Solutions Manual
Lectures on Differential

Equations
Philip L. Korman

Chapter 1

Section 1.3.1, Page 10

5x
1.1 The initial guess is x? Its derivative

d e5m 5 1 5
% <$?> = Te + 56
5
has an extra term %65”3. The derivative of o5 will cancel this term. An-
e5m e5m N
swer. T 5 9% C.

sin 2x

1.2 The initial guess is x . Its derivative

d ( sin 2x
T

1
e 2 ):xcos2x—|—§sin2x

2
cos 2t will cancel this term.

has an extra term %sin 2x. The derivative of

sin2x  cos2x
4

Answer. z + c.

cos 3T

2
1.3 The initial guess is —(2z + 1) . The extra term —— cos 3z will be

cos 3x

2 2
cancelled by the derivative of 9 sin3z. Answer. —(2z+1) —|—§ sin 3z+c.
L4 The initial guess is —2ze™*/2.  Answer. e ®/?(—4 — 22) + c.

1.5 The initial guess is —a2e~*. The first correction is —x

Answer. —x2e ™ —2xe ™ —2¢7 % + ¢.

2e7% _ 2pe 7.



1 1
1.6 The initial guess is §:E2 sin2x. The first correction is §:E2 sin2x +

1 1 1 1
§:E cos 2x. Answer. §:E cos2x + (5:132 — Z) sin 2z + c.

1
1.7 The initial guess is (:132 + 1) ? and it gives the correct answer.

1 1
1.9 The initial guess is ————————. (Write the fraction with the smaller
2241 2249
denominator 2% + 1 before the fraction with the larger denominator 2 +9.)
Adjust to

1 _1[ 1 1
(22 +1)(224+9) 8 [22+1 2249]°

1 1

.10 The initial guess is Pl P Adjust to
x o x
(224 1) (224+2) 2241 22427
L11 1 _ 1 _1 [l _ L}
d4+4x x(2®2+4) 4lz 2?2+4
6 1 6
1.12 Substitution v = Inz gives /u5 du = % +c= % + c.
I.14 / rsinnx dr = [_:Ecosn:n + Smg:E] |” = z(—1)""’1.
0 n n 0 n

I1.15 Look for the antiderivative in the form

/ezm sin 3z dr = Ae** sin3x + Be** cos 3z +c.
We need to choose the constants A and B so that

d
. (Aezm sin 3z + Be*® cos 3:E) = e**sin 3z .
T

Calculate

di (Aezm sin 3z + Be?® cos 3:E) = 2A4e%" sin 3x+3Ae*® cos 3x+2Be*® cos 3x—3Be*” sin 3z
z

= (24 — 3B) €**sin3z + (3A + 2B) ¢** cos 3z .

Then we need

(2A — 3B) €**sin 3z + (3A + 2B) €*“ cos 3z = ¢** sin 3z .



This will hold, provided
2A—-3B=1

3A+2B=0.

2 3
Solving this system of equations gives A = — and B = I3 We conclude

13
that

2
2z _:

3 d = —
e SIN ok axr 136

2 2

3
Tsin 3z — Ee Tcos3r +c.

Page 12
II.1 The integrating factor u = e~ Jsinwde _ goosz ppep
d

a

COS T ] — eCOS"E SIDJE,

COosT COos T
—e +c,

BTy =
y=—1+4+ce %,
I1.2 Here p = ef T4 — T _ 4 Then
d
%[:L'y]:a:coszn,

ry=axsinx + cosx + ¢,

c . Ccosx
Yy=—+snx + .
T T

1I.3  Divide the equation by z, to put it into the form for which the method

—T

2 e

of integrating factor u(z) was developed. Obtain i + ~y = —, and pu =
x x

ef%dm _ e21nm _ eln(mz) — 22. Then

£ ] =,

1.4 Divide the equation by z*, to put it into the form for which the method
x

In(z3) 3

e3lnm — 3.

3

was developed. Obtain i/ +=y = 6—2, and p = ef Sdo _ =
T T

Then

% [:Egy] = ze”

3



:Esy:/:nemd:nzznem—em—l—c,

_c +(ZE—1)€m
V=3 x3

1.5 oy —2zy =223 p= e~ J2mde — o=0® e

% [e‘mz y] = 2g3e" ,

e y=2 /:E?’e_m2 dr = e~ (—:E2 — 1) +ec.

The integral was computed by a substitution z = z2, followed by integration
by parts. Solve for y:

1 1 1 1
Ey:/ﬁezd:n:—ez—l—c,
y:cznz—:nze%.
1.7 Here = e**. Then

. [ezm y] = ¢**gin 3z,

2 3
ey = /ezm sin3x dr = Eezm sin 3x — Eezm cos3zx + ¢,

2 3 3 37 4+
= —sindr — — .
y = gsindz — Jgcosdz +c

(One looks for the integral in the form / e*sin3rdr = Ae*®sin3z +

Be** cos 3z, and the constants A and B are found by differentiation.)

Page 13
1.1 With g = e 2%, write the equation as

d

—2:2}_ —2r x _ _—x
— |€ =e€ e’ =e .
d:n[ 4



The general solution is y = ce?* — e%, and ¢ = 3.

III.2 Here p = z. Obtain

i[:E | =xzcosz
d,:L' y - 9

:Ey:/ZECOS:L'd:L'::L'Sin:L'—I—COS:L'—I—C.

c+axsinx + cosx
The general solution is y = * * , and ¢ = 0. The solution
x

rsinx + cosx .
becomes y = —+ It can be continued indefinitely to the right

of the initial point x = g, while to the left of x = g one can continue the

solution only to = 0. The solution is valid on (0, c0).

9 .
II1.3 Divide the equation by z: ¢/ + =y = g, then p = e2*% = 22, The
T x
. c—cosT w2
general solution is y = ———, and c = ——.
T 4
I : / 2 1 z+2Inx 2,
II1.4 Divide the equation by z: ¢y + (1+ —)y = —, u=-e¢ = ze”.
T T

ce P4+ —1

5 ,and ¢ = 3e 2. Tt can be continued

The general solution is y =

indefinitely to the left of the initial point * = —2, while to the right of
x = —2 one can continue the solution only to x = 0. The solution is valid
on (—00,0).

efE

II1.5 Divide the equation by z: 3’ —y = —. The general solution is
x
y = ce” + €"In|z|, and ¢ = 1. Beginning at = —1, this solution may be

continued on (—o0,0).

1 ) 1
II1.6 Divide the equation by t + 25: y + VT i o dt _
t
ent+2) — ¢ 4+ 9. This leads to y = T—i_; Using y(1) = 1, get ¢ = —2, so
5t —
that y = PR Starting from the initial point ¢ = 1, the solution can be

continued on the interval (-2, 00).

2
L7 o — TV = t3cost, 1 = t=2. The general solution is y = t3sint +

0
t? cost + ct?, and ¢ = —5



d 1 t
II1.8  Divide the equation by ¢Int: a 4+ —y = 56— W= efTitd

dt -~ tlnt Int’
et — In¢. The general solution is r = 617—1;6, and ¢ = —5e?. Tt is valid
n

on (1,00), because Int in the denominator vanishes at ¢t = 1.

II1.9 Combine the zy’ and vy’ terms, then solve for 4/ to write the equation
as

o2 1
SCEI NS VEN
9 . Injlx—1|+c¢ .
Here p = (x — 1)*, and the general solution is y = W, with
':U fe—
In|lz—1] -3
¢ = —1n3. Obtain: y = % Starting at z = —2, one encounters
':U fe—

zero denominator at x = 1. The solution is valid on (—o00,1). On that
interval z < 1, so that x —1 < 0, and |z — 1| = —(z — 1) = 1 — z. Then the

. : In(l—z) -3
solution can writen as y = ——————.
(z—1)?
II1.10  Obtain a linear equation for x = z(y)
d
e o
dy

Calculate p(y) = e ¥, and then

% (e7va) =y?e™,

e Yxr = /yze_y dy = —y?e ¥ —2ye ¥ — 27 Y +c.

The general solution is & = —y? — 2y — 2 + ce¥. The initial condition for the
inverse function is (0) = 2, giving ¢ = 4.
Page 15

IV.2  The general solution is y = £+v/2e® + ¢. Choose “minus” and ¢ = —1,
to satisfy the initial condition.

IV.3 By factoring the expression in the bracket, simplify

1
d—y:(:n—l—g)d:n,



22
giving y = ez T®Izlt¢ Also, there is a solution y = 0. If we write the
2

solution in the form y = c|z|e™, then y = 0 is included in this family (when
c=0).
IV.4  The factor /4 —y? = 0 if y(x) = —2 or y(z) = 2, both solutions

of this differential equation. Assuming that \/4 — y2 # 0, we separate the
variables

1 2
| Fr=to= [
3
sin_lgz%—l—c,

3
yzQsin(%—l—c) .

IV.5 In the equation

we separate the variables

/Z—g :/t(1+t2)_1/2 dt,

—3=(1+t2)1/2+c,

)
1
yt) = ————
& 1+ 4 e
The initial condition 1
0 == — pr—
y(0) 1+c

implies that ¢ = —3
IV.6  The key is to factor
y—azyt+trx—1l=—ylz—-1)+ax—-1=(@—-1)(-y+1).

Then
2?dy = (x—1)(y - 1) de,

dy 1 1
/y—l_/($_:n2> dz,



1
Inly—1]=In|z|+ - +¢,
x

ly —1| = c|:n|e% . (e is the new ¢)
Writing |y — 1| = £(y — 1), and |z| = 4+, we can absorb + into ¢, to get

1
y—1=cxez.

Now solve for y, and determine ¢ = —% from the initial condition.
IV.7 The function y = 1 is a solution of our equation

dy

2 2

L —y—1.
Yo=Y

Assuming that y # 1, we separate the variables

2
Y 1
dy = / ~de.
/ y—1 4 2
The integral on the left is evaluated by performing division of the polyno-
mials y? and y — 1, or as follows

2 2141 1 1
/ y dy:/iy dyz/(y—I—l—I——) dy:—y2+y—|—ln|y—1|.
y—1 y—1 y—1 2

We obtained the solution in the implicit form

1, 1
Y tyt+hnly—1]=——+c,
2 T

which can be solved for = as a function of y.

IV.8 Because the integral / ¢* dz cannot be evaluated in elementary func-

X
tions, write the solution as y = ¢ e’ dt. Choose a = 2, because the initial

a
condition is prescribed at x = 2, and then ¢ = 1.

IV.9 Variables will separate after the factoring xy? + zy = xy(y + 1).

Obtain:
[vato=/
——— = [ zdx,
y(y+1)

1 1 x?
- - |
/[y y—l—l] dy 2 +Inc,



2
In—2 —:E——I—lnc,
y+1 2
22
L:ceT
y+1

Now solve for y:

[N

2

2 x
y=cez(y+1l)=cezy+cez,
z2
cez
y=—2=-
1—ce?
The initial condition gives
c
0) = =2
y(0)=1—
Solve for c:
c=2(1—-¢)=2-2c,
.. 2
iving ¢ = —.
g g 3

d
IV.10 d_y = 2x(y? + 4). The general solution is y = 2tan(2z% + ¢). The
x

initial condition requires that tanc = —1. There are infinitely many choices
for ¢, but they all lead to the same solution as ¢ = —7% because of the
periodicity of the tangent.

IV.11 Completing the square, write our equation in the form

dy 1 2
dt__4(2y_1) '

1 1
The function y(t) = 3 is a solution of this equation. Assuming that y # 3

—4/ﬁ:/dtv

t+c.

we separate the variables

—1

1 1 1
Taking the reciprocals of both sides, obtainy— - = ——, ory = =+
2 t+ec 2



1 1 1
V.12 7:d—$, /[———]dy:/d—gv, Injy— 1] — lny =
yly—1) x y—1 y x

In|z|+1Ine, or == clz|. Also, y = 0 and y = 1 are solutions.

IV.13 The general solution was obtained in the preceding problem. Near
the initial point z = 1 and y = 2, defined by the initial condition y(1) = 2,

we may drop the absolute value signs and obtain Y~ _ ¢z Solve for Y

Y

——, and determine ¢ = —.
1—cx 2

IV.14 Setting z = z + y, gives ¢/ = 2/ — 1, 2(0) = y(0) = 1. Obtain

y:

Z=2241, 2(0)=1.
Separating the variables, z(z) = tan(x 4+ ¢). From the initial condition,
2(0) = tanc =1, so that ¢ = % (By periodicity of tanx, there are infinitely
many other choices for ¢, but they all lead to the same solution.) Conclude:
z(x) = tan(z + %), and y = —x 4+ z = —z + tan(x + %)

Section 1.7.1, Page 32
Writing the following equations in the form ¢ = f (%), we justify that

they are homogeneous, and then set v = Y o reduce them to separable

. x
equations.
d d d
1.1 —y:g—|—2, v:g, v—l—:n—vzv—i—Q, /dv:2/—$, v=2Ilnz+c,
de =z x dx x

y=xz2lnx+c).

d d
y::E—I-y:g_i_l’ v:g, v—l—:E—U:v—l—l, v =In|z| + ¢,

1.2 —
dx T T T dx
y =z (In|z| +¢).
dy Y y>2 Y dv 9 dv 9
13 Z2=1-24(=2 =2 —=1-2 == (v—1)2
e :E—I- =) v o U+$daz v+v7, :Ed:E (v—1)

One solution of the last equation is v = 1, giving y = z. If v # 1, obtain
dv dx

(v—12 a2’
1
—y—1 ~ lelte

1 1
gving v Inz+c’ y=2* ( 1n:n—|—c>

10



I.4 This equation is not homogeneous. (We will solve it later as a Bernoulli’s
equation.)

d
L5 v+ g + v. The general solution is y = % Calculate
dx In|z|+c
¢ = —1. Near the initial point z = 1, In|z| = Inz, so that y = T s
—Inz
1.6 This time ¢ = 1, and near the initial point x = —1, the absolute value
sign is needed.
d'U 2 . .
1.7 v+ 22— = v° + 2v. Separating the variables

dx

dv ~ [dx
/v(v +1) )z’
Inv—In(v+1)=Inz+Inc,
,U J—
v4+1
Solve this equation for v, starting by clearing the denominator

CT .

v=czx(v+1)=crv+czx,

(1—cx)v=cx,
cx

1—cx’
2

Then y = zv = 1&, and to satisfy the initial condition y(1) = 2 need
—cx

Then ¢ = 2(1 — ¢), giving ¢ = %

d d
1.8 Y _Y + tan g, v+ :E—U = v + tanwv. Separating the variables
de =z x dx
COS v dx
/ —dv= | —,
sinv x

In|sinv| =In|z| +Inec,
| sinv| = c|z|.
We may drop the absolute value signs by redefining c. Then sin y_ cx, or
y = xsin ! cz. !

11



d d d
| A —I—%, vt = T + v, /(1+v)dm: —m,
x

1
§v2+vzln|$|—|—c.

Solving this quadratic equation for v gives v = —1 £+ 4/1 + 21In|z| 4+ ¢ (with

anew c),ory=—z+txz\/1+2In|z|+c

d d 1 1
I.10 % = g—l—%, v—l—:né = ;—I—v, 51)2 =In|z|+e, y=+z\/2In|z|+c.

To satisfy the initial condition y(1) = —2, select “minus”, and ¢ = 4. Obtain
y = —xv2Inz + 4 (using that In|z| = Inz near the initial point x = 1).

d —1/2 d
.11 _y:(g> —1—5, v—l—:nd—vzv_l/z—l—v, 2v/v =Inz +c,
T

dz x
1 2
xT

4
y? y
I.12 Begin by solving for 3/, 3y = ————. Let = =v or y = zv.
a3 + zy? x
v—l—:ndv— 2303 B v3
de 23+ 2302 1—02’
dv v3 v
;U—:——’U:——’
de 142 1+ 22
1+ v? d
/ v dv = — —m,
v z

Also, y = 0.

Page 34
II.1 y(t) = 01is a solution. Assuming that y # 0, divide the equation by 3

y 2y =3yt -1,

12



and set v = y~!. Then v' = —y 24/, and one obtains a linear equation
—v' =3v—1.

1 1 3
Its general solution is v = 3 + ce™3 and then y = ~ (with a

v 14 ce 3t
new c).

1.2 Divide the equation by 3?2, and set v = y~'. Then y 2y’ = —¢', and
one obtains a linear equation

/
v ——v=1.
x

1 2
Its general solution is v = ~Z 4+ £ Then y=—-= z 5 (with a new c).
2 =z v c—x

The initial condition implies that ¢ = 2.

I1.3 Divide the equation by 2, and set v = y~'. Then y %y = —/, and
one obtains a linear equation

/
v —v=2.
1

1
Its general solution is v = x (¢c+Inx). Then y = — = ————. Using
v z(c+Inz)
the initial condition, ¢ = %
I1.4 Divide the equation by y*
y Yty =u,
1 1
and set v =y~ 2 = —. Then o= =273y y 3y = —51)’, and one obtains
Yy
a linear equation
1 /
_§U +v==x.
. 1 o 1 1
Its general solutionisv =2+ = +4+ce**. Theny=4+—=+—=o-o—w-.
2 Vv \Jar+ % + ce2r
1
The initial condition y(0) = —1 requires us to select “minus” and ¢ = 3

1.5 o =y+2zy L

multiplying by y

1

Divide the equation by y~ ", which is the same as

yy' =y* + 2.
Setting v = y?, v’ = 2yy/, produces a linear equation
1 /
§U =v+x,

13



1 1
with the general solutionv = cezm—:E—E. Theny = +vv = +4/ce?® —x — 3

1.6 o —|—:Ey% = 3y. There is a solution y = 0. If y # 0, divide the equation
1
by y3
_1, 2
y 3y +x=3y3,
3
z,

2
and set v = y%, so that y = £v2. Calculate v/ = gy_%y’, and obtain a

linear equation

3
51}'—31):—:13.

3
1 1 2
Its general solution is v = % + 8 +ce?®, and then y = + (% + 8 + cezm> .

IL7 o —|—:Ey% = 3y. There is a solution y = 0. If y #£ 0, divide the equation
1
by y?, then set v =yt = =, v = —y~2y/
Yy
y iy +y =,
V' +v=—2x.
. . 1
Obtainv=ce* —z—1,and y = ————.
ce* —x —1

I1.8 Divide the equation by v3, y ™3y +a2y™2 = 1. Set v = y~2, v/ =

—2y~3y/, and obtain a linear equation
v —2zv=—-2, v(l)=y (1) =¢€>.

Its integrating factor is p = e_mz, and then

da
dx

[e‘mzv} — 27,

The integral of e~ cannot be computed in the elementary functions, so that

we use definite integration, beginning at x = 1 (where the initial condition
is known)

2 z 2
e ” v:—2/ e U dt+ ¢,
1
x

v = —2¢% / et dt + ce .
1

14



2

From the initial condition, v(1) = ce = e“, so that ¢ = e, and then

X
v = —2¢% / et dt + T
1

It follows that

1 1
y = :l:— = :l: .
Vv \/—26932 [§ et dt 4 ex*+1

1
The original initial condition, y(1) = ——, requires us to select “minus”.
e

1.9 ¢ =y + 2zy~'. Multiply the equation by vy, yy’ = y* + 2z, and set
v = y?, to obtain a linear equation

1, 49
—v =0 .
21}

Its general solution is v = ce?® — 2z — 1, and then y = +v/ce2® — 2z — 1.

I1.10 Multiply the equation by y, yy' = y% +ze**, and set v = 32, to obtain
a linear equation

1 / 2x
-V =0 xe .
5 +

Its general solution is v = e2* (:132 + c), and then y = e 22 + c.
II.11  Write the equation as

1dz
EE—(I—Z)IDZE,

then set y(t) = Inz(t), y’ = 22, Obtain a linear equation

y +by=a,
giving y = % + ce™®. Then z = ¢e¥ = ea/bece™
I1.12 Divide the equation by e

ze ¥y —x+2eY=0.

Setting here v = e ¥, with v’ = —e~ Y3/, obtain a linear equation for v = v(z)

—zv' +2v=12x.

15



- 1
Solving it gives (here y = e 218% = en(=?) = —)
x

’U::E—I—C:E2,
and then y = —lnv = —1In (:E+C:E2).

11.13  This equation has a solution y = 0. Assuming that y # 0, take
the reciprocals of both sides, to obtain Bernoulli’s equation for the inverse

function z = z(y)

1
(y) =~z + 2.
y

Divide this equation by z?

v ()2 (y) = }c*(y) 1,

and set v(y) = 271 (y). With v/(y) = —z~2(y)2/(y), obtain a linear equation

1
—v'=-v+1.
Y
.. y 1 2y .
Its general solution is v = —= 4+ —, and then x = — = 5 (with 2¢ = ¢).
2y voCc—Y
2y
Answer: x = ——, and y = 0.
c—Yy
Page 35

1.1 Set v =t, then z = ¢34+ ¢, and
dy:y/dm:t(3t2—|—1) dt ,

dy 3
— =3t t
dt Tt

34,19
=t 22 4 e.
Y 1 + 5 +c
1.2 Set y = t, then y = In(1 + t?). The possibility of 3’ = 0 leads to a
solution y = 0. If 4/ # 0, we can write

2t

2
do= W _ TP gy dt,
y t 1+ t2
d:n_ 2
dt 1+’

16



r=2tan 't+c.
1.3 Set y =t, then z =t +sint, and

dy =y dr =t (1 + cost) dt,

dy =t+tcost
dt ’

1
Yy = §t2—|—tsint—|—cost—|—c.

The initial condition requires that the curve (x(t), y(t)) passes through (0, 0).
The equation
r=t+sint=0

has t = 0 as its only solution. In order to get y = 0 at ¢ = 0, one needs to
choose ¢ = —1.

III.4 Divide the equation by 32, and set v = y~'. Then y 2y’ = —v, and
one obtains a linear equation

—v' =3v—-1.

1 1 3
Its general solution is v = ce % + 3 and then y = — The

v 1+ 3ce 3t

initial condition implies that y = ————.
initial condition implies that y =

III.5  Let y(t) be the weight of salt in the tank at a time ¢.
salt in=0,
. Y
1t out te) =5 —— =0.05y.
salt out (per minute) 100 Y

Obtain the equation
y = —0.05y, y(0)=10,

with the solution y(t) = 10e™%%?, In particular, (60) ~ 0.5.
III.6  Let y(t) be the weight of salt in the tank at a time ¢.

salt in (per minute) = 0.3,

: Y
It out te) =3 —=— = 0.03y.
salt out (per minute) 100 Yy
Obtain the equation

y' =0.3-0.03y, y(0)=10,

17



with the solution y(¢) = 10.

III.7  Let y(t) be the weight of poison in the stomach at a time t.

poison in =0,

. . Y 1
poison out (per minute) = 0.5 3=§Y

Obtain the equation
1
y/ = _éyv y(O) = 3007
with the solution y(t) = 300e7 5. In particular, y(t) = 50 at t = 61n6 ~
10.75.

II1.9 The tangent line at the point (zg, f(x0)) is y = f(x0) + f'(z0)(x — z0).
It intersects the z-axis at %, so that y = 0 when z = x(/2, giving

0= f(zo) + f'(x0) (-%330) :

zof'(x0) = 2f (x0) -

Replacing the arbitrary point xg by x, obtain a separable equation, which
is easy to solve

af'(z) = 2f(),
/';/((j)) dx :/gdm,

In f(z) =2lnz +Inc,
f(z) = cz?.

III.10 The tangent line at the point (zq, f(70)) is y = f(xo)+f (z0)(x—z0).
At the point x1 where it intersects the z-axis obtain

0= f(zo) + f'(x0) (x1 — o)
so that the horizontal side of our triangle is

~ f(=o)
f(zo)

Tl —Xo =

18



The vertical side of the triangle is f(z(). We are given that the sum of the
sides is b, so that
(o)

fao) = f'(o)

f(w0) f'(w0) — f(z0) = bf'(x0) -
Replace the arbitrary point xg by x, and the function f(z) by y(z):

=b,

yy' —y =0y
The quickest way to solve this equation is to divide by y, then integrate

/

y/_lzby_v
Yy

y—z=blny+c.

We obtained the solution in implicit form (it can be solved for z).

Y

The triangle formed by the tangent line, the line x = z, and the z-axis

III.11 The tangent line at the point (zq, f(70)) is y = f(xo)+f (z0)(x—z0).
It intersects the y-axis at the point (0, f(zo)—xof (x0)). Calculate the square
of the distance between the points (xq, f(zo)) and (0, f(x) —xof (z0)), and
set it equal to 1

a3+ 22 (x) = 1.

19



We now replace the arbitrary point z¢ by z, and the function f(x) by y(x),
obtaining

R /1 2
y= —/7$dm: —V1—22—-Inz+1n [1—|—\/1—JE2} +ec.
x
The integral was computed by a substitution x = sin 6.

III.12 The tangent line at the point (g, f(xq)) is y = f(xo) + f'(z0)(z —
xo). It intersects the z-axis at the point (z1,0) in the picture above, which

is the point (zg — }f/(($0)) ,0). The distance from this point to the origin
Zo
is zp — }f/((iio))' The distance from this point to the point (zg, f(x0)) is
0
f?(@o) :
+ f2(xg). We are given that
(o)
(o) f? (o)
o — = + f2(x0) .
O PG N P T
Square both sides, expand the square on the left, then cancel a pair of terms
220 f (o)
2 0 0 2
x5 — ———t = f*(x0) .
O f(xo) o)

We now replace the arbitrary point z¢ by z, and the function f(x) by y(x),
obtaining

22y
22— y/ — 2,
22y
22 2 = e
’ 2y
22— 2"

’ v
y Y =20, Y :U-i-:E—,tO

dx

The last equation is homogeneous. Set v =

obtain

20



dv 2v B v4v3

- = ’U——,
:Ed:c 1—02 1 — 2

/1_U2dv— d_:n

v+ v z

Using partial fractions

1 — 02 1— 02 1 20

v+v3 v(l40?) v 241"

We then continue with the integration

Inv —1In(1+4+v?) =Ilnz +Inc,

v
n
1+ 02
v
1+ 02
7@//:1: =cz
1+ (y/z)? ’
y
2 —I-y2 -

1

=Incx,

=cz,

1
2+ =cy, withanewc==.
c

This is a family of circles centered along the y-axis.

II1.13  After guessing a particular solution y = e*, a substitution y(z) =
e” + z(x) produces the equation

2/222
ith th I solution 2(x) L giving y(2) = ¢ — —
wi e general solution z(z) = ———, giving y(z) = e* — .
& Tr+c VIS ¥ Tr—+c
Answer: y =e* — ,and y = e”.

+c

II1.14  After guessing a particular solution y = 1, a substitution y(z) =
1 + z(z) produces Bernoulli’s equation

2422 —e%22 =0

1 . B 1
€% 4 ce2e’ giving y(z) = 1+ €% + ce2e’

,and y = 1.

with the general solution z(x) =

A ry=14+ ——+
nswer: y +em—|—cezm

21



II1.16  Differentiate the equation and use the fundamental theorem of cal-
culus

y=y+1, y(1)=2.

Solving this linear equation, y = —e® — 1.
e

Page 38
IV.1 Here M(z,y) = 2z +3z%y, N(z,y) = 2° —3y*. Calculate M, = 32% =
N,. The equation is exact. To find 1 (x,y), one needs to solve the equations
Py = 2x + 322y
y = 3 — 3y2.

Taking the antiderivative in x in the first equation gives ¢ (z, y) = 223y +
h(y), where h(y) is (at the moment) an arbitrary function of y. Substituting
¥ (z,y) into the second equation obtain

>+ R (y) = 3 — 3y2,

so that h/(y) = —3y?, and h(y) = —y>. (The constant of integration was
taken to be zero, because an arbitrary constant will appear at the next step.)
It follows that ¥ (x,y) = 22 + 2%y — y3, and 22 + 23y — y® = ¢ gives solution
in implicit form.

IV.4 Clearing the denominators
zdr+2y3dy =0

gives a separable equation 2y> dy = —x dz.

IV.5 Here M(z,y) = 6zy — cosy, N(z,y) = 3z? + xsiny + 1. Calculate
M, = siny = N,. The equation is exact. To find 1 (z, y), one needs to solve
the equations

P, = 6y — cosy
Py =322 4 xsiny+ 1.

From the first equation t(z,y) = 3z*y — zcosy + h(y), where h(y) is an
arbitrary function of y. Substituting v (x,y) into the second equation gives

322 + zsiny + B/ (y) = 32> + xsiny + 1,

so that A'(y) = 1, and h(y) = y. It follows that (z,y) = 32%y — z cosy + ¥,
and 3z%y — z cosy + y = ¢ gives solution in implicit form.

22



IV.6 Here M(z,y) =2z —y, N(z,y) = 2y — x. Calculate My = —1 = N,.
The equation is exact. To find 9 (z, y), one needs to solve the equations

¢m:2$_y
Yy =2y —x.

From the first equation 1 (z,y) = 22 — zy + h(y), where h(y) is an arbitrary
function of y. Substituting ¥ (z, y) into the second equation gives

—z+h(y) =2y -z,

so that '(y) = 2y, and h(y) = y>. It follows that ¥ (z,y) = z° — zy + 3,
and 22 — 2y + % = ¢ gives solution in implicit form. Substituting z = 1 and
y = 2 obtain ¢ = 3, so that 22 — zy + y® = 3.

IV.7 Here M(z,y) = 2z + 2zx\/22 —y, N(z,y) = —/22 —y. Calculate

_1
My =—x (:172 - y) * = N,, so that the equation is exact. To find 9 (z, ),
one needs to solve the equations

Yy = 20+ 2x\/22 — ¥y

¢y:_ $2_y'

It is easier to start with the second equation, taking the antiderivative in y

to get
_ 2/ 2 3
bley) =5 (o —y)* +h@),
where h(x) is an arbitrary function of z. Substituting ¢ (z, y) into the first

equation gives

N
(NI

2z (:172 —y) +h(z) =22+ 2z (1172 —y) )

3
so that A/(z) = 2z, h(z) = 22, and (:172 - y) * 4 2% = ¢ gives the solution.

IV.8 Here M (z,y) = ye™ sin 2z+2e™ cos 20+2z, N(z,y) = ze™ sin2x—2.
One verifies that M, = N, and the equation is exact. To find ¥ (z,y), one
needs to solve the equations

P, = ye®sin 2z + 2e™Y cos 2z + 2x

1y = xesin 2z — 2.

23



This time it is advantageous to begin integration with the second equation,
obtaining
Y(z,y) = e"sin2x — 2y + h(x),

where h(x) is an arbitrary function of z. Substituting ¢ (z, y) into the first
equation gives

ye®¥ sin 2z + 2e™¥ cos 2z + b/ (z) = ye*¥ sin 2z + 2¢™Y cos 2x + 27,

so that W/(z) = 2z, h(z) = 22, and €™ sin 22 — 2y + 2 = ¢ gives the general
solution. The initial condition says that the point x = 0, y = —2 lies on this
curve, so that ¢ = 4.

IV.9 Here M(z,y) = ye™ + 2z, N(x,y) = bxe*”. The condition M, = N,
requires that
™Y + xye™ = be™ + bxye™, for all x and vy,
which makes it necessary that b = 1. When b = 1 the equation becomes
(ye™ +2z) de + ze®™ dy =0
and it is exact. One calculates ¢ = ¢®¥ + 2. The solution ¢®¥ + 22 = ¢ can
be solved for y.

IV.11 Here M(z,y) =z — 3y, N(x,y) = =+ y. The equation is not exact,
because M, = —3, while N, = 1. Writing this equation in the form

@__:E—Ziy

dx r+y

one obtains a simple homogeneous equation.
Page 39

1
V.1 Here f(z,y) = (y — 1)1/3, and f,(z,y) = 3 (y — 1)_2/3. The function
fy is not continuous at y = 1 (it is not even defined at y = 1). The existence
and uniqueness theorem does not apply.

V.2 Here f(z,y) =

x .
o In order for f(x,y) and f,(z,y) to be continu-
ous at the point (2, yy), one needs the denominator of f(z,y) to be non-zero
at that point, so that yg —4#£0, or yg # 2.
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rlx|  2? , oz [z2 =z

3 Ifx >0,th = —— = —. Calcul == — ===

V.3 Ifx >0, theny 1 1 Calculate y 2,and ly| 1= 3

Ifz < 0, th Hol -2 alewtatey’ = — . and I A

ny=——=——. = ——,an ={/—=—=.

x , then y 1 - Calculatey 5 2 Yy 1 5
Observe that y = % is differentiable at x = 0.

Another solution is y = 0.
Section 1.8.1, Page 45
1. Let v(xz) = zu(z). We are given that
To(t
v(z) SK—I—/ Md/t.
1t
By the Bellman-Gronwall lemma
v(z) < Kel 14 = et — ggp |

It follows that zu(x) < Kz, or u(z) < K.

2. Observe that for any K > 0
u(z) < K + / " a(t)ult) dt.
o
By the Bellman-Gronwall lemma
u(x) < Kef; ale)dt

Letting K — 0, obtain u(z) < 0. We are given that u(x) > 0, which implies
that u(z) = 0.

3. Set b(t) = a(t)u(t). Then

By the preceding problem u(x) = 0.

Chapter 2
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Section 2.3.3, Page 60

I.1 One could reduce order by letting /' = v, ¥” = v’. Alternatively, write
this equation as

and integrate
12

Yy =x+cr,
y’z:l:(:n—l—cl)l/z,

2

3(:E + 61)3/2

y g :l: + CQ .
I.2 Let y =v,y” =% to obtain a linear first order equation

/
v +v=x,

(xv)' =z,
:m)zlznz—l—cl
B )
;. _1 C1
y—U—§$ =z

L 5
y:Z:E +eilnx +co.

