Then

div

ξ

w
u


(u∇w − w∇u)


= ξ

w
u


(u1w − w1u)+ ξ ′

w
u


u2

∇ w
u

2 . (2.1)

We now consider a semilinear Dirichlet problem

1u + λf (x, u) = 0 in D, u = 0 on ∂D, (2.2)

and the corresponding linearized problem

1w + λfu(x, u)w = 0 in D, w = 0 on ∂D. (2.3)

We call a solution u(x) of (2.2) singular, if the problem (2.3) has non-trivial solutions. The value of

D fuu(x, u)w3 dx is

important at a singular solution. If this integral is non-zero, the singular solution is non-degenerate, i.e., it persists under
small perturbations, and in case the Crandall–Rabinowitz theorem applies, the sign of this integral governs the direction of
bifurcation, see e.g., [1] for an exposition.

Theorem 2.1. Let u(x) be a positive solution of (2.2), and assume that the linearized problem (2.3) has a non-trivial solution,
and moreover w(x) > 0 on D. If we have, for some c > 0,

u2fuu(x, u) ≥ c (ufu(x, u)− f (x, u)) , for all u > 0, and x ∈ D, (2.4)

then 
D
fuu(x, u)w3 dx > 0. (2.5)

If, on the other hand, for some c > 0,

u2fuu(x, u) ≤ −c (ufu(x, u)− f (x, u)) , for all u > 0, and x ∈ D, (2.6)

then 
D
fuu(x, u)w3 dx < 0. (2.7)
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Proof. Wemultiply the Eq. (2.3) by w2

u , and subtract from that the Eq. (2.2) multiplied by w3

u2
, then integrate

λ


D


fu(x, u)

u
−

f (x, u)
u2


w3 dx =


D

w2

u2 (w1u − u1w) dx.

We now apply Picone’s identity (2.1), with ξ(t) = t2, and use the divergence theorem and our boundary conditions
D

w2

u2 (w1u − u1w) dx = 2

D
uw

∇ w
u

2 dx > 0.

If the condition (2.5) holds, then
D
fuu(x, u)w3 dx ≥ c


D


fu(x, u)

u
−

f (x, u)
u2


w3 dx > 0.

Similarly, the condition (2.6) implies

−


D
fuu(x, u)w3 dx ≥ c


D


fu(x, u)

u
−

f (x, u)
u2


w3 dx > 0,

concluding the proof. �

Remark. A similar result was proved in J. Shi [12], in case f = f (u) As was pointed out in [12], this result has limited
usefulness for autonomous problems.

Example. f (x, u) = a(x)up
+ b(x)uq, with given positive functions a(x) and b(x), and positive constants p and q. One

computes, with c = 1,

u2fuu − ufu + f = (p − 1)2a(x)up
+ (q − 1)2b(x)uq > 0 for all u > 0, and x ∈ D,

and so (2.4) holds, and then we conclude (2.5), provided that w(x) > 0. The case when 0 < p < 1 < q is of particular
interest. Then f (x, u) is concave–convex in u, i.e., concave on (0, u0) and convex on (u0,∞), for some u0 > 0, for each
fixed x.

3. An exact multiplicity result on a ball

We consider positive solutions of

1u + λf (|x|, u) = 0 in B, u = 0 on ∂B, (3.1)

where B is the unit ball |x| < 1 in Rn. We shall assume that f (r, u) ∈ C2(B × R+) satisfies

f (r, u) > 0, for 0 < r < 1 and u > 0, (3.2)
fr(r, u) ≤ 0, for 0 < r < 1 and u > 0. (3.3)

By B. Gidas, W.-M. Ni and L. Nirenberg [13], any positive solution of (3.1) is radially symmetric, i.e., u = u(r), r = |x|, and
hence it satisfies

u′′
+

n − 1
r

u′
+ λf (r, u) = 0, u′(0) = u(1) = 0. (3.4)

The corresponding linearized problem is

Lw ≡ w′′
+

n − 1
r

w′
+ λfu(r, u)w = 0, w′(0) = w(1) = 0. (3.5)

Lemma 3.1. Assume that n ≥ 4, and f (r, u) satisfies (3.2) and (3.3). Assume also

(n − 2)ufu(r, u)− nf (r, u)− rfr(r, u) ≤ 0 for u > 0, and 0 ≤ r < 1, (3.6)
(n − 2)ufu(r, u)+ (n − 4)f (r, u) ≥ 0 for u > 0, and 0 ≤ r < 1. (3.7)

Then any non-trivial solution of (3.5) is of one sign, i.e., we may assume that w(r) > 0 on [0, 1).