I3 Let y = v, y” =9 to obtain a linear first order equation

v v =22,
23
Its general solution is 3 = v(x) = 22 — 2z + 2+ e~ ®. Then y = o 2+
2x 4+ c1e” " + co (with a new ¢q).
1.4 Letting v = v, ¥y’ = v/ obtain a Bernoulli’s equation

v’ + 20 =02
(This equation is also separable.) Divide by v?, then set w = v~!, with
w' = —v~%’. Obtain
o+ 207 =1 ,
—zw' +2w=1, w(l)=1.
1 1

(Observe that w(1) = o = e =1.)




1 1
The solution of the last equation is w = 3 (:132 + 1). Then ¢y = v =— =
w

m
R Integrating, obtain y = 2tan"!z + ¢, and then ¢ = —5 because
y(1) = 0.
L5 Let ¥ =v, y” =2 to obtain a separable first order equation
v = —2z0?,
y/ =V = 71
24

We need to determine c¢; now, because the integral of depends on

2+ ¢y
the sign of ¢1. From the second initial condition

"0)= == -4
y'(0) o

1
get c; = I Then

41 1
Y= -1~ 22—-1 2241

y=mn2z -1 —In|2z 4+ 1| +c2.

From the first initial condition ¢y = 0.

Page 60
1.1 The substitution 3’ = v(y), ¥”" = v'v produces a separable first order
equation
dv
v— = 303,
Yy dy

The possibility that ' = v = 0 produces a family of solutions y = c. If
v # 0, obtain

1
—— =3Iny +cy,
v

1
3lny+cy’
dy 1

dr~ 3lny—+c

27



This is again a separable first order equation. Obtain

/(3lny—|—cl) dy:—/d:v,

3(ylmy—y)+cay=—z+co.

I1.2  The substitution y' = v(y), ¥” = v'v produces a separable first order

equation
dv
— = —v2.

dy

The possibility that 4’ = v = 0 produces a family of solutions y = c. If
v # 0, obtain

Yyv

dv_ dy

v Y

Inv=—Iny+1In¢ :lnc—l,
Yy

dy c1
—:’U:—7

dx Y

/ydy:q/dfc,

P =ciz+ e (with a new ¢q) .

This time the family of solutions y = ¢ need not be presented separately,
because it is included in the second family when ¢; = 0 and ¢y > 0.

I1.3  One could use the substitution ¢’ = v(y), as in the preceding problems.
Alternatively, write this equation in the form

d/d2

dz? = ax?

and integrate both sides:

y'(x) =y’ () + e
Setting here z =0
y'(0) = y*(0) + e,
and using the initial conditions, one determines that ¢; = 1. Then

dy

2
= 1
d,ﬁL’ y + Y

28



/y+1 /dm

or y = tanx + co, and co = 0 by the first initial condition.
1.4 Again, rather than using the substitution 3y’ = v(y), it is easier to write
the equation as
d d
= ()

dz’ ~ dz
and integrate both sides:

Y=y +y+ecr.

Setting here x = 0, and using the initial conditions, one determines that
c1 = 0. Then
dy

@y _ 3
/ L gy=s+t
y=2x+cs.
Y +y
Use partial fractions
I T

vty yP+1D) oy g2 +1
to obtain )
lny—iln(yz—i—l)zzn—l—cz,

2Iny —In(y?> + 1) =22+ co  (with a new ¢3),

y2

In —-2—
ny2+1

=2z + co,

2
2x :
— = th .
Fi1 coe (with a new ¢)

Solve this, first for 4, and then for y

Y2 = o™ (y* + 1) = c2e®y® + o™,

(1 — ce®®)y? = c9e?®,

) = n Cze2m
1 — cge2®

To satisfy the first initial condition, one needs to take “plus”, and co = =

29



Page 61

III.1  The roots of the characteristic equation

P24+ 4r+3=(r+1)(r+3)=0

are r = —3 and r = —1. The solution is y = cre 3t 4 cqet.

III1.2  The roots of the characteristic equation

?—3r=0

are r = 0 and 7 = 3. The solution is y = ¢1 + co€>".

III1.3  The roots of the characteristic equation

224 r—1=0
1 . . —t 1
arer = —1 and r = 3 The solution is y = c1e™" + cge2”.
III.4 The roots of the characteristic equation
r*—3=0
are r = +v/3. The solution is y = cle_\/gt + cze\/gt.
III.5  The roots of the characteristic equation
3r2 —5r—2=0
1 PN -1 2t
are r = —3 and r = 2. The solution is y = c1e” 3" + coe.

II1.6  The roots of the characteristic equation
r—9=0

are r = 3. The general solution is y = ¢1e 3t +c9e3. The initial conditions
imply
y(0)=c1+c2=3

y'(0) = —3c; +3co = 3.
Solving this linear system for ¢; and ¢y gives ¢; =1, ¢ = 2.

III.7  The roots of the characteristic equation

r4+5r=0

30



are r = —5 and r = 0. The general solution is y = c1e ! 4 ¢5. The initial
conditions imply
y(0)=c1+co=~1

y'(0) = —5c; = —10.
Solving this linear system for ¢; and ¢y gives ¢; = 2, co = —3.

II1.8  The roots of the characteristic equation
P4+r—6=0

are r = —3 and r = 3. The general solution is y = ¢;e > + cpe?!. The initial
conditions imply
y(0) =c1 +c2 =2

y'(0) = —3c1 +2co = 3.

7 3
Solving this linear system for ¢; and ¢y gives ¢; = — co = —%
III.11  The roots of the characteristic equation
3r2—2r—1=0
1 . . _ 1y t c .
are r = —— and r = 1. The general solution is y = c1e™ 3" 4+ c9e’. The initial

conditions imply
y(0)=c1+c2=1

1
y'(0) = —30 +e=a.

3 1
Solving this linear system for ¢; and ¢y gives ¢; = —Z(a— 1),co = Z(3a—|— 1).

The solution is then

3 1
y= —Z(a - 1)6_%t + Z(3a +1)et.

In order for this solution to remain bounded as ¢t — oo one needs 3a+1 =0,

ora— ——.

3
Page 62

IV.1 The characteristic equation

4+ 6r+9=0

31



has a double root r = 3. The general solution is y = ¢;e3 + cote’.

IV.2 The characteristic equation
4r? —4r+1=0

1 1 1
has a double root r = 3 The general solution is y = c1e2! + cote??.

IV.3 The characteristic equation
r2—2r+1=0

has a double root r = 1. The general solution is y = c1e! + cotel. The initial
conditions imply
y(0)=c1 =0

Y (0)=c1 +co=—2.
Solving this linear system for ¢; and ¢y gives ¢c; =0, co = —2.
IV.4 The characteristic equation

92 —6r+1=0

. The general solution is y = cle%t + czte%t. The

has a double root r =

initial conditions imply

y(0)=c =1
, 1
y'(0) = 561—1—62 =-2.

. - . 7
Solving this linear system for ¢; and ¢y gives ¢1 =1, co = —3
Page 62
V.1 (i) €™ = cos7 +isinm = —1.

(ii) e7"™/? = cos (—/2) + i sin (—7/2) = cos (x/2) — i sin (1/2) = —i.

3r_ VI 2

(iii) Z'3T7T—cos3—7T—|—z'sim —— =i
Ty 2

(iv) €™ = cos 27 + isin 27 = 1.

(v) V26l T :\/§<cos%+isin%> :\/§<£+ZQ> =1+1.
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5 7\ O .
(Vl) (COS% —|—’LSln g) = (elg) — elﬂ' — _1

Page 62
VI.1 The characteristic equation
r?+4r+8=0

has complex roots r = —2 + 2i. The general solution is y = cje 2! cos 2t +

cze_zt sin 2t.

VI.2 The characteristic equation

r?+16=0

has purely imaginary roots r = £44. The general solution is y = ¢y cos 4t +
co sin 4t.

VI.3 The characteristic equation
r?—4r+5=0

2

has complex roots r = 2+i. The general solutionis y = ¢;e? cos t+coe? sin t.

The initial conditions imply
y(0)=c =1
y'(0) =2c1 +co = —2.
Solving this linear system for ¢; and ¢y gives ¢; =1, co = —4.

V1.4 The characteristic equation
r?+4=0

has purely imaginary roots r = £24. The general solution is y = ¢y cos 2t +
co sin 2t. The initial conditions imply

so that y = —2 cos 2t.

VI.5 The characteristic equation

92 +1=0
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1 1
has purely imaginary roots r = :l:g. The general solution is y = ¢ cos gt +

1
¢z sin gt. The initial conditions imply

1
"0)==zca =5,
y'(0) 362

1
so that y = 15sin gt.
VI.7 The characteristic equation
4r® 4 8r +5=0

t

1 1
has the roots r = —1 £ 5@ The general solution is y = cie™" cos 575 +

1
coetsin 515. The initial conditions imply

y(m) =coe” ™ =0

y'(m) = —clée_7r —coeT T =4,
so that y = —8e™e ! cos %t.
VI.8 The characteristic equation
?4+1=0

has the roots r = +i. The general solution is ¥y = ¢y cost + cosint. The
initial conditions imply

VI VB

T
R Y2 _ 0
y(P)=a5 tesg
LT V2 V2
R I S
y(7)=—a—45 +e
From the first equation, co = —cq. Then from the second equation, V2¢i =
1 2 2 2
l,eg=—= £ The solution is y = — cost — £ sint, which can also
V2 o2 2 2

be written as y = —sin (¢t — 7 /4).

Page 63
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VII.1 The characteristic equation
r24+br4+c¢=0

Vb% —4c

b
has th tsr=—==+£
as the roots r 5 5

b Vb2—4
Case (i) b*>—4c > 0. Both roots are real. Clearly, 1| = —~ A )

2 2
Vb2 —4 b Vb2
The other root is also negative ro = —5 + TC < —3 + - = 0. The

rit

solution y = ¢1e™! + et — 0, as t — oo.

Case (ii) b*> —4c = 0. Both roots are equal to —g < 0. The solution
Y = cle_%t + czte_%t — 0, as t — oo.

Case (iii) b*> —4c < 0. The roots are complex —g + iq. The solution
Yy = cle_%t cos gt + cze_%tsin qgt — 0, as t — oo.

VIL.2 The characteristic equation

rP4+br—c=0
b Vb2+4
has the roots r = —3 + % Both roots are real. Clearly, r1 =
b Vb2 —4 b Vb2+4
5~ TC < 0. The other root ro = —3 + % is positive. The

general solution is y = y = c1e™! + coe™!. If some solution is bounded as
t — oo, one must have co = 0, and then this solution tends to zero, as
t — 0.

VIL.3 The function tet is a solution of
(%) ay” + by +cy=0
when the characteristic equation

P 4+br+c=0

has a double root r = —1. The quadratic equation cannot have any more
roots, and therefore the equation () cannot have a solution y = €3 (which
would correspond to the root r = 3 of the characteristic equation).
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VII.4 Observe that —

d [ty ) ly — ¢ 12 .
(i> _Wytrvy- , and then this equation

dt \ y 32
can be written in the form
d [ty
4 (i) _0
dt \ y
Integrate
ty’
A,
)
Then .
y_a
y ot

Iny =ciInt+1Incy,

Yy = cott.

Section 2.5.4, Page 70

3t —1t
_| ¢ e 2| _ 3t | 3 L 1 5y
L1 (i) W(t)—| 303 —%e_%t =e (—Ee 2)—36 e T =—ger.
2t 2t
t
(i) W(t) = 2221& 2 4 2t22t =% (€2t + 2t62t) — 2% et = M,
¢ £
e’ cos 3t e’ sin 3t ot 9 . 9
(i) W) et cos 3t — 3elsin3t  esin 3t + 3ef cos 3t 3¢ (COS 3t +sin”3 )
3e%.
. | cosh4t  sinh4t | 2 - o
(iv) W(t) = Asinhdt dcoshdt | = 4 (cosh 4t — sinh 4t) =4.
1.2 We are given that
2
; ; =te,

t2g' —2tg = toe .

To find g one needs to solve a linear first order equation:

2
g = Zg=t,
d1 . 1
E[t_zg]:tev (M:t_g)
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1
t—zg:/tetdt:tet—et—l—c,

g = t3et — t2e! + ct?.

1.3 We are given that

elg +etg=1t, g(0)=0.
To find g one needs to solve a linear first order equation:
g +g=te, g(0)=0,

d
dt

eg—/teztdt t2t 2t—|—c,

[e g] = te?! (p=-¢e)

1
g—§te —Ze +ce ", c=-—.

1.4 Given that
W(f,9)(t)=fg' —fg=0,

write
fd=1ry,
g _ I
g [’

and integrate both sides
Ing=Inf+Inc,

g=cf.
.5 Apply the Theorem 2.4.2. Here p(t) = 0 for all ¢t. Therefore,

W (y1(t), y2(1)) (t) = c.

Page 70
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II.1  The general solution is y = ¢; cosh 2t+co sinh 2¢. The initial conditions
give
y(0) = c1 cosh 0 + ¢osinh0 =¢; =0,

1
y'(0) = 2¢1 sinh 0 + 2¢o cosh 0 = 2¢o = —3

1 1
so that ¢; =0, and ¢o = —5 giving y = ~6 sinh 2¢.

II.2  The general solution is y = ¢; cosh 3t+co sinh 3t. The initial conditions
give
y(0) = c1 cosh 0+ ¢cosinh0 = ¢ = 2,

y'(0) = 3cq sinh 0 + 3ca cosh 0 = 3¢ =0,
so that ¢; = 2, and ¢o = 0, giving y = 2 cosh 3t.

I1I.3  The general solution is y = ¢; cosht 4 co sinht. The initial conditions
give
y(0) = ¢1 cosh0 + cosinh0 = ¢; = -3,

y'(0) = ¢18inh 0 + cpcosh0 = ¢y = 5,
so that y = —3 cosht + 5sinht.

Page 71

III.1 The general solution centered at 7 /8isy = ¢ cos (t — 7/8)+co sin (t — 7/8).
The initial conditions give

y(m/8) =c1 =0,

Y (m/8) =co=3.
II1.2  The general solution centered at 7w/4 is y = c¢ycos2(t —w/4) +
cosin2 (t — w/4). The initial conditions give

y(r/4) =c1 =0,

Y (m/4) = 2co =4,
so that ¢y = 2.

III1.3  The general solution centered at 1 is y = cre” D 4 pe3t1) | The
initial conditions give
y1)=c1+c=1,

y/(l) =—c1+3c0=7.
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Calculate ¢y = —1, co = 2.

II1.4 The general solution centered at 2 may be written as y = ¢1 cosh 3(¢t —
2) 4 cosinh 3(t — 2). The initial conditions give

y(2)=c =-1,
y/(2) =3c2 =15,
so that ¢y = 5.

Page 71

IV.1  We need to find y2(t), the second solution in the fundamental set. It
will be convenient to write y = y(¢) instead of y2(t). By the Theorem 2.4.2

ey
Y

_ Ce—f(—z)dt _ Ce2t7

/
ety —ely = €2t

We set here ¢ = 1, because we need just one solution to fill the role of ya(t).
Now solve the linear first order equation for y:

y —y=¢,
dr

&[e y} _17
y(t) = tet.

Again, we set the constant of integration to zero, because we need just one
solution, which is not a multiple of y; = e'. We found yo(t) = te'. The
general solution is y = cie’ + caotel.

IV.2 We begin with dividing this equation by ¢
2 2
1 /
— = — Yy = 0
v =Y+ Y

2
to put it into the form required by the Theorem 2.4.2. Here p(t) = —7 We

need to find yo(t), the second solution in the fundamental set. Again, we
write y = y(t) instead of y2(t). Using the Theorem 2.4.2




ty/—y:tz.

We set here ¢ = 1, because we need just one solution to fill the role of ya(t).
The general solution of this linear first order equation is y = t* +¢it. Again
we set here ¢; = 0, because we need just one solution, which is not a multiple
of y1 = t. We found y5(t) = t>. The general solution is y = c1t + cot?.

IV.3 We begin with dividing this equation by 1 + ¢

y// _ 2t y/ _|_ y = 0
1+ ¢2 1+ ¢2
. . 2t
to put it into the form required by the Theorem 2.4.2. Here p(t) = e

We need to find y3(t), the second solution in the fundamental set. Again,
we write y = y(t) instead of y2(t). Using the Theorem 2.4.2

= ce_f(_littz)dt = e+ = ¢ (1+1t%),

Yy
’

W(t) = f ;

ty/—y:1+t2.

Again, we set here ¢ = 1. The general solution of this linear first order
equation is y = t* — 1 + ¢; t. We set here ¢; = 0, to obtain y(t) = t* — 1.
The general solution is y = ¢t + co(t* — 1).
IV.4 Divide this equation by t — 2
t 2
1 /
- _Z =0
VoV i ey

to put it into the form required by the Theorem 2.4.2. Here

t t—2+2 2

_ T 1

t:— fd — —1 — .
plt) = -7 t—2 P

Again, we write y = y(t) instead of y(¢). Using the Theorem 2.4.2

= e JImER) At _ ptin(-2)? _ cel(t—2)?,

ety — et =el(t —2)?,
Y —y=(t-2)°.
Again, we set here ¢ = 1. The general solution of this linear first order

equation is y = —t* + 2t — 2 4 c1e’. We set here ¢; = 0, to obtain y(t) =
—t? 4 2t — 2. The general solution is y = cye! + co(—t* 4 2t — 2).
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Page 72

V.1  Calculate the Wronskian of y; = ¢ and y2 = sint to be W (t) =
tcost — sint, and observe that W(0) = 0. If y; = t and yo = sint were
solutions of some equation of the form

v +pt)y +9(t)y=0,

then by the Corollary 2.4.2 we would have W (¢) = 0 for all ¢, which is clearly
not the case.

V.2 The Wronskian of the solutions is W (1, cost) = —sint. By the Theo-
rem 2.4.2
“sint = ce~J POt

Choose ¢ = —1, then take logs, and differentiate both sides:

Insint = —/p(t) dt,

cott = —p(t).
With p(t) = — cot t, the equation becomes
y" —cotty' + g(t)y=0.

Since y(t) = 1 is a solution of this equation, it follows that g(¢) = 0. Finally,
if one chooses a different value for ¢, the resulting equation is the same.

V.3 Substituting y = tv(t) into the Legendre’s equation obtain
t(t* — )0 (t) 4 (4% — 2)0/(t) = 0.

Setting z(t) = v'(t), obtain a separable first order equation
t(t* —1)2'(t) + (4t — 2)2(t) = 0.

(This equation is also linear.) Its solution is z(t) Set here

. C
C2(1 —2)

c = 1, then integrate v'(t) = as in the text, obtaining

12(1 — 2)
1 11 1
)= | 5———dt=—=— = — - '
v(t) /t2(1—t2) dt ; 21n(1 t)—|—2ln(1—|—t)
Then 1 1
ya(t) =to(t) = -1 — 5tln(l —t)+ 5tln(l +1).
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Section 2.10.2, Page 83

1.1  According to the Prescription 1, look for a particular solution in the
form y = Acost+ Bsint. Substituting this function into the equation, and
combining the like terms gives

(A —3B)cost+ (3A — B)sint = 2sint.

We need to solve a linear system

—-A—-3B=0
3A—-B=2.

. 3 1 . . : :
Obtain A = = B = —z The particular solution we obtained is Y =
3 1
= cost — 3sin t. The general solution of the corresponding homogeneous
equation

2y//_3y/_|_y —0
is c1e"/? + coet. The general solution of the original non-homogeneous equa-

t/2 ¢

1
tion is y = 3cost— 3sint—|—cle + coe”.

1.2 According to the Prescription 1, look for a particular solution in the
form y = Acos2t + Bsin2t. Substituting this function into the equation,
and combining the like terms gives

(A+8B)cos2t+ (—8A + B)sin2t = 2cos2t — 3sin 2t .
We need to solve a linear system

A+8B =2
—8A+ B =-3.

2 1 2
Obtain A = 5 B = 5 The particular solution we obtained is Y = R cost—+
1
= sint. The general solution of the corresponding homogeneous equation

y//+4y/+5y:0

2t 2

sint. The general solution of the original non-homogeneous
2 2

iscie” “" cost+coe

2 1
equation is y = 5 cost + 5 sint + cre 2 cost + coe ! sint.
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1.4 We use a short-cut to the Prescription 1, looking for a particular solution
in the form y = A cosvt. Substitution into the equation gives

A(9 — v*) cosvt = 2cosut,

cos vt.

2

2 2
SothatA:9_—V2,andY:9

1.5 On the right we see a linear polynomial multiplying cost. According
to the Prescription 1, look for a particular solution in the form y = (At +
B)cost + (Ct + D)sint. Substituting this function into the equation, and
combining the like terms gives

2Ctcost—2Atsint+(2A + 2C + 2D) cost+(—2A — 2B + 2C) sint = 2t cost .
It follows that

20 =2
—2A=0
2A+2C+2D =0
—2A-2B+2C=0.

Obtain: ¢ =1, A =0, D = —1, B = 1. The particular solution we
obtained is Y = cost+(t—1) sint. The general solution of the corresponding
homogeneous equation

y// + 2y/ + y — 0
is cre”! + cote™t. The general solution of the original non-homogeneous
equation is y = cost + (t — 1) sint 4 cre™* + cate™.

1.6 According to the Prescription 2, look for a particular solution in the
form y = At+B. Substituting this function into the equation, and combining
the like terms gives

At —2A+B=t+2,

so that A =1, B = 4. The particular solution we obtained is Y =t + 4.

1.7 According to the Prescription 2, look for a particular solution in the
form y = At> 4+ Bt + C. Substitution of this function into the equation, and
combining the like terms gives

4A2 + 4Bt +2A+4C =t? — 3t + 1,

1 3 1
so that A = 7 B = 7 C = 3 The particular solution we obtained is
1 3 1
Y =t - "t4 -,
4 4 * 8
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1.8 According to the Prescription 3, look for a particular solution in the
form y = Ae®. Substituting this function into the equation, and combining
the like terms get

16A4e™ = €' .

_ 1 _ Lo
It follows that A = 16’ and Y = TR

.10 According to the Prescription 3, look for a particular solution in the
form y = (At2 + Bt + C’) e~2'. Substituting this function into the equation,
and combining the like terms get

[5AL + (—14A4 4 5B) t + 44~ TB+5C] e = (52 41— 1) e ™.

We need to solve a linear system

5A =5
—-14A+5B =1
4A-TB+5C =—-1.
It follows that A=1, B=3,C = ?, and then Y = (t2 + 3t + 15—6> e 2,

1.12  We search for a particular solution Y in the form Y = Y; + Y5, where
Y1 is a particular solution of

y// +y= 9 e4t ’
while Y5 is a particular solution of

"

Yy =1

2
Using the Prescription 3, calculate Y; = —e?, and by the Prescription 2,

17
2
Yy =t* — 2. Then Y (t) = ﬁe4t + 12— 2.

1.13 Because the sine and cosine functions have different arguments, the
Prescription 1 does not work directly. We need to search for a particular
solution Y in the form Y = Y7 + Yo, where Yj is a particular solution of

y" —y = 2sint,
while Y5 is a particular solution of

"

y' —y = —cos2t.
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The Prescription 1 applies to each of these equations, giving Y7 = cost—sint,

1 1 1
and Y5 = gCOSQt—I— 1—Osin2t. Then Y = cost —sint + gcos%—l— 1—Osin2t.

L.14 Y(z) = 2% is a particular solution. The general solution of the corre-
sponding homogeneous equation

y -2’y =0

23
is y = ce’3 . Similar theory applies to linear first order equations, therefore

the general solution is y = x2 + ce’s.

Page 84

II.1 Because cost and sint are solutions of the corresponding homogeneous
equation, we look for a particular solution in the form Atcost + Btsint.
Substituting this function into the equation gives

—2Asint + 2B cost = 2cost.

It follows that A =0, B =1, and Y = tsint.

I1.2 Because the function e? solves the corresponding homogeneous equa-
tion, we look for a particular solution in the form Ate?*. Substituting this
function into the equation gives

5Ae%t = —?t.

1 1
It follows that A = — and Y = —5t62t.

1.4 According to the Prescription 3, one searches for a particular solution
in the form y = (At 4 B)e'. However, both pieces constituting this function
(te! and €') are solutions of the corresponding homogeneous equation. Mul-
tiply this prescription by t, and consider y = t(At+B)e! = (At>+Bt)e!. The
second piece, Bte! is still a solution of the corresponding homogeneous equa-
tion. We multiply by ¢ again, and consider t(At? + Bt)e! = At3e! + Bt?el.
Substituting this function into the equation gives

6Ate! +2Be! = te .
1 1
It follows that A = 6 B =0, and then Y = étsezt.

1.5 We search for a particular solution in the form ¥ =Y; + Y5. Here Y
is a particular solution of
1 /
y —4dy =2.
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The Prescription 2 tells us to try y = A. However, constants are solutions
of the corresponding homogeneous equation. We multiply the guess by ¢,
y = At, and calculate A = —5 80 that Y7 = —575. Y5 is a particular solution

of
y" — 4y = —cost.

By the Prescription 1, Y5 = 1 cos 75—1—i sint, so that Y (t) = —lt—l—i cost+
17 17 2 17

—sint.

17
Page 85

IV.1 The functions y1(t) = e™3' and y(t) = €* form a fundamental
solution set of the corresponding homogeneous equation. Their Wronskian
is W(t) = 5¢7!, and the right hand side f(t) = 5¢*. Then

’LL/ (t) — _f(t)yg(t) — _562t62t — _e5t
! W (t) He~t ’
t t 5 2t ,—3t
g Lm0 _ st
W (t) 5e
1
Integration gives uq(t) = —3e5t, ug(t) = t. We set the constants of inte-

gration to be zero, because we need just one particular solution. We now
“assemble” a particular solution Y (t) = uy (t)y1(t) +ua(t)yz(t) = —e’le 31 +
te?! = —e?' 4 te?'. The general solution is then y = —gezt +te? + e 3 +
cae?t = te® + e + czezt, with a new cs.

IV.2 The functions y;(t) = e’ and yo(t) = te' form a fundamental solution
set of the corresponding homogeneous equation. Their Wronskian is W (t) =
t

: : e
%, and the right hand side f(t) = e Then
roy o JDwl)
wn(t) = W) 1+
poy SO 1
u(t) W) — 1+2

1
Integration gives uq (t) = ~3 In(1+%%), us(t) = tan~! t. We set the constants

of integration to be zero, because we need just one particular solution. Then

Y (t) = w1 ()y1(t) + ua(t)ya(t) = —%et In(1 + %) + te' tan' ¢.
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IV.3  The functions y;(t) = cost and ya2(f) = sint form a fundamental
solution set of the corresponding homogeneous equation. Their Wronskian
is W(t) =1, and the right hand side f(¢) = sint. Then

ui(t) = _%@éi)@) = —sint sint = —% + %coth,
ub(t) = %Zélt)(t) = sint cost.

1 1 1
Integration gives ui(t) = _§t +7 sin 2t, ua(t) = 3 sin®t. We set the con-
stants of integration to be zero, because we need just one particular solution.
1 1 1
Then Y () = ui (t)y1(t) + ua(t)ya2(t) = <_§t + 1 sin 2t> cost + 3 sin®tsint.

Expanding sin2t = 2sintcost, one can simplify Y (t) = —515 cost + 3 sin .

The general solution is
1 1 . . 1 .
y(t) = —§tcost + §smt—|— c1cost + cosint = —§tcost—|— c1co8t + cosint,

with a new constant cs.

IV.6  The functions y;(t) = e 2! and y»(t) = te™? form a fundamental
solution set of the corresponding homogeneous equation. Their Wronskian
t

e

is W(t) =e ™ and f(t) = - Then
ropy - J@yet) 1
uy(t) = — W(i) .
wn = L — 2
Obtain u;(t) = —1Int, ua(t) = —%, Y(t) = —e 2 (1 +1nt). The general

solution:

-2t _ _ —2t

y(t) = —e 2 (1 + Int) + cre™ ! + cote e 2 Int + cre 2 + cote ™t

with a new constant cj.

IV.8 The functions y;(t) = cost and ya2(t) = sint form a fundamental
solution set of the corresponding homogeneous equation. Their Wronskian
is W(t) = 1, and the right hand side f(¢) = sect. Then

f@y2(t) . sint

= —sect sint = —
W (t) cost’

() =
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’ w(t)
Integration gives ui(t) = In|cost|, ua(t) = t. We set the constants of
integration to be zero, because we need just one particular solution. Then
Y (t) = ui(t)yi(t) + ua(t)y2(t) = costln|cost| + tsint.

=sect cost=1.

IV.9 The functions y; (t) = e and yo(t) = 1 form a fundamental solution
set of the corresponding homogeneous equation. Their Wronskian is W (t) =

3e73t. Then Fua(® 6
/ t)ya(t t 3t
t)=— = — = -2t
== est
iy (t)  6te=3
(o) = L = =2t.
wl) == T e
o 2, 36,2 3 2
Integration gives u; () = —gte —|—§e ,u2(t) = t°. Then Y (¢) = ui(t)y1(t)+
2
us(t)ya(t) = —3t+ 2 + 12, and the general solution is y(t) = ==t + = +12 +

3779
2
cre” ey = —3t+ t* + c1e™ + ¢, with a new cy.

IV.10 The functions y;(t) = e~ and y»(t) = €* form a fundamental
solution set of the corresponding homogeneous equation. Their Wronskian
is W (t) = 3¢'. Then

t t —t 2t 1
ull(t):_f()yQ():_e € =_=,
W (t) 3et 3
Dy (t) etet 1 _
el == 3¢t 3°
1 1
Integration gives u;(t) = —gt, ug(t) = —§e_3t. Then Y (t) = ui(t)yi(t) +
ug(t)y2(t) = —%te_t - %e‘t, and the general solution is y(t) = —%te_t -
%e‘t +ecjet + cge?t = —%te‘t +cre7t + cpe?t, with a different ¢;. From the

initial conditions
y0)=c1+ec2=1

1
’(0):—§—c1+2cz:0,

.. 5
giving ¢ = 9 and co =

IV.12 The functions y;(t) = e ' and yo(t) = €' form a fundamental
solution set of the corresponding homogeneous equation. Their Wronskian is
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W (t) = 3e~*. Our formulas for u} and u), were developed on the assumption
that the leading coefficient of the equation is one. Accordingly, we divide
the equation by 2:

/ —2t

1
Yy =2y =g

so that f(t) = %e‘zt. Then

fu(t) _ feel 1

/
t) = — — - _Z

uy (t) W (%) 3e~t 6’

o SO0 _ et 1,

2 W (t) 3e—t 6

. . 1 1 g |

Integration gives uq(t) = _ét’ ug(t) = —5¢ Then Y (t) = _Ete +
—e~ 2 and the general solution can be written as = —éte_zt +cre” 2 4 epel

(after redefining cy).

Page 87

V.1 The functions y;(t) = t* and yo(t) = t~* form a fundamental solution
set of the corresponding homogeneous equation. Their Wronskian is W (t) =
—3. Our formulas for v} and u/, were developed on the assumption that the
leading coefficient of the equation is one. Accordingly, we divide the equation
by ¢2:

W (1) 2 3" 73
Integration gives ui(t) = -t + ét , u(t) = _Et + gt. Then Y (t) =
1 1,)\ . ( 1,01 ) L1 1
—t+ =t t ——t “t)t =t —.
(3 * 6 ) * 12 * 3 4 * 2

V.3 The functions y;(z) = 2~ /?cosz and ya(z) = 2~ /?sinz form a fun-

damental solution set of the corresponding homogeneous equation. (These
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are the standard Bessel’s functions Y] /5(z) and J; o(x) respectively.) Their

1
Wronskian is W (t) = —. Our formulas for u)(z) and ub(z) were devel-

oped on the assumption that the leading coefficient of the equation is one.
Accordingly, we divide the equation by z:

1 1
y// + _y/ + (1 . _) y = $—1/2’
T 42

so that f(z) = 2~ %/2. Then

uy(z) = —f(3%1($) = —zz 227 %sinz = —sinzx,
uh(x) = 7f(;21(/;§$) —za Y227 Y2 cosz = cosz,

so that uj(z) = cosz, us(x) = sinz and Y (z) = /2. The general solution
isy=a"Y2 a2 cosx + cpr™/?sin .

Page 89
VII.1 We need to solve

y'+4y=0 y(0)=-1, y'(0) =2.

Obtain y = — cos 2t + sin 2t.

VII.2 Calculate w = E = 3. We need to solve
\/ m

y'+9y=0 y(0)=-3, y(0)=2.
(The “up” direction corresponds to negative y’s.) Obtain y = —3 cos3t +
2 . , _ 2\? 85
3 sin 3t. The amplitude is A = /32 + 3) =3
VII.3 We need to solve
y" + 9y = 2cosuvt,

which in case v # 3 is easily done using the Prescription 1.

VII.4 This is the case of resonance. One needs to use either the method of
variation of parameters, or the modified Prescription 1 to find a particular
solution.
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VIL.5 The corresponding characteristic equation
r’+ar+9=0

has for a < 6 a pair of complex roots with negative real parts, producing
damped oscillations. In case a > 6 both roots are real, and there are no
oscillations.

VIL.6 This problem shows that any amount of dissipation (« > 0) destroys
resonance.

Section 2.14.4, Page 108

I.1 On the interval 0 < ¢ < ™ we need to solve
y' +9y =0, y(0)=0, y'(0)=-2.

2
The solution is y(t) = —3 sin 3t. Evaluate y(w) = 0, y/(7) = 2. Fort > 7

we need to solve
Y +9y=t, y(r)=0,y(m)=2.

t 17
Obtain: y(t) = 9 + %cos 3t — 37 sin 3t.

1.2 On the interval 0 < ¢ < ™ we need to solve
y' +y=0, y(0)=2, ¢y (0)=0.

The solution is y(t) = 2cost. Evaluate y(7) = —2, y/(7) = 0. For t > 7 we
need to solve

y'+y=t, ylr)=-2,y(r)=0.
Obtain: y(t) =t + (7 + 2) cost + sint. We conclude that
2cost, ft<nw

y(t) =
t+ (m+2)cost +sint, ift>=

Page 109

II.1  The characteristic equation

rr—1)—2r+2=0
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has roots r; = 1, r9 = 2. The general solution is y = c1t + cot?.

1.2 The characteristic equation
rr—1)4+r+4=0

has roots r = £2i. The general solution is y = ¢; cos(21Int) + cosin(21nt).

1.3 The characteristic equation
r(r—1)4+5r+4=0

has roots r; = ro = —2. The general solution is y = clt_2 + 0275_2 Int.

1.4 The characteristic equation
r(r—1)4+5r+5=0

has roots r = —2-i. The general solution isy = c1t ™2 cos(Int)+cot 2 sin(Int).

1.5 The characteristic equation
r(r—1)—3=0

has roots 71 = 0, 7o = 4. The general solution is y = ¢1 + cot™.

II.6 Write this equation as
4t2y” +y=0.
The characteristic equation

dr(r—1)4+1=0
1 . 1 1
has a repeated root r; = ro = 5 The general solution is y = ¢1t2 +cot2 Int.
I1.7 The characteristic equation
2r(r—1)+5r+1=0

22 4+ 3r+1=0

1
has roots r; = —5 ro = —1. The general solution is y = clt_% + cot L.
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1.8 The characteristic equation
O(r—1)—3r+4=0
(3r—2)2=0
2 . 2 2
has roots r;1 = r9 = 3 The general solution is y = ¢1£3 4 cot3 Int.

II.9  The characteristic equation

dr(r—1)4+4r+1=0

1 1 1
hasrootsr = :|:§Z'. The general solutionis y = ¢ cos (5 In :E) ~+c9 sin (5 In :E) .

A
II.10  Looking for a particular solution in the form Y = < one calculates

1 1
A= 7 5 that Y = e Multiply the corresponding homogeneous equation
by ¢2:
t2y" 4+ 3ty + 5y =0,

to obtain Euler’s equation. Its characteristic equation

r(r—1)4+3r+5=0

has roots r = —1 424, and the general solution of the homogeneous equation
is y = c1t7 ! cos(21nt) + cot "L sin(21Int). The general solution of the original
equation is y = ym + 1t cos(21nt) + cot ! sin(21nt).

I1.11 Multiplication of the corresponding homogeneous equation by ¢* pro-
duces Euler’s equation
t2y" 4+ 3ty + 5y =0.

Its characteristic equation
r(r—1)4+3r+5=0

has roots r = —1 4+ 2¢, and the fundamental solution set of the homoge-
neous equation consists of y;(t) =t~ cos(21Int) and y»(t) = t~ ' sin(21nt).

2
Calculate their Wronskian W = W (y1(t), y2(t)) = 3 Then
f(t)ya(t) Int sin(21nt)

/_ j—
Uy = — - )

w 2t




J()yi(t) Int cos(2Int)
W 2t

/
Uy =

Integration gives
1 1 . 1. 1
ui(t) = 1 cos(21nt)In t—g sin(2Int), wua(t) = 1 sin(2Int) In t—l—g cos(21Int),

by using the substitution © = Int in both integrals. Then the particular

solution is
Int

at
The general solution of the original non-homogeneous equation is

Y (t) = w1 (t)yr(t) + uz(t)y2(t) =

Yy = 12—; + 1t cos(21nt) + cot~tsin(21nt) .
I1.12 Substitution of y = ¢" into the equation gives
t"r(r=1)(r—2)+r(r—1)—2r+2]=0,
which leads to a cubic characteristic equation
rr—1)(r—2)+r(r—1)—2r+2.
To solve it, we factor

rr—D)(r—=2)+r(r—1)-2r—1)=@r—-1)rr—-2)+r—-2]=0,

so that the roots are 11 = 1, r9 = —1, and r3 = 2. The general solution is
Yy = Clt_l + cot + Cgtz.

Page 110

III.1  The characteristic equation
rr—1)4+r+4=0

has roots +2¢. The general solution which is valid for all t # 0 is y =
c1cos(21nlt]) + cosin(21n|t]).

III1.2 The characteristic equation
2r(r—1)—r+1=0

22 —3r+1=0
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has roots r = = and r = 1. The solution y = v/¢ is valid for ¢ > 0, while the

1
2
solution y = \/m is valid for ¢ # 0. The second solution, y = t is valid for
all t, and y = |¢| is valid for ¢ # 0. The general solution which is valid for all

t # 0 can be written in two forms: y = c11/|t| + c2t|, or y = 14/ |t] + cot.

III1.3 The characteristic equation

dr(r—1)—4r+13=0

3 3
has roots r = 1:|:§z'. The general solution valid for ¢ # 0is y = ¢;|t| cos (5 In |t|> +

3
co|t| sin (5 In |t|>

II1.4 The characteristic equation

O(r—1)+3r+1=0

1
has double root r = 3 The general solution valid for ¢ # 0 is y = ¢y |t|*/ +
colt|Y3nt|.

III.5 The characteristic equation

2r(r—1)4+r=0

1
has roots r = 0 and r = 3 The general solution valid for t # 0 is y =
c1 + e/ [t

III.6  Look for a particular solution in the form y = At?> + Bt + C. Substi-
tution into the equation gives

3A2 +C =t* -3,

1
so that A = 3 C = —3. B is arbitrary, and we set B = 0. Obtain Y =

1
gtz — 3. The general solution of the correponding homogeneous equation

2t2y// _ ty/ +y= t2 -3

is y = c11/|t| + c2]t|. The general solution of the original equation is y =
2 — 34 c1y/[t] + calt].
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II1.8  Substitution of y = (¢ + 1)" into the equation gives
t+1)"[2r(r—1)—3r+2]=0,
which leads to a characteristic equation

2r(r—1)—3r+2=0.

The roots are r;1 = =, ro = 2. The general solution, which is valid for

t£—1,isy=cilt+ 1Y% + eo(t + 1)2

N —

II1.9  Setting ¢ = 0 in our integro-differential equation

4/ (1) + /Ot (syﬁ)y ds =0,

obtain 3'(0) = 0. Differentiating this equation, and using the fundamental
theorem of calculus, obtain

4t+ 1% +y=0, 3 (0)=0.
Substitution of y = (¢ + 1)" into the last equation gives
t+1)"[dr(r—1)+1] =0,
which leads to a characteristic equation

dr(r—1)+1=0.

1
The roots are r;y = ro = —. The general solution, which is valid for ¢t >
—1,is y = e1(t + DY? 4 ep(t + 1)Y2In(t 4+ 1). The condition 3/ (0) = 0
1
implies that co = —35¢1, 0 that y = 1 (¢ + 1)/2 — 501(75 + DYt +1) =

o 1)V )Y+ 1)
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IV.1 The characteristic equation

rr—1)—2r+2=0
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has roots r = 1 and r = 2. The general solution is y = ¢1t + cot?. The initial
conditions imply that ¢; = —1 and ¢ = 3.

IV.2 The characteristic equation
r(r—1)—3r+4=0

has a repeated root ;1 = ro = 2. Because the initial conditions are given at
t = —1, the general solution is taken in the form y = ¢1t* + cot®In |t|, with
y'(t) = 2c1t + co (2tIn |t| 4 t). The initial conditions give

y(=1)=c =1,
Y (=1) = —2¢c; —ca =2.
It follows that ¢; = 1, ¢cp = —4, and y = t* — 4¢* In|¢|.
IV.4 The characteristic equation
rir—=1)—r+5=0
has a pair of complex roots r = 1 4+ 2¢. The general solution is y =

c1t cos(21Int)+cot sin(21Int), and the initial conditions give ¢; = 0 and ¢5 = 1.

IV.5 The characteristic equation
rr—1)4+r+4=0

has a pair of purely imaginary roots r = 4+2¢. Because the initial conditions
are given at a negative t = —1, the general solution is taken in the form y =

2 2
c1cos(21In[t])+egsin(21n [t]), with o/ (¢) = —% sin(2In |t|)—|—% cos(21n [t]).

The initial conditions give
y(_l) =c =0,
Y (—1) = —2co =4.
It follows that y = —2sin(21n|t|).

IV.7 The characteristic equation

r(r—1)+r=0
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has a repeated root 71 = ro = 0. Because the initial conditions are given at
a negative t = —3, the general solution is taken in the form y = ¢; + ¢ In|t],

with y/(t) = Ct_z The initial conditions give
y(=3)=c1 +c2ln3 =0,

1
Y (=3)= —3e2= 1.
It follows that co = —3, ¢y =31In3, and y = 31n3 — 31n|t|.

IV.8 The characteristic equation

2r(r—1)—r+1=0

1
has roots r =1 and r = 5 The general solution which is valid for all ¢ # 0

1
is y = c1]t| + e2lt|2. For ¢t < 0, this solution becomes

y(t) = crt + co(—1)7

1
with a new ¢;. Calculate y/(t) = ¢; — —cz(—t)_%. The initial conditions give

2
y(—l) =—Cc1+ca=0

1 1
/
y(-1)=a 262 5
It follows that ¢; = co = 1. The solution is y(t) =t + (—t)% =t+ |t|%, valid
on the interval (—o0,0).
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V.1 The solutions are the three complex cubic roots of 1. A quicker alter-
native solution is to factor

(r—1) (r2+r+1) =0.

The first factor gives the root r1 = 1, while setting the quadratic to zero

1 V3 1 V3.

gives ro = —5 + 7’5 and r3 = —5 — 7’5.
V.2 Guessing that r = —3 is a root, one factors

27T =(r+3)(r*—3r+9).
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Solving )
r*—3r+9=0

gives the other two roots. Alternatively, one could calculate the three com-
plex roots of —27.

V.3 Factor
M —16=(r* —4) (P +4)=(r—2)(r+2)(r*+4) =0,

and set each factor to zero to get r1 = 2, ro = —2, and the other two roots
r = 121.

V.4 After guessing that r = 1 is a root, use long division to factor
=3 tr4+1=(r—1) (r2—2r—1) =0,
and obtain the other two roots r = 1+ v/2.
V.6 Factor
P2 r+2=rXr+2)+r+2=>r+2)(r*+1)=0.

Obtain r = =2, and r = +i.
V.7 Factor

37"4—1—57"3—1—7"2—r:r(3r3—|—5r—|—r—1) =r(r+1)%3r—-1)=0.

(For the second step one guesses that r = —1 is a root.) The roots are: 0,
1
-1, -1, —.
) ) 3
V.9 Write

4= 4ei7r _ 4ei(7r+27rm) )
Then the four solutions of the equation 74 4+ 4 = 0 are

r= (—1)1/4 — 4l/40i(5+75) , m=0,1,23.

1/4
Observe that 41/4 = (22) / = 21/2 = \/2. Then, in case m = 0, obtain
- 4T i 2 2
AT = /26T = \/5((:08% —I—isin%> = \/5(%—1—@%) =1+1,

and the other three roots are calculated similarly.

59



V.10 Write the equation as
2
(r2 + 4) =0.

The roots are r = 424, each one is a double root.

V.11 Thisis a “biquadratic equation”, which can be reduced to a quadratic
equation by setting r? = z. Or one may just factor:

rt 5?2 4= (2 +1)(r? +4) =0,
obtaining the roots +i and 421.
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VI.1 The characteristic equation
P_1=0

is factored as
(r—=1)(*4+r+1)=0.

One of the roots is 7 = 1. The other two roots are obtained by solving the
quadratic equation
rP4r+1=0,

V3

giving r = —3 + - .. The general solution is y = c1e’ + cpe™

02, V3

—t
Cos 3 +

%

. 3t
sin —t.
2
V1.2 The characteristic equation is
=548 —4=0.
One guesses the root 7 = 1. By long division

=52 48 —4=(r—1)(r* —4r+4)=0,

so that the other two roots are both equal to 2. The general solution is then
Yy = clet + 62€2t + 63t62t.

V1.3 The characteristic equation is

P32 4+r+1=0.
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One guesses the root 7 = 1. By long division
P =3t r+l=(r-1)(0*-2r—1)=0,

so that the other two roots are equal to 1+ v/2. The general solution is then
Yy = clet + cze(l_ﬂ)t + Cg€(1+\/§)t.

VI.4 The characteristic equation is solved by factoring
=3l r—3=r*(r—3)+r—-3=(r—-3)(*+1)=0.

The roots are r = 3, and r» = +1. The general solution is then y = ¢;e3 +
cocost + c3sint.
VI.5 The characteristic equation

=8t 416 =(r*—4)*=0

2t

has two double roots: +2. The general solution is y = cie” 2 + coe?t +

63te_2t + C4t€2t.
VI.6 The characteristic equation
M8t 416 =(r? +4)*=0

has two double roots: £2i. The general solution is y = ¢ cos 2t + co sin 2t +
c3t cos 2t + c4t sin 2t.

VI.7 The roots of the characteristic equation

rt4+1=0
\ 1 1
r = +/—1 are the four complex fourth roots of —1, namely: 7 + Ez,
Ll I solution i 75 o8 —— + coe V5 sin o +
-+ —i. e general solution is y = c1ev2 cos — + coe V2 sin —
\/5 \/5 g t Yy 1 \/5 2 5
t t
c3e V2 cos — + cqe V2 sin —.
VL8 It is easy to guess that Y = —t? is a particular solution of
y/// —y = +2

because the third derivative of this function is zero. The characteristic
equation of the corresponding homogeneous equation is solved by factoring:

P —1=-1*+r+1)=0.
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V1.9 The characteristic equation is solved by factoring:

=2 =20t = 1) =2 = 1)+ 1) =0.
The six roots are 0,0, £1, +i. The general solution is y = ¢; + cot + cze
cael + c5cost + cgsint.

_|_

VI.10 After guessing that » = 1 is a root, the characteristic equation is
solved by factoring:

2 — 52 f4r —1=(r—1)%(2r—1)=0.
The roots are 1, 1, % The general solution is y = cle%t + coe! + cstel.
VI.11 One factors the characteristic equation

r5—3r4+3r3—3r2+2r:r(7"4—37"3—1—37"2—37"—1—2) =0.
Then one guesses that the quartic has a root r = 1, so that
=33 3 =3+ 2=(r—1)(r* -2 +1r - 2),
and the last cubic has a root r = 2, so that
P2 tr—2=(r—2)(r*+1).
Putting these formulas together, the characteristic equation is factored as
rir—1(r—2)(r>+1)=0.

The five roots are 0, 1,2, +i. The general solution is y = ¢1 + coe’ + g +

cqcost + cssint.

VI.12 One searches for a particular solution in the form y = Asint, ob-
1 .

taining Y = = sint. The characteristic equation of the corresponding homo-

geneous equation is solved by factoring;:
=0 =452 —1)=0.

The eight roots are r = 0 of multiplicity six, and r = £1. The general

1
solution is y = 2 sint 4+ ¢ + cot + 63752 + C4t3 + C5t4 + 66t5 + C7€_t + Cget.
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VI.13 One searches for a particular solution in the form y = At?> + Bt +C,
1
obtaining Y = t* — R The characteristic equation of the corresponding
homogeneous equation
rt+4=0

has roots r = 1+ 4 and r = —1 £ ¢, which were determined in the preceding
problem set. The general solution is

t

1 . .
Yy = 22— = + clet cost + czet sint + cze” " cost + C4€_t sint.

4

VI.14 One searches for a particular solution in the form y = Ae™*, obtaining
Y = e!. The characteristic equation of the corresponding homogeneous
equation

=2 —8r+16=(r—2)%(r* +2r+4) =0

is solved by factoring, after guessing that r = 2 is a root. The roots are
r =2, 2, —1++/3. The general solution is

Yy = et + 61€2t + cztezt + 63e_t CoS \/gt + C4€_t sin \/gt.
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VII.1 The characteristic equation
4 dr=r(r’4+4)=0

has roots r = 0 and r = £2. The general solution is y = ¢; + ¢9 cos 2t +
c3sin 2t. The initial conditions give

1 3
It follows that co = c3 = —=, and ¢; = 3 Obtain y =

3
2 2

! 2t L 2t
2cos 2sm .

VIL.2 The characteristic equation

rt+4=0
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has roots —1 £+¢ and 1+, found in the problem V.9 earlier in this set. The
general solution is y = ciel cost + coel sint + cze ! cost + cue Usint. The
initial conditions give

y(0)=c1+c3=1,

Y (0)=c14+co—cz+ca=-1,
y"(0) = 2co — 2¢4 = 2,
y"'(0) = —2¢c1 +2co + 2c3+ 2¢4 = 3.

Divide the last of these equations by 2

3
—61—1-62-1-63-1-64:57

and add the result to the second equation, to obtain
2c9 +2¢c4 = =
C C .

Add this to the third equation, to obtain

5
462 == 5 s
5 3 .
so that co = =, and then ¢4 = -3 Using these values, the second of the

original four equations becomes

5
y(0) =c-c=—.
Solving this equation together with the first of the original four equations
9
gives ¢1 = —3 and c3 = 3

VIL.4 Look for a particular solution in the form y = At*, and calculate
1
Y = ﬂt‘l. The characteristic equation of the corresponding homogeneous
equation
Prt=rir+1)=0
has a root r = 0 repeated four times, and the root = —1. The general

1
solution of this equation is y = ﬂt‘l + ¢1 + cot + cst® + cat® + ezet. The
initial conditions give

y(0)=c1+c5 =1,
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y'(0) =cog—c5=—1,
y"(0) =2c3+c5 =1,
y"'(0) = 6c4 — c5 = —1,
y"(0)=c5+1=2.
From the last equation, ¢ = 1, and then ¢; = ¢co = ¢3 = ¢4 = 0, giving
Yy = 21—4254 + et
VIL.6 The characteristic equation

=3 4= —4)*+1)=0

is solved by factoring as a biquadratic equation. The roots are r = £2 and
r = +i. Because the initial conditions are given at t = 0, it is convenient to
use the general solution in the form

y(t) = c1 cosh 2t + cosinh 2t 4 c3cost + ¢4 sint .
The initial conditions give
y(0)=c1+c3=1,
y'(0) =2co+ ¢4 = —1,
y"(0) =4c; —c3 =14,
y"(0)=8ca —cy=1.

Solving the first of these equations together with the third one gives ¢ =1
and c3 = 0. Solving the second equation together with the fourth one gives
co =0 and ¢4 = —1. Obtain y = cosh 2t — sint.

VIL.7 The characteristic equation
P —r=r@?-1r*+1)=0

has roots r = £1, r = 0, r = £i. Because the initial conditions are given at
t = 0, when it comes to the roots r = +1, it is better to use the functions
cosht and sinht in the fundamental set (rather than e’ and e™*). Then the
general solution is y = ¢1 + co cost + cgsint + ¢4 cosht + ¢ sinh ¢. Using the
initial conditions, one quickly calculates ¢y = c4 =1, co = c3 =c5 = 0.
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VIII.2 The solution y = 1 is produced by the root r = 0 of the characteristic
equation, while y = e~2 corresponds to r = —2, and y = sint to r = =+i.
The characteristic equation of the lowest possible order with these four roots
is

r(r+2)(r4+1) =0,

or expanding
rr4 o424 2r=0.

The differential equation with this characteristic equation is

"

Yo+ 2y

///+y//+2y/ :0
VIIL.3 Substitution of y = (¢ + 1)" into our equation produces a character-
istic equation

r(r—1)—4r+6=0.

The roots are r = 2 and r = 3. The general solution is y = ¢; (£ +1)% +
o (t+1)°.

VIIL.4 Substitution v = gy will produce a linear first order equation for v.
However, it is easier to write this equation in the form

(ty") =1,
and integrate
ty' =t+cy,
C1
y// =1 + 7 )

y =t+cilnt+cy,
2

t
y:§+cl(tlnt—1)+62t+63.

Chapter 3
Section 3.3.1, Page 142
i 22+ )
I.1 Begin with the series sinx = » (—1)"-—————, and replace x by z*:
= (2n + 1)!
00 2\2n+1 0 An+2
e nz:%( en 11 nz:%( " en )
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1 o
1.2 In the geometric series 7= 1+t+2+834+... = Z t", set t = —z°
n=0

1 1 >
= —1—a? 42t —a2f4+... = (—1)":E2".
oo n
1.3 Begin with the series ¢ = Z — replace x by —3z, then multiply
n!
n=0
through by z:
fe’e) n o) nn+1
3 (=3x)" 3"z
ze m—:nz | —Z(—l)" ]
n=0 n=0

Page 142
IL1(ii) We have f™(1) = e for all n. Therefore, the Taylor series is

[e.e]
(z—1)"
T __
c =€ Z T .
n=0
IL.1(iii) Use the geometric series
1 1 1 >
Z = = = (-)"(z—-1".
x 14+z-1 1—[—(z—1)] 7;]

1.2 Decompose the series into a sum of its even and odd powers, then
observe that all odd coefficients are equal to zero, and all even ones are
equal to 2:

o~ L+ (=1)" S G D e o Gl ) R
2 = gy T e

2 2
n=1 n=1 ( ’I’L) n=1 (27’L - 1)
[ %)
2 2n 1 1 2n
= 2T =3 Z PR
— (2n) 2¥4=n

1.4  Replace n — n — 1, and observe that the new series should begin at
n=1.

1.5  Replace n — n — 2, and observe that the new series should begin at

o0 o0
n = 2, to conclude that Z a, 2" = Z Gpoz".
n=0 n=2

I1I.6  Replace n — n — 2, and observe that the new series begins at n = 2.
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I1.7 We use the formula for the n-th derivative (fg)("). Here f(z) = 2° +=,
f'(x) =2z + 1, f'(x) = 2, while f/(z) and all of the derivatives of higher
order are zero. Therefore, only the last three terms in the formula for (f g)(")
are non-zero:

1)

(fg) = "D

5 f(@)g" 2 (@) +nf(2)g" V(@) + f(2)g" ()

=n(n—1)g" D (z) +n(2z + 1)g"V(z) + (2* + 2)g" ().

I1.8 Here f(z) = 2> +z, g(z) = 2%, and g™ (z) = 2F¢*®, for any derivative
k. Obtain

22+ 23] " = 2021 100502 0) 1 (@)D ) + F@)g )

= [n(n —1)2"2 2z + 1)2" 4 (2 + :L')Q"] .

1.9 Here f(z) =z, f =1, f” =0, and all of the derivatives of higher
)

order are zero. Therefore, only the last two terms in the formula for (f g)("
are non-zero. With g(z) = 3/(z), obtain

Sl ()

[z 1™ = nf'(@)g" D (@) +f(2)g (@) = ny' " +xy = nyW4ay D

I1.10 Here f(x) = 2241, f' =2z, f =2, f = 0, and all of the derivatives
of higher order are zero. Therefore, only the last three terms in the formula
for (fg)™ are non-zero. With g(z) = y(z), obtain

[ 1] = PO 02 ) g ) D) + )9 )

()

(n—2) (n—1)
=n(n—1)y" + n2zy” + (:172 + 1) Yy

= n(n —1)y"™ + 2nzy™+Y 4+ (:172 + 1) y(+2)

Page 143

III.1 Differentiate both sides of this equation n times, and use that [zy’ ] ) _

ny™ + zy™+D . Obtain

YD (@) — ny™ (@) — 2y (z) -y (2) = 0.
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Setting here z = 0, obtain the recurrence relation
y "2 (0) = (n+1)y"(0).

To compute yi (), we use the initial conditions y(0) = 1 and 3'(0) = 0. It
follows from the recurrence relation that all of the derivatives of odd order
are zero at x = 0. Using n = 0 in the recurrence relation, obtain

When n = 2, the recurrence relation gives
y"(0) = 3y"(0) = 1-3.
When n = 4, the recurrence relation gives
y¥(0)=5y""(0)=1-3-5,

and in general
y®(0)=1-3-5---(2n—1).

Then

o . (2n) o . (2n+1) oo (2n)
o Y (0) 2n Yy (0) 2n+1 __ Yy (0) 2n
yl(:”)_n; R DTy R D

- y(2n) (0) 2n

:1—1—7;::1 (2n)! T

On the last step we separated the term with a given value of y(0) = 1, from
the terms involving the values of y*™(0) that we just computed. Using
these values, we continue

001-3-5---(2n—1) 9 o 1
y(2) +z_: (2n)! v +z_:2-4-6---2n$
n=1 n=1
oo l,2n oo l,2n
:1+Z2nn! 222"71!'
n=1 n=0

To compute yo(x), we use the initial conditions y(0) = 0 and 3'(0) = 1.
It follows from the recurrence relation that all of the derivatives of even
order are zero at = 0. Using n = 1 in the recurrence relation, obtain

y"'(0) =2y/(0) = 2.
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When n = 3, the recurrence relation gives
yP(0) = 4y"(0) =2 4.
When n = 5, the recurrence relation gives
yD(0)=6y""(0)=2-4-6,

and in general

Then
(2n+1 (2n+1

$):§:y(2n) Zy L2l _ Zy L2t
= (2n)! (2n + 1 2n—|—1

— o+ i y(2n+1)(0) 2n+1
— (2n+1)!

On the last step we separated the term corresponding to the given value

of 4/(0) = 1, from the terms involving the values of y?"t1(0) that we just

computed. Using these values, we continue

o~ 2:4-6---(2n) 9,4 - 1 2n+1
yg(:n):$+z—:n"+ :ZE-l-Z s
" (2n+ 1) =1.3.5-(2n+1)
[e.e]
2n+1
x .
nz:% (2n—|—1)
The general solution is
_ — 2n+1
y = ey (@) + el Clz2n'+221 3.5 (2n+1)$ '

II1.2  Differentiate both sides of this equation n times
y) (@) — my™ () — 2y () + 2" () =0,
and set here x = 0, to obtain the recurrence relation
y"2(0) = (n - 2)y"™(0).

To compute yi(x), we use the initial conditions y(0) = 1 and 3'(0) = 0. It
follows from the recurrence relation that all of the derivatives of odd order
are zero at x = 0. Using n = 0 in the recurrence relation, obtain

y'(0) = ~2y(0) = 2.
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When n = 2, the recurrence relation gives
y////(o) — 0 .

But then all higher even order derivatives are also zero, as follows from the
recurrence relation. We conclude that

12
0
wm=1+%¥ﬁ:1_ﬁ.

To compute yo(z), we use the initial conditions y(0) = 0 and y'(0) = 1.
It follows from the recurrence relation that all of the derivatives of even
order are zero at = 0. Using n = 1 in the recurrence relation, obtain

y"(0) = ~4/(0) = 1.
When n = 3, the recurrence relation gives
y®(0) = y"(0) = —1.

In the book we stopped the calculation of yo(x) at this point, obtaining

" 5)
B y"(0) 5 y®(0) 4 _ L5 1 5
yo(z) =z + 2l x° + =] :E-i-"'—:E—é:E—m:E—
One could continue, and obtain a general formula y*"*)(0) = —1- 3.

5--+(2n — 3). However, for many equations getting a general formula may
be too complicated, but one can “crank out” as many terms as one wishes.

II1.3 Differentiate both sides of this equation n times
n(n — 1)y(n) + 2nay "t 4 (:132 + 1) Y2 4oy 4 gy () oy () —
Set here z = 0. Several terms vanish, and we get the recurrence relation:
y"r2(0) = —(n” + 1)y"(0).

We shall calculate the first three non-zero terms for both y;(z) and ya(x).

To compute y;(z), we use the initial conditions y(0) = 1 and y'(0) = 0.
It follows from the recurrence relation that all of the derivatives of odd order
are zero at x = 0. Using n = 0 in the recurrence relation, obtain



When n = 2, the recurrence relation gives
y////(o) — _5y//(0) — 5 .
Obtain

/" "1
B y"(0) 2, Y (0) 4 _ 1, 5 4
yl(:n)—l—l—T:L" AT —I—"'—1—§JE o T

To compute yo (), we use the initial conditions y(0) = 0 and ¢/(0) = 1.
It follows from the recurrence relation that all of the derivatives of even
order are zero at = 0. Using n = 1 in the recurrence relation, obtain

y"'(0) = —2¢(0) = -2.
When n = 3, the recurrence relation gives
y®(0) = —10y"(0) = 20.
Obtain

" 5)
oy y"(0) 4 y®(0) 5 _ I g 15
ya(z) =y (0)x + T x° + = :E—I—"'—:E—glE —1—6:E —

III1.4 Differentiate both sides of this equation n times

n(n —1)y™ + 2nzy™H) 4 (:E2 + 1) Y2 4 3ny (M) 4 3y (D) () —

Set here z = 0. Several terms vanish, and we get the recurrence relation:
y"r2(0) = —(n+1)%(0).

To compute y; (z), we use the initial conditions y(0) = 1 and y'(0) = 0.
It follows from the recurrence relation that all of the derivatives of odd order
are zero at x = 0, y(2"+1)(0) = 0. Using n = 0 in the recurrence relation,
obtain

y'(0) = —y(0) = ~1.

Setting m = 2 in the recurrence relation gives
y////(o) — _32y//(0) — _32(_1) — (_1)2 12 . 32'
Similarly, when n = 4,
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and in general

y(0) = (=1)"1%-3%.5%. .. (2n — 1)2.

Obtain
> (2n) > (2n+1) o (2n)
o Y (0) 2n Y (0) 2n+1 __ Y (0) 2n
yl(‘””)_n; 2t " +n§) nrin” _nz:% @t "
> 12.32.52...(2n—1)2 , > 1-3-5---(2n—1) ,
— —1 n n — — n n
nz:;]( ) 2n)! * nz:%( V=% an ©

_ i(_l)nl-&--@n—l) on
= ALY

To compute yo(z), we use the initial conditions y(0) = 0 and y'(0) = 1.
It follows from the recurrence relation that all of the derivatives of even
order are zero at z = 0, y(zn)(O) = 0. Using n = 1 in the recurrence relation,
obtain
y"(0) = ~2%/(0) = ~2*.

Setting m = 3 in the recurrence relation gives
y(0) = —4%"(0) = (-1)°2% - 4%,
Similarly, when n = 5,
y0(0) = —6%"(0) = (-1)* - 22 4% . 6%,

and in general
y(2n+1)(0) _ (_1)n .92.42. .. (2n)2 .
Obtain

o . (2n) o . (2n+1) oo (2n+1)
_ y=(0) o, Y (0) on+l Y (0) ont1
va2) =D @n)l 2 @n+1) " =2 @nrip”

n=0

_ i(—l)"” '42'62-"(2”)2$2n+1 _ i(—l)n 2420 anp
— (2n+1)! 1-3:5---(2n+1) '

n=0
III.5  Differentiate both sides of this equation n times
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Set here z = 0. Several terms vanish, and we get the recurrence relation:
y"2(0) = —(n — 1% (0).

To compute y;(z), we use the initial conditions y(0) = 1 and y'(0) = 0.
It follows from the recurrence relation that all of the derivatives of odd order
are zero at x = 0, y(2"+1)(0) = 0. Using n = 0 in the recurrence relation,
obtain

y'(0) = —y(0) = 1.
When n = 2, the recurrence relation gives
y////(o) — _12 y”(O) — (_1)212'
When n =4,
y©(0) = 3y (0) = (~1)*12 8,

and in general
y(0) = (=1)"12-3%... (2n — 3)%.

Obtain
y(2n Z y(2n+1 2n+1 y(2n 2n
(2n + 1
> 12-32---(2n—3) (2n—3) 4
= —1" =1 .
* z::( ) (2n)! * Z 2"n'(2n 1y !

To compute yo(z), we use the initial conditions y(0) = 0 and y'(0) = 1.
It follows from the recurrence relation that all of the derivatives of even
order are zero at = 0. Using n = 1 in the recurrence relation, obtain

y///(o) — 0 .

It follows from the recurrence relation that all of the derivatives of odd order,
beginning with the third order, are also zero at x = 0. It follows that

y2(z) = 32(0) + y5(0)z =1+ z.
II1.6  Differentiate both sides of this equation n times
y(n+2) o ny(n—l)

—:Ey(n) —-0.

Setting z = 2 in the equation, express
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(%) y'(2) = 2y(2).

Set here £ = 2. Obtain the recurrence relation
Y4 (2) = 25(2) 4 gD (2).

This recurrence relation is too complex to give a compact formula for y(n) (2).
We shall calculate the terms up to the fifth power for both y;(x) and ya(z).

To compute y;(x), we use the initial conditions y(2) = 1 and 3'(2) = 0.
From (x)
y"(2) =2y(2) = 2.
When n = 1, the recurrence relation gives
" /
¥y (2)=2y(2)+y(2)=1.

When n = 2, the recurrence relation gives

y"(2) = 24/'(2) + 25/(2) = 4.
When n = 3, the recurrence relation gives

y©(2) = 20"(2) +3y"(2) = 8.