Proof. We proceed similarly to the Lemma 4.7 in T. Ouyang and J. Shi [2]. We use two comparison functions: v1(r) =

rur(r)+ (n − 2)u(r) and v2(r) = r2−nv1(r). One computes

Lv1(r) = λ [(n − 2)ufu(r, u)− nf (r, u)] − λrfr(r, u) ≤ 0, (3.8)
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for u > 0, and 0 ≤ r < 1, by the assumption (3.6). Also

Lv2(r) = λr2−n [(n − 2)ufu(r, u)+ (n − 4)f (r, u)] − λr3−nfr(r, u) ≥ 0, (3.9)

for u > 0, and 0 ≤ r < 1, by our conditions (3.3) and (3.7). Compute

v′

1(r) = rurr(r)+ (n − 1)u(r) = −λrf (r, u) < 0,

in view of (3.2), and so the function v1(r) is decreasing. Since v1(0) = (n − 2)u(0) > 0, and v1(1) = u′(1) < 0 (by Hopf’s
boundary lemma), the function v1(r) has a unique root on (0, 1), which we denote by η. We shall show that w(r) cannot
vanish on [0, η), and on [η, 1).

Assume thatw(r) vanishes on [0, η), and let ξ < η be its first root. We may assume thatw(0) > 0, and thenw′(ξ) < 0.
Combining (3.5) and (3.8), we get

rn−1 
w′v1 − wv′

1

′
≥ 0.

Integrating this over (0, ξ)

ξ n−1w′(ξ)v1(ξ) ≥ 0,

but the quantity on the left is negative, a contradiction.
Assume now thatw(r) vanishes on [η, 1), and let ξ ≥ η be its largest root. We may assume thatw(r) > 0 on (ξ , 1), and

thenw′(ξ) > 0, w′(1) < 0. Combining (3.5) and (3.9), we get
rn−1 

w′v2 − wv′

2

′
≤ 0.

Integrating this over (ξ , 1)

−ξ n−1w′(ξ)v2(ξ)+ w′(1)v2(1) ≤ 0,

but the quantity on the left is positive, since the first term is non-negative, and the second one is positive (recall that
v2(r) < 0 on (η, 1]), a contradiction. �

Example. Assume that n ≥ 4, and consider f (r, u) = a(r)up
+ b(r)uq, with constants 0 < p < 1 < q, and the functions

a(r), b(r) ∈ C1
[0, 1) ∩ C[0, 1] are assumed to satisfy

a(r) > 0, b(r) > 0, a′(r) ≤ 0, b′(r) ≤ 0 for 0 ≤ r < 1, (3.10)

na(r)+ ra′(r) ≥ (n − 2)pa(r) for 0 ≤ r < 1, (3.11)

nb(r)+ rb′(r) ≥ (n − 2)qb(r) for 0 ≤ r < 1. (3.12)

Then f (r, u) satisfies the conditions of the theorem. Notice that our conditions imply that q ≤
n

n−2 , i.e., q is subcritical.

We have the following exact multiplicity result.

Theorem 3.1. For the problem (n ≥ 4)

u′′
+

n − 1
r

u′
+ λ


a(r)up

+ b(r)uq
= 0, u′(0) = u(1) = 0 (3.13)

assume that the conditions of (3.10)–(3.12) hold. Then there is a critical λ0 > 0, such that for λ > λ0 the problem (3.13) has
no positive solutions, it has exactly one positive solution for λ = λ0, and exactly two positive solutions for λ < λ0. Moreover, all
positive solutions lie on a single smooth solution curve u(r, λ), which for λ < λ0 has two branches denoted by 0 < u−(r, λ) <
u+(r, λ), with u−(r, 0) = 0, and limλ→ 0 u+(0, λ) = ∞.

Proof. Existence of positive solutions for small λ follows by the method of super- and sub-solutions. Indeed, consider first
the problem

u′′
+

n − 1
r

u′
+ λa(r)up

= 0, u′(0) = u(1) = 0. (3.14)

Letϕ1(r) denote the principal eigenfunction of the Laplacian on the unit ball B, with the Dirichlet boundary condition, and by
ψ1 the principal eigenfunction on a slightly larger ball. Thenλϵϕ1(r), andλMψ1 formanordered sub-solution–supersolution
pair for (3.14), provided that we choose ϵ small andM large. The same pair also works for

u′′
+

n − 1
r

u′
+ λ


a(r)up

+ δb(r)uq
= 0, u′(0) = u(1) = 0 (3.15)

for δ small enough, giving us a positive solution of (3.15). A suitable multiple of that solution is a solution of (3.13). This
solution tends to zero, as λ → 0.
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We now continue the solutions forward in λ, by using either the Implicit Function Theorem, or the bifurcation theorem
of Crandall–Rabinowitz [4], see [1] or [2] for more details. By the a priori estimates of B. Gidas and J. Spruck [14], this curve
cannot go to infinity at some λ > 0 (observe that our conditions imply that q < n

n−2 ). This curve cannot be continued
forward in λ indefinitely. Indeed, multiplying the Eq. (3.1) by ϕ1(r) and integrating, we conclude

λ < λ1 sup
x∈D,u>0

u
f (x, u)

,

which implies that λ is bounded.
It follows that the solution curve will reach a singular point (λ0, u0), at which the linearized problem (3.5) has a non-

trivial solution, and where the Crandall–Rabinowitz [4] theorem applies, see [1] or [2] for more details. By Theorem 2.1 and
Lemma 3.1, the quantity I defined in (1.4) is positive, and hence a turn to the left occurs at this, and any other singular points.
It follows that (λ0, u0) is the only singular point, and after the turn at (λ0, u0) the curve continues without any more turns,
tending to infinity as λ → 0. �

4. A class of concave–convex equations on a thin annulus

On an annulusΩ = {x | 0 < A < |x| < B} in Rn, n ≥ 2, we consider the problem

1u + λf (u) = 0 inΩ, u = 0 on ∂Ω. (4.1)

We study positive radially symmetric solutions of (4.1), depending on a positive parameter λ. It is known that the problem
(4.1) may have positive non-radial solutions, in contrast to the case when domain is a ball in Rn, and all positive solutions
are necessarily radially symmetric. This problem arises in many applications, and there is a large literature on the subject,
including W.-M. Ni and R. Nussbaum [15], S.S. Lin [16]. To get an exact multiplicity result, we shall restrict our attention to
the case of ‘‘thin’’ annulus, which we define next. Set cn = (2n − 3)

1
n−2 for n ≥ 3, and c2 = e2. We shall assume that

B ≤ cnA. (4.2)

The special role of ‘‘thin’’ annulus was recognized first by W.-M. Ni and R. Nussbaum [15], but they had a more restrictive
condition, involving cn = (n − 1)

1
n−2 for n ≥ 3, and c2 = e. Their condition appeared later in S.S. Lin [16]. The condition

(4.2) was used in P. Korman [11].
Radial solutions of (4.1) satisfy

u′′
+

n − 1
r

u′
+ λf (u) = 0 for A < r < B, u(A) = u(B) = 0. (4.3)

Wemake a standard change of variables. In case n ≥ 3, we let s = r2−n and u(s) = U(r), transforming (4.3) into the problem

u′′
+ α(s)f (u) = 0, for a < s < b, u(a) = u(b) = 0, (4.4)

where α(s) = (n − 2)−2s−2k, with k = 1 +
1

n−2 , a = B2−n and b = A2−n. In case n = 2, we set s = − log r , and u(s) = U(r),
obtaining again the problem (4.4), this time with α(s) = e−2s, and a = − log B, b = − log A. The corresponding linearized
problem is

w′′
+ α(s)f ′(u)w = 0, for a < s < b, w(a) = w(b) = 0. (4.5)

We proved the following theorem in [11], see also the exposition in [1].