Obtain

1 1 1
:1+(:s—2)2+6($—2)3+6($—2)4+B(m—2)5---.

To compute yo(x), we use the initial conditions y(2) = 0 and 3/(2) = 1.
From (x)
y"(2) =2y(2) =0.

When n = 1, the recurrence relation gives
" /
¥y (2)=2y(2) +y(2)=2.
When n = 2, the recurrence relation gives

y"(2) = 2(2) + 29/(2) = 2.

75



When n = 3, the recurrence relation gives
y©(2) = 20"(2) +3y"(2) = 4.
Obtain

y///(2)

a0 (x—2)3

(z—2)%+

y//;§2) (ZE _ 2)4 + y(5)(2) (:E _ 2)5 L

+ 5l

1 1 1
=z —24+-(z-283+—=(@@-2'+—=(x—-2°+---.
x —1—3(:13 ) —1—12(:13 ) —1—30(:13 )’ +

The general solution is y(z) = c1y1(x) + coya(x).
II1.7 Differentiate both sides of this equation n times

Y2 () ) )

Set here £ = 1. Obtain the recurrence relation
Y1) =y (1) + (0 + D).

We shall calculate the first four non-zero terms for both y;(z) and ya(x).

To compute y;(x), we use the initial conditions y(1) = 1 and 3'(1) = 0.
When n = 0, the recurrence relation gives

y'(1)=y'(1) +y(1)=1.
When n = 1, the recurrence relation gives
y"'(1)=y"(1) +2y(1) =1.
When n = 2, the recurrence relation gives
y"(1) =y" (1) +3y"(1) = 4.
Obtain

y///(l)
3!

y////(l)
4!

(x—1)%+ (z—1)14- -



To compute yo(z), we use the initial conditions y(1) = 0 and y'(1) = 1.
When n = 0, the recurrence relation gives

y'(1)=y'(1) +y(1)=1.
When n = 1, the recurrence relation gives
y"'(1)=y"(1) +24(1) = 3.
When n = 2, the recurrence relation gives
Y1) =" (1) + 3y"(1) = 6.
Obtain

Y (1)
3!

y////(l)
4!

(x—1)%+ (z—1)14- -

1 1 1
=(@-D+=(z-1)°+z(@-1>+-(z-1)'+---.
2 2 4
II1.8 Differentiate both sides of this equation n times
y(n+2) + ’I’Ly(n) + (JE + Q)y(n+1) + y(n) =0.
Set here £ = —2. Obtain the recurrence relation

Yy (=2) = —(n+ 1)y (-2).

To calculate y; (), we use the initial conditions y(—2) = 1 and y/(-2) =
0. When n = 0, the recurrence relation gives

When n = 1, the recurrence relation gives
y"(-2) = -2y'(-2) =0,

and similarly all odd order derivatives are zero, y®"*1)(—2) = 0. When
n = 2, the recurrence relation gives

Y"(-2) = =3y/(~2) = (~1)1 3.
When n = 4, the recurrence relation gives

yO(-2) = —5y""(~2) = (-1)°1-35,
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and in general

y?(=2) = (=1)"-3-5---(2n —1).

Obtain
[e%] (Qn) _ [e%]
_ Y ( 2) 2n _1\n 2n
nie) = X g e T = L g 42

To calculate y2(z), we use the initial conditions y(—2) = 0 and y'(-2) =
1. When n = 0, the recurrence relation gives

Y/(-2) = —y(-2) =0.

Similarly all even order derivatives are zero, y(zn)(—Q) = 0. When n =1,
the recurrence relation gives

V(-2) = ~2/(-2) = 2.
When n = 3, the recurrence relation gives
Y9 (-2) =~y (-2) = (-1)°2 4,
When n = 5, the recurrence relation gives
yD(-2) = ~6y9(~2) = (~1)*1 -2 4.6,

and in general
y(2n+1)(_2) — (_1)n1 2.4 (Qn) .

Obtain
oo (2n+1)(_ o0
Y (—2) 2n+1 n 1 2n+1
ve() Z 20+ 1) (z+2) nz:%( V'S5 engn @2

II1.9 Differentiate both sides of this equation n times
Y2 fongy™ 4 (24 1)yt — () =0,
Set here z = —1. Obtain the recurrence relation
y " (=1) = —(n— 1)y (-1).

To calculate y; (), we use the initial conditions y(—1) = 1 and ¢/(—1) =
0. When n = 0, the recurrence relation gives



When n = 1, the recurrence relation gives
y'(=1) =0,

and then all odd order derivatives are zero, y(2"+1)(—1) = 0. When n = 2,
the recurrence relation gives

Y1) =~y (1) = -1
When n = 4, the recurrence relation gives
y(ﬁ)(—l) = 3y (1) = (-1)%1-3.
When n = 6, the recurrence relation gives
yO(-1) = —5yO (1) = (-1)°1-3-5,
and in general

Yy (1) = (-1)""'1-3-5---(2n— 3).

Obtain
() = 1+§: y®(-1) (241)2" = 1+§: (-1)"'1-3-5---(2n —3) (2+1)20
ot (2n)! — (2n)!

o
1
=1+ ()" 1)2,
+n:1( T A

To calculate yo(z), we use the initial conditions y(—1) = 0 and y/(—1) =
1. When n = 0, the recurrence relation gives

and similarly all derivatives of even order are zero, y®™(—1) = 0. When
n = 1, the recurrence relation gives

y"(-1) =0,

and then all odd order derivatives are zero, y(2"+1)(—1) = 0, starting with
the third derivative. It follows that

() =y(-1)+y'(-)(z+1) =z +1.

Page 145
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IV.1 Express from the equation 3’ = 29/ — 2y, and vy = 29" —y'. Then
y"(0) = —2y(0) = —2, and y"”'(0) = —y'(0) = —2. Obtain

//0 ///0 1
y@) = y(0) + @+ L2 L0 gy e a2 L

"

IV.2 Express from the equation 3y’ = 2zy, v = 2y + 22/, and v =
4y +2x3". Using the initial conditions, calculate y”(2) = 4y(2) = 4, y"(2) =
2y(2) + 49/ (2) = 2, and y"""(2) = 4y/(2) + 49" (2) = 16. Obtain

v'(2) e e
3! 4!

y(z) = y(2)+y'(2)(z—2)+ (z-2)*+ (z—2)°+ (z=2)" -

1 2
:1+2(:c—2)2+§(:c—2)3+§($—2)4+---.

n "

IV.3 Express from the equation vy’ = —xy, v/ = —y — 2/, and v =
—2y' — 2y, Using the initial conditions, calculate y"(—1) = y(—1) = 2
y"(—1) = —y(=1) +y'(-=1) = =5, and y""(~-1) = =2y'(~1) +¢"(-1) =8
Obtain

9

2, ¥ (=1)

111
3, y"(=1)
1+ o=

(z+1)°+ 1

(@) = (- Dy (- () + LY (@+1)

:2—3(:c+1)+(:c+1)2—g(:n+1)3+%(:n+1)4---.

IV.4 Differentiate the equation
2wy + (1+ $2)y'// — 2y — 22y + 2y =0,

which simplifies to
"

Integration gives y = c122 + coz + c3. We were given only two initial condi-
tions: y(0) =1, 3/(0) = —2. However, setting z = 0 in the original equation
gives

y"(0) = —2y(0) = —2.
It follows that y = 1 — 2z — 2.
Page 145

V.1 It is convenient to multiply this mildly singular equation by x:
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(%) 222y + xy + 2%y = 0.

Look for a solution in the form

o0
2
Y= anz" =ag+a1x + ax +aszd 4 -,
n=0

with ag = 1. Using that

o0
y' = agna" ! = ay + 2a0x + aga® + - - -,

n=1

o
y' = Z anpn(n — 1):E"_2 = 2as + 6azxr + -,
n=2
(o]

a substitution of y = Z anx" into the equation (x), gives

n=0

o0 o0 o0
Z 2apn(n —1)a" + Z anpnx” + Z apz"t? =0.
n=2 n=1 n=0

The third series is not “lined up” with the other two. We therefore shift the
index of summation, replacing n by n — 2 in that series, obtaining

o (o]
Z anpz"t? = Z Ap_o™ .
n=0 n=2

The equation becomes
o o o
Z 2apn(n —1)a" + Z anpnz” + Z Gp_ox” =0.
n=1 n=1 n=2

We can begin the first of these series at n = 2 (because at n = 1 the
coefficient is zero). The second series is the only one containing the linear
term involving z. We split this term off, and then all series start at n = 2:

o0 o0 o0
a1x + Z 2apn(n —1)a" + Z apnz” + Z Gp_ox” =0.

n=2 n=2 n=2

In order for a series to be zero for all x, all of its coefficients must be zero:

a1::0,
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2apn(n —1)+ayn+ap—o =0,
giving the recurrence relation

1

n = T n(2n—1)

Ap—92 .

Because a; = 0, the recurrence relation shows that all coefficients with odd
indeces are zero, as,+1 = 0. We now calculate the even coefficients aoy,:

R
2= 7539 T Ty
1 1
- gy = (-1 ——
= —pz0= 0y e
1 1 1
= _ =(—1)3 = (=1
=g =Vs a3 Vs

and in general
1

2nn!-3-7-(4n—1)"

agn = (—1)”

Obtain

l,2n

V.2 It is convenient to multiply this mildly singular equation by x:

"

22y +xy — a2y =0.
Look for a solution in the form

o0
2
Y= ana" =ag+ax+agx’ +agx’ + -+

n=0

with ag = 1. Calculate

o
y' = apna" ! = ay + 2a00 + 3aga® + - - -,
n=1

[e.e]
y' = Z ann(n — 1)2""% = 2ay + 6agz + - - -
n=2
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[e.e]
Substitution of y = Z anx" into the equation, gives

n=0

o0 o0 o0
Z apn(n —1)x" + Z apnz" — Z a,z" Tt =0.
n=2 n=1 n=0

The third series is not “lined up” with the other two. We therefore shift the
index of summation, replacing n by n — 1 in that series, obtaining

(o] o
Z anz™t = Z Op_12" .
n=0 n=1

Then the equation becomes

o0 o0 o0
Z apn(n —1)a" + Z apnx”™ — Z an—12" =0
n=2 n=1 n=1

Our goal is to combine the three series into a single one, so that we can
set all of the resulting coefficients to zero. The x term is present in the
second and the third series, but not in the first. However, we can start the
first series at n = 1, because at n = 1 the coefficient is zero. The equation

becomes

o0 o0 o0
Z apn(n —1)a" + Z apnx”™ — Z an—1z2" =0
n=1 n=1 n=1

Now for all n > 1, the 2" term is present in all three series, so that we can
combine these series into one series. We therefore just set the sum of the

coefficients to zero
apn(n —1)+ayn —ap—1 =0.

Solve for a,, to get the recurrence relation

1
anp = —5 Gn—1 , n>1.
n
. . 1
Starting with a9 = 1, compute a1 = IR then as = 20 =

1 1 1 .
ﬁag = 273 EIEk and, in general, a, =

[e.e] 1 [e.e]
n
y:1+ZW~"B =2
n=1

n=0

1

)2 "
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1
1222
The result is
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V.3 It is convenient to multiply this mildly singular equation by x:

"

:132y + 22y +2y=0.

Look for a solution in the form

o0
2
y:Zan:n":ao—l—alm—I—az:E +agzd 4 -,

n=0

beginning with ag = 1. Calculate

o0
y = Z annz™ ' = a; + 2a0x + 3azx® + - - -,
n=1

[e.e]
y' = Z ann(n — 1)z""% = 2ay + 6azz + - - -
n=2

[e.e]
Substitution of y = Z anx" into the equation, gives

n=0

o0 o0 o0
Z apn(n —1)z" + Z 2a,nx" + Z a,z" T =0.
n=2 n=1 n=0

The third series is not “lined up” with the other two. We therefore shift the
index of summation, replacing n by n — 1 in that series, obtaining

(o] (o]
Z apz"tt = Z Ap_12" .
n=0 n=1

Then the equation becomes
(o] (o] o
Z apn(n —1)z" + Z 2a,nx" + Z p_12" =0.
n=2 n=1 n=1

Our goal is to combine the three series into a single one, so that we can
set all of the resulting coefficients to zero. The x term is present in the
second and the third series, but not in the first. However, we can start the
first series at n = 1, because at n = 1 the coefficient is zero. The equation
becomes

o0 o0 o0
Z apn(n —1)z" + Z 2a,nx" + Z 12" =0.
n=1 n=1 n=1
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Now for all n > 1, the " term is present in all three series, so that we can
combine these series into one series. We therefore just set the sum of the
coefficients to zero

apn(n —1) 4+ 2a,n+ a1 =0.

Solve for a,, to get the recurrence relation

1
=—————< On— >1.

Starting with ag = 1 t L : (—1)2—

rting wi = m — —— thenas = —a; = (—1)2———

a gl ap = 1, compute a; 5 the alg 5 3 BCICIEL
"= g = O gy = () g ond i seneral =
(=1)"——————. The result is

n!(n+1)!
1 > 1
=1+ S— ™.
v= Z '(n+1)! nz_;] n!(n+1)!

V.5 It is convenient to multiply this mildly singular equation by x:

22y 4y + 2%y =0.

Look for a solution in the form

2
y:Zan:E":ao—l-al:E—l-az:E +aszd 4 -,
n=0

o0
with ag = 1. Using that ¢ = Z apnz™ ' = a1 + 2a9x + 3a3:n2 + -

o o
= Z anpn(n — 1):E"_2 = 2a9 + 6agx + - - -, a substitution of y = Z anx"
= n=0
into the equation, gives

o0 o0 o0
Z apn(n —1)x" + Z apnz” + Z anz™t? =
n=2 n=1 n=0

The third series is not “lined up” with the other two. We therefore shift the
index of summation, replacing n by n — 2 in that series, obtaining

o0 o0
Z a,z"t? = Z Gp2z" .
n=0 n=2
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The equation becomes
o (o] o
Z apn(n —1)a" + Z apnx™ + Z an—ozx" =0.
n=1 n=1 n=2

We can begin the first of these series at n = 2 (because at n = 1 the
coefficient is zero). The second series is the only one containing the linear
term involving z. We split this term off, and then all series start at n = 2:

o0 o0 o0
a1z + Z apn(n —1)z" + Z anpnx” + Z an_ox" =0.
n=2 n=2 n=2

In order for a series to be zero for all x, all of its coefficients must be zero:
a; = 0 5

apn(n — 1)+ an+ a2 =0,
giving the recurrence relation

1
Ap = ———F p—9 .
n2

Because a; = 0, the recurrence relation shows that all coefficients with odd
indeces are zero, as,+1 = 0. We now calculate the even coefficients aoy,:

1 1
az = —2—2% ~ T2
1
wu=-gu=(Vgg

1 _ 3 _ 3
ag = _@ ag = (_1) 22 .42 . 62 - (_1) 26(3[)2 ;

and in general

1
an = (=1 S
Obtain
o o o o o 1
y= D 0 = 3 s Y ana™ = 3w = D1
n=0 n=0 n=0 n=0 n=0 '
Page 146
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VI.1 Searching for a solution of this mildly singular equation in the form

o
y= Z an,x", we are led to the recurrence relation
n=0
1
* p = ————Qp_1.
(+) " n(n—5) " !

If we start with ag = 1, then at n = 5 the denominator is zero, and the
computation stops! To avoid the trouble at n = 5, we look for the solution
o

in the form y = Z anx". Substituting this series into the equation
n=>5

22y —dzy' + 2y =0

(which is the original equation, multiplied by x), gives

Zannn—l Z4ann:p —I—Zanzn

The coefficient in 2°, which is a5(5 -4 — 4 -5) = 0, is zero for any choice of
as. We can then begin the first two series at n = 6:

Zannn—l Z4ann:p —I—Zanzn

Shifting here n — n —1 in the last series, we see that the recurrence relation
(*) holds for n > 6. We choose a5 = 1, and use the recurrence relation

1 1 1
(*) to calclulate ag, ar, etc. Calculate ag = —6a5 =5 ar = v ag =
12—
( )7-6-1'27
1 1 120
- g =(=1)3 3
=53 Vg3 Y sa

and in general

an = (—1)"7° % .
We calculated a solution
5 — (=1)"° )5
y=uz +120n2:%m 12()2”,”_
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VI.3 Searching for a solution of this mildly singular equation in the form
o

y= Z an,x", we are led to the recurrence relation
n=0
1
* =——Qp_1-

If we start with ag = 1, then immediately at n = 1 the denominator is zero,
(o]

and the computation stops! We look for solution in the form y = Z anpx™.
n=1

Substituting this series into the equation
2.1
7y +z2y=0

(which is the original equation, multiplied by x), gives
o o
Z apn(n —1)x™ + Z anz"t =0.
n=1 n=1

The constant term is zero in both series. The coefficient in z is also zero in
both series for any choice of a;. We can then begin the first series at n = 2,
and make a shift n — n — 1 in the second series:

o0 o0
Z apn(n — 1)x" + Z 12" =0.
n=2 n=2

Combining the series, and setting the coefficients to zero, shows that the
recurrence relation (x) holds for n > 2. We choose a; = 1, and use the

1 1
recurrence relation (x) to calculate ag, as, etc. Calculate as = —50 =5,
1 1
- — a3 =(-12—
=55 = DTS5
1 1 1
= g, =(-1) = (—1)3 —
u=—g39= Vi rr: - Y me
and in general
1
— _1 n—1 S —
an = (1) nl(n —1)!
We calculated a solution
o] —1 o8 n—1
_ ()" . (-1) n
y—:E—l—Z n!(n—l)!zp N z_: n!(n—l)!zp '
n=2 n=1
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(On the last step we separated the linear term, for which a; = 1 was chosen
from the other terms for which a,,’s were calculated. Then we noticed that
both terms can be combined in a single series.)

V1.4 Expressing y” from the equation, calculate
/ ! / / 1 / / 2 /2
E =2yy" +2yy =2y —2Y +2w/=—5y <0,

and then the energy FE(x) = y/2($) + y%(z) is decreasing for all z > 0. At
each critical point 3/(z) = 0 and therefore y*(z) is decreasing along the
critical points. It follows that |y(z)| is decreasing along the critical points.

VL5 Because the energy F(x) = y/2($) + 32(z) is decreasing for all z > 0,
it follows that y/2($) is decreasing along the roots of y(z). We conclude that
|y/(x)| is decreasing along the roots of y(x).

Page 147

To solve a moderately singular equation of the form

(%) 2y () + xp(z)y (z) + q(z)y(z) = 0

one begins by solving the characteristic equation
r(r—1)+p(0)r+¢(0) =0.

If 1 # ro are its real roots, then a substitution y(z) = 2" v(x) produces a
mildly singular equation for v(z), leading to the first solution of (x), y1(z) =
2" w(z). The second solution of the form ys(z) = z"v(z) (with a different
v(z)) is produced similarly.

1
VIL1 For this moderately singular equation p(z) = 1, ¢(z) = ? — T The
characteristic equation

1
) 4r—-=0
rir—1)+r 1

1 1
h t = —and rg = ——.
as roots 71 5 and 7o 5

1
Case 1. r = —. We know that the substitution y = z3v will produce

a mildly singular equation for v(x). Substituting this y into our equation
gives
2" 4+ 20 +2v=0.
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Multiply this mildly singular equation by x, for convenience,
220" + 220" + 2% =0,

and look for a solution in the form v(x) = Z apx", beginning with ag = 1.
n=0
Substitution into the last equation gives

[e.e] [e.e] [e.e]
Z apn(n —1)z" + 2 Z anpnz’ + Z A" =
n=2 n=1 n=0

To line up the powers, shift n — n — 2 in the last series. Obtain

o0 o0 o0
Z apn(n —1)z" + Z 2a,nx"™ + Z DY A
n=2 n=1 n=2

The linear term is present only in the second series. We split it off, and then
combine all three series

o0
2a1x + Z [apn(n — 1) 4+ 2a,n + ap—o] 2™ =0.
n=2

It follows that
a1::0,
and
apn(n —1) 4+ 2a,n+ ap—o =0,
which leads to the recurrence relation
1

" D)

Ap—92 .

The recurrence relation shows that ag = 0, a5 = 0, and similarly all odd
coefficients are zero, as,11 = 0. Beginning with ag = 1, we now calculate
1 1

1
the even cloefﬁcients. Obltaln as = _ﬁ = =53 ay = —ﬁag =
(—1)2m = (—1)25, and in general ag, = (—1)"m. We con-
clude that
oo n 2n
B z:: 2n—|—1 r
and then
1/2 - (—1)%32” 12 )" gt 1/2

= 1 - =2 Y2¢ing.

wle) == +nz::1 (2n +1)! v Z 2n—|—1 R
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1 1
Case 2. r= —3 Substituting this y = ™ 2v into our equation gives

v +0v=0.
/2 cosz. (Other choices for
12 cos )

We take v(xz) = cosz, and obtain yy(z) = x~
v(z) would lead to the same general solution y = iz 2 sinz+egx

1/2

Observe that the solution y;(x) = ™ /“sinz could also be derived the

same way. Bessel’s equation of order 3 is very special. It can be solved

without using infinite series.

VIL.3 For this moderately singular equation p(x) = 1, g(x) = —1 — z. The
characteristic equation

2r(r—1)4+3r—1=0

1
has roots r; = 3 and ro = —1.

1
Case 1. r = —. We know that the substitution y = z3v will produce

a mildly singular equation for v(x). Substituting this y into our equation
gives
200 + 50 —v=0.

Multiply this equation by x, for convenience,

(1) 222" + 5av’ —axv =0,

o0

and look for a solution in the form v(x) = Z apx", beginning with ag = 1.
n=0

Substitution into the equation gives

00 0o 00
Z 2apn(n — 1) +5 Z apnx’ — Z a,z"t =0.
n=2 n=1 n=0

To line up the powers, shift » — n — 1 in the last series. The first series
we may begin at n = 1, instead of n = 2, because its coefficient at n = 1 is
zero. Then

o0 o0 o0
Z 2apn(n —1)a" +5 Z apnz’™ — Z an—12" =0.
n=1

n=1 n=1
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Combine these series into a single series, and set its coefficients to zero
2apn(n — 1) 4+ bapyn — ap—1 =0,

which gives us the recurrence relation

1
an:mfln—l-
Starting with ag = 1, compute a1 = ! az = ! ay =
2-1-(1+3) 2:2-(2+3)
1 : 1
2221(1 + 3)(2+ 3)7 and in general a, = W (11 %)(2_1_%)(”_1_%) It
;L,’I’L

follows that v =1+ , and
Z nl2n (1+3)2+3)- - (n+3)

n

T2 1+Zn|2n )(2—1—%)(11—1—%)

Case 2. r = —1. Set y = 2~ 'v. Substituting this y into our equation and
simplifying gives
200" — v —v=0.

Multiply this equation by z, for convenience,

1 /
2020 — 2 — 20 =0.

e}

We look for a solution in the form v = Z anz”. Substituting v(z) into the
n=0
last equation, obtain

o0
Z 2ap,n(n — 1)z Z anpnx’ Z a,x"t =
n=0

We start the first series at n = 1, and make a shift n — n — 1 in the third

series:
o0
Z 2apn(n — 1)x Z apnz” Z p_12" =0
n=1

Setting the coefficient of ™ to zero,

2apn(n —1) —ayn —ap—1 =0,
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gives us the recurrence relation

1
an_n(Qn—fi) fn—1

Starti ith =1 t = = ! = =

arting with ag = 1, compute a1 = 1'1,(12—1'1&1— 1'1,<l3—

1 1 1 1 di 1
— Gy = ——— = ——a3 = ———, and in gener
2'3(12 2!1'3,(14 3'3(13 3!'1'3'5721 genera

1

I = T 1-3.5---(2n—3)

The second solution is then
s 1

—1
1_
z_:n! 135 --(2n—3) "
n=1

n

yo(z) =2

The general solution is, of course, y(x) = c1y1 + cayo.

VIL.5 The characteristic equation

Ir(r—1)+2=0

has roots r{ = = and r9 = 3"

1
. Set y = x3v. Substituting this y into our equation and

1
3
1
Case 1. = -
ase r=g3

simplifying gives
920" + 60" +v=0.

Multiply this equation by z, for convenience,

92%0" + 620" + v =0.

[e.e]

We look for a solution in the form v = Z apz”. Substituting v(x) into the
n=0

last equation, obtain

o) ) 00
Z 9apn(n —1)x" + Z 6a,nr" + Z a,r" Tt =0.
n=2 n=1 n=0

We make a shift n — n — 1 in the third series, and begin the first series at
n=1:

o0 o0 o0
Z 9apn(n —1)x" + Z 6a,nx"™ + Z an_12" =0.
n=1 n=1 n=1
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Combining these series into a single series, and setting its coefficients to
zero, we obtain the recurrence relation

1
= 3B 1)
Beginning with 1, calculat ! !
nning wi = calculate a; = — ag = — , a2 =
eg1 g aop ,1 1 31‘1'2 0 3.1.2 12
— — _12— — — _13 d
3252 (VUeaasas® 3332 (Vi 3358™
in general
— (—1)" :
= () S s @)
1

2", and

It follows that v(z) =1 + Z(—l)" —
Y 3l 258 (3n - 1)

e}
1 n !
x3 1+£(—1) 3nng.2.5-8---(3n—1)$

n

y1()

2
Case 2. r = 3 Set y = z30. Substituting this y into our equation and
simplifying gives
920" + 120" +v =0.

Multiply this equation by z, for convenience,

922" + 1220 + v = 0.
o0

We look for a solution in the form v = Z anz”. Substituting v(z) into the
n=0
last equation, obtain

o (o] o
Z 9apn(n —1)x" + Z 12a,nz™ + Z a,z"tt =0.
n=2 n=1 n=0

We make a shift n — n — 1 in the third series, and begin the first series at
n=1:

o0 o0 o0
Z 9apn(n —1)x" + Z 12a,nx™ + Z n_12" =0.
n=1 n=1 n=1

Combining these series into a single series, and setting its coefficients to
zero, we obtain the recurrence relation

1
3n(3n+1) "

ap = — n—1 -
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1 1

Begirining with ag = 1, (ialculate a; = —31'1'4(10 = ~3 1.2
— = (=1 g = =(-1)3
3oqe g 33 0% etz 7 0™
in general
1
— (=) .
= () ST T T 0 G D
b 1
It foll h =1 -1H" " d
t follows that v(z) +nz::1( )3nn!'4'7'10“'(3n+1)x,an
(@) =t 1+ 3 (-1 : o
y2i®) = & P 3nnl4-7-10---(3n+1) |
Chapter 4

Section 4.5.1, Page 167

14 L (ez(t_l)) =L (e_zezt) —e 2L (ezt) = @.

1.5 Begin with £ (cos3t) = ﬁ By the shift formula

o - s —2
E(e coth) “ G109
e o= = £ (£ -3) _z .3
' t - o3 s
4! 24
1.7 Begin with £ (t4) = — = —. Then by the shift formula
S S
24
Ve _3tt4 — )
(e7) (s+3)°
. 9 1 1
1.8 Use that sin“ 2t = g~ 5008 4t. Then
1 1 1 S
-2
2)=(=—=cosdt) = —— ————.
E(sm ) (2 5 C08 ) 25 2(2 1 16)
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1
1.9 Use that sin 2t cos 2t = 3 sin4t¢. Then

2
L (sin2tcos2t) = ——.
52+ 16
1
1.10  Use the formula sinh ¢ cosht = 3 sinh 2¢, which follows easily from the
definitions of sinh ¢ and cosh¢. Then
1
s2—4°

L (sinht cosht) =

1.11 Split the integral into two pieces

[e'e] 2 [e'e]
£(|t—2|):/ oot |t—2|dt:—/ e—st(t—z)dt+/ e~ (¢ — 2) dt
0 0 2

€725 492s—1 e 2% 2e725 4+ 25— 1
2 52 :

s? s
(If you are using Mathematica, enter LaplaceTransform| |t — 2|, ¢, s].)

.12 F(s) = /OO G_Stf(t) dt — /3 e~ dt — e *(s+1) B 6_38(3;—1— 1)'

2

0 1 s s
Page 168
1.3 Factor the denominator, then use partial fractions

245 s(s+1) s s+1
1.4 Factor the denominator, then use partial fractions

1 1 1[1 1]_}%31& 1

s2—-3s s(s—3) 3

3

s—3 s

I1.5 Factor the denominator (by guessing one of its roots), then use partial
fractions

I 1 _ VA 15 12
$3—Ts4+6 (s—1(s—2)(s+3) s—1 s—2 s5+3
LR 0 VRN v
I TEC Tt
1 1 1 S

I1.6 = = — 1 —cost.

$+s  s(s24+1) s s2+1

96



1.7 L = 1 1 — 1 } — lsimt — lsim2t.
(s24+1)(s2+4) 3 |s2+1 s2+4 3 6

II.8 i = L = 1 [ s — —cost —
st4+5s2+4  (s2+1)(s24+4)  3|s24+1 s2+44 3

écoth.

1.9  Complete the square, and use the shift formula

1 1 L oiga
= — —e "sin3t,
$2+2s+10 (s+1)2+9 3
b L 3t
ecause — — sin 3t.
249 3
II.10  Factor the denominator, then use partial fractions
1 1 1 [ 1 1 ] 1, 1
= == — — —e'— —e .
$+s—2 (s=1)(s+2) 3ls—1 s+2 3 3

II.11 Complete the square in the denominator, then produce the same shift
in the numerator

S S
s24+s5+1  (s+3)2+3

1
To invert the first term, drop the shift first (drop +§)

—3—>cos—t.

82-1-1 2

Then by the shift formula

s—l—% _1 V3
e i
(s+3)2+3

Similarly
1 Hle_%tsinﬁt
G+IP+ V3 2"
because
1 2 . V3
sin —t¢ .
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1I.12  Factor the denominator, then use partial fractions

s—1 s—1 13 2/3 1, 2
= = + — e+ -e .
$2—s—2 (s—=2)(s+1) s—2 s+1 3 3
s+3 1 s 1 1
PN RS N | R R

11.14 Complete the square in the denominator, then produce the same shift
in the numerator

S S 1 S

As2—4s+5 (2s—1)2+4 4d(s—1)2+1

Ly
2°cost +

1
- =
46

1I.15 Factor the denominator, then use partial fractions

s+2 B s+ 2
s3—3s24+25 s(s—1)(s—2)’
s+ 2 A B c

s(s—1)(s—2) ;+s—1+s—2'
Multiply both sides by s, then set s = 0 to get A = 1. Multiply both sides
by s — 1, then set s = 1 to get B = —3. Multiply both sides by s — 2, then
set s = 2 to get C' = 2. We conclude
s+ 2 1 3 2

cre — 51— 3¢t + 267,
s3—3s24+25 s s—1+s—2_) ¢ t+ze

1I.16  Factor the denominator, then use partial fractions

3 —s s3—s 2s + 5S 2 75_1_5 cos 21
= =— — —5 cost+o .
st+5s24+4  (s2+1)(s®+4) 3(s2+1) 3(s2+4) 3 3

I1I.17  Factor the denominator, use partial fractions, then complete the
square

s+2 0 242 _1, 2
s3 252425 s(s2—25+2) s s2—25+2
1 2
=4 — 1+ 2sint.

s (s=1)2+1
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Page 170
III.1  Apply the Laplace transform to both sides of the equation

—1/(0) — sy(0) + s2Y (s) + 3 (—y(0) + sY (s)) + 2Y(s) = 0.
Use the initial conditions
2+ 5+52Y(s)+3(1+sY(s)+2Y(s)=0,
then simplify and solve for Y (s):

(32+3s+2)Y(s):—s—1,

s+1 1 ot
— = — — —€ .
24 3s+2 s+2
II1.2  Apply the Laplace transform to both sides of the equation

Y(s) =

—1/(0) — sy(0) + s2Y (s) + 2 (—=y(0) + sY (s)) + 5Y (s) = 0,

2— 54 52Y(s)+2(—1+sY(s))+5Y(s) =0,
then solve for Y(s):
(32 —1—23—1—5) Y(s) =s,
s

Y = -
() s24+25+5

Invert Y(s):

S s+1 1
= — —
$2+2s+5  (s+1)24+4 (s+1)2+4

1
e tcos2t — §e_t sin 2t .

II1.3  Apply the Laplace transform to both sides of the equation, then solve
for Y (s)

4/ (0) = sy(0) + £V (5) + Y (5) = 5

2
—1+4 %Y Y(s) = ——
FPY() H V) = o
_1 2
o241 (s2+1)(s244)°

Y (s)
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Using partial fractions, invert Y (s):

1 27 1 1 5 1 2 1 )

1
_ 2 _ _2 2 sint—- sin2¢.
2113|211 244 gty

Y 2
(5) 32+1 3244 3

1I1.4 Apply the Laplace transform to both sides of the equation, then solve
for Y (s)

~y'(0) — sy(0) + s*Y (s) +25Y (s) +2Y (s) = 1

1
—1 4 %Y (s) + 2s5Y(s) +2Y (s) = po
24 25+2  (s—1)(s24+25+2)°

Using partial fractions on the second term, invert Y (s):

Y(s)

1 1 s+3 1, 1, .
o) = - el t—3sint)
) 52+25+2+5(8—1) 5(s2+25+2) 5 5 (cos sint)
in view of
1 1 S
= — e "sint,
$24+25+2  (s+1)2+1
s+3 54142

—t —t .
= t+ 2e “sint.
Pr2512 (splPg1l ¢ ot

II1.5  Apply the Laplace transform to both sides of the equation, and use
the initial conditions, then solve for Y (s)

—y"(0) — 59"(0) — s”y/(0) — ’y(0) +5'Y (s) =Y (s) = 0,
—s2+5'Y(s)—Y(s) =0,

2
1/2 1/2 1
5 / / — —sinht+§sint.