Theorem 4.1. Assume that the annulus is thin, i.e., the condition (4.2) holds, and the function f (u) ∈ C1(R+) ∩ C(R̄+) satisfies
f (u) > 0 for u > 0. Then any non-trivial solution of (4.5) is of one sign.

This result, together with the Theorem 2.1 provides us with the following exact multiplicity result, whose proof is similar
to that of Theorem 3.1.

Theorem 4.2. On an annulusΩ = {x | A < |x| < B} ⊂ Rn consider the problem

1u + λ

up

+ uq
= 0 inΩ, u = 0 on ∂Ω, (4.6)

with constants 0 < p < 1 < q. Assume that the annulus is thin, i.e., the condition (4.2) holds. Then there is a critical λ0 > 0,
such that for λ > λ0 the problem (4.6) has no positive solutions, it has exactly one positive solution for λ = λ0, and exactly two
positive solutions for λ < λ0. Moreover, all positive solutions lie on a single smooth solution curve u(r, λ), which for λ < λ0 has
two branches denoted by 0 < u−(r, λ) < u+(r, λ), with u−(r, 0) = 0, and limλ→ 0 u+(0, λ) = ∞.
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5. Numerical computation of solution curves

In this section we present computations of the global curves of positive solutions u = u(r) for the problem

1u + λf (|x|, u) = 0 in B, u = 0 on ∂B, (5.1)

where B is the unit ball |x| < 1 in Rn, n ≥ 1. We shall assume that f (r, u) ∈ C2(B× R+)∩ C(B̄× R̄+) satisfies (3.3), and then
by B. Gidas, W.-M. Ni and L. Nirenberg [13] any positive solution of (5.1) is radially symmetric, i.e., u = u(r), r = |x|, with
u′(r) < 0, and hence it satisfies

u′′
+

n − 1
r

u′
+ λf (r, u) = 0 for 0 < r < 1, u′(0) = u(1) = 0. (5.2)

The standard approach to numerical computation of solutions involves curve following, i.e., continuation in λ by using the
predictor–corrector type methods, see e.g., E.L. Allgower and K. Georg [17]. These methods are well developed, but not easy
to implement, as the solution curve u = u(x, λ) may consist of several parts, each having multiple turns. Here λ is a local
parameter, but not a global one, because of the possible turning points.

The quantity α = u(0) gives the maximum value of any positive solution. There are a number of situations, where
α = u(0) is a global parameter, i.e., the value of α uniquely identifies the solution pair (λ, u(r)) (see the discussion below).
We shall do a continuation in α, i.e., we shall compute the solution curve of (5.2) in the form λ = λ(α). We begin with a
simple lemma.

Lemma 5.1. The solution of the linear problem

u′′
+

n − 1
r

u′
+ f (r) = 0 for 0 < r < 1, u(0) = α, u′(0) = 0

can be represented in the form

u(r) = α +
1

n − 2
r−n+2

 r

0


zn−2

− rn−2 zf (z) dz, for n ≠ 2,

u(r) = α +

 r

0
(ln z − ln r) zf (z) dz, for n = 2.

Proof. Integrating
rn−1u′

′
= −rn−1f (r)

over the interval (0, z), we express

u′(z) = −
1

zn−1

 z

0
tn−1f (t) dt.

Integrating over the interval (0, r), we have

u(r) = α −

 r

0

1
zn−1

 z

0
tn−1f (t) dt dz.

Integrating by parts in the last integral (with u =
 z
0 tn−1f (t) dt, dv =

1
zn−1 dz), we conclude the proof. �

If we solve the initial value problem

u′′
+

n − 1
r

u′
+ λf (r, u) = 0, u(0) = α, u′(0) = 0, (5.3)

then we need to find λ, so that u(1) = 0, in order to obtain a solution of (5.2). By Lemma 5.1, we rewrite the Eq. (5.3) in the
integral form (for n ≠ 2)

u(r) = α +
λ

n − 2
r−n+2

 r

0


zn−2

− rn−2 zf (z, u(z)) dz, for n ≠ 2,

and then the equation for λ is

F(λ) ≡ u(1) = α +
λ

n − 2

 1

0


zn−2

− 1

zf (z, u(z)) dz = 0. (5.4)