Yo =g 12 1T2+1 3

II1.6  Apply the Laplace transform to both sides of the equation, use the
initial conditions, then solve for Y'(s), and invert

—y""(0) = sy"(0) — s”y/(0) — s°y(0) + sV (5) =Y (s) =0,

—8 —25% + 51V (s) — 16Y(s) =0,
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252 + 8 2(s? + 4) 2 .
S s TR Y i Rl

II1.7  Apply the Laplace transform to both sides of the equation, use the
initial conditions, then solve for Y(s)

/" (0) s/ (0)~57y(0)+5°Y (5)+3 (1 (0) — 5y(0) + Y (5))+2 (~(0) + Y () = 0,

1
Y$)=———"———.
() s34+ 352 + 25
Using partial fractions, invert
1 1 1 1 1 1
Y - —_— @ @ @ = — —_— _t___2t'
&) =5 G2~ 2 Tsrl s+ 3¢ 2f

II1.8  Apply the Laplace transform to both sides of the equation, use the
initial conditions, then solve for Y(s)

s°Y () + 3s*Y (s) +3sY (s) + Y (s) = 5 _11_ 1
1
(54 1Y () = 5,
1
Yis) = (s+1)%"
/3 Bt

1
Starting with — — and using the shift formula, invert y(t) =
s

30 6

Page 170

® gintx

IV.2 Define the function f(t) = / dx. Observe that L (sintz) =

0

z (here = plays the role of the constant a), s > 0. Then

52 + x2
00 1 1 T oo 71

F = 7(1 :—t _1— - .

(5) /0 22 + s2 =G gl 2s

It follows that f(t) = g for all ¢, and in particular f(1) = g
IV.3 Apply the Laplace transform to each of the equations

—4+sX(s)=2X(s)—Y(s)
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24 sY(s) =—X(s)+2Y(s),
giving
(s—2)X(s)+Y(s)=4
X(s)+ (s—2)Y(s) =-2.
This is a linear system for X (s) and Y (s). Solving it (say, by Cramer’s rule)

45 —6 2s
ives X(s) = —— 2 y(g) = 20
gives X (s) s2 —4s+3’ () s2 —4s+3
inverts X (s) and Y (s) to conclude z(t) = e’ + 3¢, y(t) = ' — 3¢3. (If you
45 —6

s2 —4s+3’

. Using partial fractions, one

are using Mathematica the command is InverseLaplaceTransform|
s, t].)
IV.4  Apply the Laplace transform to each of the equations
1
sX(s) =2X(s) —3Y(s) + 2
—1+4+sY(s) = —-2X(s)+Y(s),
giving
1
(s —2)X(s)+3Y(s) = 2
2X(s)+(s—1)Y(s)=1.

Solving this linear system for X (s) and Y(s), then using partial fractions
obtain

X(s):_2382—s—1 :L_LJF L9
2 (s2—3s—4) 4s> 16s s+1 16(s—4)
2_1_763+6_t_16e4t’
3_ 92
Y(s):s;(szfsiis—i):%_%—1_3—11—1—1—8(33—4)
—>——§—|—e_t—|—ge4t.
Page 171

V.1 At t = 1 the function f(¢) jumps up by one unit, and at ¢t = 5 it

jumps down by one unit. It follows that f(t) = wi(t) — us(t), and then
e~ s 6—53

F(s) = T

S
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V.2 The function g(t) starts out equal to 1, and at ¢ = 5 it jumps down by
1 —5s

three units. It follows that g(¢) = 1 — 3us(t), and then G(s) = — — 3¢ .
s s

V.3 The function h(t) starts out equal to —2, at ¢ = 3 it jumps up by
six units, and at t = 7 it jumps down by four units. It follows that h(t) =

9 6—33 e—7s
—2 + 6us(t) — 4uz(t), and then H(s) = —=+6 —4 .
s

S

e

V.4 ﬁ(t):siz, and then £ (ui(t) (¢ — 4)) = -

V.6 This function is equal to 0 for ¢ € (0,2), to 1 for t € (2,3), to —1 for
t € (3,6), and to 3 for t > 6.

V.7 Begin with iz — t. Then by the second shift formula
s
1 —5 —4s
S (270 = 3e7) = 2u(B)(t — 1) — Bua(t)(t — 4) .
s

3s—1 1

V.8 Begin with ﬁ — 3cos2t — §sin 2t. Then by the second shift
s

formula

_9g38—1
s2+4

— uay(t) [3 cos2(t —2) — %sin 2(t — 2)] .

V.9 Begin with

1 1 1[1 1] 1, 1 4
e

2+s5—6 (s —2)(s+3) T 5ls—2 s+3

Then by the second shift formula

1 1 1
s o (Lpat—2_ 1 —3t+3> ‘
€ s2+s—6_’“1()<5e 5°

V.10 Completing the square

1 1 .
- Ze~tsin2t.
2+25+5 (s+1)2+4 2° "

Then by the second shift formula

o 1 1
e_Esm — Euw/g(t)e_(t_”/z) sin2(t — 7 /2).
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1 —t+m/2
= — o o(t)e T 2 gin 2t .
2u7r/2( )e sin

V.11 Apply the Laplace transform to both sides of the equation, then solve
for Y (s)

e—s 6—53
—25+8%Y(s) + Y(s) = 4 - ,
s s
2s 1 1
Y(s) = et ——— — e
() 32—1—1+ c s(s2+1) ¢ s(s2+1)
Using partial fractions
1 1 1
= — 1 —cost.

s(s2+1) s s$2+1
Then by the second shift formula
Y (s) — 2cost + 4uy(t) [1 — cos(t —1)] — us(t) [1 — cos(t — 5)] .

V.12 Apply the Laplace transform to both sides of the equation, then solve
for Y (s)
6—23
1+ s%Y +3sY +2Y = ,
S
1 _og 1

S S
s2 4+ 3s+ 2 s(s2 +3s+2)

Y(s) =

Using partial fractions

1 1 1 1 I
= = — —et—e
$243s+2 (s+1)(s+2) s+1 s+2

1 1 1 1 1

s(s24+3s4+2)  s(s+1)(s+2) s+2) s—|—1+2s

1 _ -
et oty

2(
1
3"

By the second shift formula

1 1 1
oy L PN R —2(t—2)] '
c 3(32—1—33—1—2)_)“2()[2 c e

Combining both pieces

Y(s) = e 2 — et 4 uy(t) [2

I -t2 %e_z(t_z)] '
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V.13 Apply the Laplace transform to both sides of the equation. The
Laplace transform of the right hand side is computed using the second shift
formula:

Obtain

—14 5+ 5%V (s) +4Y(s) = — ™

1 s s 1

Yo =0 w11 ¢ rneeLd)

Using partial fractions

(s24+1)(s2+4) 3

1 1 1 1 1 . 1 .
32—1—1_32—1—4 —>§smt—ésm2t.

Using the second shift formula and trig identities

1 1 1
Y(s) — —cos 2t + 5 sin 2t — u,(t) (5 sin(t — ) — 5 sin2(t — 77))

1. 1. L.
= —cos2t + = sin 2t + ur () (— sint + —sm2t> .
2 3 6
V.14 Write g(t) = (1 — ur(t)) t + mur(t) =t — ur(t)(t — 7), so that G(s) =
1 e

Apply the Laplace transform

52 s2 7
1 e—’ﬂ's
2 _
S Y‘i‘Y—s—z—s—z,
1 —TSs
Y(s) = T

By the second shift formula
1

e—’TI'S — e—’TI'S |:

$2(s2+1)

1 1

== m] — Ur(t) (t —7) — ur(t) sin(t — )

= ur(t) (t — ) + ur(t) sint.

Combining the pieces

Y(s) =t —sint —ur(t) (t — 7 +sint) .
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Page 173
VI.3 Write

1 3—2 1
stl_ st — 12— L §(t) — 2073,
s+ 3 s+ 3 s+ 3

VI.4 One needs to perform the division of two polynomials, to obtain a
remainder term with a linear numerator. Alternatively, one can write

s +1 42542 (2s+1) . 2s+1
2 4+25+2 s2+2s+2 B s2+2s+2
2(s+1) 1

—t —t -
ENCESEE (3—1—1)2-1-1_)5(75)_26 cost+ e 'sint.

VL5 Apply the Laplace transform

24+ +Y =€,

2 1
Y (s) = m%_m 251 2sint+uy(t) sin(t —m) = 2sint —u,(t) sint.

VI.6 Apply the Laplace transform

S2Y 4+ 25Y +10Y = e ™,

1 1
Y(s)=e ™ g—m——=e"—
s +2s+ 10 (s+1)249
l —(t—=m) & _ — _l —t+m _:
— 3u7r(t)e sin3(t —7) = 3u7r(t)e sin 3t .

VI.7 Apply the Laplace transform
48’V (s) +Y(s) =1,

1 11 1.1
Y(s) = - ~sin=t.
()= 241 15241 727

VI.8 Apply the Laplace transform

—4 4 45%Y +4sY +5Y = e 2™
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s) = e—27rs 1
452 +4s+5 452 4+ 45+ 5"

Invert

1 1 1 1
= —

42 14515 (2s+ 12414 4(s+ 1241

By the second shift formula

1 1 1 1 .
o = —5(t=27) _ — —2(t—27) o "
452 +4s+5 4u2”(t) € sin(t —27) 4U27r(75) e > sint.

—27s

Combining the pieces

1
Y(s) — e 3lsint + Zu%(t) e~ 32 ging .

VI.9 By a property of the delta function, for any tg > 0

L= t)f(0) = [ '8t~ t0)f(t) dt = = f (1)

0

VI.10 Apply the Laplace transform, and use the formula derived in the
preceding problem

™ 1 ™
S2Y +4Y = 6_35005% = 56_587
1 =, 1 1 ) T
Y(s) = 3¢ 3Sm — Zuw/g(t) sin2(t — g)

Page 174
VII.1 By the definition of the convolution

t
sint*lzl*sint:/ sinvdv=1—cost.
0

VII.2 By the properties of the delta function
t 00
Ft) % 6(t) = /0 5(t —v) f(v) dv = /_OO 5(v— ) f(v) dv = f(t).

107



VII.3 By the definition of the convolution

t t t t3
t*t:/(t—v)vdv:t/ vdv—/vzdv:—.
0 0 0 6

Alternatively, L (t«t) = L(t) - L (t)

1 1
32 8—228—4 Then

1 3
txt=L""1 (—) = _.
¥ 54 6

VIL.5 By the definition of the convolution

t t
cost * cost = / cos(t —v) cosv dv = / [costcosv + sintsinv] cosv dv
0 0

t t 1 1
:cost/ coszvdv—l—sint/ sinvcosvdv:§tcost—|——sint.
0 0

1 1
The first integral was evaluated using the trig identity cos? v = = + = cos 2v.

2
VIIL.6(a) ! £t ( ! ) * L1 ( ! ) & * sin ¢

: —_— — — = —

s3(s?2+1) s3 s2+1 2

1

t 1 t t 1 t
/ (t —v)?sinvdv = —t2/ sinvdv—t/ vsinvdv—l——/ v?sinv dv
2 Jo 2 0 0 2 Jo

2
—>§—|—cost—1.

1 » L1 1 1

VII6(d) m—) <52—|—9>*£ (32+9> :§SID3t*§Sln3t:
3

9 sin 3t * sin 3t — 01 sin 3t — 5—475 cos 3t.

VIL.7 Apply the Laplace transform

9 s
Y+9Y = —
S + 82+97
S s 1 1 . 1 .
Y(s) = CETE = 279 P59 — gCOS3t*Sln3t: 6t51n3t.
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VIL.8 Apply the Laplace transform
%Y +4Y = G(s

)
1. Lt
— §S1n2t*g(t) = 5/ sin2(t — v)g(v) dv.
0

_ G(s)
Yis) = s?2+4
VIL9 Obtain —F(s) = ——
' A g F8) = st(s?24+1)’
1 1 1

F(s)= o =

s2(s24+1) 3_2_82—1—1_”5_811”'

¢
VIL.1I0 £ (/ e~ () cog v dv) =L (e‘t * COS t)
0

S

=L (e_t) L (cost) = GIDEEED)

VII.11 Write this integral equation as
y(t) +t *y(t) = cos2t,

and apply the Laplace transform

1 S
Y+—=YV=—"1
+s2 s24+47
53 1 s 4s 1 4
Y — = _|= —— t+ — 2t .
)= Er DT 3[ s2+1+s2+4]_’ g Cost 3008

1 1 1 1
VILI2 L(txtxt)= 2 2 2w It follows that

1 to
_ r—1 _
txtxt=L (—86>——5!.

Page 175

VIII.1 In the sense of distributions (|t|)’ = 2H(t) — 1, and then (|t|)” =
20(t).

VIII.2 Differentiating n — 1 times separately for ¢ < 0 and for ¢t > 0, one
shows that £~ (¢) = H(t). One more differentiation gives £ (t) = d(t).
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Chapter 5

Section 5.3.1, Page 189

. . . . 1
1.1 The eigenvalues are A = —3, with the corresponding eigenvector [ 9 ]

and A = 0, with the corresponding eigenvector . The general solution

2
1

+ co

1
. _ . -3t
is z(t) = cre [ 5 1

1.2 The eigenvalues are A\ = 4i. An eigenvector corresponding to A =1 is

141 . :
—2H , leading to a complex valued solution
+ | 1414 .. 141 cost —sint .| cost+sint
it _ —
€ 2 = (cost +isint) 2 - l 2 cost ] l 2sint ] '

Since both the real and the imaginary parts of the complex valued solution
are also solutions, the general solution of our system is

2cost 2sint

z(t) =1 [

cost —sint ] . [ cost +sint ]
2 .

1.3 To solve the cubic characteristic equation
N 46N 9N +4=0

one guesses a root A = 1. The other two roots are A = 1 and A = 4. So
that the root A = 1 is double. A better way is to factor the characteristic
polynomial while calculating it. Indeed, expanding the determinant of the
characteristic equation

2—A 1 1
1 2—A 1 =0
1 1 2—A

in the first row gives

2-N[@-N-1]-2-A-1+[1-2+)=0.
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Factor the quadratic in the first square bracket as (A — 1)(A — 3). Then the
characteristic equation becomes

2-ANA-1)A=3)+2A—1) =0,
A=D1 [2-N(A-3)+2 =0,
(A=1) [-X2+5x—4] =0,

so the roots are 1, 1, 4.

-1
The root A = 1 has two linearly independent eigenvectors 0 | and
1
—1 1]
1 |. The eigenvector corresponding to A = 4 is | 1 |. The general
0 1
solution is then
1 —1 —1
z(t)=cre' | 1 | + coe 0 | +cze 1
1 1 0

1.4 The matrix of this system has a double eigenvalue \;y = Ay = 3, and

1
only one linearly independent eigenvector £ = [ 0 ] . We have one solution:
z1(t) = €% [ (1) ] . The system (A — A\I)n = £ to determine the generalized
eigenvector 1 = [ Zl ] takes the form
2

7’}2:0.

(The second equation is 0 = 0.) Set 3 = 1, to obtain a generalized eigen-

)

] . The general solution is then

1
3t
+ coe <t [ 0

In scalar form this system takes the form

1
vector n = [ 0

z(t) = c1e® [ (1) +

:L'/l =3x1 + x9
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xh = 3xg.

Solve the second equation, zo = c;e, then use this o in the first one to
get

:Ell =3z + clest ,

which is a linear first order equation, easily solved.

1.5 The matrix of this system has a simple eigenvalue A\; = —1, with an
1
eigenvector £ = | 0 [, and a double eigenvalue Ao = A3 = 2, with only one
0
0
linearly independent eigenvector £ = | 0 |. The system (A — A\ I)n = ¢ to
1
m
determine the generalized eigenvector n = | 72 | takes the form
3
—3m =0
n3 = 0.
(The third equation is 0 = 0.) Set 72 = 1, to obtain a generalized eigenvector
0
n= | 1 |. The general solution is
0
1 0 0 0
zt)=cre | 0 |+ | 1 | +ege®|t]1]+]0
0 0 0 1

. 1
1.7 The eigenvalues are A = —1 with the corresponding eigenvector [ 1 ] ,

1
1 ] The general solution

cet| 1],
-]

and A = 1 with the corresponding eigenvector [
is

1

z(t) = cre™? [ 1

The initial condition implies that

1
C1 1

+ co
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1
which gives ¢; = ¢cg = 5

In scalar form this system takes the form
/
Ty = T2
:L'/2 =T .
Differentiating the first equation, and using the second one obtain
2 —x1 =0, 71(0)=2, 2/(0)=1.

1 3 1
It follows that x1 = x1(t) = Ee_t + §et, and then xo(t) = 2/ (t) = —§e_t +

3
Eet, which is a scalar form of the equation above.

1.8 Expanding the determinant of the characteristic equation

—2-=A 2 3
-2 3—A 2 =0
—4 2 5—A

in the first row gives
(=2=XN)[B=NB—-A)—4]—-2[-25—-A)+8]+3[-4+4(3—)N)]=0.

If one factors the quadratic in the first square bracket as (A —2)(\ —6), then
the characteristic equation becomes

(—2= N (A—=2)(A—6)+28 —16A=0.

Unlike the previous problem 1.3, there is no common linear factor. Therefore
we completely expand the characteristic equation

N+ 6X2—11A+6=0,
and factor it, observing that A = 1 is a root:

A= 1)(A—2)(A—3) =0.

1
The eigenvalues are A = 1 with an eigenvector | 0 |, A = 2 with an eigen-
1

1 1
vector | 2 |, A =3 with an eigenvector | 1 |. The general solution is
o] )
1 1 1
zt)=cre | 0 | +e? | 2| +e3e3 | 1
1 0 1
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The initial condition implies that

1 1 1 0
c1| 0| +ce| 2| 4+c3| 1 = 1
1 0 1 2
One calculates ¢ = —3, co = —2, ¢3 = 5, so that
1 1 1
z(t)=—=3e" | 0 | =22 | 2 | +5e3 | 1
1 0 1
0
1.9 The eigenvalues are A = 1 with an eigenvector | 1 |, A = 2 with
-1 -1
an eigenvector 2 |, A = 3 with an eigenvector 1 |. The general
2 1
solution is
0 —1 -1
z(t) =ciel | 1| +coe® 2 | +cze? 1
0 2 1

The initial condition implies that

0 -1 -1 —2
ci| 1| +c 2 | 4+c3 1| = 5
0 2 1 0
One calculates ¢ = 5, cg = —2, c3 = 4, so that
0 -1 -1
z(t)=5e | 1 | =22 | 2| +4e3| 1
0 2 1

1.10 The general solution was found in the problem 1.3 above:

1 —1 —1
z(t)=cre' | 1 | + coe 0 | +cze 1
1 1 0
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The initial condition requires that

1 —1 —1 -2
ci| 1| +co 0| +c3 1| = 3
1 1 0 2
One calculates c; =1, co =1, and cg = —2.
0
1.11 The eigenvalues are A\ = 5, with an eigenvector | 0 |, and a repeated
1
eigenvalue A = —3, which has only one linearly independent eigenvector
—1
&= 1 |. The generalized eigenvector n must satisfy (A + 3I)n =&, or
0
digy + 4y = —1
—dm — 4z =1
8’1’}3 =0.

Conclude: 73 = 0. After discarding the second equation, we may take

N9 =0, and ] = T The general solution is

0 —1 -1 —1
z(t) = | 0 | 4+ cpe™™ 1| +ege |t 1]+ 0
1 0 0

The initial condition requires that

0 —~1 —1 -2
c1| 0] +c 1| +es 0| = 6
1 0 0 1

Obtain ¢; =1, co =6, c3 = —16.

1.12 The eigenvalues are A = +2i. An eigenvector corresponding to A = 2i

1

2it | | _ o i | | —sin2t | cos2t
e lll_(COS%—I—ZSID%)ll]_l COSQt]+Z[Sin2t )
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Since both the real and the imaginary parts of the complex valued solution
are also solutions, the general solution of our system is

o) = ¢ —sin2¢ n cos 2t
o cos 2t 2| sin2t |-
The initial conditions imply that ¢; = 1 and co = —2. We conclude that

x1(t) = —2cos 2t — sin 2t
x9(t) = cos 2t — 2sin 2t .

Alternatively, our system

can be solved by differentiating the first equation, and then using the second
equation
7 = —2xh = 41,

leading to the equation
o +4z1 =0,

with the initial conditions

21(0) = —2,21(0) = —2x2(0) = —2.

1
Then z1(t) = —2 cos 2t — sin 2t, and z2(t) = —EJE/I = cos 2t — 2sin 2t.
1.13  The eigenvalues are A = 3 4+ 2i. An eigenvector corresponding to

A:3+2z'is“

e(3+20)t [ i ] _ o3t (cos 2t + i sin 2t) [ i ] — 3t [ —sin2¢ ]+i63t [ cos 2t ] ‘

] , leading to a complex valued solution

cos 2t sin 2t

Since both the real and the imaginary parts of the complex valued solution
are also solutions, the general solution of our system is

3| —sin2t 3¢ | cos2t
o(t) = cre [ cos 2t ] +eae [ sin2t | °
The initial conditions imply that ¢; = 1 and ¢y = 0.
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0

1.14  The eigenvalues are A\ = 1, with an eigenvector | —1 |, and a
1
pair of complex eigenvalues +i. An eigenvector corresponding to A = ¢
-2
is | —1—1 |, leading to a complex valued solution
N
-2 -2
e | —1—1i | = (cost+isint) | —1—1i
2 2
—2cost —2sint
= | —cost+sint | +4| —cost—sint
2cost 2sint

Taking the real and the imaginary parts of this solution, we obtain two
real-valued solutions of our system, and hence its general solution is

0 —2cost —2sint
z(t)=cie' | =1 | 4¢3 | —cost+sint | +c3 | —cost—sint
1 2cost 2sint

The initial condition gives

0 -2 0 -1
ct| =1 |+c| =1 |4+c3| -1 | = 1
1 2 0 2
1 5 ..
Calculate: ¢y = 3 = 1, and c3 = —3 The solution is
0 1 —2cost 5 —2sint
z(t)=¢€"| —1 —1—5 —cost + sint b —cost —sint |,
2cost 2sint

or in scalar form

x1(t) = —cost + 5sint
xo(t) = —e' 4+ 2cost + 3sint
x3(t) = e’ + cost — Hsint.
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1.15 The eigenvalues of this skew-symmetric matrix are A = 0, with an

—4
eigenvector 0 |, and a pair of purely imaginary eigenvalues +5i. An
3
3
eigenvector corresponding to A = 5¢is | —5¢ |, leading to a complex valued
4
solution
3 3
e®® | —5i | = (cosbt +isinbt) | —5i
4 4
3 cos bt 3sin 5t
= | 5sindt | +4 | —Hcosbt
4 cos bt 4 sin 5t

Taking the real and the imaginary parts of this solution, we obtain two
real-valued solutions of our system, and hence its general solution is

—4 3 cos bt 3sin bt
z(t) = 0| +co| 5sinbt | +c3 | —5cosbht
3 4 cos bt 4sin bt

The initial condition gives

—4 3 0 1
c1 0| +c2| 0| +e3| 5|=1]0
3 4 0 3

1 3
Calculate: ¢; = = cy = = and c3 = 0.

1.18 Search for a particular solution in the form z; = Ae?, x5 = Be?.
0 -1
3 4
of the corresponding homogeneous system has eigenvalues A = 1, with a cor-

Substitution into the system gives A = —3, B = 7. The matrix

. . -1 . : :
responding eigenvector 11 and \ = 3, with a corresponding eigenvector

[ _:13 ] The general solution is

x(t) = e [ _:;

-1
3t
+ co€ [ 3] .

—1
t
+ cie [ 1
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1.19 In components the system becomes
¥y =x1—29+1
xh=x1+x2+t.

Look for a particular solution in the form z;(¢t) = At + B, za(t) = Ct + D.
Substitution into the above system gives
A=(A-C)t+B—-D+1
C=(A+C)t+B+D+t.

Equate the ¢ terms and constant terms in each of these two equations, to
obtain the following linear system of four equations:

0=A-C
A=B-D+1
0=A+C+1
C=B+D.
From the first and the third equations A = C' = —%. Then from the second
and fourth equations, B=—1 and D = % The particular solution is
1 1 1
)=—<t—1, pt)=—=t+=.

The general solution of the corresponding homogeneous system is

x1 = c1et cost — coel sint

9 = c1etsint + coel cost.
The general solution of the nonhomogeneous system is

r = —%t — 1+ cret cost — coetsint

To = —%t + % + cretsint + cqel cost.
The constants ¢; = 5 and ¢y = % are found using the initial conditions.

Page 193

II.1  If A1 and Ay are the eigenvalues of this matrix, then

AM+A=-2a<0,
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/\1/\2:a2—|—b2>0.

If the eigenvalues are real, they are both negative. Denoting by & and
& the corresponding eigenvectors, one concludes that the general solution
z(t) = 1M 4 ce™?€y — 0, as t — co. If the eigenvalues form a complex
conjugate pair A = p + iq, then p = —a < 0. Let & 4 in be the eigenvector
corresponding to p+iq, where u(t) and v(t) are real valued vector functions.
Then

z(t) = eP(cos gt + isingt) (€ + in)
= ePl(cos gt € — singt n) + ieP(singt &€ + cos qt 1)
is a complex valued solution, and the general solution
z(t) = c1eP! (cosqt € — singt n) + coeP(singt € + cosqt n) — 0,
as t — oo.
1.2 One obtains the system
/
Ty = T2
:E/2 = —cx1 — bxy.

. 1 . . .
Its matrix _2 b has a negative trace and a positive determinant.

Similarly to the preceding problem, all solutions tend to zero, as t — oc.

II.4 (i) The characteristic polynomial of a 3 x 3 matrix is a cubic, and
hence one of its roots is real. That root A must be zero, in order for e to
remain bounded, as t — £o0o. The root A = 0 must be simple, otherwise
the solution contains an unbounded factor of t. The other two roots must
be purely imaginary A = +iq, for the corresponding solutions to remain
bounded as t — 4o00. Then the general solution has the form

z(t) = c1&1 + cacosqt & + c3singt &3,

where &1, & and &3 are constant, real valued three dimensional vectors.

(ii) Observe that aj; = —a;j, and then a;; = 0 for any skew-symmetric ma-
0 pgq

trix. Then any 3 x 3 skew-symmetric matrix is of the form | —p 0 r |,
—q —1r 0
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with some real p, ¢ and r. Compute the eigenvalues A = 0, A = &1 /p2 + ¢% + r2,
and use part (i).

II.7 The sum of the eigenvalues is equal to the trace of the matrix, so that

1
A1"|'A2:_§7

and the product of the eigenvalues is equal to the determinant of the matrix,
giving

1
AlAQZ 5

VT

1
From these relations one determines that the eigenvalues are —— + TZ

Page 195
III.1 Calculate A2 = O, the zero matrix, and then A¥ = O, for all k > 2.

It follows that
1 ¢
At __ _
e _I+At_l0 1].

0 0 1
III.2 Calculate A2 = | 0 0 0 |, A%> = O, and then A* = O, for all
0 00O
k > 3. It follows that
) 1t 2
eM=T4+At+=A =0 1t
2 0 0 1

0 1
III.3 Write A=-3I+ | 0 0 1 |. Then using the preceding problem
0 00
0 10
T
et = 3t =30 1 ¢t
0 0 1
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III.4 Using that the matrix is block diagonal, and
l 0 —1 ]t
1 0 [ cost —sint ]
e = . )
sint cost

as calculated in the text, compute

cost —sint 0
At

e = | sint cost O
0 0 e
III.5  Writing [ :13 _:13 ] =3I+ (1) _(1) ], calculate

etint et cost

3 -1 .
1 3 [ ecost —edtsint ]
e = .
Then use that the matrix A is block diagonal to calculate
e3tcost —e3tsint 0
e = | etsint  edtcost 0
0 0 e*

II1.6  Begin with

ig Ht“ ]

and use that the matrix A is block diagonal to calculate

1
eAt=10
0

1.7 Calculate A2 =1, A> = A, A* = I, and so on. It follows that

11# 0 110 ¢
02|38 o

2!

0 ¢
t 0

+ +

w10
€ l01
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1
4

0

+ 0o t*

1+%t2+%t4+“' t‘|‘3|t3+. | cosht sinht
t+%t3+%t5+"' 1‘1'2;752-1' 4t ... | 7| sinht cosht |~

Cﬂ‘_»—l
~

338
+

01 00
. 0010 9
1.8 Write J = —2I + S, where S = 00 0 1 Calculate 5° =
0 00O
0010 0 001
0 001 3 0 00O 4 k
= = == >
000 0 , S 000 0 , S O, and S O for all k > 4.
0 00O 0 00O
It follows that
{1 t 1t %t?’]
Jt _ -2t St _ -9t L oo, 133 —2t| 0 1 ¢t L2
et =e “e?t =e I+ St+ =5+ =5t") =e 2
2! 3! 00 1 ¢
00 O 1

I11.12 For any numbers = and y we have e“e? = e 1Y, so that
Srg S
a0 ™ nso par

Calculating the product of the series on the left involves multiplying and
adding of numbers. Similarly, (z + 3)* are calculated by multiplying and
adding of numbers. Since AB = BA, the properties of multiplication and
addition for these matrices are the same as for numbers. It follows that

y_
m!

A“‘X’Bm (A+ B)¥
IR

k=0
II1.13 Because A commutes with —A, it follows that

Ao A=A A0

which proves that (eA) =e A,
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1I1.14 Because A commutes with any multiple of itself, it follows that

and, in general,

II1.16 Using that (A")" = (AT)", obtain

o0 n\T o0 ATn T
(-5 -E e

Section 5.5.3, Page 209
1.1 Let & and n be two linearly independent eigenvectors, corresponding to
the repeated eigenvalue \; of the 2 x 2 matrix A. The general solution is

z(t) = 1M + ety = eMid,

denoting d = c¢1€ + con. If di and dy are the components of the vector d,

d

then x1(t) = eMtdy and xo(t) = e*tdy, which gives zy = d—2$1 the straight
1

lines in the x1xy plane. (If z1(0) = 27, 29(0) = 2 and A\; < 0, then the

solution moves from the initial point (29, 29) on a straight line toward the
origin.)

1.2 The general solution has the form
z(t) = c1eM €+ ¢y (teAlté + e’\ltn) ,

where 7 is the generalized eigenvector. If A\ < 0, then z(t) — 0 as t —
00, giving a stable node. What makes this node degenerate is the absence
of another direction along which the approach to the origin happens at a
different exponential rate.

1.3 (i) Divide the second equation by the first one, to obtain

dy  mx+ny
der  ax+by’
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or in differentials

() (mx + ny)dz — (ax + by)dy = 0.
(ii) If the origin (0,0) is a center, the eigenvalues of the matrix s
are purely imaginary, of the form A\ = +pi, so that n = —a (and also

—a® — bm = p? > 0, which implies that b and m have the opposite signs).

Then the equation (x) is exact. (Here P(z,y) = mx+ny, Q(z,y) = —ax—by,
P, =n=—a= Q,.) Integration of () gives ma? + nxy — by* = ¢, which is
a family of closed curves around (0, 0).

Page 210

II.1  The matrix g g has the eigenvalues A = 1 and A = 5, both

positive. One has an unstable node at (0, 0).

1.2 The matrix _i 1 has the eigenvalues A = —3 and A = 2. The
origin is a saddle. i

1.3  The matrix _2 (1) has the eigenvalues A\ = £2i. The origin is a
center.

1.4  The matrix of this system is _i _;1 It has the eigenvalues

A= —3 and A = —2, both negative. One has a stable node at (0, 0).
1 -2
4 -3
—1 + 24, with negative real parts . One has a stable spiral at (0, 0).

1.5 The matrix of this system is . It has the eigenvalues A =

II.6  Write this equation in the equivalent system form

dx

G = 4x+y
d gy,
. : . 4 1 .
The matrix of this system is 1 -1 | It has the eigenvalues A\ =
1 1 .. .
5 (3 i \/29) >0 and Ay = - (3 - \/29) < 0. The origin (0,0) is a sad-

dle. (The answer in the book is incorrect.)
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I1I.7 The eigenvalues +3:¢ of this matrix are purely imaginary. The origin
is a center.

1.8  Write this equation in the equivalent system form

dt
d
%o
. : .10 1 .
The matrix of this system is 1ol It has the eigenvalues A = +1. One

has a saddle at the origin, which can be confirmed by solving this equation:
2 .2
Yy —z"=c.

3t

I1.9 Each equation can be solved separately, giving z1(t) = cie” " and

c . . ) . .
To(t) = c2e™3, or 1y = —2:E1. Each solution trajectory is a straight line

C1
segment joining the initial point (c1,c2) to the origin. Origin is a stable

degenerate node. It is approached by straight lines from all directions.

II.10  Solving the equation gives y = cx, so that we a degenerate node at the
origin, similarly to the preceeding problem. However, this time we cannot
tell the direction on the solution curves, and cannot distinguish between
stability and instability.

II.11  The eigenvalues of the matrix [ ; 1 ] are A\ = 1 £ /a. For a > 1,

one eigenvalue is positive and the other one is negative so that the origin
is a saddle. In case 0 < a < 1, both eigenvalues are positive, resulting in
unstable node. Similarly, we have an unstable degenerate node when a = 0,
and an unstable spiral if a < 0.

Page 212

Finding all solutions of nonlinear systems is often challenging. The prob-
lems in this section review some basic approaches.

III.1  The rest points are solutions of the system

22+ y>—1=0
6z —y?+1=0.

Adding these equations gives
8xr =10,
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or z = 0. Then from the first (or second) equation y*—1 = 0, y = £1. There
are exactly two rest points: (0,1) and (0, —1). Denote f(z,y) = 2z +13* —1
and g(z,y) = 6x — y? + 1.

(i) The linearized system at (0, 1)

f2(0, D)u+ f,(0,1)v
92(0, 1)u+ g,(0,1)v

u/
,U/
takes the form

u' = 2u+2v
v =6u—2v.
. 2 2 . .
Its matrix [ 6 —9 ] has the eigenvalues A = £4. It follows that the lin-
earized system has saddle at the origin, and then by the Hartman-Grobman
Theorem the original system has saddle at (0, 1).

(ii) The linearized system at (0, —1)

f2(0, =1)u+ f,(0,-1)v

u/
v = g,(0, —1)u+ g, (0, —1)v

takes the form

u = 2u — 20
v =6u+2v.

Its matrix 2 _3 has the eigenvalues A = 2 + 2v/3i. It follows that

the linearized system has an unstable spiral at the origin, and then by the

Hartman-Grobman Theorem the original system has an unstable spiral at
(07 _1)'

II1.3  The rest points are solutions of the system

y—x =0
(x—-2)(y+1)=0.

From the first equation ¥y = z, and then from the second equation z = —1
or x = 2. The rest points are (—1,—1) and (2,2). Denote f(z,y) =y — =
and g(z,y) = (z —2)(y + 1).
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(i) The linearized system at (—1,—1)

u = fo(—1,-1Du+ f,(-1,-1)v
v = gx(—1, —Du+ gy(—1,—-1)v
takes the form
uW=-u+v
v = —-3v.
. -1 1 .
Its matrix [ 0 _3 ] has the eigenvalues A = —3 and A = —1, both

negative. It follows that the linearized system has a stable node at the
origin, and then by the Hartman-Grobman Theorem the original system
has a stable node at (—1,—1).

(ii) The linearized system at (2, 2)

u' = fm(27 2)“ + fy(27 2)’0
v = g.(2,2)u+ gy(2,2)v

takes the form

u =—-u+v

v =3u.

— 1
Its matrix [ :13 (1) ] has the eigenvalues A = —3 (\/ 13 + 1) <0and XA =

1
5 (\/ 13 — 1) > 0. It follows that the linearized system has a saddle at the
origin, and then by the Hartman-Grobman Theorem the original system has

a saddle at (2,2).

III1.4 The rest points are solutions of the system

—3y+z(z2+y*) =0
3z +y (2 +y%) =0.
If z = 0 it follows (from either of the equations) that y = 0, and if y = 0 then

y = 0. We has a rest point (0,0), and in the search for other possible rest
points, we may assume that  # 0 and y # 0. Then from the first equation
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T
22 +y? = 3g, and from the second equation 22 + y? = —3Z. Setting these
x Yy

expressions equal gives

3% _3Y
Yy x
224y =0,

resulting in x = y = 0. We conclude that (0,0) is the only rest point. The
linearized system at (0, 0)

uw = —3v

v =3u

has a center at the origin. The Hartman-Grobman Theorem does not apply.
However, multiply the first of the original equations by x, the second one
by y, and add the results to get

x4+ yy = (:132 —1—112)2 .

Denoting p(t) = 2 + %2, this implies

1 / 2

50 =p -
I i ) hat soluti from the origi
ntegrating, p(t) = m, so that solutions move away from the origin,

making it unstable (actually, the solutions tend to infinity in finite time).

Page 212
IV.2 Recall that z(t) = e*c gives the general solution of

/
z = Ax.

Choosing the first entry of the vector ¢ to be one, and all other entries zero,
conclude that the first column of e is a solution of this system. Similarly, all
other columns are solutions of this system. The columns of ¢4 are linearly
independent, because the determinant of this matrix [e4f] = (49 > 0. It

follows that e? is a fundamental solution matrix. It is normalized, because
A0 o
e =e’ =1.

Chapter 6
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Section 6.6.1, Page 249
I.1 (i) Considering the sign of the cubic z(x + 1)(x — 2) in the equation

2(t) =l + 1)(x - 2),

one sees that 2'(t) < 0 and x(t) is decreasing when z(t) € (—oo, —1), 2’(t) >
0 and x(t) is increasing when x(t) € (—1,0), then again /() < 0 and x(t)
is decreasing when z(t) € (0,2), and finally /() > 0 and z(t) is increasing
when z(t) > 2. The rest points are z = —1 (unstable), x = 0 (stable), and
x = 2 (unstable).

(ii) If y(0) = 3, then y'(t) > 0, the solution is increasing and tending to
infinity as t increases (actually it tends to infinity, or blows up, in finite
time). Backward in time ¢, or as ¢ — —oo, this solution tends to the unstable
rest point y = 2.

(iii) The domain of attraction of the rest point x = 0 is (—1, 2), delineated
by the two rest points that are closest to x = 0, namely z = —1 and = = 2.

1.3 Considering the sign of the cubic 2?(2 — ) in the equation
a'(t) = 2*(2 - ),

one sees that z/(t) > 0 and x(t) is increasing when z(t) < 2, while 2/(t) < 0
and z(t) is decreasing for x(t) > 2. It follows that the rest point x = 2 is
stable, and the rest point x = 0 is neither stable nor unstable.

I.4 (i) x = 0 is a rest point. For all other values of z(t) the solution is
decreasing. It follows that the rest point x = 0 is neither stable or unstable.

(ii) If z(0) > 0, the solution is decreasing and it satisfies lim z(¢) = 0, as

t—o0
can be also seen by solving the equation

to get x(t) = #0()0)75

1 1
I.5 (i) Use the Lyapunov function L(z1, z2) = §JE% + §:E§ Then expressing

2} and x4 from the corresponding equations, obtain

d
&L(:nl(t), 2o(t)) = 112 +207h = 21 (—271 + T2 + T172)+ 22 (:131 — 29 + :E‘I’)
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= —2:13% — 2:E§ + 2x129 + ZE%ZEQ + :L"‘I):Eg .

Using that 2z1xo < ZE% + :E%, then switching to the polar coordinates in the
122 plane, we continue

d
gL (t), 22(t)) < —af — x5 + xizy + 2w

= —r? 4 1r3cos? 0sind + r* cos® fsinf < 0,

for r small enough.

—2 1
(ii) The matrix 1 —9 of the corresponding linearized system has the
eigenvalues A = —3 and A\ = —1, so that the linearized system has a stable

node at the origin, and in particular the origin is asymptotically stable.

1
1.6 Use the Lyapunov function L(z,y) = 3:E2 +y?. Then expressing =’ and

y' from the corresponding equations, obtain
d

EL(:L", y) = %:p 4+ 2yy = _%:132 (:132 + y2) —y? (:132 + y2)

2 2 2 2 2
——(gzn —|—y>(:n +y)<0,
for all (x,y) # (0,0).

1.7  The rest point y = 1 is asymptotically stable. Solutions starting with
y(0) € (0,1) are increasing and tend to y = 1 as t — oo. Solutions starting
with y(0) > 1 are decreasing and tend to y = 1 as t — oo.

The rest point y = 0 is unstable. Solutions starting with y(0) € (0,1)
are increasing and move away from y = 0.

1
I.8 Use the Lyapunov function L(z,y) = §:E4 +y2. Then expressing z’ and

y' from the corresponding equations, obtain

d
—L(z,y) = 222" + 2yy’ = =223y + 2y2® = 0.

dt
It follows that the solutions move on the closed curves
1 4 2
§:E +y" =c.

(Where ¢ = %ZE4(0) + 4%(0).) If the initial point (2(0),y(0)) is close to the

origin, the solution stays close to the origin for all ¢, so that the rest point
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(0,0) is stable, but (0,0) is not asymptotically stable, because solutions do
not tend to it.

1.9 (i) Letting y = 21, and 3y’ = x5 converts our equation into the system
) = x9
xy = —x1 — f(x1)22,

with a rest point (0,0).

1 1
(ii) Use Lyapunov’s function L(x1,x2) = §JE% + §:E§ Then expressing x|
and 74 from the corresponding equations, obtain

SLG(0), 22(0) = ~F w123 <0,

except when z3 = 0, and possibly when 21 = 0 (in case f(0) = 0). However,
one sees from the above system that solutions cross the axes only at isolated
t’s so that the function L(x1(t), z2(t)) is strictly decreasing. (If xz2(tg) =0,
it follows from the second equation that z(ty) # 0.) Since the equation

y'+ fy +y=0
corresponds to the system just considered, we conclude that all solutions
of this equation, with |y(0)| and |y'(0)| small, satisfy tlim y(t) = 0 and
—00
Jim y'(t) = 0 (assuming that f(z1) > 0 for all 1 # 0).
— 00

1

1
.10  To see that L(x1,x2) = / g(s)ds + §:c§ is a Lyapunov function,

observe that L(0,0) =0, and L(:L"Ol, x9) > 0, for all (z1, z2) # (0,0), because
the condition x1g(x1) > 0 implies that g(x1) is positive for x; positive,
and g(z1) is negative for x1 negative. Then expressing 7 and z§, from the
corresponding equations, obtain

d

gL(iﬂl(t)a za(t)) = g(x1)x) + w22y = g(21)22 + 2 (—g(21) — f(21)22)

= —f(x1)z3 <0  (for x3 #0).
Since the equation
y'+ fW)y +9(y) =0
corresponds to the system just considered, we conclude that all solutions

of this equation, with |y(0)] and |¢/(0)| small, satisfy tlim y(t) = 0 and

132



tlim y'(t) = 0 (assuming that the same conditions are imposed on f(y) and
—0Q0

9(y))-

I.11 (i) The rest points are the solutions of the system

—:133—1—4y(z2—|—1):0
—yP -z (2 +1)=0
—z—223=0.

Clearly, (0,0,0) is a rest point, and we need to show that there are no
others. We claim that for any other rest point z # 0 and y # 0. Indeed,
if x = 0, then from the second equation y = 0, and from the third one
z = 0. Similarly, the assumption that y = 0 also lead to the same rest point
T
(0,0,0). From the first equation, 241= o and from the second equation
Y

5
224+1= ¥ Setting these expressions equal, gives

T

3 y5

1y~ @

x

44y =0,
so that x = y = 0, and there are no other rest points.

To show that (0,0, 0) is asymptotically stable, we use a Lyapunov func-
1 1
tion L(x,vy,2) = =22 + 2y + §z2. Then expressing 2, 3/, and 2’ from the

corresponding equations, obtain

d
&L(:E, y) =z’ + dyy + 27/

=z =2+ 4y (22 +1)] + 4y [ — 2 (2 +1) ] + 2 [~ - 2*5

=gt —4yf - 22 —2*t <0,
for (x,y, z) close to (0,0,0), as follows by using the spherical coordinates.

(ii) The linearized system at (0,0, 0) is

=4y
y =
2 =—z



The last equation is decoupled (independent) from the other two. Solving it,
2(t) = 2(0)e™", we see that all solutions tend to the xy-plane. The projection
of any solution onto to the xy-plane moves on the solution of the system

which are the ellipses 22 + 4y* = ¢. It follows that any solution of the 3-d
linearized system moves on an elliptic cylinder, and it tends to the zy-plane,
as t — 0o. We conclude that the rest point (0,0,0) is not asymptotically
stable. However, the origin is stable: if solution starts near (0,0, 0), it stays
near (0,0,0).

1.13.  Setting x = X + 1 and y =Y + 1 obtain

X' =-2X+ XY
Y =-Y + X2,

1
We use a Lyapunov function L(X,Y) = §X 2+ Y2 Expressing X' and Y’
from the corresponding equations, then switching to polar coordinates in
the (X,Y) plane, obtain
d

ZLX(1),Y (1) = XX +2YY' = —2X% - 2% 4+ 3X%Y

= —2r2 +3r3cos?fsinf < 0,

for r small enough. It follows that for the original system the rest point
(1,1) is asymptotically stable.

Page 252

1.1 The null-clines 5 — x — 2y = 0 and 2 — 3z — y = 0 do not intersect in
the first quadrant of the xy-plane. Above the first null-cline the trajectories
move to the left, below it to the right. Above the second null-cline the
trajectories move down, and below it up. The null-clines divide the first
quarter of the zy-plane into three regions. Drawing the direction of motion
in each region, we conclude that the semitrivial solution (5,0) attracts all
other positive solutions.

1
1.2 The null-clines 2 — z — JY= 0 and 3 —z — y = 0 intersect at the point

(1,2), which is a rest point. Above the first null-cline the trajectories move
to the left, below it to the right. Above the second null-cline the trajectories
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move to the south, and below it up (north). The null-clines divide the first
quarter of the xy-plane into four regions. Drawing the direction of motion in
each region, we conclude that all positive solutions tend to rest point (1, 2).

11.3,4 The null-clines 3 —z —y = 0 and 4 — 2z —y = 0 intersect at the point
(1,2), which is a rest point. Considering the direction of motion in each of
the four regions of the first quadrant, bounded by these null-clines, one sees
that the trajectories move away from the rest point, and toward either one of
the semitrivial solution (3,0) and (0, 4), depending on the initial conditions.

1
1.5 The second null-cline is the parabola 2 — gznz —y = 0, but the same

analysis applies. The null-clines intersect at the point (6 — 2v/7, 3v/7 — 6),
which is a rest point. Again, the null-clines divide the first quadrant of the
zy-plane into four regions, and all positive solutions tend to the rest point

(6 —2v7,3V7 — 6).

Page 253

III.1 That the ellipse x = 2cost, y = sint is a solution of the system
x = —2y—|—:13(1 — 122 —y2)

y’z%:ﬂ—l—y(l—%:pz—yz).

1
can be seen by a direct substitution. Denote p(t) = Zznz + y*. Then the

ellipse x = 2 cost, y = sint can be written as p = 1. Using the corresponding
equations, calculate

1
p/ _ §$$/ + 2yy/

1 1 1 1
= —x|-2 1——2? —y?) | +2y | = 1——z%— 2)]:2 1-p).
23:[ y+w( i y>}+ y[2$+y( 1L Y p(1=p)
So that the integral curves satisfy
p'=2p(1—p).

For points inside the ellipse one has p < 1, and then p’ > 0, so that the
motion is toward this ellipse. For points outside the ellipse one has p > 1,
and then p’ < 0, and again the motion is toward this ellipse. We conclude
that the ellipse x = 2 cost, y = sint is a stable limit cycle.
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What we have here is a case of orbital stability: the trajectories (x(t), y(t))
approach the ellipse p = 1, but not necessarily its parameterization x =
2cost, y = sint. Observe that = = 2cos(t — a), y = sin(t — «) is another
solution of our system (for any «), and it gives another parameterization of
the same ellipse.

II1.2 (i) To find the rest point(s) one needs to solve the system

z—y—a3=0
rty—y =0,

or the point(s) of intersection of the curves z —y—z° = 0 and z+y—y°> = 0.
The first of these curves is a cubic y = 2 — 2%, which is easy to draw. The
second curve is also a cubic z = —y + y>. A careful graph shows that the
curves intersect only at the origin (0,0). In Figure ?? we present a graph
produced by Mathematica.

S T T T T T T T T T T T m

20 ey e T

Figure 1: The curves  —y — 2> = 0 and = +y — y°> = 0 intersecting only at
the origin

(ii) The linearized system at the origin is

=x—y

y=xz+y.
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(Which can be obtained by simply discarding the nonlinear terms.) The
eigenvalues of its matrix are 1 + ¢, so that the origin (0,0) is an unstable
spiral. By the Hartman-Grobman theorem the origin (0,0) is an unstable
spiral for the original nonlinear system too.

(iii) It follows from part (ii) that the trajectories of our system cut outside
of the circles 2® + y? = p?, for p small enough. We show next that the
trajectories of our system cut inside of the circles z? + y? = R?, for R large
enough. This will imply that the annulus p? < z? + y? < R? is a trapping
region, and by the Poincare-Bendixson theorem there exists a limit cycle.
Indeed, calculate the scalar product of F = (z —y — 23,2 + y — y3), and the

vector (x,y) the circle 2 + y? = R?, then switch to the polar coordinates.
Obtain

2
:E2+y2—:n4—y4 = !E2+y2— (:L"2 +y2) —1-2:1321/2 = R?>— R*+2R"cos® 9sin’ 0
9 1.4
<R —§R <0, for R large.

1 1
(We used that 2 cos? fsin? @ = 3 sin® 20 < 5)

II1.3 Denote f(z,y) = = (2 -z — y?’) and g(x,y) = y (4:13 -3y — $2).
Calculate

2ol sl - 225 o] e

1 3
=————-—<0, forz>0,y>0.
Yy ox

By the Theorem 6.5.1 it follows that the system has no limit cycles in the
first quadrant of the xy-plane.

II1.4 Convert the equation
2"+ f(x)z' + g(z) =0

. /
into a system for x1 = x and zo = x

Calculate



which keeps the same sign whether f(x) is positive or negative. By the
Dulac-Bendixson criterion this system has no limit cycles, and then the
original equation has no periodic solutions.

III.6 (i) The rest points of the gradient system
2y = —Va, (21, 22)

wy = — Vi, (21, 22)

are the solutions of
le (:El, :Eg) =0
Vm2($17 :EQ) =0 ;
which are the critical points of V(x1, x2).

(ii) Differentiating, and using the corresponding equations

d
EV(iﬂl(t)’ 2(t)) = Vi, (w1, 22)2) + Vi, (w1, 22) 2

= _Vm21 (:Elv:E?) - szg(:Elv:E?) < 07

showing that V(z1(t), z2(t)) is a strictly decreasing function of ¢ for any
solution (x1(t), x2(t)), except if (x1(t), z2(t)) is a rest point.

(iii)  Since V(x1,x2) is decreasing along any solution, it follows that no
solution can revisit the same point, ruling out the possibility of limit cycles.

(iv) If (a,b)is a point of strict local minimum of V(x1, z2), it follows that

L(x1,x9) = V(x1,22) —V(a,b) > 0 for (x1, x2) near (a, b), while L(a,b) = 0.

It follows that L(z1,z2) is a Lyapunov’s function, and by part (ii)
&L (1), 22(0)) = SV (1), 22(0) <0,

proving that (a, b) is an asymptotically stable rest point.
III.7. (i) For a Hamiltonian system
(2) :Ell = Vi, (:Elv :E?)

$l2 = V$1($17 $2) )

the function V' (x1, x2) remains constant along all of the trajectories. Indeed,
differentiating and using the corresponding equations
d

EV(iﬂl(t)’ 29(t)) = Vi, (w1, 22)2) + Vi, (w1, 22) 2
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= — Vo, (@1, 22) Vo (21, 2) + Vi, (21, 22) Vo (21, 22) = 0.

(iii) If atrajectory (z1(t), z2(t)) tends to arest point (23, 23), then V (z1(t), z2(t))
tends to V (29, 29). But V(z1, z2) remains constant along all of the trajec-
tories.

(v) The trajectories of gradient systems move along the vector (V,, Va,),
while the trajectories of Hamiltonian systems move along the vector (—V,,, Vu,).
These vectors are orthogonal at all points.

II1.8 In the Lotka-Volterra predator-prey system
2'(t) = ax(t) — ba(t) y(t)
y'(t) = —cy(t) +dx(t) y(t)

Divide the first equation by x(¢) > 0, the second one by y(t) > 0

S =a byl

L = —c +da(t)

then let p = Inz, and ¢ = Iny. For the new variables p(t) and ¢(t) obtain

P(t)=a—bei®
¢(t) = —c+der®.

The new system is Hamiltonian. Using the Hamiltonian function V' (p, q) =
—aq+be?! —cp+deP it can be written in the form

p'(t) ==V,
q(t) ="V
Page 256
IV.1 (i) If z(¢) is solution of the equation
(%) 7' = a(t)x + b(t)

it satisfies it for all ¢, in particular at t + p

2 (t+p)=alt+p)z(t+p) +bt+p).
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By periodicity of a(t) and b(t), this implies that
a'(t+p) = a(t)x(t +p) +b(t)

so that z(¢ + p) is also a solution of (x).

(ii) Given that z(p) = x(0), the solutions x(¢) and z(t+p) of (*) coincide at
t = 0. By the uniqueness of solutions of initial value problems, z(t+p) = x(t)
for all ¢, proving that z(¢) is a p-periodic function.

IV.3 Assume that the equation
(%) ¥ +alt)r=1

P

has p-periodic solution. Under the condition / a(t) dt = 0, it was proved in
0

the text that the equation

(%%) 2 —a(t)z=0

has a non-trivial (non-zero) p-periodic solution, and we assume that z(t) > 0
for all t. Multiply the equation (x) by z(t), the equation (*x) by z(t), then

add the results: J
L (0)2(0)] = #(0).

Integrate both sides over (0, p), and use the p-periodicity

201, = [ =0 d.

Oz/opz(t)dt.

The integral on the right is positive, and we have a contradiction, proving
that the equation (x) has no p-periodic solution.

IV.4 By the uniqueness of solutions of initial value problems, any non-
trivial solution of
' = a(t)x — b(t)z?
satisfies either z(t) > 0 or z(¢) < 0, for all ¢. Divide the equation by z(t), and
P
integrate over (0, p). Using the periodicity and our condition / a(t) dt =0,
0

obtain

() = /Op alt) dt — /Op b(t)x(t) dt
0= —/Op b(t)x(t) dt
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This is a contradiction, because the integral on the right is ether negative
or positive, proving that the logistic equation above has no non-trivial p-
periodic solution.

Chapter 7

Section 7.3.1, Page 269

1.1 Using that tan z is an odd function, obtain

3/2 1 3/2 3/2
/ tan'® z dz = / tan'® z dx + / tan'® z dx = / tan'® z dz > 0,
-1 -1 1 1

because tanz > 0 on the interval (1,3/2) (observe that 3/2 < 7/2).

1.2 Write
flz) = f(=) +2f(—:v) L f@) —2f(—:v) 7

where the first function is even, and the second one is odd.

1.5 The function f,(z) = z|z| is the odd function, which is equal to f(z) =
x% on the original interval [0, 1).

1.6 The function f(z) = z|z|P~! is odd, therefore its derivative f'(z) is
even. For z > 0, f(x) = 2P, and f'(x) = pz”~'. The even extension of this
function is p|z|P~!, therefore f'(z) = p|z|P~L.

1.7 Let us denote F(x / f(t)dt. Then

m+27r $+27"
F(:E—|—27T):/ £) dt — / £t dt+/

0
+/”2W = F)+ [ fto) i

because the integral of a 27-periodic function is the same over any interval
of length 27. The function F(z) is 2m-periodic if and only if f027r f(t)dt=0.

[.8 Evaluate the antiderivative, then use the periodicity of f(z)

/T+a Fl@)ef@ de = S @71 = I (THa) _ ofl@) =
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Page 270

Fourier series for a function f(x) on the interval (—L,L) (or for 2L-
periodic f(x)) has the form

o0
flx) =ag+ Z (an cos %:p + b, sin %:E) ,
n=1

1 L
where the coefficients are calculated as follows: ag = Y7 / f(x)dz, a, =
~L

1 (L 1 L
E/—L f(x) cos %JE dz, b, = E/—L f(x) sin %:p dzx. Often these coeffi-

cients can be calculated without performing the integrations.

II.1 The Fourier series on the interval (—m, 7) has the form f(z) = ag +
[e.e]

1
Z (an cosnz + by sinnx). Using the trig identities sinz cosz = 3 sin 2z,

n=1

1 1
and cos® 2z = 3 + 5 cos 4z, one sees that f(z) is its own Fourier series
1 1 1 1
flz) = 5 + —cosdx + §Sin2$. Here ag = 3 U =3 and by = X and the

other coefficients are all equal to zero.

I1.2 The Fourier series on the interval (—2m,27) has the form f(x) =

(o]
ao + Z (an cos gzn + by, sin g:E) As in the preceding problem one sees

n=1
1
that f(z) is its own Fourier series f(z) = 3 + 5 cos 4 + 3 sin2z. This time
1 1 1
a =5, a8 = 5 and by = 5 and the other coefficients are all equal to zero.

I1.3 The Fourier series on the interval (—g, g) has the form f(x) = ag +
[e.e]
(an cos2nz + b, sin2nz). Again, f(z) is its own Fourier series f(x) =
=1
q—l—l 4—1—1'2 H _ ! = db = d the oth
5 2.COS:E 5sin2z. Here ag = 5, ap = 5 and by = o, and the other
coefficients are all equal to zero.

1.4 Evaluate the integrals
1 (7 9 w2
ao—%/ (Zﬂ‘i‘llj)dl’—?,

—Tr
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an = l/w (;17—|—:L'2) cosnx dr = A= )

T Jor n2
1 2(—1)mHt

bn:—/ (:E—I—:E2) sinn:nd:n:i.
ZL — n

The last two integrals are evaluated by either guess-and-check, or two inte-
grations by part.
I1.5 The Fourier series on the interval (—m, 7) has the form f(z) = ag +

Z (an cosnz + by sinnx). Since here f(x) is odd, it follows that ag = 0,

n=1
an, = 0 for all n, and

2 (7 21—(-1)"
bn:—/ SiD’I’L:L'd:L':—#.
T Jo T n
. . . 4 1
The even coefficients asr, = 0, while the odd coefficients asg11 = — .
w2k +1
4 o
We conclude that f(x) = Z T sin(Qk +1)x.
1I.6  Here L = 2, and the Fourier series has the form
@) +§:( nmw +b,n7r>
= — in—zx | .
) =ag 2 G COS - + bn Sin — -
Calculate
4/ (1—lz|) dm——/ (1-—z)dz=0,
nm nm 4 n
2/ —|z|) cos - T dx —/0 (1—z) cos 5% dr = 33 1-(-1)",
and finally

1 r2
by, = 5/_2(1— |$|)sin%:ﬂd:p:0,

because the integrand is an odd function. One concludes that

[e.e]
4
1—|z| = E ) (1 —=(=1)")cos %:p, on the interval (—2,2).
n=1

1.7 Here L = 1, and the Fourier series has the form

[ee]
f(z) =ap+ Z (an cosnmx + by, sinnwz) .

n=1
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Since the function f(z) = z|z| is odd, ap = 0 and a,, = 0 for all n. Compute

—2 (n*r? —2) (-1)" — 4
n3m3

1 1
b, :/ x|x| sinnmx dx = 2/ 22 sinnrx de =
-1 0

9

using that cosnm = (—1)".

1.8 Here L =1, and the Fourier series has the form

o
f(z) =ap+ Z (an cosnmx + by, sinnwz) .
n=1
Calculate
1 /0 dp — 1
o), YTy
0
an :/ cosnmrdr =0,
-1
0 1
by, = / sinnrrdr = —[(—1)" —1] .
—1 nm
Obtain

1 =1 .
5 Zn— —1)" — 1] sinnwz

1 & 2
SR S VA
2~ (2k—1)r

1.9 Here L = 2, and the Fourier series takes the form

o0
flx)=ag+ Z (an cos %:p + b, sin %:E) .

n=1
Calculate
1 /0 1 /2
ap = Z/_2$d$+1/ (=1)dx= -1,
2[1-(=1)"]
2/ :L"cos—:ndzn—l—2/ cos—:nd:n—Twz,
1 —-1)"
by, / :Esm—:nd:n—l— / sm—:nd:n— L
2 2 nmw
Page 271
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III.1 Here L = m, and the Fourier cosine series has the form f(x) =
[e.e]

1 1
ao + Z an cosnz. Using the trig identity sin® 3z = 5 508 6z, one sees
n=1
that f(x) is its own Fourier cosine series

1 1
flz) = —3 + cos 3z + 50056:13 on (0,m).

1 1
Here ag = —5 43 = 1, ag = 5 and the other coefficients are all equal to
Z€ero.
II1.2 Here L = 7/3, and the Fourier cosine series has the form f(z) =
[e.e]
ao + Z an cos 3nz. For the same function as in the preceding problem one

n=1
obtains the same Fourier cosine series

1 1
cos 3z — sin’ 3z = —3 + cos 3z + 5 cos 6z on (0,7/3).

1 1
However, in this case ag = —5 01 = 1, a0 = 2 and the other coefficients

are all equal to zero.

III.3 Here L = 2, and the Fourier cosine series has the form f(x) =

o
™
ap + Z Qp, COS 7:13 Calculate

n=1
1 2
aOZE/O zdr=1,

4 4(-1)n

2/2 ™ p
Ay = — X COS—xraxr =
"2/ 2 n2m2

III.5 Here L = 7/2, and the Fourier cosine series has the form f(z) =

o
ao + Z an cos 2nz. Using trig identities

n=1

4 _(1 1 2>2_1 L os2z 4 Leos?

Sin- r = B 2COS Xz = 4 2COS T 4COS Xz
S DNPSRENE  E SIS DURUTA DI S SNV SN
—4 2COS T 2\ 9 2COS Xz —8 2COS X 8COS X .
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3 1
H = — = —— = —
ere ag 8,(11 5 @2 3
Z€ro.
Page 271

IV.1 Here L = 7, and the Fourier sine series has the form f(x

and the other coefficients are all equal to

Z b, sinnx.

Using a trig identity, we conclude that f(z) is its Fourier sine series on (0, 7)

. 5 .
dsinx cosx = 551n2:p,

5
where by = 3 and the other b,,’s are all equal to zero.

IV.2 Here L = 3, and the Fourier sine series has the form f(x

Compute
by, / sin —:E dr = 2 1-(-1".
3 nm

IV.3 Here L = 2, and the Fourier sine series has the form f(x

Calculate A
et — n+1
by, =3 / sin 2z dr = — — (=)™

IV.5 Here L = 7, and the Fourier sine series has the form f(x
Using Euler’s formula express
e = cosx + isinz,

¥ = (cosx + isinz)®

Z b, sin —:E.

Z b, sin —:E.

Z b, sinnx.

cos 3z + isin3z = cos® x + 3i cos® xsinz — 3cosrsin’z —isin’ .

Equating the imaginary parts
sin 3z = 3 cos®

sin3z = 3sinx — 4sin® z .

146

zsinz —sin®z = 3 (1 —Sin2$) sin x —sin?’:n,



3

Solving this equation for sin” x, one obtains the desired Fourier sine series

sin® z = 1 sinx — 1 sin 3z .
3
Here b, = 7 by = T and the other b,’s are all equal to zero.

[e.e]
IV.6 Here L = 7, and the Fourier sine series has the form f(x) = Z by, sinnx.
n=1

Calculate
9 ) 9 /2 ) 9 7 ]
bn:—/ f(:n)smn:nd:n:—/ :Esmn:nd:n—l——/ (m — x) sinnx dz
m™Jo m™Jo T Jr/2
cos o N 2 . nr N cos 5+ N 2 . nm 4 . nr
o= —— sin — ——sin— = ——sin — .
n 71'712S 2 n ans 2 ans 2

[e.e]
IV.7 Here L = 3, and the Fourier sine series has the form f(x) = Z by, sin %ZE
n=1

Calculate o 13 o4 4(_1)n
by, = —/ (:E—l)SiDEZEd:E: —g.
3 Jo 3 nmw
Page 272
V.1 If X is negative, it may be written in the form A = —w?, and the

general solution of the equation
y// _ w2 y = 0

may be taken in the form y = ¢1 coshwzx + ¢ sinhwz. The boundary condi-
tion 3/(0) = 0 implies that c; = 0, and then y = ¢1 coshwx. The boundary
condition y(L) = 0 gives

c1coshwl =0,

so that ¢; = 0, and the solution is trivial (y = 0). We conclude that there are
no negative eigenvalues. In case A = 0, the general solution of the equation

y// — 0
is y = ¢1 + coz. The boundary conditions again imply that ¢y = ¢o = 0, and

the solution is trivial. We conclude that A = 0 is not an eigenvalue. If X is
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positive, it may be written in the form A\ = w?, and the general solution of
the equation

y// + w2y =0
is y = ¢1 cosww + ey sinwz. The boundary condition 3'(0) = 0 implies that
co = 0, and then y = ¢1 coswz. The boundary condition y(L) = 0 gives

cicoswl =0.

One avoids the trivial solution if wl is a root of cosine, i.e., if WL = T +

2
+1 2 1\2
nw, or W = W, and then \ = 7T(nLi—|2—2) We conclude that the

772(n + %)2

72 , with the corresponding eigenfunctions

eigenvalues are \, =
1
m(n+ 5

Yn = COS % x (or the constant multiples of yy,).

V.2 Similarly to the preceding problem, we show that there are no eigen-
values for A < 0. For positive A = w?, solving the equation

y' +w?y=0, y(0)=0,

together with the first boundary condition, gives y = ¢; sinwz. The bound-
ary condition 3'(L) = 0 requires

ciwecoswL =0.

One avoids the trivial solution if wL is a root of cosine, i.e., if WL = — +

2
1 2 1)2
m(n+ 5 T“n+ 35
nw, or W = g, and then A = % We conclude that the
] 2(n + %)2 . : . :
eigenvalues are \,, = — 7z with the corresponding eigenfunctions
1
. TN+ 35 .
Yn = Sin ( 2) x (or the constant multiples of yy,).