We solve this equation by using Newton’s method

λn+1 = λn −
F(λn)
F ′(λn)

.
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We have

F(λn) = α +
λn

n − 2

 1

0


zn−2

− 1

zf (z, u(z)) dz,

F ′(λn) =
1

n − 2

 1

0


zn−2

− 1

zf (z, u(z)) dz +

λn

n − 2

 1

0


zn−2

− 1

zfu(z, u(z))uλ dz,

where u = u(r, λn) and uλ = uλ(r, λn) are respectively the solutions of

u′′
+

n − 1
r

u′
+ λnf (r, u) = 0, u(0) = α, u′(0) = 0; (5.5)

u′′

λ +
n − 1

r
u′

λ + λnfu(r, u(r, λn))uλ + f (r, u(r, λn)) = 0, uλ(0) = 0, u′

λ(0) = 0. (5.6)

(As we vary λ, when solving (5.4), we keep u(0) = α fixed, that is the reason why uλ(0) = 0.) This method is very easy
to implement. It requires repeated solutions of the initial value problems (5.5) and (5.6) (using the NDSolve command in
Mathematica).

In case n = 2, we have

F(λ) = α + λ

 1

0
z ln zf (z, u(z)) dz,

F ′(λ) =

 1

0
z ln zf (z, u(z)) dz + λ

 1

0
z ln zfu(z, u(z))uλ dz,

and the rest is as before.

Example. We have solved the problem

u′′
+

n − 1
r

u′
+ λ


u1/2

+ (1 − 0.2r2)u3/2
= 0 for 0 < r < 1, (5.7)

u′(0) = u(1) = 0.

The Theorem 3.1 applies here. The global curve of positive solutions, for n = 4, is presented in Fig. 1. For any point (λ, α)
on this curve, the actual solution u(r) is easily computed by shooting (using the NDSolve command inMathematica), i.e., by
solving (5.3). In Fig. 2 we present the solution u(r) for λ ≈ 6.30263, when u(0) = 7.5. (This solution lies on the upper
branch of our solution curve.)

We now discuss under what conditions α = u(0) is a global parameter, i.e., the value of α uniquely identifies the solution
pair (λ, u(r)) for the problem (5.2). This property also has theoretical significance, as it rules out any secondary bifurcations.
In case n = 1, u(0) is a global parameter, assuming the condition (3.3) holds (fr ≤ 0), see P. Korman [18], or P. Korman
and J. Shi [19]. It is natural to ask if the same result holds in case n > 1. We have no proof, and this question appears much
harder in case n > 1, although our computations suggest that the result is still true. (If u(0) were not a global parameter,
the computed solution curve would have to be discontinuous, which never happened in our computations.) We have the
following simple result (which does not require that fr ≤ 0).

Theorem 5.1. Assume that f (r, u) ∈ C([0, 1] × R̄+) satisfies

f (r, u) ≥ 0 for 0 ≤ r < 1, u > 0, (5.8)

f (r, u)
u

is decreasing in u, for 0 ≤ r < 1, u > 0. (5.9)

Then α = u(0) is a global parameter for positive solutions of (5.2), i.e., for any α there is at most one solution pair (λ, u(r) > 0)
of (5.2), with u(0) = α.

Proof. Assume, on the contrary, that there are two solution pairs (λ, u(r)) and (µ, v(r)) of (5.2), with µ > λ, and
u(0) = v(0). By (5.8),

v′′
+

n − 1
r

v′
+ λf (r, v) ≤ 0 for 0 ≤ r < 1. (5.10)

Combining this with (5.2),
rn−1 

u′v − uv′
′

+ λrn−1uv

f (r, u)

u
−

f (r, v)
v


≥ 0. (5.11)
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Fig. 1. The global solution curve for the problem (5.7), n = 4.

Fig. 2. The solution u(r), corresponding to α = u(0) = 7.5, and λ ≈ 6.30263.

Observe that

nv′′(0) < −λf (0, v(0)) = nu′′(0).

It follows that v(r) < u(r) for small r > 0. Let 0 < ξ ≤ 1 be the first point of intersection of u(r) and v(r), i.e., v(r) < u(r)
for r ∈ (0, ξ). Integrating (5.11) over (0, ξ),

ξ n−1u(ξ)

u′(ξ)− v′(ξ)


+ λ

 ξ

0
rn−1uv


f (r, u)

u
−

f (r, v)
v


dr ≥ 0,

which results in a contradiction, because the first term on the left is non-positive, and the second one is negative. �

Example. Consider f (r, u) = u(a(r)− u), corresponding to the logistic population model. Assume that a(r) > 0 on [0, 1],
and it satisfies

a′(r) < 0, and a′′
+

n − 1
r

a′ < 0 for 0 ≤ r < 1. (5.12)

Since fr < 0, it follows by [13] that u′(r) < 0 for r ∈ (0, 1). Then u′′(0) ≤ 0, and so u(0) ≤ a(0). We need to verify that
u(r) ≤ a(r), so that (5.8) holds, and the theorem applies. Assuming the contrary, we have u(r) > a(r) on some interval
(ξ , η), with 0 ≤ ξ < η < 1, and u(ξ) = a(ξ), u(η) = a(η). We then have

u′′
+

n − 1
r

u′ > 0 for r ∈ (ξ , η).

Lettingw = u(r)− a(r), we have
rn−1w′

′
> 0, w(r) > 0 for r ∈ (ξ , η), w(ξ) = w(η) = 0.

Integrating over (ξ , η), we have a contradiction. We conclude that u(0) is a global parameter.

Another situation when u(0) is a global parameter occurs for positive solutions of

u′′
+

n − 1
r

u′
+ λrα f (u) = 0 for 0 < r < 1, u′(0) = u(1) = 0. (5.13)



Author's personal copy

234 P. Korman / Nonlinear Analysis 93 (2013) 226–235

Fig. 3. The global solution curve for the problem (5.16), n = 3.

Here α is any real number, f (u) ∈ C(R). If we change the variables

r =
1

λ
1
α+2

t,

then u = u(t) satisfies

u′′
+

n − 1
t

u′
+ tα f (u) = 0 u′(0) = 0. (5.14)

Its first root occurs at t = λ
1
α+2 (corresponding to r = 1). Let v(r) solve

v′′
+

n − 1
r

v′
+ µrα f (v) = 0 for 0 < r < 1, v′(0) = v(1) = 0, (5.15)

withµ ≠ λ. Let us assume that u(0) = v(0). Then the substitution r =
1

µ
1
α+2

t takes (5.15) also into (5.14), and u(0) = v(0).

By uniqueness for initial value problems v(t) ≡ u(t), but the first root of v(t) occurs at t = µ
1
α+2 ≠ λ

1
α+2 , a contradiction.

We now describe the shoot-and-scale method for computing the bifurcation diagrams for (5.13) (and this is the only
class of non-autonomous equations, for which this method works). Given the value of α = u(0), solve the initial problem
(5.14), together with u(0) = α. Compute t0, the first root of this solution. Then set

λ = tα+2
0 .

The point (λ, α) belong to the solution curve. Repeating these calculations for a mesh of α’s, we approximate the solution
curve of (5.13).

Example. The problem

u′′
+

n − 1
r

u′
+ λ

r2

(1 − u)2
= 0 for 0 < r < 1, (5.16)

u′(0) = u(1) = 0, 0 < u(r) < 1

arises in modeling electrostatic micro-electromechanical systems (MEMS), see [20–22]. We have solved this problem using
continuation in u(0) for n = 3, and the solution curve is given in Fig. 3. We have also solved this problem by the shoot-
and-scale method, and obtained the same result. Previously, a similar picture was given in N. Ghoussoub and Y. Guo [21]. It
follows from the results of Z. Guo and J. Wei [22], that the solution curve of (5.16) makes infinitely many turns. In Fig. 3 we
followed the solution curve until u(0) = 0.9995. It follows that infinitely many turns must occur in the remaining 0.05% of
the solution curve’s range.
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