V.4 Denote
1

(+) /\:/ V() da.
0

Then we need to find all non-trivial solutions of

Y +Ay=0, 0<z <1, y0)=y(1)=0
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that are A = A\, = n?7? and y,, = Asinnmz, where A is a constant. Substi-
tute these eigenvalues and eigenfunctions into (x), then integrate

1 1
n?r? = A? / sin? nrxdr = = A2,
0 2
It follows that A = +v/2nx, and the solutions are y = +v/2n7 sin nra

Section 7.6.2, Page 288
The solution of the initial-boundary value problem for the heat equation
with the Dirichlet boundary conditions
U = kg, forO<z < L,and t >0
u(z,0)= f(z) for0<ax<L
u(0,t) =u(L,t) =0 fort>0

[e.e]
is given by the series u(z,t) = Z bpe " L2
n=1

t . nmw
sin TZE Here b,, are the

coefficients of the Fourier sine series of f(x), i.e.,
> nmw
x) = by sin —ax

2 L
with b, = f/ f(x)sin %JE dx. In practice, one may begin with this
0

2.2
n-m
R

Fourier sine series, and then insert the exponents e~

In case of the Neumann boundary conditions
U (0,t) = uy(L,t) =0 fort >0,

0 2_2
. . . . _fniTty nm
the solution is given by the series u(z,t) = ag + E ane = L2 oS TJE
n=1

Here ag and a,, are the coefficients of the Fourier cosine series of f(z).
1.1 Here k=2, L =m, and

sinz — 3sinz cosx = sinx — ESiDQZE,

3
so that by =1, by = —g and all other b,, are zero. Inserting the appropriate

2t 8

exponentials, obtain u(z,t) = e **sinz — 56_ tsin 2.
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1.2 Here k =2, L = 27, and again

sinz — 3sinz cosx = sinx — §sin2:n,

3
although now by =1, by = —5 and all other b,, are zero. (The Fourier sine

n
series takes the form Z by, sin EZE) Inserting the appropriate exponentials,
n=1
. . 3 .
obtain u(z,t) = e *sinx — 56_8t sin 2.
1.3 Here k =5, L = 2. Calculate

4(—1 n+1
by, / :Esm—:nd:n—i.
2 nm

Conclude that u(x,t) = Z Le T tsin g,
nm

n=1

1.4 Here k =3, L = w. Breaking the integral into two pieces, calculate

9 9 (/2 9 T
bn:—/ ’LL(:E,O)SiD’I’L:L’d:L':—/ :L"sinnznd:n—l——/ (m — z)sinnz dx

T™Jo T™Jo T Jr/2

2sin (&)  cos(%&E) 2sin(%E) cos (%)  4sin (%)
- 2 + 7 T - 2
™m n ™m n ™m
> 4sin X
Solution: u(z,t) = ; 7_‘_7226_3”% sinnz.
e _n%x2 nm
I.5 Here k =1, L = 3. The solution has the form u(x, t) Z 5 lsin ?ZE,
with 2 3 4—10(—-1)" .
by, = 5/0 (z+2) sin%:nd:nz _nifr_)

1.6 Here k=1, L = 3, Neumann boundary conditions. Compute

1 /3
aoz—/($+2)daz:—
3 Jo

6[-1+ (1))

2 3 nm
an:§/0 (:E—|—2)cos?:nd:n: 5.2
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Inserting the appropriate exponentials, obtain the solution:

7T N 614 (—1)" 2 nm
u(:n,t)zi—l-z%e 0 tcos?:n.
n=1

1.7 Here k = 2, L = m, Neumann boundary conditions. To obtain the
Fourier cosine series of cos* T, write

4 (9N (1 1 22_11 ort Lo
Ccos :E—(COS :E) = §+§coszn _Z+§COS :E—I—Zcos x

1 1 1/71 1 3 1 1
=—+—-cos2x+ — | = + —cos4dx :——I——COSQZE+§COS4:E.

4 2 4\2 2 8 2
3
Inserting the appropriate exponentials, obtain the solution: u(z,t) = 3 +
1 1
56_8t cos 2x + ge_szt cos4x.

1.8 Multiply the equation
U — U = SUgy

by the integrating factor ¢!, and call e ‘u(x,t) = v(z,t). Then the new
unknown function v(x, t) satisfies
Uy = Uz forO0<zxz<2,and t >0
v(z,0)=1—2 for0<x <2
v (0,t) = v, (2,8) =0 fort>0.

Here k = 3, L = 2, Neumann boundary conditions. Compute

1 r2
aoz—/ (1—-2z)dz=0,
2 Jo

Al = (=1)"]

2 (2 nmw
anZE/O (1—:E)C087:Ed$: )

9

If nis even, a,, = 0. All odd n are of the formn=2k—1,k=1,2,3,.... So

8
that for odd n, a, = agr—1 = m and the Fourier cosine series of
the initial condition is
> 8 (2k — 1)m
- :
! gﬂ(%— [ I
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Inserting the appropriate exponentials, obtain

= 8 _32k—1)%x> (2k — 1)
v(:E,t):Zme 1 tcosfzn.
k=1

Finally, obtain the solution

> 8 S ) (2% — D
— it _ 1
u(z,t) =e v(:nat)—kz::lme( ) cos———— 7.
.10 Write v(z,y) = u(a(z,y), b(x,y)), where we denoted a(x,y) = %
T Yy
and b(z,y) = Zi Differentiate
Vg = Ugly + Uyby
Vpg = umai + 2Uzyazby + uyybi + UpQpg + Uybyy -
Similarly
Vy = Ugly + Uyby ,
Vyy = umai + 2ugyayby + uyybi + Uz lyy + Uyby, .
2 _ .2 9
Calculate a, = yiznz = —by, ay = —iz = b,. It follows that
(2% + y?) (2% +9?)

Uz + Vyy = (Ugg + Uyy) (%23 + %2/) + 2Uzy (azbz + ayby)

g (Azz + ayy) + Uy (bex + byy) -

We have uzy +uyy = 0, because u(x, y) is harmonic, and a,b, +a,b, = 0, by
above. Further differentiation shows that a,, + ayy = 0 and by, + by, = 0.
It follows that v, + vy, = 0, so that v(x,y) is harmonic.

.11 w(x,y) =5 is the simple solution.
To solve the Laplace equation on a rectangle
Uz + Uyy = 0

one uses separation of variables, looking for solution in the form u(x,y) =
F(x)G(y). Substitution into the Laplace equation gives

F'G+FG" =0,
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F'G = —FG"
(z)  G"(y)

F(z) G(y)
The function of x only on the left is equal to the function of y on the right.
For that they both must be equal to the same constant. It is convenient
to denote this constant by —A, if two boundary conditions are available for
F(x). If the problem at hand provides two boundary conditions for G(y), it
is convenient to call the common constant \.

1.12 Obtain

F'(z) _ G'(y) _
Flo) ~ Gly)

_/\7
giving
F'+AF=0, F(0)=F((2)=0,
G"-\G=0, GB)=0.

Non-trivial solutions of the first of these problems occur when A\ = A\, =

n2mr? . onm )
, and they are F),(x) = sin 7:13 (or constant multiples). The second
2,2
problem at A = A\, = becomes
2,2
¢~ " Gg=0, G@B)=0.

4

The solutions are GG, = sinh %(y — 3) (or constant multiples). The series

(o]
nm nm
u(x,y) = Z by, sin 5% sinh 7(3/ —3)
n=1
satisfies the Laplace equation and the three homogeneous boundary condi-
tions. We now choose b,,’s to satisfy the remaining boundary condition:

[ee]
3
u(x,0) = —an sinh% sin%:n =5.
n=1

We need to represent 5 by its Fourier sine series on (0, 2), so that

3 2 10(1 — (=1)»
_bnsinhﬂ:/ 5 sin g g = 20— D
2 0 2 nmw
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giving

, 100 (-1)"]
" nm sinh ?’"T”
The solution is then
> (=)™ . nw . nm
g m Sin TZESth 7(y — 3) .

1.13 Separation of variables

F'x) _ G'(y)
Flo) ~ Gly)

=\,

leads to
G'"+)G=0, G0O)=G(1)=0,

N =0, F((2)=0,

Non-trivial solutions of the first of these problems occur when A\ = A\, =
n?7?, and they are G, (y) = sinnmy. The second problem at these eigenval-
ues becomes
F'—n?r?F =0, F(2)=0,

The solutions are F,, = sinh nw(x — 2) (or constant multiples). The series
[ee]
u(x,y) = Z by, sinh nw(z — 2) sinnwy
n=1

satisfies the Laplace equation and the three homogeneous boundary condi-
tions. We now choose b,,’s to satisfy the remaining boundary condition:

u(0,y) Z b, sinh 2nwsinnry =y .

n=1

We need to represent y by its Fourier sine series on (0, 1), so that

1 2(_1)n+1
—b,, sinh 2nm = 2/ ysinnmydy = ———— |
0 nm
2(=1)™
by = —"7"-.
nmsinh 2nw
2(—1)" .
Solution: u(z,y) = Z ——————— sinh nr(x — 2) sinnry.

nmsinh 2nm
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1.14 Obtain
) G"(y) _

F(z) — Gly)

—A,
giving
F'+AF=0, F()=F(r)=0,
G"-)\G=0, G0)=0.
Here )\, = n?, F,(x) = sinnz, and the second problem
G"—-n*G=0, G0)=0

has solutions G,,(y) = sinhny. The series

(o]
u(x,y) = Z by, sin nx sinh ny
n=1
satisfies the Laplace equation and the three homogeneous boundary condi-
tions. We now choose b,,’s to satisfy the remaining boundary condition:

[e.e]
u(x,1) = Z by sinhnsinnr = 3sin2x .

n=1

The function 3sin2x is its own Fourier sine series on (0, 7). So that we

choose bysinh2 = 3, or by = , and all other b,’s equal to zero. Then

3
sinh 2
sin 2z sinh 2y.

solution: u(x,y) = — o
sin

1.15 There are two non-homogeneous boundary conditions. We obtain
the solution in the form u(z,y) = ui(z,y) + uz(x,y), where uq(x,y) is the
solution of
Ugg +Uyy =0 for 0 <z <2m,and 0 <y <2
u(xz,0) =sinz for 0 <z < 2w
u(z,2)=0 for0<ax<2rm
u(0,y)=0 for0 <y <2
u2m,y)=0 forO0<y<2,

which is ui(z,y) = — sinh(y — 2) sinz, and wus(x,y) is the solution of

sinh 2
Ugg +Uyy =0  for 0 <z <2m,and 0 <y <2

u(z,0)=0 for0<ax <27
u(z,2)=0 for0<ax<2rm
u(0,y)=0 for0 <y <2
ulmy)=y for0<y<2.
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4(—1)ntt nm nm
(1) sinh —x sin 5 Y, 80 that

One calculates us(z, y) Z rsnhn? 9
nm sinh n

1 4(—=1)n+1
u(z,y) = ~ah2 sinh(y — 2) sinz + Z W sinh E:p sin %y

The solution of following initial-boundary value problem for wave equa-
tion
Upp = CPUgy forO<zxz < L,and t >0
u(0,t) =u(L,t) =0 fort >0
u(z,0)= f(z) for0O<ax<L
ug(z,0) =g(x) forO<z<L

may be written as a series

nm

[e.e]
u(x,t) = Z (bncos ?t—l— anin?g sin T

as was shown in the text by using the separation of variables. This series
satisfies the wave equation above, and both of the boundary conditions. To
satisfy the initial conditions one needs

0) = Z by, sin %JE = f(x),
n=1

ZB sm%:n—g( ).

So that b,’s are the Fourier sine coefficients of f(z) on (0, L), while B, ?
are the Fourier sine coefficients of g(x) on (0, L).

1.16 Here ¢ = 2, L = w. The solution takes the form
[e.e]
= Z (b cos2nt + By, sin2nt)sinnx .
n=1

Calculate -
u(z,0) = Z by sinnx = sin 2z,

n=1
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so that by = 1, and all other b,, = 0. Similarly

[e.e]
ug(z,0) = Z 2nB, sinnr = —4sin2x .

n=1
It follows that B,, = 0 for all n # 2, while at n = 2, 4By = —4, giving
By = —1. The solution: u(zx,t) = cos4tsin 2z — sin 4t sin 2x.

1.17 Here ¢ = 2, L = 1. The solution takes the form

[ee]
u(x,t) = Z (by, cos2nmt + By sin2nmt) sinnme .

n=1
Calculate -
u(x,0) = Z by sinnz =0,
n=1

so that b, = 0 for all n. Similarly

[e.e]
ug(z,0) = Z 2nm By, sinne =z,

n=1

so that 2nmwB,, are the coefficients of the Fourier sine series of z on (0, 1):

1 (—1)n+
2’1’L7TBn:2/ rsinnr = 2———
0 nm
giving
-1 n+1
PG
n?m
00 (_1 n+1
Solution: t) = ——— sin2nwtsi .
olution: wu(x,t) Z 33 sin2nmtsinnme

n=1

1.18 Here ¢ = 2, L = 1. The solution takes the form

[e.e]
u(x,t) = Z (by, cos2nmt + By sin2nmt) sinnme .

n=1
Calculate -
u(x,0) = Z bysinnxr = -3,
n=1

so that b,, are the coefficients of the Fourier sine series of —3 on (0, 1):

by = 2/01(—3) sinnz dz = 2 [(~1)" — 1] .

nm
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Similarly
[e.e]
ug(z,0) = Z 2nw By, sinne =z,
n=1

so that 2nmwB,, are the coefficients of the Fourier sine series of z on (0, 1):

1 (_1)n+1
2’1’L7TBn:2/ rsinnr = 2————|
0 nmw
giving
-1 n+1
5, - CU"
n4m
Solution:
0 6 . (_1)n+1
t) = —((-D)"* -1 2nmt in 2nmt| si .
u(x,t) ; o ((=1) ) cos 2nwt + o2 sin 2nmt| sinnwx

In case of Neumann boundary condition, the solution may be written as
a series

[e.e]
u(z,t) :ao—l-Aot—l—Z (ancos?t—l—Ansin?t) cosnL—w:n,

n=1
as follows by separation of variables.

1.20 Here ¢ = 3, L = m, Neumann boundary condition. The solution takes
the form

[e.e]
u(z,t) = ag + Aot + Z (an, cos 3nt + A, sin 3nt) cosnx .
n=1

This series satisfies the wave equation and both boundary conditions. The
initial conditions imply:

[e.e]
u(x,0) :a0+2ancosn:p:4,

n=1

so that ag = 4 and a,, = 0 for all n > 1, and

s 1 1
ug(z,0) = Ag + Z 3nA, cosnz = cos® = 3 + 3 cos 2z .

n=1
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1
We see that Ay = 3’ while A, =0 for all n # 2. At n = 2, obtain

1
6142:57

1
giving As = T Solution:

1 1 .
u(x,t) =4+ 575—1— ESln6tCOSQ:E.

Page 291

II.1  The equation is homogeneous. The first boundary condition is also
homogeneous, but the second boundary condition is not homogeneous. We
search for solution in the form

u(z,t) =U(x) + v(z,t).

The role of U(z) is to make the second boundary condition homogeneous,
without disturbing the homogeneity of the equation and of the first boundary
condition. Therefore we require that

U'(z)=0, U0)=0,U()=1.
The solution of this problem is U(z) = z. Then
u(x,t) = x4+ v(x,t),
and v(z,t) = u(x, t) — x satisfies

Vp = BUzy, for0<ax<1,andt >0
v(0,t)=0 fort>0
v(l,t)=0 fort>0

v(r,0)=—2 forO<z<l1.

We solved such homogeneous problems previously. The solution is given by
the series

o0
_5n2n2t .
vz, t) = b, e 2" T sinnrx
) )

n=1
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with b, chosen to satisfy the initial condition on (0, 1)

o

v(z,0) = Z b, sinnmx = —zx,
n=1
so that . o(_1)n
bn:—2/ rsinnrr dr = (=1) .
0 nmw
Solution:

> 2(—=1)"
u(z,t) =x + Z A=D" et sinnrg |
— nr

II.2  We search for solution in the form
u(x,t) =U(x) + v(x,t),
and require that
U'(z)=0, UW0)=0,U(r)=1.
One calculates U(z) = x. Then

u(w,t) = = + oz, t),
v

x
and v(z,t) = u(x, t) — — satisfies
0

Vg = QU4 forO<zxz<m,andt >0
v(z,0)0=0 forO<z<m
v(0,t)=0 fort>0
v(m,t)=0 fort>0.

Clearly, v(x,t) = 0, and the solution is u(x,t) = %
1.3 We search for solution in the form

u(x,t) =U(x) + v(x,t),
and require that

2U0"(x) +4x =0, U0)=0,U(1)=1.
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1
The solution of this problem is U(z) = g(:n —23). So that
1 3
’LL(:E,t) = g({lj - ) +’U($7t) )

1
and v(z,t) = u(x,t) — g(:n — 23) satisfies

vy = 2z forO<z<1l,and t>0
’U(ZE,O):—%(JE—JEs) for0<z <1
fort >0

The solution is given by the series
& 2.2
v(z,t) = Z bpe 2™ sinnrx
n=1
with b, chosen to satisfy the initial condition on (0, 1)

(e e}

1
v(z,0) = z_: by, sinnrx = —g(:n —23),
n=1
so that 5 1 s(_1)
by, = ~3/ (z — 23) sinnre de = o
Solution:

1 > 4(-1)"
u(z,t) = =(z —x3) + E (3 ; e 2 ginnmg |
3 nom
n=1

I1.6  Use the result of the preceding problem. Here f(z,t) = tsin3z, k = 1.
Expand f(x,t) = Z fn(t)sinnz, with f3(t) =t and f,(t) = 0 for n # 3.
n=1

[e.e]
Then the solution is of the form wu(x,t) = Z un(t) sinnx, provided that
n=1

un (t) satisfy
ul +nu, =0, u,(0)=0,

for n # 3, and
uy +9uz =t, uz(0) =0.
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Calculate u3(t) = = — — 4+ —e % u,(t) = 0 for n # 3, and the solution is

t 1 1
u(x,t) = (§ 5 + 8—16_9t> sin 3z .

Section 7.10.1, Page 311

Real valued function f(z) on (—L, L) can be represented by the complex
Fourier series

with the coefficients

1 (L i
- _/ Fx)e " Erdr, n=0,+1,+2,....
2L J_g,

I.1 Here L = 2. Using integration by parts and the formula / e dx =

1ax

+ ¢, calculate

ia
)
Cp = — re "2 dr = ———
4 -2 nm
Conclude that

r= Y ———¢2" on(-22).

o
1.2 Here L = 1, the complex Fourier series has the form Z Cp €177
n=—oo
Calculate

R P, 1t : 1 er(l=inm)
_ = —inTT o _ z(1—inm) dp — ——
“n 2/_166 v 2/_16 =T i

1 el—inm 1 e~ 1HinT _ (_1)n(1 +inm)(e — %)
2(1 + n?n?)

T 21—inmt 21 —inw
because by Euler’s formula

e~ — ¢ (cosnm — isinnm) = (—1)",
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and similarly, e 1t"™ = ¢=1(—1)". Conclude that

: 1
et — i (_1)n(1 + ’L’I’LTF)(B — E) inTx
= 2(1 4+ n2n?)
S .
1.3 Here L = 7, the complex Fourier series has the form Z cp e, and
n=—oo

it can be computed for this function without performing the integrations.
Indeed, using a trig identity and Euler’s formula

9 11 1 1e2% e 2 1 11

sin®x = 5~ §COSQZE =575 5  — —Ze_izm + 5 Zeizm
1 1
Here c_o = 7 co = 2’ and ¢y = 7 and all other ¢,, are equal to zero.
> .
1.4 Here L = 7/2, the complex Fourier series has the form Z Cp €217
n=—oo

Using a trig identity and Euler’s formula

1 ei4m _ e—i4m i ) ) i ) i

in 2 9r = —sindx = = - _ ez4m _ e—z4m — _e—z4m__ez4m .

sin 2z cos 2z =  si 5 % 4( )
Here c_o = i, cy = —%, and all other ¢, are equal to zero.

.5 (i) Using Euler’s formula obtain the following complex conjugate for-
mula

for any real f. If a function f(z) is represented by its complex Fourier series
on (—L,L)
S .
flx) = Z cne LT,
n=—oo

then taking the complex conjugates of both sides, obtain

flz) = Z é,e VLT

n=—oo

By uniqueness of the complex Fourier series it follows that ¢, = c¢_,, for all
n.

(ii) Observe that
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for any non-zero integer k. In case k = 0, this integral is equal to 2L.

Page 312

To find the steady state temperatures inside the ball of radius R, one
needs to solve the following boundary value problem

Au=0, r<R
u(a,t) = f(0).

One begins by expanding the initial data in its Fourier series

f(0) =ap+ Z (an cosnf + b, sinnb) |

n=1
with the coefficients
1 2 1 2
a0 = 5 ; f(0)ae, an = — ; f(0) cosnbdb,
1 2
by, = — f(@)sinnfdd (n>1).
m™Jo

Then the solution of the boundary value problem is
[e.e] r n
0) = — n 0 + b, sinnd) .
u(r, 9) ao—l—nzzjl (R) (an, cosn@ + by, sinnh)

In case of the exterior problem

Au=0, r>R
u(a,0) = f(0),

the solution is

u(r,0) = ag + Z (?) (an cos n@ + by, sinnf) .
n=1

II.1 By a trig identity
4cos’ =2+ 2cos 26,

so that ag = 2, ao = 2. Here R = 3, and the solution is
2
2 2
u=2+2 (%) cos20 =2+ 57"2(:0529 =2+ §r2 (00829 —Sin29)
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2
:2+§(:132—y2).

1.2 This is an exterior problem, with the same data as in the preceding
problem. The solution is

3\ 2 18 18
u:2—|—2<—> cos20—2—|——00829—2—|— (cos 0 — Sin29)
r

z? — g

=2+ 18—
(2% +?)?

1.3  On the boundary circle r = 2, one has y = 2sinf, and then
f=1y?>=14sin0 =2 —2cos20.

The solution is

2
1 1
u:2—2<£> 00829—2—5 (cos 60— Sin29)22—§(:p2—y2).

II.4 This is an exterior problem, with the same data as in the preceding
problem. The solution is

8

2\ 2 8
u=2-2 (—) cos 20 = 2——4 (r2 cos® § — r? sin® 9) =2—5——5
" " @+ )

(z*—y?).

1.5 To obtain the Fourier series, write

1 1 21 1 1
==+ =cos20) ==+ =cos20+ —cos®2
cos* 6 = (2+2COS 9) 1 2OS 9—1—4005 0
1 1 1/1 3 1 1
=~ 4 Zcos?2 ~ 4 Zcosd 2 4 20820 + = cosdd.
4—|-2cos 0+ - (2 cos 9) 8 cos 9—1—8005 0

Here R = 1. The solution is

3 1 1
=3 + 57"2 cos 26 + §r4 cos 40 .
To present the answer in the Cartesian coordinates, write

cos4f = cos® 20 — sin®20 = 1 — 2sin®20 = 1 — 8sin® Hcos? 0,
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2
rtcos40 = r* — 8 (rsinf)? (r cos0)? = (ZE2 + y2) — 8x?y?

T
Obtain 3 1 ) )
O 1/ 2 2\° 22
U($,y)—8+2(:ﬂ y)+8(:ﬂ +12) - 2%y
1.6 Calculate
1 27
ag = 0do =,
21 Jo
1 2T
p = — fcosnfdf =0,
m™Jo
1 (27 2
b, = — fsinnfdf = —— .
T Jo n
The Fourier series for the temperatures on the boundary
>, 2
0=m— Z— sinnd .
n=1

Here R = 1. Inserting the factors of »" into the last series, conclude

o 2
0)=m— —r"sinnd .
u(r,0) == nEZInr sinn
II.7 Calculate | g
ag 277/0 0+2)dd=7+2,

1 2
—/ (6 +2)cosnfdfd =0,
™ Jo

Gn

2m
by, = l/ (0 +2)sinnfdb = —g.
0

™ n

The Fourier series for the temperatures on the boundary

> 1
9+2:7T—|—2—2Z—sinn9.
n

n=1

Here R = 3, exterior problem. Conclude

[e.e] 3n
u=m+2—-2 —r "sinnd.
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I1I.8 Here R =2, z =2cosf, y = 2sinf, and then
f(6) =4cos*0 — 2sinf = 2 + 2 cos 20 — 2sinf .

The solution is
r\? r\ .
u(r,0) =242 (§> cos260 — 2 (§> sin
=2+ lrz (coszﬁ—sinzﬁ) —rsinf =2+ L (:132 —y2) —y
2 2 '

II.9  We need to solve the following boundary value problem

Au=0, r<3
uw(3,0)=1y*—=x.

Here R =3, z = 3cosf, y = 3sinf, and then
. 9 9 9
f(0) =9sin“ 6 — 3cosf = 3 — 3cosf — 5(30829.

The solution is

9 r 9 /1r\? 9 1,5 o
= — — — [ — — 2 = — — [ — —_
U= g 3(3) cos 5 (3) cos 26 5% 2(:E v,

using that cos 20 = cos® § — sin? 6.
For the Neumann problem

Au=0, r<R

one observes that

u(r,0) = Ag + Z r" (A, cosnb + B, sinnf)

n=1

solves the Laplace equation Au = 0 for any constants A, and B,.

boundary condition requires that

Z nR" ! (A, cosnb + B, sinnb) = f(4).

n=1
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The series on the left has no constant term. Hence, this equality can hold
only if the same is true for the Fourier series for f(6), i.e.,

21

F(0)do =0.
0

If this condition holds, we can choose A, and B, to satisfy the boundary
condition. In such a case Ay is arbitrary, and we obtain infinitely many
solutions.

II.10 Here

1
f(0) =sinfcosf — 2sin360 = §sin29 — 2sin 36

2
satisfies f(0)dh = 0, so that solutions exist. They have the form
0

u = Byr?sin 20 — Bsr3sin360 + c.
Substituting into the boundary condition, we conclude that

1 2
u = Erzsin29— ﬁr?’sin39—|—c.

II.11  Here
21 27
£(6) o = / (sin0 — 25in36) 49 = 7 £ 0,
0 0
and so the Neumann problem has no solution.

Page 314

III.1  Assume first that \ is negative, so that we may write A\ = —w?, with
w > 0. The general solution of

y//_w2y:0

“T 4+ c9e”™. The boundary conditions imply

sy =cie”
ci(l—w) +e(l4+w)=0

e ™ (1l —w)+ce™(14w)=0.
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This system has non-trivial solutions, only if its determinant is zero:
(1—w?) (€™ —e ™) =0.

This happens when w = 1, and then cs = 0, as follows from either one of
the equations for ¢; and co. It follows that A = —1 is an eigenvalue, and
y = e " is the corresponding eigenfunction.

In case A = 0, only the trivial solution is possible. Assume finally that A
is positive, so that we may write A = w?, with w > 0. The general solution
of

y// + w2 y = 0
is y = ¢y coswz + co sinwzx. The boundary conditions imply

c1+cow=20
c1 (cosTw — wsin mw) + ¢o (w cos Tw + sinTw) = 0.
This system has non-trivial solutions, only if its determinant is zero:
(1+w?) sinmrw=0.

This happens when w = n, a positive integer, and then ¢; = —nco, as
follows from the first equation. We obtain the eigenvalues A, = n?, and the
corresponding eigenfunctions y,, = sinnx — n cosnz.

III.2 Assume first that X is negative, so that we may write A = —w?, with
w > 0. Solution of the equation and the second boundary condition

y'—wly =0, y(r)=0
is y = esinhw (x — 7). The first boundary condition implies
¢ (wcoshmw —sinhw) = 0.
Let wg (wp = 0.996) denote the unique positive solution of the equation
w = tanh7w.

Then A = —w{ is an eigenvalue, and sinhwy (z — 7) is the corresponding
eigenfunction.

In case A = 0, only the trivial solution is possible. Assume finally that A
is positive, so that we may write A = w?, with w > 0. The general solution
of

y// + w2 y = 0
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is y = ¢y coswz + co sinwzx. The boundary conditions imply
c1+cow=0

crcosTw + cosinmw = 0.

From the first equation ¢y = —cow, and then the second equation gives
¢ (—wcosw +sinTw) =0,

or
tanmw = w.

This equation has infinitely many solutions, 0 < w; < wy < w3z < ...,
as can be seen by drawing the graphs of y = w and y = tanwm in the wy-
plane. We obtain infinitely many eigenvalues \; = w?, and the corresponding
eigenfunctions y; = —w; cosw;x + sinw;x, 1 =1,2,3,....

II1.3 (i) The characteristic equation
2 far+A=0

has the roots

2
a . . .
For A < R the root(s) are real, and no eigenvalues are possible, as is

2 2
straightforward to see. Turning to the case \ > %, let az — A= —w?, with

w > 0. Then r = —% =+ iw, and the general solution is

s —%qp .
Y = c1€ 27 CoOSwx + e 27 SINwT.

The boundary condition y(0) = 0 implies that ¢; = 0, and then the boundary
condition y(L) = 0 gives

_ag .
coe 27sinwl =0.

nm

This implies w = T with a positive integer n, and then the eigenval-
a?  n’n?

ues are \, = vy + PR with the corresponding eigenfunctions y,(x) =

_a, . N
€ 27sIn —x.
L
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(ii)  Using separation of variables, look for solutions in the form wu(t) =
F(x)G(t), and obtain

F(z)G'(t) = F"(2)G(t) + aF'(2)G(t),

F'"(z) + aF'(x) _ G'(t) _
F(x) G(t)

which gives
F'+aF +\F=0, F(0)=F(L)=0,

G'(t) = =A\G(t).

Non-trivial solution for the first boundary value problem occur at A, =

(12 n2772

v + PR and they are F,(x) = e 2% sin %JE At A = )\,, the second

2 2_2
a ncmw
— +

equation gives G, (t) = e ( L2 ) . The series

00 (a2 n2x )
-+ t _a nm
1 2 _a, .
u(x,t) = E bne ) e 2% gin —ux

satisfies the PDE and both boundary conditions. To satisfy the initial con-
dition, one needs

u(x,0) = Z bpe” 2% sin %JE = f(x),
n=1

or

o
a .o
e’ f(z) = Z by, sin T

n=1

So that we need to take b,, to be the coefficients of the Fourier sine series of
a 2 L a
e2? f(x), i.e., b, = —/ e2? f(x) sin " da.
L Jo L
IIT1.4 (i) The characteristic equation of this Euler’s equation is
42+ A=0.

The roots are r = —1 £ v/1 — A, and to satisfy the boundary conditions we
need them to be complex, i.e., 1 — A = —w?, with w > 0. Then the general
solution is (here z > 0)

1

y=crz tcos(winx) + coxrt

sin(wlnz) .
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The boundary condition y(1) = 0 implies that ¢; = 0, and then the boundary

condition y(e) = 0 gives

cze_1 sinw =0.

It follows that w = nm, with positive integer n, and then the eigenval-

ues are A\, = 1 + n’n?, with the corresponding eigenfunctions yn(z) =

7 sin (nmlnx).

(ii) Divide the equation by

3 1
y'+ =y + A5y =0,
€T €T

and then multiply by the integrating factor y = ef 2o — 43 4o put the
equation into the self-adjoint form

($3y/)/ + Ay =0.

It follows that the eigenfunctions y, (z) are orthogonal with weight x.
(iii) Using separation of variables, look for solutions in the form wu(t) =
F(x)G(t), and obtain

F(z)G'(t) = ?F"(z)G(t) + 3zF'(z)G(t),

2F(x) +30F (x) _ G'(0) _
) G(t) ’

which gives
2?F" +32F +A\F =0, F(1)=F(e) =0,

G'(t) = —A\G(t).

Non-trivial solution for the first boundary value problem occur at A, =
1+ n?n?, and they are F,(z) = y,(z) = 27 sin(nrlnz). At X = \,, the

_ oAt —(14n%n?)t

second equation gives Gy, (t) =e . The solution may be

[e.e]
written in the form u(zx,t) = Z bpe My, (), where
n=1

b — I f(@)yn(x) x da
" ffl/%(:ﬂ):vdm ’

because y, () are orthogonal with weight x.
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III.5  Assume that y(z) and z(z) are non-trivial solutions of

y"" + Xy =0, y(0)=9'(0)=y(L) =y (L)=0,
2"y =0, 2(0) =2'(0) = 2(L) = 2'(L) =0,

and A # p. Multiply the first of these equations by z, the second one by v,
and subtract the results to obtain

" n

Yy ="y + (A= p)yz =0,

d
% (y///Z—y//Z/—i-y/Z//—yZ“/) +(/\—/L)y220

Integrate both sides of the last equation over (0, L). In view of the boundary
conditions, the first integral is zero. It follows that

() [ vte)ste) de=0.

L
Since A # u, we conclude that / y(z)z(x) dx = 0, proving that the eigen-
0

functions y(x) and z(z) are orthogonal.

III.6 We may assume that o > 0, 8 < 0, and v > 0, § > 0. Multiply the
equation by y(x) and integrate over (0, 7):

A /0 " () (@) do = — /0 ")y (@) y(x) da.

Perform an integration by parts:

- /0 "(p(0)y (@) y(w) do = /0 " p(@)y () dz —p(m)y/(x)y () + p(0)y(0)y(0)

= [ pe? @) o+ o) - S

On the last step we used the boundary conditions to express y/(7) and 3/ (0).
Since / y2(z)r(z) dz > 0, it follows that A > 0.
0

(0)>0.

III.7  Write the equation in the form
(ru)” + X (ru) =0.
Letting y(r) = ru(r), obtain

Yy +Ay=0, y(0)=y(r)=0.
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The eigenvalues of the last problem are \,, = m?, and y,,(r) = sinmr are
2

the corresponding eigenfunctions. For the original problem \,, = m~, and
sinmr . .
U (r) = are the eigenpairs, m =1,2,3,....
r

II1.10 The solution has the form

00
’LL(:E, Y, t) = Z bnme_k(nz—l—mz)t sinnz sinmy ,

n,m=1

where by, are the coefficients of the double Fourier sine series of u(x,y,0)
on the rectangle 0 < x < 7, 0 < y < w. Here k = 3, and

1
u(x,y,0) =sinzcoszsiny = §sin2$ siny,

1
so that by = 3 and all other b,,,, are zero. We conclude that

—15

1 ¢ .
u(x,y,t) = ¢ sin2z siny.

III.11 (i) The solution has the form

o
. nT . mm
u(x,y,t) = Z bnmsm?msmTy,

n,m=1

where b, are the coefficients of the double Fourier sine series of u(x,y,0) =
xy — y on the rectangle 0 < x < 3, 0 < y < 2. Calculate

4 (2 (3
bm = — / / (zy — y) sin N7 v sin my dx dy
6 Jo Jo 3 2

8(—1)™ 4 16(—1)"+™
nmi2 '

2 3 2
25/0 (z—1) sin%:ndzn/o ysingydy:

(ii) Follows immediately by separation of variables.
Page 317

IV.1 Solving the homogeneous equation with the first boundary condition

Yy +y=0, y(a)=0
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gives y1(x) = sin(x — a), and solving the same equation with the second
boundary condition
y'+y=0, y()=0

gives ya(x) = sin(z — b). Their Wronskian
W = y1(2)yh(x) — y)(z)y2(x) = sin(z — a) cos(z — b) — cos(z — a) sin(z — b)

=sin[(x —a) — (x — b)] =sin(b—a) .
The Green’s function is then

W
G &) =9 sinfa—b)sin(e-a)

sin(b—a)

fora<z<¢

for§ <z <bh.
IV.2  Solving the homogeneous equation with the first boundary condition
v +y=0, y(0)=0
gives y1(x) = sinz, and solving
v +y=0, ¥(2)+y(2)=0

gives yo () = — sin(x —2) +cos(x —2). Using trig identities, their Wronskian
simplifies to
W = y1(2)vh(x) — vy (z)y2(x) = —cos2 —sin2.
The Green’s function is then
% for0 <z <¢

% for ¢ <z <2,
where K = —cos2 — sin 2.
IV.3 The corresponding homogeneous equation

22y 4+ Ay + 2y =0

is Buler’s equation, with the general solution y(z) = cjz™ ' + coz™2. We
then find y;(z) = 27! — 272, and yp(z) = 7 — 2272 (using respectively
the conditions y1 (1) = 0, and y2(2) = 0). Compute

W = 1 ()uh(e) — o (2)uae) = =
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To put the equation

2?y" + dzy + 2y = f(z)

into the self-adjoint form, divide it by z?

4 2 x
y//+_y/_|_ 2y:f(2)’
T T T

4
and then multiply the new equation by the integrating factor, u = ef zdr —
z*, obtaining

(5”41/)/ +22%y = 2% f(x).
Here p(z) = 2, and K = p(z)W (z) = 1. Then the Green’s function is

(et —am) (et —2672) forl1 <z <¢
G(:E,f) - { (5_1 _5—2)($—1 _ 2$—2) for £ <o <2,

and the solution is given by y(x / G(z, )€ f(é) dg.

Section 7.12.5, Page 322
1.1 Calculate

F(s) x)e T dg = (1 — |z|) e " dx

:%/_Zf( r/

(1 —|z|) (cos sz —isinsz) dx = (1 —2z)cosszdr,

eI 7k

using that the function (1 — |x|) cos sz is even, while (1 — |z|) sin sz is odd.

21
Evaluating the last integral, conclude that F'(s) =/ ——(1 — cos s).
TS

1.2 Using that the function e 1l cos sz is even, while e 1l sin sz is odd,
calculate

F(s) e~ lzlg=ist g, —/ |m| (cos sz —isinsz) dx
\/277/

2 1
e ¥ cossxdx

- \/27T/0 N R

The last integral was obtained using the formula (12.5), with y = 1.
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ax

1.4 Using that the function e~ cos sz is even, while e” * sin sz is odd,

calculate

F(s) = /00 R L /oo e~
S = — _—
vV 27 J— vV 27 J—oc0

ax? (cos sz — isinsz) dz

2
4" cos sx dx .

2 o
= — e
V2 /0
In the last integral we make a change of variables  — z, by setting v/ax = z,

dr = \/LE dz. Obtain

F( ) 2 /OO 2 S d 1 _2_2
s) = e * cos—=zdz = —e 4a.
vV2am Jo Vva v2a

On the last step we used the formula (12.2).

1.5 We need to calculate two more integrals. One has

(o]
/ e‘“gzdé’zw/z, for any a > 0.
—00 a

This follows by letting v/a¢é = z, and using the integral (12.1) in the text.
Also

o0 2 b T b2
() / e W ¢ = [~ eda, for any a > 0, and any b.
—00 a
b\? v
This follows by completing the square —a&? + b€ = —a (5 — 2—) + 1o’
a a
b
letting u = £ — %0’ and using the first integral

o0 2 o0 2 o 2
/ a8t e ¢ = eZ_a/ e_“(g_%)z d§ = efa / e~ gy = \/fei_a )
—00 —00 —00 a

We now use the solution formula (12.8) in the text, square out (z — £)2,

and simplify

o0 z—£)2 22 [e'e) -
u(x,t) = 1 / e_( 7 ¢ d¢ = 1 e~ A o~ (FH1)E2+57¢ d¢ .
—o

2\/7% 2\/71'75 —00

Using the formula (x), evaluate

/ 22
/OO e—(ﬁ—l—l)ﬁz—l—%& d¢ = ﬂ e4at+16t2 |
—o0 V144t
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Using this in the preceding formula, and simplifying, obtain

z2
u(x,t) = ———=e T+t .

V1+4t

1.7 The solutions are u(z,y) = cy, with ¢ arbitrary.

1.8 By Poisson’s formula

u(x y)—g/1 —d£ _yl tan_lg_:nf:1
’ TJayr+(E—2)? 7wy y 1

1 1 -1
= - (tan_1 vl tan™! z ) ,
T Y Y

using that arctangent is an odd function.

Chapter 8

Section 8.5.1, Page 342

1 Here ¢ = 2. D’Alembert’s formula gives

-2t 2t 1 et
u(x,t) = % + 1 cosTdr
r—2t

1., . 1 .
=T+ [sin(z + 2t) —sin(z — 2t)] =z + §cosznsm2t,

by using a trig identity.

2 Here ¢ = 1. For the point (3, 1), the left characteristic x —t = 2 intersects
the z-axis at x = 2, and the right characteristic x+¢ = 4 intersects the z-axis

at ¢ = 4. D’Alembert’s formula gives

22 4 42

u(3,1) = 5

1 4
—I——/ Tdr =13.
2 J2

For the point (1,3), the left characteristic x — ¢t = —2 reaches the t-
axis at t = 2, then it reflects and reaches the z-axis at * = 2. The right

characteristic « + t = 4 intersects the x-axis at £ = 4. Obtain

_22 42 1 r4
u(1,3):T++§/2 Tdr=9.
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3  Here ¢ = 2. The even extension of f(z) = z is fe(z) = |z|, while
g(x) = cosz is already even (so that g.(x) = g(x)).

4 We shall find the solution at an arbitrary point (zg, yo). Here ¢ = 2. The
left characteristic at (xo,yo) is © — 2t = x¢ — 2ty. It intersects the z-axis at
the point (xg—2tp,0). The right characteristic at (xq, yo) is z+2t = zo+2tp.
It intersects the the z-axis at the point (z¢ + 2¢g,0). Obtain

1
u(xg, tg) = 1 //A:Edzndt,

where A is the characteristic triangle with vertices (zg, yo), (zo—2to,0), and
(zo + 2tp,0). The double integral is evaluated as a “type II” domain:

to —2t+x0+2t9
// ZEdZEdt:/ (/ :Ed$> dt
A 0 2t+ax0—2to

1 fto 2 2
_ 5/ (=2t + 20+ 2t0)* = (2t + mo — 2t0)°| dt
0
1 3 to 1 3 to 2
:—E (—2t+$0+2t0) |O —5(275—1—1170—2750) |O = 20ty .

So that u(zg, tg) = $x0t3. Replacing (z0,t9) — (x,t), we conclude
L 2
t) = =xt”.
u(x,t) 5%

5 We shall find the solution at an arbitrary point (zg, ). Here ¢ = 2. The
left characteristic at (xo,yo) is © — 2t = x9 — 2ty. It intersects the z-axis at
the point (xg—2tp,0). The right characteristic at (xq, yo) is z+2t = xo+2tp.
It intersects the the z-axis at the point (z¢ + 2¢g,0). Obtain
1 xo+2t0 1
u(xg, to) = — cosTdT + — // (z + 3t) dxdt,
4 xo—2tg 4 A

where A is the characteristic triangle with vertices (g, yo), (xo—2to,0), and
(zo + 2to,0). Using trig identities calculate
1 [®o+2to 1 . 1 . 1 .
- cos TdT = —sin(zg + 2tg) — — sin(xg — 2tg) = = cos g sin 2t .
4 Joy a1, 1 1 2

The double integral is evaluated as a “type II” domain:

to —2t+x9+2t9
// :Ed:ndt:/ (/ (:E—I—3t)d:n> dt
A 0 2t+ax0—2to
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tO 1 r=—2t+xn+2t
_ 2 0 0
_ /0 (§($ a2 ) dt
1 fto 2 2 2 3
— 5/ [(:s0+2t0+t) — (20 — 2t + 5t) } dt = 2mot2 + 2t3 .
0

1 1 1
It follows that u(xg, ty) = 5 €08 Z0 sin 2tg+ §$0t3 + 5758. Replacing (zg, tg) —

(z,t), we conclude

1 1 1
u(x,t) = 3 cos x sin 2t + 5:17752 + 5753 .
6 The functions f(x) = z and g(x) = sinx are odd, so that f,(z) =z and
go(x) = sinz, and by D’Alembert’s formula (with ¢ = 2)

r—2t+x+2t 1 et
— 4

u(x,t) = —
( ) 2 4 r—2t

1

sintdr =z + 3 sinz sin 2t .

7 We shall find the solution at an arbitrary point (zg, y9). Here ¢ = 2. The
left characteristic at (xg,yo) is * — 2t = xg — 2tp. It intersects the z-axis at
the point (xg — 2tg,0). If zy —2tg > 0, this point lies in the physical domain
(where x > 0), and if 2y — 2tp < 0 then a reflection occurs.

Case (i) g —2tg > 0. The right characteristic at (xg, yo) is 42t = xo+ 2tp.
It intersects the x-axis at the point (xg+2tg,0). D’Alembert’s formula gives

(:E(] — 2t0)2 + (JE(] + 2t0)2 n 1 [rzot2to

- cos T dt
2 4 xo—2t0

u(xo, to) =

1
= :E% + 47% + 2 cos xq sin 2ty .

Case (ii) xg — 2tg < 0. After a reflection the left characteristics lands at the
point 2tg — zg > 0 on the z-axis. Conclude

—(2tg — m0)? + (wo + 2t0)? N 1 [oo+2to

- cos T dT
2 4 2to—xq

u(xo, to) =

1
= 4xgty + 3 cos xq sin 2tg .
Replacing (zg, tg) — (z,t), we conclude

x4+ 482 + %cos:nsith for x > 2t
’LL(ZE, t) =
4ot + %cos:nsith for x < 2t.
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8 Here ¢ = 2. The left characteristic passing through the point (3,1) is
x—2t = 1. It intersects the x-axis at x = 1. The right characteristic passing
through the point (3,1) is 4+ 2t = 5. It intersects the z-axis at z = 5. The
initial displacement is f(x) = x+1, and the initial velocity is g(z) = 0. Since
both characteristics land in the physical domain z > 0, the D’Alembert’s
formula is without change:

f)+f65)

u(3,1) = 5

=4.

For the point (1,3) the left characteristic is x — 2t = —5. It intersects the
z-axis at x = —5. When this characteristic is reflected at the y-axis, it
comes down at x = 5. The right characteristic passing through the point
(1,3) is  + 2t = 7. Tt intersects the z-axis at x = 7. Obtain

—f(5) + f(7)

u(1,3) = 5

=1.

9 We shall find the solution at an arbitrary point (zg, ). Here ¢ = 1. The
left characteristic at (zg,yo) is * —t = zp — to. It intersects the z-axis at
the point (xg — tg,0). If 2o — ¢ty > 0, this point lies in the physical domain
(where z > 0), and if zy — t9 < 0 then a reflection occurs.

Case (i) g — to > 0. The right characteristic at (zg,yo) is  + ¢t = z¢ + to.
It intersects the z-axis at the point (z¢ + tg,0). D’Alembert’s formula gives

(zo — t0)* + (wo + to)? n 1 [rotto

— Tdelllg—i—:E(]to—l—tg.
2 2 zo—to

u(xo, to) =
Case (i) mo — t9 < 0. After a reflection the left characteristics lands at the
point tg — xg > 0 on the z-axis. Conclude

—(to — w0)* + (w0 + t0)? L1 rotto

— Tdr = 3xt.
2 2 to—xzo

u(xo, to) =

Replacing (zg, t9) — (z,t), we conclude

2+ xt + t2 forx >t
’LL(:L',t):
3xt forx <t.

10 Here ¢ = 2. The left characteristic passing through the point (3,1)
is x — 2t = 1. It intersects the x-axis at x = 1. The right characteristic
passing through the point (3,1) is  + 2t = 5. It intersects the z-axis at
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x = 5. The initial displacement is f(x) = x + 1, and the initial velocity is
g(z) = 0. Since both characteristics land in the physical domain x > 0, the
D’Alembert’s formula is without change:

1 5
w3, 1) = WO )
2
For the point (1,3) the left characteristic is x — 2t = —5. It intersects the
z-axis at x = —5. When this characteristic is reflected at the y-axis, it

comes down at x = 5. The right characteristic passing through the point
(1,3) is z+2t = 7. It intersects the x-axis at = 7. For Neumann boundary
condition there is no sign change after a reflection. Obtain

o1, 3) = 1O

=7.

11 Here ¢ = 1. The left characteristic passing through the point (1/2,2)
is x —t = 3/2. It has slope 1 in the zt-plane, and it intersects the t-axis
at t = 3/2. It then reflects, and travels with the slope —1, until it lands on
the z-axes at * = 3/2. The right characteristic passing through the point
(1/2,2)is x +t = 5/2. It has slope —1 in the xt-plane, and it intersects the
line x = 2 at t = 1/2. It then reflects, and travels with the slope 1, until it
lands on the z-axes at = 3/2. Here f(z) = z. Obtain

—f(3/2) = f(3/2)

u(1/2,2) = 5

— —3/2.

Since the characteristics have slopes +1, one can trace their reflections
purely geometrically, without writing their equations. The left characteristic
through (1/3,3) will reach the t-axes at t = 8/3, reflect and travel to the
right, then reflect from the line z = 2 at ¢ = 2/3, and land at the x-axes
at © = 4/3, with a total of two reflections. The right characteristic through
(1/3,3) will reach the line x = 2 at t = 4/3, reflect and land at the z-axes at
x = 2/3, with a total of one reflection. Since the “price” of each reflection
is a change of sign, obtain

—f(2/3)+ f(4/3)
2

u(1/3,3) = ~1/3.

12 The characteristics follow the same path as in the preceding problem.
However, for the Neumann boundary conditions there is no change of sign
after a reflection. Obtain

u(1/2,2) =

KB I6) gy,
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f(2/3)+ f(4/3)
2
15 Using the equation, then integrating by parts, calculate

u(1/3,3) = ~1.

1 1 1
E'(t) = 2/ uuy dr = 10/ Ulpy AT = 10uum|(1) — 10/ u? dx
0 0 0

1
:—10/ uide <0.
0

1, .
The term uu,|, is zero, because of the boundary conditions.

16 Using the equation, then integrating by parts, calculate
1 1 1 1
E'(t) = 2/ uug dr = —10/ uidm—2/ u4d:U—|—2/ u?u, da
0 0 0 0

1 1
:—10/ uidm—2/ uldr <0,
0 0

because (in view of the boundary conditions)

1 1 51 1 1
2 _ 1.3t _ 13 _
/Ouumd:n—gu |O—§u (1)—§u (0)=0.

From the initial condition
1
E(0) :/ W (2, 0) da = 0.
0

It follows that E(t) = 0 for all ¢, so that u(x,t) = 0.

17  For any differentiable function f(z), the functions uq(z,t) = f(x — 3t)
and us(x,t) = f(x + 3t) are solutions of the wave equation

Ut — 9’Lme =0.

Section 8.6.1, Page 351

1.1 Here the solution is prescribed along the z-axis. The equation to find
the characteristics is
dy
i
The characteristics are the straight lines y = x+c¢. The one passing through
a point (zg,yo) is

1.

Y=+ Yo — To-
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It intersects the x axis at x = zg — ¥o.
Choosing y as the parameter, the PDE becomes
du

—=1.
dy

We integrate this equation along the characteristic line, between the points
(zo—yo,0) and (xg, yo), or between the parameter values of y = 0 and y = yp
Yo du Yo
W= dy,
0 Y 0
u(zo, Yo) — u(zo — ¥0,0) = Yo ,

u(xo, yo) = u(xo — yo,0) +yo = €% + 1.

Finally, replace the arbitrary point (xg, yo) by (x, y) to conclude that u(z, y)
eV + .

(l’o, yo)

o — Yo

Integration along the characteristic line

1.2 Compared with the Example 4 in the text, only the picture changes,
from the first quarter to the third quarter. The data is given along the line
y = x. The characteristics are the solutions of

dy _

dz xz’

c
which are the hyperbolas y = —. The one passing through the point (xg, yo)
. T

18
ZoYo

- .
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Connect any point (xg, 3o) in the third quarter, along this hyperbola to the
data line y = . Then proceed exactly as in the text, to obtain the same
solution.

1.3 The characteristics are the solutions of

dy _y

dv z’

which are the lines y = cz. The one passing through the point (xg,yo) is
y= 90 . 1t intersects the line o +y =1 (on which the data is given) at the
o
Zo Yo

point ( ,
o+ Yo To+ Yo
our PDE by «:

). To take x as the parameter, begin by dividing
1
um—l—guy—l——uzl.
x x
Then the PDE becomes
dy 1
um—l—uy%—l—gu:l,

du 1

—+—-u=1
dx * x ’
or J
T (zu) =x.
. . . o Yo
We integrate along the characteristic curve, between the points ( ) )
o+ Yo To+ Yo
and (zo, yo)
xo d zo
/ZO %(:Eu) dm—/zo xdx,
z0+vo z9+y0
zou(wo, yo) — — 2 u( T Yo >:l2_l a
’ zo+yo \Zo+Yo o+ Yo 2 2 (zo +yo0)?
x
Use that u ( 0 ) Ll ) =1, to obtain
o+ Yo To+ Yo

1 ) Zo

2T
ro+yo 2 2(zo+yo)?

u(z0,yo) =
Finally, replace the arbitrary point (zg,y0) by (z,y) to conclude

ey T2 2ty
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1.4 The data is given along the x-axis. The characteristics are solutions of

Xz .
— =sin
dy Y,
which are z = — cosy + ¢. The one passing through the point (xq, yo) is
(3) T = —cosy+ xg+Ccosyp.
It intersects the z-axis at z = —1 4+ g + cos yg. We use y as the parameter.
The original equation becomes, along the characteristic curve,
du
—— = —Ccosy + Ty + Ccosyp .
dy

We integrate along the characteristic curve, between the points (—1 + z¢ +
cos 4o, 0) and (zg,yo), or between the parameter values of y = 0 (where
x=—14z9+ cosyy) and y = yg (where = = x)
Yo du Yo
—dy = / (—cosy + zg + cosyy) dy,
0o dy 0
u(zo,yo) — u(—1+ z¢ + cosyo, 0) = —siny + (o + cos yo) Yo ,
u(z0,y0) = u(—1 + xo + cos yo, 0) — sinyo + (zo + cosyo) Yo
=(—1+x9+ cosyo)2 —sinyo + (xg + cos yo) Yo -

Replacing (z9,y0) — (x,y), obtain the solution
w(z,y) = (=14 2 + cosy)? — siny + (x + cosy) y .

1.5 The general solution can be obtained by prescribing arbitrary data, on
any non-characteristic line. We shall prescribe that

’LL(:E, 0) = f(:E) )
where f(x) is an arbitrary function. The characteristics are the solutions of
dy _ 1
de  2°

1
which are the lines y = 3% + ¢. The characteristic passing through the

1 1
point (zg,yo) is y = 5:17 + Yo — 5:170. It intersects the z-axis at the point

T = xg — 2yp. To take x as a parameter, we divide the equation by 2

1 T
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and obtain
du x

dz 2
along the characteristics. Integrating along the characteristic curve

o du oz
/mo—2yo e dx = /mo—2yo 5 dx ,
u(zo, yo) — u(xo — 2y0,0) = Toyo — Y -
Using that u(xg — 2yp,0) = f(zo — 2yp), obtain
u(zo, yo) = f (o — 2y0) + Toyo — ¥ -

Finally, replace the arbitrary point (zg,y0) by (z,y) to conclude

u(a,y) = f(z —2y) +ay —y°,
where f is an arbitrary function.
1.6 The characteristics are the lines y = %JE + ¢. The solution is prescribed

1
along the line y = —z, which is one of the characteristics. The solution

cannot be arbitrarily prescribed along a characteristic line, because the value
of solution at any point determines the values of solution for all points along
a characteristic line.

1.8 The characteristics are the solutions of

dy y
-2 —9
dx T

9

which are the parabolas 3y = cz2. The one passing through the point (zg, o)

isy = y_g x2. Tt intersects the line # = 1 (on which the data is given) at the
Zo
point (1, y—g) To take x as the parameter, begin by dividing our PDE by
Zo

T
um—l—QQuy—l—%u:O.
T T

Along the characteristics this equation becomes

du y

— 4+ Zu=0
dz 22" ’
du

T M=o
dx  xj



%,

Multiplying by the integrating factor e , convert this to

Y0 4

di [eﬁo u(:n,y)] =0.

Xz

Integrate in = between x = 1 and & = zy (or between the points (1, y—g)
Zo
and (xg, yo) along the characteristic curve)

Y0 Yo

ex0u(wo, yo) — e u(1,23) =0,
)
Y0 Yo Yo Yo
P Yo P 1)
u(xo,yo) = €0 Cu(l, =) =e" " f(=),
Lo Lo
Y _y Y
u(x,y) = ex? l‘f(ﬁ) .

Section 8.12.1, Page 369

I.1 The function v(z,y) > 0 is harmonic in the entire plane. By Liouville’s
theorem v(z,y) is a constant. It follows that u(x,y) = v(z,y) — 12 is a
constant.

1.2 The function v(z,y) > 0 is harmonic in the entire plane. By Liouville’s
theorem v(z, y) is a constant. It follows that u(x,y) = —v(x, y) is a constant.

[.3 Assume that a harmonic in the entire plane function u(z, y) is bounded
from above by some constant A, so that u(z,y) < A, for all z and y. Then
the function v(x,y) = A — u(z,y) is non-negative and harmonic in the
entire plane. By Liouville’s theorem v(z,y) is a constant. It follows that
u(xz,y) = A —v(z,y) is a constant too.

.4 By the strong maximum principle, a harmonic in D function u(z,y)
assumes both its minimum and maximum values on the boundary dD. Both
of the extreme values are equal to 5, because u(x,y) =5 on 9D. It follows
that u(z,y) =5 in D.

1.5 By Poisson’s integral formula the integral

1 27 R2—T’2
“oar )y R2 — 2Rrcos(0 — ¢) +1r? f

(¢) do

u(r, 9)
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gives a function harmonic in the disc » < R, and equal to f(f) on the
boundary of that disc r = R. If we take f(6), then u(r,0) = 1 in the disc
r < R, similarly to the preceding problem. It follows that

2 R2 _ 2
o R?—2Rrcos(6—¢)+r

5 dp =2m.

1
1.6 Calculate Av = 0, and observe that v(z,y) = 1 (ZE2 + y2) on OD. The

harmonic function v(z,y) assumes both its minimum and maximum values
on the boundary 0D. One has

igi(:pz—l—yz) S% on 0D .

It follows that

. But v(0,0) = u(0,0).

1.7 Assume that v > 1 somewhere in D. Using that u = 0 on 9D,
we conclude that there is point (zg,yo) at which u(x,y) achieves its lo-
cal maximum, and u(xg,yo) > 1. At the point of maximum, Au(zg,yo) =
Uz (0, Y0) + Uyy (20, y0) < 0. We now evaluate the given equation at the
point (zo, Yo):

Au(zo,yo) + u” (w0, yo) (1 — u(wo, yo)) = 0.

The first term on the left is non-positive, while the second one is strictly
negative. We have a contradiction, proving that u(x,y) < 1. One shows
similarly that u(z,y) > 0.

I.8 Similarly to the preceding problem, one shows that u(z,y) cannot
assume either positive or negative values inside D. It follows that the only
solution is u(z,y) = 0, the trivial solution.

1.9 Calculate
Au =162 +16y> > 0.

By the maximum principle, u(z, y) takes on its maximum value on the circle
z? + y? = 4, which is the boundary of the disc z? + y? < 4. On that circle
xr = 2cosf, y=2sin6, and

2
U= (:E2+y2) — 2?4+ y?> =16 —4cos26.
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3
The maximum value of 20 is achieved at § = g and 0 = ;, or at the points
(0, £2).

.10 Assume that u(z, y) is positive somewhere inside D. Because u(z,y) =
0 on the boundary 0D, it follows that u(z, y) has a point of global maximum
(20, %0) inside D, u(xo,yo) > 0. At that point ug(zo,y0) = uy(xo,yo) =
0, Au(zo,yo) < 0. It follows that the left hand side of the equation is
negative, a contradiction. Hence, u(x,y) cannot assume positive values.
One shows similarly that u(z,y) cannot assume negative values. It follows
that u(z,y) = 0.

I.11 Observe that for all x and ¢
P2 +t2—t+1>0),

while the initial and boundary conditions are non-negative on the parabolic
boundary. By the comparison theorem for the heat equation, u(z,t) > 0 in
the parabolic domain.

[.12 By the mean value property of harmonic functions, the value of (0, 0)
is equal to the average of the values u(x,y) on the circle of radius 3 around
the origin. Given that the continuous function wu(x,y) is non-negative on
this circle, and it is positive at one of the points of the circle, the average
has to be positive, so that «(0,0) > 0.

1.13 Recall Harnack’s inequality in the form

maxgg , u(z,y)

- <9
mingy, , u(z, y)
from the text. Here R = 2, so that
maxp, u(z,y) <9

minBl U(ZE, y)
Since (0, 1) = 10, it follows that H}Baxu(:n, y) > 10. Similarly from u(0,0) =
1
1 it follows that I%in u(z,y) < 1. Hence, the above ratio should be at least
1
10, a contradiction.

[.15 Assume v(z, t) is another solution of this problem, and denote w(z, t) =
u(x,t) — v(x,t). Subtracting the equations that u(z,t) and v(z,t) satisfy,
obtain

Wy — Wey + c(z,H)w =0,
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where c¢(z,t) = u(z,t) + v(x,t). By the result of the preceding problem
w(x,t) =0, so that u(x,t) = v(z,t), and there is at most one solution.
Page 372

To find two solutions of the following nonlinear first order PDE
(I(ZE, y)z:% + b($7 y)zmzy + C(ZE, y)z; =0

with given functions a(z, y), b(z, y) and ¢(x, y), one sets up the characteristic
equation )
(I(JL',y)y/ —b(:n,y)y/—l—c(:n,y) =0.

This is a quadratic equation for 3/ (x), with two solutions

y/(iﬂ) — b(:Evy) + \/bz(znvg()l_ 4a(:n,y)c(:n,y) .

We have two ODE’s to solve. Let one of these equations have a solution
that is implicitly defined by ¢(z,y) = ¢. Then z = ¢(z,y) is a solution of
the nonlinear first order PDE above. Let z; = {(x,y) and z3 = n(z,y) be
two solutions obtained this way. Then the change of variables (z,y) — (£, )
trasforms the following second order PDE

(I(IE, y)umm + b(:Ev y)umy + C(:Ev y)uyy + d(:Ev y)um + G(IE, y)uy = 0

to a canonical (simpler) form.

II.1  The characteristic equation is

—Yy= 0 )
or
y=+y'/?.
Integration gives 2y1/ 2 = 42 + ¢. Solving for ¢, we obtain two solutions of

the given PDE: z = 2,/y — z, and z = 2,/y + .
1.3 The characteristic functions are solutions of the equation
2oy,

which was solved in the preceding problem. We make the change of variables
(x,y) — (&, n) by setting § = 2\/y—=z, and n = 2,/y+=z. Calculate the partial

L 3/

derivatives {, = —1, §, = y_l/z, §ox = 0,82y =0, {yy = —5Y . Similarly,
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_ 1 _ ..
Ne = 17 My =Y 1/27 Neax = 07 Ny = 07 Nyy = _§y 3/2' WI‘ltlIlg ’LL(ZE,y) =

u(&(x,y),n(z,y)), we use the chain rule to calculate the derivatives:
Uy = uﬁém + UyNz

Usa = Uge€y + 2ugn€atla + Unytly + Uebaa + Unllag = Uge — gy + Uy -

Similarly

-1/2 1/2

Uy = ugy + upny = ugy +upy 7,
2
Uyy = “ﬁ&fi + 2ugnymny + Uy + ug&yy + UnTlyy

- - _ 1 _ 1 _
= Ugey 1—1—2u§ny 1—I—umy l—ugiy 3/2—u77§y 8/2,

Substituting these relations into our equation

1
Upzy — YlUyy — §uy =0

we obtain the canonical form
ugp = 0.

Integrating, u = F(§) + G(n), with arbtrary functions F' and G. Going back
to the original variables x and y, we obtain the solution:

w(z,y) =F2y—z)+G2/y+z).

Page 373
III.1 Integrate both sides of the equation, and use Green’s identity

/DAudV:/Df(:E,y,z)dV,

ou

gy = / qv .
D an D f(:E? y7 Z)
In view of the Neumann boundary condition, the left hand side is zero. Since
the right hand side is non-zero, we have a contradiction, proving that there

is no solution.

II1.2 The difference w(x,y, z) of any two solutions satisfies

Aw=0 in D, a—wzo on S.
on
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Multiply this equation by w(z, y, z), and integrate both sides of the equation,
then use Green’s identity and the boundary condition

/ wAwdV =0,
D

—/ |Vw|2dV+/ w2 av =0,
D D On
/|Vw|2dvzo.
D

It follows that |Vw| = 0, which implies that w(x,y, z) is a constant.

II1.3 Consider a vector field F = (u(z,y, 2),0,0), and let n = (ny, na, n3)
be the unit normal vector on the boundary S of D, pointing outside.

(i) divF = ug, F' - n = uny. By divergence theorem

/ude:/unldS.
D S

(ii) Multiply the equation
Au-+uu, =0

by u, then integrate over D, to obtain

1
/uAudV—l——/ 21L3(1ﬂ/:0.
D 3Jp oz

By Green’s identity the first term is equal to — [, [Vu|?dV. Apply part (i)
on the second term

21L3(1ﬂ/:/u?’nlawzo,
p Ox S

since u = 0 on S. It follows that
/ Vul?dV =0,
D
then Vu = 0 in D, u = constant in D, and the constant is zero because
u=0onS.
(iii) By the product rule
0

— (uv) = ugv + uvy, .

ox
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Integrate over D, and apply part(i)

/ (ugv + uvy) dV :/ 9 (uv) dV = / uvny dS,
D D 8:13 S

or

/umvdV:—/ uvde—l-/uvnldS,
D D S

correcting an error in the book in the last formula.
(iv) Multiply the equation
Au+ zulu, =0

by u, then integrate over D, to obtain
(1) / A dV+1/ 9 v =0
- | z— =0.
D ue 4 Jp Ox

By Green'’s identity the first term is equal to — [, [Vu|?dV. Apply part (iii)
on the second term

/:Egu‘ldV:—/ u4dV—|—/:Eu4n1dS:—/ utav,
D ox D S D

since u =0 on S. Then (??) takes the form

1
—/ |Vu|2dV——/ wtdv = 0.
D 4 Jp

Both of these non-positive integrals must be zero, implying that © = 0 on
D.

III.5 (ii) Assume that the nonlinear Dirichlet problem has two solutions
satisfying u(x) > v(z) > 0, so that

Au= f(u) in D, u=0 on S,

and
Av=f(v) inD, v=0 onS.

Multiply the first of these equations by v, the second one by u, then subtract
the results to obtain

Auv—Avuzuv(M—M>.

u v
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Integrate both sides of the last identity, then use the second Green’s identity
and the boundary conditions

)10 gy

u v
é(%v—%u) dS:/Duv %

Oz/uv(M f_v))
D U v

(Here S is the boundary of D.) By our conditions the right hand side is
positive, and we obtain a contradiction, proving that there cannot be two
ordered positive solutions.

/ (Auv — Avu) dV = uv(
D D

S~

(v)> v

@ ‘

av.
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